A Caltech Library Service

Optimization of MKID Noise Performance Via Readout Technique for Astronomical Applications

Czakon, Nicole G. and Schlaerth, James A. and Day, Peter K. and Downes, Thomas P. and Duan, Ran P. and Gao, Jiansong and Glenn, Jason and Golwala, Sunil R. and Hollister, Matt I. and LeDuc, Henry G. and Mazin, Benjamin A. and Maloney, Phillip R. and Noroozian, Omid and Nguyen, Hien T. and Sayers, Jack and Siegel, Seth and Vaillancourt, John E. and Vayonakis, Anastasios and Wilson, Philip R. and Zmuidzinas, Jonas (2010) Optimization of MKID Noise Performance Via Readout Technique for Astronomical Applications. In: Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy V. Proceedings of SPIE. No.7741. Society of Photo-optical Instrumentation Engineers (SPIE) , Bellingham, WA , Art. No. 77410Q. ISBN 978-0-81948-231-0.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP.

Item Type:Book Section
Related URLs:
URLURL TypeDescription DOIArticle
Glenn, Jason0000-0001-7527-2017
Golwala, Sunil R.0000-0002-1098-7174
Sayers, Jack0000-0002-8213-3784
Siegel, Seth0000-0003-2631-6217
Additional Information:© 2010 SPIE. The MuSIC project is supported by NSF grant AST-0705157 to the University of Colorado, NASA grants NNGC06C71G and NNX10AC83G to Caltech, the Gordon and Betty Moore Foundation, and the JPL Research and Technology Development Fund. We are grateful to the Xilinx corporation for their generous donation of the FPGAs needed for the readout electronics. J. Sayers was supported by a NASA Postdoctoral Program Fellowship and J. Schlaerth and N. Czakon were supported by the NASA Graduate Student Researchers Program Fellowships.
Funding AgencyGrant Number
Gordon and Betty Moore FoundationUNSPECIFIED
JPL Research and Technology Development FundUNSPECIFIED
NASA Postdoctoral ProgramUNSPECIFIED
NASA Graduate Student Research FellowshipUNSPECIFIED
Subject Keywords:Microwave Kinetic Inductance Detectors; Submillimeter; Nonlinearity
Series Name:Proceedings of SPIE
Issue or Number:7741
Record Number:CaltechAUTHORS:20110311-145009264
Persistent URL:
Official Citation:Nicole G. Czakon ; James A. Schlaerth ; Peter K. Day ; Thomas P. Downes ; Ran P. Duan ; Jiansong Gao ; Jason Glenn ; Sunil R. Golwala ; Matt I. Hollister ; Henry G. LeDuc ; Benjamin A. Mazin ; Philip R. Maloney ; Omid Noroozian ; Hien T. Nguyen ; Jack Sayers ; Seth Siegel ; John E. Vaillancourt ; Anastasios Vayonakis ; Philip R. Wilson and Jonas Zmuidzinas "Optimization of MKID noise performance via readout technique for astronomical applications", Proc. SPIE 7741, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, 77410Q (July 15, 2010); doi:10.1117/12.857866;
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:22832
Deposited By: Ruth Sustaita
Deposited On:15 Mar 2011 15:44
Last Modified:09 Mar 2020 13:19

Repository Staff Only: item control page