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Black holes of mass M must have a spin angular momentum S below the Kerr limit (� � S=M2 � 1),

but whether astrophysical black holes can attain this limiting spin depends on their accretion history. Gas

accretion from a thin disk limits the black-hole spin to �gas & 0:9980� 0:0002, as electromagnetic

radiation from this disk with retrograde angular momentum is preferentially absorbed by the black hole.

Extrapolation of numerical-relativity simulations of equal-mass binary black-hole mergers to maximum

initial spins suggests these mergers yield a maximum spin �eq & 0:95. Here we show that for smaller mass

ratios q � m=M � 1, the superradiant extraction of angular momentum from the larger black hole

imposes a fundamental limit �lim & 0:9979� 0:0001 on the final black-hole spin even in the test-particle

limit (q ! 0) of binary black-hole mergers. The nearly equal values of �gas and �lim imply that

measurement of supermassive black-hole spins cannot distinguish a black hole built by gas accretion

from one assembled by the gravitational inspiral of a disk of compact stellar remnants. We also show how

superradiant scattering alters the mass and spin predicted by models derived from extrapolating test-

particle mergers to finite mass ratios.
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I. INTRODUCTION

Supermassive black holes (SBHs) reside in the centers
of most large galaxies. While a few nearby SBHs can be
detected by their gravitational influence on surrounding
stars, the majority of SBHs are observed electromagneti-
cally as active galactic nuclei (AGN). The same accretion
flows that release energy to power AGN also supply energy
and angular momentum to the black holes themselves
increasing their mass M and spin S.1 By definition, black
holes possess an event horizon from within which nothing
can escape to future null infinity. Black holes described
by the Kerr metric [1] only possess an event horizon for
� � S=M2 � 1, setting a fundamental upper limit on a
black hole’s possible spin. Whether or not astrophysical
SBHs saturate or even exceed this Kerr limit is an impor-
tant test of general relativity.

Black-hole spins also probe their assembly history.
SBHs grow both by gas accretion and mergers driven
by the gravitational inspiral of binary companions. These
two growth mechanisms may supply mass and angular
momentum to the SBHs in different ratios, allowing mea-
surements of black-hole spin to distinguish between
them. Reverberation mapping of the iron K� line in
AGN x-ray spectra has been proposed as just such a means

of measuring SBH spins [2]. XMM-Newton observations
analyzed with this technique have been used to constrain
the spin of the SBH hosted by the Seyfert 1.2 galaxy MCG-
06-30-15 to � ¼ 0:989þ0:009

�0:002 at 90% confidence [3]. A

closer examination of how SBHs acquire their spins is
thus of both theoretical and observational importance.
According to Bardeen [4], a nonspinning black hole can

attain the maximumKerr spin � ¼ 1 after accreting a finite
mass of test particles freely falling from its innermost
stable circular orbit (ISCO). However, material on circular
orbits with radii greater than that of the ISCO cannot be
accreted unless it has some mechanism to shed its excess
angular momentum. In a standard geometrically thin, opti-
cally thick accretion disk [5], this mechanism is viscous
stress within the disk that also heats it locally and trans-
ports energy outwards. This heating produces an energy
flux at the disk’s surface that will be radiated in all direc-
tions. A small fraction of these radiated photons do not
escape to infinity but are instead captured by the black hole
itself. Photons with negative angular momentum with re-
spect to the black hole’s spin have a larger capture cross-
section than those with positive angular momentum [6],
implying that the accreted radiation will counteract the
directly advected material which always acts to spin the
hole up for �< 1. These two sources of angular momen-
tum cancel for black-hole spins �gas ’ 0:998, with black

holes of greater spins spinning down to this value after
accreting a mass m ’ 0:05M [7].
Different accretion flows will supply energy and angular

momentum to the black hole in different ratios, altering the
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1Throughout this paper, we express physical quantities in units

where Newton’s constant G and the speed of light c are unity, in
which case the spin angular momentum S has dimensions ofM2.
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value of the limiting spin �gas. Advection-dominated ac-

cretion flows (ADAFs) do not cool efficiently, and there-
fore a fraction f > 0 of the gravitational energy dissipated
prior to the ISCO is advected by the black hole rather than
radiated to infinity. Viscous stresses in these flows propor-
tional to the Shakura-Sunyaev parameter � [5] also reduce
the specific angular momentum of the accreted material
below its value in the vacuum at the ISCO. The former
effect increases M in the denominator in the definition
� � S=M2 of the dimensionless spin, while the latter effect
reduces S in the numerator [8]. The magnetorotational
instability [9] also torques gas at the ISCO, and in addition
can launch jets which further limit the spin as shown in
magnetohydrodynamic simulations [10]. Analytic fits to
the ADAF simulations of Popham and Gammie [8] suggest
that black holes can spin up to �ADAF ’ 0:96, and that the
inclusion of jets calibrated by the magnetohydrodynamic
simulations of Gammie et al. [10] reduces this limit to
�jets ’ 0:93 [11]. We see that limits on black-hole spin

depend greatly on the nature of the accretion flow, and
that no model-independent constraints exclude the limit
�gas ’ 0:998 for thin disks first obtained by Thorne [7].

The maximum spin of black holes produced in binary
mergers is also greatly uncertain. The most accurate
numerical-relativity simulations have been of equal-mass
q � m2=m1 ¼ 1 black holes with spins �1 ¼ �2 aligned or
antialigned with the orbital angular momentum. These
simulations found � ¼ 0:68646� 0:00004 for nonspin-
ning binaries [12], and � ¼ 0:547812� 0:000009 for
equal-mass binaries with initial spins �1 ¼ �2 ¼
�0:43757 [13]. The spins of such aligned binaries do not
precess prior to merger, removing one complication in
determining their magnitude and direction. We will there-
fore restrict our analysis to aligned binaries in this paper,
though with modest additional work, it could be extended
to binaries of arbitrarily oriented spins.

