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ABSTRACT 

Pressure oscillations in ramjet engines have been studied using an apprOXimate method which 
treats the flow fields in the inlet and the combustor separately. The acoustic fields in the 
combustor are expressed as syntheses of coupled nonlinear oscillators corresponding to the acoustic 
modes of the chamber. The influences of the inlet flow appear in the admittance function at the 
inlet/combustor interface, providing the necessary boundary condition for calculation of the 
combustor flow. A general framework dealing with nonlinear multi-degree-of-freedom system has also 
been constructed to study the time evolution of each mode. Both linear and nonlinear stabilities 
are treated. The results obtained serves as a basis for investigating the existence and stabilities 
of limit cycles for acoustic modes. As a specific example, the analysis is applied to a problem of 
nonlinear transverse oscillations in ramjet engines. 

1. INTRODUCTION 

With the growing commitment to the development of ramjets and ducted rockets it has come to the 
recognition that instabilities within the propulsion system constitute a potential serious problem. 
This has been the subject of a JANNAF workshop reported in Ref. 1. Unsteady motions excited and 
sustained by the combustion processes are in fact a fundamental problem associated with any 
combustion chamber. The essential cause is the high rate of energy release confined to a volume in 
which energy losses are relatively small. Only a very small amount of chemical energy need be 
transformed to mechanical energy of time-varying fluid motions to produce unacceptably large 
excursion of pressure. The ensuing vibrations of the structure may lead to failure of the structure 
itself or of eqUipment and instrumentation. 

Because the oscillations arise from causes entirely internal to the system, they are true 
instabilities and are correctly identified as self-excited. Typically, a small unstable initial 
disturbance will grow exponentially for some time, eventually reaching a limiting amplitude. This 
behavior necessarily involves nonlinear processes; it· is impossible for an intrinsic instability to 
be limited by linear processes alone. Consequ~ently, any question concerned with the long-time 
evolution of combustion instabilities can be addressed only by treatment of nonlinear processes. 
For ramjet engines, nonlinear behavior is especially concerned because of the difficulties in 
obtaining good quantitative data for the linear growth of oscillations. All information about 
combustion instabilities has been gained from observatiQns of fully developed oscillations. 

Figure 1 shows the situation examined here, an idealized representation of several contemporary 
ramjet engines using dump combustors. Air is delivered from a supersonic inlet system to a 
combustor in which chemical reaction takes place. Compared with rocket engines, ramjets have 
several characteristics which produce distinctive differences in the pressure oscillations observed. 
First, an important boundary condition is presented by the shock system located at the divergent 
section of the inlet diffuser. Second, combUstion is confined to a chamber which is a substantial 
part but not the whole of the volume of the system. The inlet flow may play an important role in 
oscillations. The Mach number of the mean flow in the inlet can be quite high and should not be 
ignored, whereas the Mach number of the combustor flow is generally small. Third, the abrupt 
enlargement of cross-sectional area at the inlet/combustor interface produces recirculating flows 
and reacting turbulent shear layers, imposing serious difficulties in the theoretical modeling. 

Several linear analyses of bulk and longitudinal oscillations in ramjets2- 5 have been 
developed, giving results valid in the limit of small amplitudes and low frequencies. Nonlinear 
analysis has not yet been accomplished although much of the necessary foundation is in place. 
Officially, two approaches can be followed: numerical techniques and approximate methods. Each 
approach has advantages which are complementary to the other. Numerical integration of the complete 
conser·vation equations provides more accurate and thorough results t-or well-posed problems; and 
serves as the only certain means of checking the validity of approximate methods. To date only 
longitudinal wave motions in solid propellant rockets have been treated succesSfully.6 Extension to 
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multi-dimensional problems, especially for ramjet engines having non-uniform configuration, still 
remains in an early stage due to the complexity and uncertainty of the flowfield and the limitation 
of computer capability. An intrinsic disadvantage of numerical analysis is that the method yields 
one answer for each special case considered. Many cases must be run to detect trends and gain 
understanding. In contrast, approximate analysis provides more sweeping results less expensively 
and offers a framework for modeling physical behavior in a relatively easy manner. That is an 
attractive feature especially for studying mechanisms proposed as the causes of unst~ady motions. 
In the work described herein, we are concerned only with an approximate analysis. 

