Foucart, Francois and Duez, Matthew D. and Kidder, Lawrence E. and Teukolsky, Saul A. (2011) Black hole-neutron star mergers: Effects of the orientation of the black hole spin. Physical Review D, 83 (2). Art. No. 024005. ISSN 2470-0010. https://resolver.caltech.edu/CaltechAUTHORS:20110301-122047796
![]()
|
PDF
- Published Version
See Usage Policy. 845Kb | |
![]() |
PDF
- Submitted Version
See Usage Policy. 527Kb |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20110301-122047796
Abstract
The spin of black holes in black hole-neutron star binaries can have a strong influence on the merger dynamics and the post-merger state; a wide variety of spin magnitudes and orientations are expected to occur in nature. In this paper, we report the first simulations in full general relativity of black hole-neutron star mergers with misaligned black hole spin. We vary the spin magnitude from a_(BH)/M_(BH) = 0 to a_(BH)/M_(BH) = 0.9 for aligned cases, and we vary the misalignment angle from 0 to 80° for a_(BH)/M_(BH) = 0.5. We restrict our study to 3:1 mass-ratio systems and use a simple Γ-law equation of state. We find that the misalignment angle has a strong effect on the mass of the post-merger accretion disk, but only for angles greater than ≈ 40°. Although the disk mass varies significantly with spin magnitude and misalignment angle, we find that all disks have very similar lifetimes ≈ 100 ms. Their thermal and rotational profiles are also very similar. For a misaligned merger, the disk is tilted with respect to the final black hole’s spin axis. This will cause the disk to precess, but on a time scale longer than the accretion time. In all cases, we find promising setups for gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a baryon-clear region exists above the black hole.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||
ORCID: |
| ||||||||||||
Additional Information: | © 2011 American Physical Society. Received 23 July 2010; published 6 January 2011. We thank Geoffrey Lovelace and Harald Pfeiffer for useful discussions and suggestions. This work was supported in part by a grant from the Sherman Fairchild Foundation, by NSF Grants Nos. PHY-0652952 and PHY-0652929, and NASA Grant No. NNX09AF96G. This research was supported in part by the NSF through TeraGrid [42] resources provided by NCSA’s Ranger cluster under Grant No. TG-PHY990007N. Computations were also performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund—Research Excellence; and the University of Toronto. | ||||||||||||
Group: | TAPIR | ||||||||||||
Funders: |
| ||||||||||||
Issue or Number: | 2 | ||||||||||||
Classification Code: | PACS: 04.25.dg, 04.30.-w, 04.40.Dg, 47.75.+f | ||||||||||||
Record Number: | CaltechAUTHORS:20110301-122047796 | ||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20110301-122047796 | ||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||
ID Code: | 22588 | ||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||
Deposited By: | Benjamin Perez | ||||||||||||
Deposited On: | 01 Mar 2011 21:44 | ||||||||||||
Last Modified: | 22 Nov 2019 09:58 |
Repository Staff Only: item control page