Although these numerically determined spins are re-
markably precise, two significant obstacles still prevent
the determination of final black-hole spins from more
generic mergers. The first is the inability of the commonly
used conformally flat Bowen-York initial data to ade-
quately approximate initial binary black holes with spins
greater than �i ’ 0:93 [14]. An extrapolation of simula-
tions with �i � 0:9 suggests that the merger of equal-mass
black holes with maximal initial spins aligned with their
orbital angular momentum yields a final black hole with
spin � ¼ 0:951� 0:004 [15]. However, it remains to be
proven that such a smooth extrapolation in initial spin
holds all the way to the Kerr limit.

The second obstacle to determining spins from generic
mergers is the increased computational resources needed to
simulate mergers with mass ratios q � 1. This increased
computational demand results from the need for more
closely spaced numerical grid points to resolve the horizon
of the smaller black hole, shorter timesteps owing to the

shorter light propagation time between grid points, and
longer simulations to capture the larger number of orbits
per unit increase in orbital frequency prior to merger. The
smallest mass ratio that has currently been simulated is
q ¼ 0:01 [16]; only a handful of simulated mergers with
q � 0:1, all of initially nonspinning black holes, have been
published [17–19]. New numerical techniques will be re-
quired to make much progress beyond this point.
Relativists have attempted to surmount these obstacles

by inventing fitting formulas that are functions of q, �1,
and �2, calibrating the coefficients in these formulas with
existing simulations, and then extrapolating them to higher
spins and lower mass ratios than can currently be simu-
lated. This approach is very effective in the region of the
parameter space {q; �1; �2g near the simulations with
which the fitting formulas were calibrated, but can break
down outside this region. The probable reason for this is
that all three parameters listed above equal unity for equal-
mass, maximally spinning, aligned mergers, and thus poly-
nomials in these parameters will converge slowly if at all.
Even the symmetric mass ratio � � m1m2=ðm1 þm2Þ2 ¼
q=ð1þ qÞ2 gets as large as 1=4 for equal-mass mergers,
suggesting that polynomials in this parameter will not
converge quickly either. At the time this paper was written,
simulations were restricted to the region 0:1 � q � 1
(0:0826 � � � 0:25) which provided a short lever arm
over which to calibrate terms with different q dependence.
The degeneracy between terms makes predicting final
spins in the test-particle (q ! 0) limit very uncertain. For
example, several fitting formulas predict final spins above
the Kerr limit for maximally spinning aligned mergers with
mass ratios as modest as q & 0:25. The publication of a
simulation with q ¼ 0:01 [16] during the preparation of
this paper shows the rapid progress towards numerical
simulations of extreme-mass-ratio mergers, but much
work remains before such simulations are available for
generically spinning black holes.
Fortunately, our analytical knowledge of the geodesics

of the Kerr metric can help us understand binary black-hole
mergers in the test-particle limit. These mergers can be
broken down into three stages: inspiral, plunge, and ring-
down. During the inspiral stage, the orbit of the test particle
adiabatically evolves through a series of geodesics with
successively lower energy and angular momentum as
these quantities are radiated away through the emission
of gravitational waves. This gravitational radiation circu-
larizes initially eccentric orbits while the evolution is post-
Newtonian [20], implying that for many though possibly
not all astrophysical mergers, the orbit will have circular-
ized before the test particle reaches the ISCO. After this
point, during the brief plunge stage, the test particle rapidly
falls into the event horizon of the larger black hole. Finally,
the quasinormal modes excited during the merger ring
down as the newly formed black hole settles into its final
Kerr configuration. In the test-particle limit, the energy and
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angular momentum radiated during the inspiral stage
scales linearly with q, while that radiated during plunge
and ringdown scales as a higher power in the small pa-
rameter q. This suggests that one can reasonably predict
the mass and spin of the final black hole by equating these
quantities to the energy and total angular momentum of the
binary at the ISCO.

This prediction assumes that during the inspiral all of the
gravitational waves are radiated outwards to infinity rather
than downwards to the larger black hole’s event horizon.
For highly spinning black holes, these downward gravita-
tional waves will be superradiantly scattered, extracting
energy and angular momentum from the larger black hole.
Individual modes can be amplified as much as 138% by a
maximally spinning black hole [21]; the total energy flux
radiated to infinity by a test particle at the ISCO will be
amplified by 12.9% for a black hole of spin � ¼ 0:999
[22]. Although this amplification decreases rapidly as a
function of the orbital radius, the total energy and angular
momentum extracted throughout the inspiral still scale
linearly in q and will therefore remain the dominant factor
affecting the final mass and spin after the energy and
angular momentum advected with the test particle itself
during merger.

The primary goal of this paper is to determine howmuch
the superradiant scattering of gravitational waves during
the inspiral reduces the maximum spin achievable by
binary black-hole mergers below the Kerr limit first pre-
dicted by Bardeen [4]. In Sec. II we will review the
previous analytic predictions for the final mass and spin
that serve as our starting point. Our method for calculating
the energy and angular momentum extracted from the
spinning black hole will be described in Sec. III. The
results of this calculation are presented in Sec. IV. In
Sec. V we compare our model to others in the literature,
extrapolate it to comparable-mass mergers and compare
with numerical-relativity simulations, and suggest how it
might be combined with fitting formulas to produce an
approximation valid over the entire domain 0 � q � 1. A
brief summary and a few final remarks on the astrophysical
implications of our analysis are offered in Sec. VI.