Because the characteristic features of the inlet and the combustor flows are basically 
different, for convenience of formulation they are treated separately. The flow in the inlet 
section downstream of the diffuser is taken to be uniform. We ignore the transverse wave motions 
since observations7 have shown that the high frequency oscillations in the cOmbustor do .not transmit 
into the inlet as a consequence of the abrupt area change. Accordingly, the OSCillatory field 
consists of two travelling waves. One is generated by the unsteady combustion processes in the 
combustor and propagates upstream; and the other is reflected downstream by the shock. Their 
influences on the combustor flow appears in the speCification of the acoustic admittance function at 
the dump plane. 

The flowfield in the combustor is much more complicated, usually involving both longitudinal 
and transverse wave motions. 7,8 Figure 2, the frequency content of pressure oscillations in a 
laboratory ramjet combustor operated at the Naval Weapons Center,7 clearly demonstrates these two 
modes of instabilities. The basis for the analysis begins with an approximate method previously 
reported in Reference 9. The acoustic field is expressed as a syntheSis of coupled nonlinear 
oscillators constructed in correspondence to the normal modes of the chamber. With application of 
the Galerkin method and the method of time averaging, a set of coupled first-order ordinary 
differential equations are obtained for the time evolution of each mode. 

In the following sectiOns, a formal framework for the nonlinear acoustic fields in ramjet 
engines is first constructed, followed by development of an approximate method dealing with 
nonlinear multi-degree-of-freedom system. The analysis serves as a basis for investigating the 
existence and stability of limit cycles for pressure oscillations. As a specific example, we treat 
a problem of nonlinear transverse wave motions for which the frequencies of the higher modes are not 
integral multiples of the fundamental frequency. This mode of oscillations has been previously 
studied by Zinn and Powel110 for liquid propellant rockets. With the aid of the Galerkin method, 
thel were able to derive a system of second-order ordinary differential equations governing the 
tim~dependent amplitude of each mode, which were then solved numerically to predict the existence 
of limit cycles. Being different from their approach, it is intended in the present work to 
construct a realistic Simple model so that explicit formulas can be obtained to explain some of the 
nonlinear behavior of engines. 

2. ACOUSTIC FIELD IN THE INLET 

To simplify the analYSis, we ignore the cross-sectional area changes and assume the mean 
flowfield to be uniform. The rapid variations in the diffuser section appear indirectly through its 
influences on the boundary conditions. Therefore, we treat the problem of OSCillatory motions in a 
uniform mean flowfield. Follo~ing the analysis given in Reference 11, we may express the linear 
acoustic pressure and velocity in the useful form 

u' 
1 

~ U exp [-i{wt + M1KX - "'u)] 

P - P - [1 + I fl r + 2 I fl I cos (2Kx + 4» ]'12 

U = ( 1 /j; 1 a 1) P _ [1 + I fl f - 2 I fl I cos 

-sin Kx + fl sin (Kx + 4» 
tan "'p - -C~O~S~K~x~+~~fl~~C~O~X~(~K~X~+--4>~)~ 

where K is the modified wave number defined as 

K _ k 

1-M 2 
1 

(w-ia)/a1 
l-M 2 

1 

4>]'12 

and B is exp(2iKL1) times the acoustic reflection coefficient at the shock, B = I B I exp (14)). 
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It is clear that the acoustic field depends mainly on the reflection coefficient 6. the Mach 
number Ml. and the complex wave number K. For practical designs I B I is very small. usually less 

than 0.1. Hence to first order accuracy of I 6 I. the acoustic admi ttance function at the upstream 
side of the dump plane (x=O_) is 

[1 - 2\ 6 \ cos ~J exp [1 (ljIu - vpJ (8) 

x=O 

where 
(9) 

To check the validity of (8) and to show the dependence of Ad on the dimensionless frequency 
n. defined in Ref. 11. and wave number KL1. some calculations base6 on (1)-(7) have been carried out 
with no approximation made. The results are given in Figure 3. 

