A Caltech Library Service

Black hole-neutron star mergers: Effects of the orientation of the black hole spin

Foucart, Francois and Duez, Matthew D. and Kidder, Lawrence E. and Teukolsky, Saul A. (2011) Black hole-neutron star mergers: Effects of the orientation of the black hole spin. Physical Review D, 83 (2). Art. No. 024005. ISSN 2470-0010.

PDF - Published Version
See Usage Policy.

[img] PDF - Submitted Version
See Usage Policy.


Use this Persistent URL to link to this item:


The spin of black holes in black hole-neutron star binaries can have a strong influence on the merger dynamics and the post-merger state; a wide variety of spin magnitudes and orientations are expected to occur in nature. In this paper, we report the first simulations in full general relativity of black hole-neutron star mergers with misaligned black hole spin. We vary the spin magnitude from a_(BH)/M_(BH) = 0 to a_(BH)/M_(BH) = 0.9 for aligned cases, and we vary the misalignment angle from 0 to 80° for a_(BH)/M_(BH) = 0.5. We restrict our study to 3:1 mass-ratio systems and use a simple Γ-law equation of state. We find that the misalignment angle has a strong effect on the mass of the post-merger accretion disk, but only for angles greater than ≈ 40°. Although the disk mass varies significantly with spin magnitude and misalignment angle, we find that all disks have very similar lifetimes ≈ 100  ms. Their thermal and rotational profiles are also very similar. For a misaligned merger, the disk is tilted with respect to the final black hole’s spin axis. This will cause the disk to precess, but on a time scale longer than the accretion time. In all cases, we find promising setups for gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a baryon-clear region exists above the black hole.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Foucart, Francois0000-0003-4617-4738
Duez, Matthew D.0000-0002-0050-1783
Kidder, Lawrence E.0000-0001-5392-7342
Teukolsky, Saul A.0000-0001-9765-4526
Additional Information:© 2011 American Physical Society. Received 23 July 2010; published 6 January 2011. We thank Geoffrey Lovelace and Harald Pfeiffer for useful discussions and suggestions. This work was supported in part by a grant from the Sherman Fairchild Foundation, by NSF Grants Nos. PHY-0652952 and PHY-0652929, and NASA Grant No. NNX09AF96G. This research was supported in part by the NSF through TeraGrid [42] resources provided by NCSA’s Ranger cluster under Grant No. TG-PHY990007N. Computations were also performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund—Research Excellence; and the University of Toronto.
Funding AgencyGrant Number
Sherman Fairchild FoundationUNSPECIFIED
Issue or Number:2
Classification Code:PACS: 04.25.dg, 04.30.-w, 04.40.Dg, 47.75.+f
Record Number:CaltechAUTHORS:20110301-122047796
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:22588
Deposited By: Benjamin Perez
Deposited On:01 Mar 2011 21:44
Last Modified:09 Mar 2020 13:18

Repository Staff Only: item control page