II. TEST-PARTICLE MERGERS

Hughes and Blandford [23] (hereafter HB) recognized
that in the test-particle limit, the energy and angular mo-
mentum radiated during plunge and ringdown was much
less than that released during the inspiral stage. They
predicted the mass Mf and spin Sf of the final black hole

would therefore be given by

Mf;HB ¼ m1 þm2EISCOð�1Þ; (1a)

Sf;HB ¼ m1m2LISCOð�1Þ þm2
1�1: (1b)

Here, EISCOð�Þ is the energy per unit mass of a test
particle on the equatorial ISCO of a Kerr black hole with

dimensionless spin �. LISCOð�Þ is the corresponding di-
mensionless orbital angular momentum. The dimension-
less final spin is simply �f ¼ Sf=M

2
f. This formula is exact

in the test-particle limit, and for q ! 0, �1 ! 1 correctly
reproduces the Bardeen result

@�f;HB

@q
! LISCOð1Þ � 2EISCOð1Þ ¼ 0: (2)

Maximally spinning black holes cannot be spun up above
the Kerr limit.
Although Eqs. (1) are exact in the test-particle limit, they

are manifestly asymmetric in the black-hole labels ‘‘1’’ and
‘‘2.’’ For example, they ignore altogether the spin �2 of the
smaller black hole. While HB boldly extrapolate their
formula to q ¼ 0:5, Buonanno, Kidder, and Lehner [24]
(hereafter BKL) realized that a symmetrized version would
more accurately describe comparable-mass mergers. They
proposed

Mf;BKL ¼ m1 þm2; (3a)

Sf;BKL ¼ m1m2LISCOð�fÞ þm2
1�1 þm2

2�2: (3b)

In addition to the obvious improvement of including the
second spin �2, BKL made the inspired choice of using the
dimensionless spin �f of the final black hole to calculate

the orbital angular momentum of the initial binary at the
ISCO. Although counterintuitive at first, this choice cor-
rectly captures the total energy and angular momentum of
the system which are assumed to be conserved after the
binary reaches the ISCO.
Equations (3) are far more successful at predicting the

final spin from equal-mass mergers than they have any
right to be. They predict that equal-mass nonspinning
black holes will merge to yield a final black hole with
spin �f;BKL ¼ 0:663 quite close to the numerically deter-

mined value �NR ¼ 0:68646� 0:00004 [12]. Equal-mass,
maximally spinning black holes are predicted to produce a
final spin �f;BKL ¼ 0:959 which is also surprisingly close

the numerically extrapolated value �NR ¼ 0:951� 0:004
[15]. This latter agreement however is an artifact of over-
estimating the final mass in Eq. (3a) by failing to account
for the energy radiated during the inspiral. Overestimating
the denominator in the expression �f ¼ Sf=M

2
f leads to an

underestimate of the final spin. In the limit q ! 0, �1 ! 1,
this underestimation implies

@�f;BKL

@q
! LISCOð1Þ � 2 ¼ 2ð3�1=2 � 1Þ< 0: (4)

Maximally spinning black holes are artificially found to be
spun down by test-particle mergers. In this model black
holes can only be spun up by test particles to the fictitious
limit �lim ¼ 0:948 at which @�f=@q ¼ 0.

Kesden [25] (hereafter K) sought to remedy this by
replacing Eq. (3a) with
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Mf;K ¼ M��½1� EISCOð�fÞ�; (5)

whereM � m1 þm2 is the sum of the initial masses, � �
m1m2=M is the reduced mass of the binary, and the energy
per unit mass EISCOð�fÞ is evaluated using the final dimen-

sionless spin in the spirit of BKL. This formula retains the
desired symmetry of Eqs. (3) under exchange of black-hole
labels, but also reduces to Eqs. (1) in the test-particle limit
thereby preserving the Bardeen result that black holes can
be spun all the way up to the Kerr limit by test-particle
mergers. It predicts that equal-mass, nonspinning black
holes will merge into a hole with final spin �f;K;NS ¼
0:687 in near miraculous (and probably coincidental)
agreement with numerical simulations, but also predicts
an uncomfortably large final spin �f;K;S ¼ 0:9988 for

maximally spinning aligned mergers. Equations (3b) and
(5) are not the unique choice that possesses the desired
symmetry and limiting behavior. For example, replacing
Eq. (3b) with

Sf;K ¼ �MfLISCOð�fÞ þm2
1�1 þm2

2�2 (6)

also maintains these properties, but predicts different re-
sults �f;K;NS ¼ 0:675 and �f;K;S ¼ 0:9909 when extrapo-

lated to equal-mass mergers. For our purpose, in this paper
of calculating the maximum final spin for test-particle
mergers, either Eqs. (1a) or Eq. (5) paired with either
Eq. (3b) or Eq. (6) can serve as a suitable starting point.

III. SUPERRADIANT SCATTERING

The gravitational radiation emitted by an inspiraling test
particle is fully described by the complex Weyl scalar

c 4 � �C����n
� �m�n� �m�; (7)

where C���� is the Weyl curvature tensor and n� and �m�

are elements of a Newman-Penrose tetrad of null 4-vectors
[26]. Teukolsky [27] decomposed c 4 into multipole mo-
ments

c 4 ¼ ðr� ia cos�Þ�4

�
Z 1

�1
d!