3. COUPLING OF THE INLET AND THE COMBUSTOR 

The acoustic field in the combustor must be coupled to that in the inlet by requiring that the 
acoustic pressure and mass flux be continuous. Figure 4 shows the relevant notations. The 
conditions to be satisfied are 

(10) 

( 11) 

Assume isentropic condition at the dump plane. 

Substitution of these equations into (11) and rearrangement of the result give the admittance 
function at the combustor side of the dump plane 

A = 
P2a2u2 ' 

I ~=O (Ad + M ) 
a2 

d2 
P , 1 2 1 a1 + 

Combination of (8) and (12) yields 

real part of A 
d

2 

imaginary part of A 
d

2 

(1-2 I 6 I cos</> + M1) 

I I a2 Al 2 
2 6 sin</> =- ~ + 0(6 ) 

a
1 

2 

Al 
- M2 

A2 
( 12) 

(13) 

( 111) 

Because it is the imaginary part of Ad which determines the shift of frequency of 
oscillation from Wn. the frequency of unperturbed normal mode. for small I ~ equation (14) implies 
that the acoustic mode shape in the combustor is very close to that in an organ pipe. as shown by 
recent experimental results. 7 

4. ACOUSTIC FIELD IN THE COMBUSTOR 

The flow field in the combustor can be treated with the general analysis constructed in 
Reference 9. Briefly. the acoustic fields are synthesized as an expansion in normal modes. 
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following a procedure equivalent to the Galerkin method, or method of least residuals. Thus, the 
pressure and velocity fields are written: 

p'(;,t) = P L ni(t) "'i(;) (15) 
i 

where 

and k 2 
i 

( 16) 

These forms are substituted in the conservation equations expanded to second order in small 
quantities. Spacial averaging produces the set of equations representing a collection of coupled 
nonlinear oscillators: 

e:F 
n 

where e: is a small parameter representing the amplitude of pressure oscillation, and Fn is the 
forcing function 

Fn = - L [0 ini + E ini] - L L [A i.ninj + B .. n.n.] 
inn i j n J nlJ 1 J 

( 17) 

( 18) 

The mathematical and physical meanings of the coefficients 0ni' etc., have been given in Ref. 9. 
Thus the problem comes down to sol ving the set (17) for the time-dependent amplitude, to gi ve the 
evolution of the system subsequent to a specified initial condition. 

4.1 Method of Time Averaging 

We assume the solution to (17) has the form 

Imposing the condition 

A sinw t + B cosw t = 0 n n n n 

and following some straightforward manipulation, we obtain the equations for An(t) and Bn(t). 

A 
n 

B 

n 
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e:F cosw t 
n n 

e:F Sinw t 
n n 

(19 ) 

(20) 

(21 ) 



These equations (20) and (21) represent the exact solutions without any approximation made. To have 
a better understanding of An and Bn, we introduce two dimensionless time variables: the fast time 
'f and the slow time 'so Then equations (20) and (21) will generally contain terms of the form 
shown: 

(22) 

(23) 

where 's ~ EWot and 'f = wnt. The equations imply that An and Bn are slowly varying functions of 
time since '5 represents the slowly varying time scale. For small 's and in the limit of £ + 0, 
Tf a 'S/E »1. Thus fo('s) changes slightly while fl('f) may have experienced a considerable 
number of oscillations, as shown schematically in Figure 5. To a very good approximation, the fast 
varying functions fl('f) and gl('f) can be replaced by their time-mean quantities in the numerical 
integration for An and Bn' Therefore, 

(24) 

(25) 

where 

In summary, the method contains two steps: separation of the fast and the slowly varying 
terms; and time average of the fast varying terms. For some practical problems, there is no clear 
cut between the fast and the slowly varying terms. An extensive numerical study has shown that 
those terms with frequencies greater than one half of wn should be averaged with respect to time in 
order to have good approximation. 