X
lm

Rlm!ðrÞ�2S
a!
lm ð�Þeim	e�i!t (8)

and showed that the evolution of the radial modes Rlm!ðrÞ
is governed by an ordinary second-order differential equa-
tion sourced by the test particle’s contribution to the stress-
energy tensor. Sasaki and Nakamura [28] derived a linear
transformation of Rlm!ðrÞ that greatly facilitates the solu-
tion of this differential equation. To solve this equation
ourselves, we used the GREMLIN (Gravitational Radiation
in the Extreme Mass ratio LIMit) code written and gen-
erously provided to us by Scott Hughes. We adopt his
notation and closely follow his treatment presented in
[29] to calculate the energy and angular momentum ex-
tracted from the black hole by superradiant scattering
during the inspiral.

The Teukolsky-Sasaki-Nakamura formalism allows one
to calculate the rates ðdE=dtÞradr!rþ and ðdLz=dtÞradr!rþ at

which energy and angular momentum are radiated down
the event horizon at rþ. The total energy ESR and angular
momentum JSR extracted from the black hole as the test
particle inspirals from infinity to r are integrals of these
fluxes

ESRð�; rÞ ¼
Z 1

r

�
dE

dt

�
rad

r!rþ

dr0

_r
; (9a)

JSRð�; rÞ ¼
Z 1

r

�
dLz

dt

�
rad

r!rþ

dr0

_r
; (9b)

where the radial velocity _r during an adiabatic, quasicir-
cular inspiral is given by

_rð�; rÞ ¼
�
dE

dt

�
rad

tot

�
dE

dr

��1
: (10)

Since _r is negative as are the fluxes ðdE=dtÞradr!rþ and

ðdLz=dtÞradr!rþ for high spins, ESR and JSR are defined to

be positive when energy and angular momentum are ex-
tracted from the black hole and negative when they are
absorbed. Adding the contributions of Eqs. (9) to the right-
hand sides of Equations (3b) and (5) yields

Mf ¼ M��½1� EISCOð�fÞ þ ESRð�f; rISCOÞ�; (11a)

Sf ¼ m1m2½LISCOð�fÞ � JSRð�f; rISCOÞ�
þm2

1�1 þm2
2�2; (11b)

�f ¼ Sf=M
2
f (11c)

for our revised prediction for the final black-hole mass and
spin. With a slightly different extrapolation of Sf to large

mass ratios, we can modify Eq. (6) to obtain

S0f ¼ �Mf½LISCOð�fÞ � JSRð�f; rISCOÞ� þm2
1�1 þm2

2�2:

(12)

In the test-particle limit q ! 0, Eq. (11a) combined with
either Eq. (11b) or Eq. (12) gives

@�f

@q
ð�1; rÞ � @�ISCO

@q
ð�1Þ � @�SR

@q
ð�1; rÞ; (13a)

@�ISCO

@q
ð�1Þ ! LISCOð�1Þ � 2�1EISCOð�1Þ; (13b)

@�SR

@q
ð�1; rÞ ! JSRð�1; rÞ � 2�1ESRð�1; rÞ: (13c)

At the limiting spin �1 ¼ �lim, @�fð�1; rISCOÞ=@q ¼ 0,

implying that black holes cannot be spun up beyond �lim

by test-particle mergers.

IV. RESULTS

In the top panel of Fig. 1, we show the dimensionless
energy ESRð�; rÞ and angular momentum JSRð�; rÞ ex-
tracted from a black hole of spin �lim ¼ 0:9979 by super-
radiant scattering as a test particle inspirals from infinity to
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a radius r. According to Eq. (14c), these two quantities
determine the spin decrease @�SR=@q due to the super-
radiant scattering of downward-going gravitational waves.
This spin decrease is shown for spins � ¼ 0:996, 0.997,
�lim, and 0.999 in the bottom panel of Fig. 1. The increase
in spin @�ISCO=@q when the test particle itself is accreted
by black holes of the same spins is shown by dotted
horizontal lines. At the limiting spin �lim, the total spin
decrease @�SR=@q evaluated at the ISCO precisely cancels
the spin increase @�ISCO=@q leaving the dimensionless
spin � unchanged. This is seen explicitly by the intersec-
tion of the solid black curve and dotted black line at rISCO
in the bottom panel of Fig. 1. The intersection of @�SR=@q
and @�ISCO=@q at �1 ¼ �lim, r ¼ rISCO implies that the
total spin change @�f=@q vanishes by Eq. (13a). Note that

both the spin angular momentum Sf and mass Mf do

increase as a result of the merger, but in just the right ratio
as to preserve �f ¼ Sf=M

2
f.

The spin increase @�ISCO=@q is a monotonically de-
creasing function of �1, while the spin decrease @�SR=@q
evaluated at rISCO monotonically increases with �1. This

implies that the total spin change @�f=@q monotonically

decreases with �1, intersecting zero at �1 ¼ �lim. Black
holes with �1 <�lim are spun up by mergers with test
particles on circular equatorial orbits, while black holes
with spins greater than �lim are conversely spun down.
Black holes are never spun down [@�fð�1; rISCOÞ=
@q � 0, 8 �1] when superradiant scattering is neglected,
reproducing the original Bardeen [4] result that the Kerr
limit could be saturated.
Only one curve for ESR and one for JISCO were presented

in the top panel of Fig. 1, as the difference in these
quantities as functions of the initial spin could not be
distinguished in the logarithmic plot needed to depict the
five orders-of magnitude of their evolution. In Fig. 2, we
zoom in on the region near the ISCO to display this
spin dependence. The total energy and angular momentum
extracted are nearly independent of spin all the way down
to r ¼ 2m1, deep within the relativistic region. Only very
close to the ISCO do the curves diverge, with the higher
values of ESR and JSR for more highly spinning black holes
coming in nearly equal parts from the higher fluxes at fixed
radii and the decreasing value of rISCO in the lower bound
of the integrals in Eqs. (9).
Using this refined model for test-particle mergers, we

can recalculate how the dimensionless black-hole spin �
and massM evolve after the black hole has accreted a finite
mass �M of test particles gravitationally inspiraling in-
wards from large radii. Following Thorne [7], we find that

FIG. 2 (color online). The same quantities ESR, JSR, and
@�=@q presented in Fig. 1 as functions of the orbital radius r.
We zoom into the region near the ISCO to better display how
these quantities evolve near merger. The colors and styles of the
curves are the same as those in Fig. 1.

FIG. 1 (color online). Top panel: The dimensionless energy
ESR (thin line) and angular momentum JSR (thick line) extracted
from a black hole with the limiting spin �lim ¼ 0:9979 as the test
particle inspirals from infinity to radius r. Bottom panel: The
change in final spin per unit test-particle mass @�=@q. The
dotted horizontal lines show the spin increase @�ISCO=@q
when the test particle falls from the ISCO into a black hole of
spin � ¼ 0:996 (green), 0.997 (blue), �lim (black), and 0.999
(red). The curves @�SR=@q show the spin decrease as super-
radiant scattering extracts energy from black holes with spins of
the corresponding color. Only at � ¼ �lim do the lines and
curves intersect at rISCO, indicating that the spin remains un-
changed by the merger.
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this evolution is governed by the coupled first-order dif-
ferential equations

d�

d�M
¼ 1

M2

dJ

d�M
� 2�

M

dM

d�M
; (14a)

dM

d�M
¼ EISCOð�Þ � ESRð�; rISCOð�ÞÞ; (14b)

dJ

d�M
¼ M½LISCOð�Þ � JSRð�; rISCOð�ÞÞ�: (14c)

In Fig. 3, we see how the spin � evolves for different values
of the initial spin �0 (where the curves intersect the y axis
�M=M0 ¼ 0). The black curves show the predictions of
our model, while the blue curves show those of Bardeen [4]
without the scattering of gravitational waves by the black
hole. As expected, in our model black holes with initial
spins � � �lim can only be spun up to this limiting value
no matter how much mass they accrete. More highly spin-
ning black holes are spun down to near this limit after
accreting * 10% of their initial mass. By contrast, in the
Bardeen model black holes reach the Kerr limit � ¼ 1 after
accreting a finite mass �M of test particles. For initially
nonspinning holes, this mass is

�M ¼ 3M0ðsin�1
ffiffiffiffiffiffiffiffi
2=3

p
� sin�11=3Þ: (15)

Radiatively efficient black holes have a luminosity

L ¼ "
d�M

dt
c2; (16)

where " ¼ 1� EISCOð�Þ is the radiative efficiency. In
Fig. 4, we show the efficiency " of the black holes in
Fig. 3 as a function of the total mass �M of test particles
they have accreted. If the superradiant scattering of gravi-
tational waves is neglected, the black holes spin up to the
Kerr limit � ¼ 1 after which they are capable of converting

a fraction " ¼ 1� 1=
ffiffiffi
3

p ¼ 0:423 of accreted mass into
radiant energy. By contrast, accounting for superradiant
scattering reduces the maximum black-hole spin to �lim ¼
0:998. Although this limiting spin is only 0.2% below the
Kerr limit, the corresponding limiting radiative efficiency
"lim ¼ 1� EISCOð�limÞ ¼ 0:320 is 24% below that of a
maximally spinning black hole. The inability of astrophys-
ical black to radiate more efficiently than �lim will affect
efforts to estimate black-hole masses from their luminos-
ities, such as that by Soltan [30] to constrain the mass
function of supermassive black holes from the quasar
luminosity function.

FIG. 3 (color online). The spin � of a black hole initially of
mass M0 after binary mergers with a mass �M of test particles
on quasicircular equatorial orbits. The black (solid) curves show
the predictions of our model for different initial spins, while the
blue (dashed) curves show the predicted spins in the absence of
scattering. Spins in our model asymptote to �lim ’ 0:9979 as
shown by the horizontal dotted line, while without scattering
black holes can spin all the way up to the Kerr limit.

FIG. 4 (color online). The radiative efficiency " ¼
1� EISCOð�Þ of the accreting black holes shown in Fig. 3. In
the Bardeen model (dashed blue curves), the black holes spin up
to the Kerr limit � ¼ 1 after accreting a finite mass �M. The
radiative efficiency of a maximally spinning black hole is
" ¼ 1� 1=

ffiffiffi
3

p ¼ 0:423. In our model (solid black curves),
which includes the superradiant scattering of gravitational
waves, the black hole spins asymptotically approach �lim. A
black hole with this spin has the substantially lower efficiency
"lim ¼ 0:320.
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V. COMPARISON WITH NUMERICAL
RELATIVITY

How do the predictions of our model compare with those
of other published models? In Fig. 5, we again show
@�f=@q, this time as a function of the initial spin �i. The

value of �i for which a given curve crosses the horizontal
dotted line @�f=@q ¼ 0 determines the maximum spin

�lim to which a black hole can be spun up by test-particle
mergers. We see that the superradiant scattering of gravi-
tational waves produced during the inspiral reduces �lim

from the Kerr limit as predicted by Bardeen [4], HB [23],
and K [25] and shown by the blue (short-dashed) curve to
�i ¼ 0:9979 shown by the black (solid) curve. The red
(long-dashed) curve shows the predictions of the BKL [24]
model described in Sec. II. As discussed previously, this
model artificially reduces �lim to �i ¼ 0:948 by neglecting
the spin dependence of the final mass. The green (short
dash-dotted) and magenta (long dash-dotted) curves are the
predictions of the AEI [31] and FAU [32] ‘‘fitting formu-
las’’ for the final spins.