4.2 Linear Oscillation 

The linear contribution to the forcing function Fn can be expressed as 

( 26) 

where 
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Substitution in (22) and (23) and neglect of the fast varying terms with frequencies wi + wn give 

A ~ 2-1 L[c icos(wi - W )t + s isin(wi - W )t] 
n wn inn n n 

( 27) 

( 28) 

-
Care must be exercised when dealing with terms with frequencies wi - Wn. They are either fast or 
slowly varying, depending on the modes considered. We treat first the longitudinal mode of 
oscillation. 

Longitudinal Modes - For practical ramjet engines with aspect ratio L/D greater than four, the 
longi tudinal oscillations .are linearly decoupled from the tangential and the radial modes as seen 
easily from the frequency difference. The coupling terms are fast varying and vanish after time 
averaging. For pure longitudinal modes, the terms survive only for i - n. Thus equations (27) and 
(28) become 

-1 [w D A + E B ] 
2w n nn n nn n 

n 

B 
n 

1 
2w"""" -W D B + E A] 

n nn n nn n 
n 

The linear coupling between pure longitudinal modes vanishes. 

Tangential Modes - As discussed earlier, the frequency of the mixed longitudinal/tangential 
mode is 

2 
+ w. 

J 

where wt and Wj stand for the frequencies of the pure longitudinal and tangential modes. In 
general, wt is much less than Wj for t = 1,2. If we let wt/Wj - 6, then 

( 29) 

(30) 

The frequency difference between the pure tangential mode and the mixed mode is of second order in o. 
Thus within first order accuracy, 

cos(Wn - wilt -

The subscripts n and i denote the pure tangentt"al mode and the mixed mode respectively, i 3 1.2. 
Consequently, the equations governing linear tangential oscillations are 

B 
n 2w L sni 

n i 

-1 

2w 
n 

L [w D i B - E iAi] n n n n 

The coefficients Dni and Eni are in general nonzero. Typically, they involve terms such as 

J~iij·V~ndV' which after some straightforward manipulations becomes 
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- Jii~xCOSinXCOSiiX[COSieJi(klr)J2dv. 

The strong coupling between the tangential and the mixed modes indicates that the tangential 
oscillation depends greatly on the flow field in the axial direction12 , unlike. the longitudinal mode 
which is relatively insensitive to the transverse flow motions. 

Some calculations have been carried out for the transverse oscillations in a laboratory device 
operated at the Naval Weapons eenter.1 For simplicity, we consider only two modes with the mode 
shapes and the frequencies given below. 

1st tangential mode Wl ~ 3816 Hz 

1 st mixed mode 

Thus equations (31) and (32) give 

( 33a) 

Bl (33b) 

(33c) 

C33d) 

For convenience these equations can be written in matrix form, and the growth rates and the 
frequency shifts for linear oscillations are then easily determined by the eigenvalues of the 
coefficient, or augmentation, matrix. 

Radial Modes - Similar to longitudinal motion. this mode of oscillation does not involve any 
significant linear coupling with the other modes and is not addressed here. 

4.3 Nonlinear Oscillation 

FollOWing the same notations as those in Reference 9 and substItuting (18) in (20) and (21), 
the equations governing the nonlinear oscillations can be written in the form 

- __ 1 __ L L {e ijaij(cos(w + W )t + cos(w - w )t] 
2wn i j n n + n + 



where 

- c .. c .. [Sin(w + 00 )t + sinew - 00 It] nlJ lJ n + + n 

Sn a 200' L {Cni[Sin(wn + wilt + sin(wn - wilt] + sni[cos(w1 - wn)t - cos(wi + wnlt]} 
n i 

00 = 00 + 00 • and 00 = 00 - 00 
+ i j' - 1 j 

(3~) 

(35) 

(35) 

The equations essentIally contain two parts: coefficients arising from linear processes and 
nonlinear coupling among modes. For pure longitudinal oscillations for which the normal mode 
frequency is integral multiple of the fundamental frequency, wn = nw" the analysis can be greatly 
slmplified. 9 A detailed discussion of the stability and existence of the limit cycle has been given 
in Reference 13. The influences of tangential oscillations on longitudinal motions are generally 
small except for a short combustor having low aspect ratio, as seen easily from the frequency 
components. 

o (6) 

Tangential modes are commonly observed in many ramjet combustors. 7 ,8 As a first approach, we 
consider only two modes here: the first tangential and radial modes. The coupling with the mixed 
longitudinal/tangential modes and the higher tangential modes are not included, but can be treated 
in the same manner. Following the' same idea discussed earlier, the fast varying terms are averaged 
with respect to time. Thus, equations (3~) and (35) become: 

( 36) 

(37) 

(38) 
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where n = 2wl - w2, and ai' ai' a, and b are coefficients arising from linear and nonlinear 
processes. They are defined as 

(i 

-~ _5.l 
a1 = 2 

a = 
2 

2 

_ °22 
2 

To obtain results for 
1,2) in the following 

Al = rlcos(at + vl ) 

61 rl sin (at + VI) 

A2 r2cos(at + V2) 

62 r2sin (at + V2) 

w
1 

periodic 
form. 

limit cycles, we look for the limiting values of Ai and 6i 

Substitution in (36) through (39) and rearrangement of the results yield 

where 

-1 a1 tan Clearly, the solutions exist only if a = - n. 

( 39) 

(40) 

(41 ) 

(44) 

To equate the time-dependent terms on both sides of the above equation, we find a 
multiply equation (41) by sin(nt - vl), (42) by cos(nt - VI) and subtract to find 

- O. Now 

( 45) 

Multiply equation (41) by cos(nt - Vt), (~2) by sin(nt - VI) and add to find 

al + ar2cos(2vl - v2) = 0 (46) 
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Similar manipulations of equations (~3) and (~~) give 

Equations (46) and (48) give 

y 2 
1 

-U
1

U
2 

--ai) 2 
cos (2\11 - \12) 

o 

o 

Since ab is positive, the sufficient and necessary condition for the existence of limit cycle is 

The time evolution of the acoustic mode is obtained by substituting (40) in (19). Thus, 

n2(t) Y2sin (W2t + at + \12) 

Since a = - Q = w2 - 2w1. we have 

n1(t) ~ Y1sin[(W2 - W1)t + \I,] 

n2(t) = Y2sin[2(W2 - W1)t + \12] 

( ~1) 

(48) 

( 49) 

The frequency of the first radial mode is twice of that of the first tangential mode as a result of 
nonlinear coupling. 

CONCLUSION REMARKS 

A general framework for studying pressure oscillations in ramjet engines has been constructed. 
The method extended previous analysis of nonlinear acous tics so that resul ts can be obtained for 
cases in which the linear normal modes are not simply organ pipe modes. The analysis of existence 
of limit cycles for transverse acoustic modes has also been carried out with only two modes taken 
into account. The cases for three and more modes will be discussed in subsequent work. 
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Fig. 1. Schematic Diagram of Ramjet Engine 
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Fig. 3a. Real Part of Acoustic Admittance Function at the Inlet Side 
of the Dump Plane (x = 0_) 
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Fig. 3b. Imaginary Part of Acoustic Admittance Function at the Inlet 
Side of the Dump Plane (x = 0_) 



Fig. 4. Interface Between Inlet and Combustor 
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Fig. 5. Schematic Diagram of Fast and Slowly 
Varying Functions 
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