The fitting-formula approach proposes a specific func-
tional form for the dependence of the given quantity on the

parameters {q; �1; �2g and a small number of constant
coefficients. These coefficients are adjusted until the fitting
formula best reproduces the results of a sample of numeri-
cal simulations. Once the fitting formula has been cali-
brated in this manner, it should be able to predict the results
of any future simulations. The AEI and FAU fitting for-
mulas were calibrated with an extensive sample of numeri-
cal simulations of binary mergers with varying mass ratios
and spins, none of which produced a black hole whose final
spin exceeded the Kerr limit. Yet Fig. 5 shows that both
curves have @�f=@q > 0 even for �i ¼ 1, implying that

test-particle mergers can spin black holes above the Kerr
limit. One possible explanation of this unphysical predic-
tion is that the fitted coefficients were misdetermined
because of the limited range of mass ratios in the sample
of simulations with which they were calibrated. A second
explanation is that the proposed functional forms are in-
adequate to describe the mass-ratio or spin dependence of
the final spin for any choice of coefficients. Further nu-
merical simulations, particularly at smaller mass ratios, are
needed to determine which of these explanations is correct.
This problem is not just restricted to test-particle mergers;
the AEI and FAU formulas predict final spins above
the Kerr limit for mass ratios as large as q ¼ 0:283 and
q ¼ 0:2434, respectively.
Although the AEI and FAU fitting formulas break down

in the test-particle limit, by design they agree closely with
simulations of comparable-mass mergers like those with
which they were calibrated. In Table I we compare our
model, extrapolated to equal-mass mergers according to
Eqs. (11), with both the fitting formulas and the most
accurate numerical simulations of equal-mass (q ¼ 1),
equal-spin (�1 ¼ �2 ¼ �i), aligned mergers. Both the non-
spinning (�i ¼ 0) [12] and antialigned (�i ¼ �0:43757)
[13] simulations were performed with the spectral-methods
code developed by the Caltech-Cornell group. The �i ¼ 1
numerical result [15] listed in the third column is an ex-
trapolation to maximal spins of a series of simulations
produced with the bifunctional adaptive mesh finite-
difference code used by the Jena and FAU groups.
The first row gives the calculated values of the final spin

�f for these three numerical-relativity (NR) simulations.

The next 7 rows give the final spins predicted for these
binaries by many different published formulas. The second
row lists the predictions of this paper, Kesden-Lockhart-
Phinney (KLP). Our prediction for the nonspinning merger
agrees with this numerical result to about 10�4. An agree-
ment this good between a test-particle extrapolation and
an equal-mass simulation can only be a coincidence, as is
demonstrated by the third row KLP0. Here we have sub-
stituted S0f from Eq. (12) for Sf from Eq. (11b) in our

prediction �f ¼ Sf=M
2
f. Although S0f has the same

symmetries and limiting behavior as Sf, the prediction

changes by about 1% when extrapolating all the way to
equal masses. Agreement beyond this accuracy must be

FIG. 5 (color online). The change in final spin per unit test-
particle mass @�f=@q as a function of the initial spin �i. The

solid black curve shows the predictions of this paper, with spin
down (@�f=@q � 0, horizontal dotted line) possible for spins

�i � �lim (vertical dotted line). The short-dashed blue curve
shows how this result changes when superradiant scattering is
neglected as in the models of Bardeen [4], HB [23], and K [25].
The long-dashed red curve gives the BKL [24] test-particle
prediction, while the short dash-dotted green and long dash-
dotted magenta curves are the predictions of the AEI [31] and
FAU [32] fitting formulas.
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considered coincidental unless we discover a fundamental
reason to prefer Sf over S0f.

The fourth row lists the predictions of Kesden [25],
which was the starting point for this paper but neglected
the superradiant scattering of downward-going radiation.
Comparing the rows labeled KLP and K, we see that this
scattering only reduces the final spin by about 0.25% even
for binaries initially spinning at the Kerr limit. Although
this effect seems negligible, it is potentially detectable
since several gravitational-wave observables depend very
sensitively on � near the Kerr limit. We shall elaborate on
this in the final discussion in Sec VI. Rows 5 through 8 list
the predictions of other published formulas. We have
already discussed the BKL model adequately; its close
agreement with the extrapolation to maximally spinning
binaries is a fortuitous coincidence. The AEI, FAU, and BK
[33] fitting formulas all do excellent jobs of reproducing
the numerical results, though the exact agreement of the
AEI formula with the nonspinning simulation results from
this simulation being included in the set with which this
formula was calibrated.

The final 6 rows of Table I show how our predicted final
masses Mf, extrapolated from the test-particle limit as

before, compare with the numerical simulations and
numerically calibrated fitting formulas. Our predictions
overestimate Mf compared to the simulations and fitting-

formula predictions for the antialigned and nonspinning
mergers. This may result from our failure to account for the

energy carried away by gravitational-wave emission after
the merger. While this emission becomes negligible
compared to that during the inspiral as q ! 0, significant
emission after the formation of a common horizon can
occur for equal-mass mergers. We plan to incorporate
radiation during the plunge and ringdown stages of the
merger in future work. The final mass has not been reliably
determined for the maximally spinning case, which per-
haps accounts for the greater discrepancy between the
different fitting formulas. These formulas included only a
limited number of highly spinning mergers in the set with
which they were calibrated.
It is interesting to note when comparing rows K and KLP

that superradiant scattering actually increases the pre-
dicted final mass for the maximally spinning merger, un-
like in the other two cases. This is counterintuitive, since
the top panel of Fig. 2 indicates that superradiant scattering
extracts the most energy ESRð�; rISCOÞ from the most
highly spinning black holes. However, as the test particle
inspirals, superradiant scattering reduces the spin �, which
moves the ISCO radius rISCOð�Þ outwards and increases
the ISCO energy EISCOð�Þ. For large spins, the steep
increase in EISCOð�Þ with spin more than compensates
for the additional energy ESRð�; rISCOÞ extracted, thus in-
creasing the final mass Mf.

Until numerical relativists can accurately simulate
mergers with high spins and small mass ratios in an accept-
able amount of time, we will need to rely on a combination

TABLE I. A comparison between the final spins and masses determined by numerical
simulations and those predicted by various fitting formulas. All three simulations begin with
equal-mass binaries whose spins are aligned or antialigned with the orbital angular momentum
and have magnitudes given in the first row. These simulations are described more fully in the
references provided. The next 8 rows give the final spin �f as determined by NR or predicted in

the referenced papers. KLP are the predictions of this paper. The final 6 rows give the
corresponding predictions for the final mass Mf=M.

Initial spins �i

�i �0:43757 [13] 0 [12] 1 [15]

Final spins �f

NR 0:547812� 0:000009 0:68646� 0:00004 0:951� 0:004
KLP 0.520861 0.686354 0.996439

KLP0 0.509269 0.674197 0.986947

K [25] 0.521153 0.687036 0.998805

BKL [24] 0.505148 0.663086 0.959107

AEI [31] 0.546646 0.686460 0.961491

FAU [32] 0.548602 0.6860 0.9540

BK [33] 0.547562 0.6893 0.9504

Final masses Mf=M
NR 0:961109� 0:000003 0:95162� 0:00002 	 	 	
KLP 0.979028 0.974530 0.920918

KLP0 0.979268 0.974984 0.932995

K [25] 0.979039 0.974565 0.916181

FAU [32] 0.962877 0.9515 0.9255

BK [33] 0.964034 0.9530 0.9009
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of fitting formulas and test-particle extrapolations. These
two methods complement each other, and any model that
attempts to make predictions throughout the entire region
0 � q � 1 should take advantage of both approaches. The
fitting formulas are most accurate predicting the result
of mergers close in parameter space to the simulations
with which they were calibrated. Currently, this consists
mostly of comparable-mass mergers with q � 0:1. The
test-particle extrapolations like the one proposed in this
paper are most reliable for q � 1. We can readily modify
the AEI formula [31] for aligned mergers

�f ¼ ~�þ ~��ðs4 ~�þ s5�þ t0Þ þ �ð2 ffiffiffi
3

p þ t2�þ t3�
2Þ;

(17)

with

~� � �1 þ q2�2

1þ q2
; (18)

to incorporate the results of this paper. The first step in this
modification was already taken in Rezzolla et al. [34],
where it was recognized that setting the coefficient of

the term proportional to � equal to 2
ffiffiffi
3

p
would reproduce

the test-particle prediction for nonspinning black holes in
the absence of superradiant scattering of gravitational
waves. We propose that all terms linearly proportional to
� can be replaced by our result for @�f=@q from Sec. IV

�KLP ¼ ~�þ @�f

@q
ð~�Þ�þ ðt2 þ s5 ~�Þ�2 þ t3�

3: (19)

This eliminates two of the coefficients from Eq. (17) and
guarantees that the formula behaves properly in the test-
particle limit. The highly accurate equal-mass nonspinning
simulation [12] can still be used to determine t2 as in
Barausse and Rezzolla [31] if desired. If the formula no
longer has enough degrees of freedom to reproduce exist-
ing numerical results, additional terms proportional to
highers powers of � and ~� can be added. These new terms
will not affect the test-particle behavior, as � ! 0 in this
limit, but can help to fit comparable-mass mergers where
� & 0:25. There also remains additional freedom in our
choice of ~�. Although the choice given in Eq. (18) pos-
sesses the desired symmetry and limiting behavior

q ! 0 ) ~� ! �1; (20a)

q ! 1 ) ~� ! �2; (20b)

this choice is not unique and alternatives may prove more
suitable. An iterative approach for determining ~� as a
function of {q; �1; �2g as in BKL [24] and Kesden [25]
should be explored as well.

This same approach can be used to improve fitting
formulas for the final mass. Tichy and Marronetti [32]
proposed the fitting formula

Mf

M
¼ 1þ 4ðm0 � 1Þ�þ 16ma1�2ð�1 þ �2Þ; (21)

where m0 and ma1 are fitting coefficients. In the test-
particle limit � ! q ! 0 this reduces to

@

@�

�
Mf

M

�
¼ 4ðm0 � 1Þ ¼ �0:194: (22)

Our Eq. (11a) in this limit predicts

@

@�

�
MKLP

M

�
¼ EISCOð�1Þ � ESRð�1; rISCOÞ � 1; (23)

correctly capturing the spin dependence of the binding
energy EISCO and extracted energy ESR on the larger black
hole’s spin. We can use this result to replace the term linear
in � in Eq. (22) to yield

MKLP

M
¼ 1þ @

@�

�
MKLP

M

�
ð~�Þ�þ 32ma1�2 ~�: (24)

Notice that we have also replaced the sum of the spins in
the third term with ~�, as the sum did not possess the
required limiting behavior of Eq. (20). Additional terms
proportional to higher powers in� can be added to improve
the agreement with comparable-mass simulations without
affecting the test-particle behavior.

VI. DISCUSSION

The superradiant scattering of gravitational waves emit-
ted during the inspiral sets a fundamental upper limit
�lim ¼ 0:9979� 0:0001 on the spin a black hole may
attain by accreting test particles on quasicircular equatorial
orbits. For this limiting spin, the energy and angular mo-
mentum advected when the test particle falls from the
ISCO combines with that extracted by superradiant
scattering to leave the spin � ¼ S=M2 of the black hole
unchanged. Black-hole spins greater than �lim will be
reduced by mergers with test particles on quasicircular
equatorial orbits, even though the physical angular mo-
mentum S and mass M will both increase.
Jacobson and Sotiriou [35] recently argued that small

but finite-mass particles on highly hyperbolic orbits could
spin black holes above �lim and even above the Kerr limit
itself. However, this study neglected gravitational radiation
and any superradiant enhancement, which could be con-
siderable for these highly spinning mergers. Such hyper-
bolic orbits are also extremely unlikely in any realistic
astrophysical scenario.
Our limit is nearly indistinguishable from the limit

�gas ¼ 0:9980� 0:0002 for black holes grown through

thin-disk gas accretion [7], suggesting that spin measure-
ments alone cannot determine the relative contribution of
these two channels of black-hole growth. If gas accretion
occurs through an advection-dominated accretion flow
(ADAF) rather than a thin disk, the limiting black-hole
spin is reduced to �ADAF ’ 0:96, and the launching of jets
can further reduce this spin to �jets ’ 0:93 [11]. Since our

limit �lim is larger than for other modes of black-hole
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growth, it seems to be a fairly robust upper bound on spins
that can be obtained by any astrophysical means.

Although SBHs are grown primarily through gas accre-
tion rather than test-particle mergers, our limiting spin �lim

can still be astrophysically relevant. Gas accretion occurs
episodically, when galactic major mergers produce global
torques that funnel large amounts of gas to galactic centers
[36,37]. Accretion of this gas onto the SBH leads to AGN
feedback [38] which simulations demonstrate is capable of
suppressing further accretion and black-hole growth [39].
By contrast, compact objects such as white dwarfs, neutron
stars, and stellar-mass black holes (effectively test particles
when orbiting an SBH) will inspiral continuously as they
are scattered into the ‘‘loss cone’’ of orbits for which
gravitational inspiral occurs more rapidly than subsequent
scattering [40]. Although the same global torques driven by
galactic major mergers may enhance the rate of these
extreme-mass-ratio inspirals (EMRIs), other dynamical
processes will refill the loss cone even between periods
of AGN activity [41]. Event rates for EMRIs depend
sensitively on highly uncertain factors such as the dynami-
cal state, star-formation history, binary fraction, and initial
mass function within nuclear star clusters. The capture rate
for 10M
 black holes by a 106M
 SBH can be as high as
10�4 yr�1 immediately following a nuclear starburst, and
could average 10�6 yr�1 for nucleated spiral galaxies like
the Milky Way [42]. If such a galaxy has not had a major
merger since redshift z ’ 1 (about 7.5 Gyr ago), its SBH
would aqcuire a fraction

�M

M0

’ 10M
 � 10�6 yr�1 � 7:5 Gyr

106M

¼ 0:075 (25)

of its mass through EMRIs. We see from Fig. 3 that this is a
large enough fraction to drive the SBH spin towards our
limiting value �lim from the initial spins �0 * 0:9 expected
from gas accretion. This suggests that EMRIs can poten-
tially affect SBH spin evolution, though modest gas accre-
tion can also occur between major mergers and not all
EMRIs will be on circular, equatorial orbits.

Even if our limiting spin �lim can be realized astrophysi-
cally, does its marginal difference from the Kerr limit have
any observable consequences? The binding energy per unit
mass at the ISCO 1� EISCO depends very sensitively on �
near the Kerr limit, and sets an upper bound on the AGN
efficiency " � L= _Mc2, where L is the AGN luminosity, _M
is the accretion rate, and c is the speed of light. Soltan [30]
argued that the total cosmological mass in SBHs could
be estimated by equating the observed energy emitted
by AGN to that released during theoretical models
of SBH growth. If spins at the Kerr limit were used
for an analysis of this kind instead of our limiting spin
�lim ¼ 0:9979, the AGN efficiency " would be overesti-
mated by EISCOð�limÞ � EISCOð1Þ ¼ 0:1031 leading to a
corresponding underestimate in the total SBH mass.
In addition to their influence on the SBH spin,

the EMRIs themselves are an important source for
gravitational-wave detectors such as LIGO and LISA.
Decreasing the spin from the Kerr limit to �lim moves
the ISCO radius out from rISCOð1Þ ¼ m1 to rISCOð�limÞ ¼
1:242m1, and decreases the ISCO orbital frequency from
�ISCOð1Þ ¼ 0:50m�1

1 to �ISCOð�limÞ ¼ 0:42m�1
1 . This de-

crease could be observable in high signal-to-noise EMRIs
seen by both these experiments. Our limiting spin �lim is
thus not only an interesting consequence of general rela-
tivity, but also one that has potentially observable impli-
cations for astrophysics and gravitational-wave detection.
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