
1Text S3: Eigendecomposition

Physical systems are often represented by linear, constant-coefficient differential equations. Differential
equations provide an implicit specification of the system, giving the relationship between input and output,
rather than an explicit expression for the system output as a function of the input. After specifying initial
conditions, differential equations can be solved to find explicit expressions for the output.

Dynamical systems that can store energy in only one form and location are called first-order, since the
equation describing time evolution can be written only in terms of a single variable and its first derivative.
Storing energy is a form of short-term memory. For a single state variable Vi, a canonical first-order, linear,
constant-coefficient differential equation is

τ
dVi(t)

dt
+ LiiVi(t) = M(t),

where τ and Lii are fixed constants and M(t) is some signal.
The natural (unforced) response of a system corresponds to M(t) = 0 and is completely determined by

the system’s eigenvalue. In particular, solving

τ
dVi(t)

dt
+ LiiVi(t) = 0

with initial condition Vi(t = 0) = V0, yields

Vi(t) = V0e
(−Lii/τ)t,

where −Lii/τ is the eigenvalue.
The forced response occurs when some exogenous perturbation is applied to the system. For example if

a scaled step function M0u(t) is applied, then the differential equation

τ
dVi(t)

dt
+ LiiVi(t) = M0u(t)

with initial condition Vi(t = 0) = V0 has solution

Vi(t) =

{
M0

Lii
+

[
V0 −

M0

Lii

]
e(−Lii/τ)t

}
, t > 0.

The response of a first-order system to a unit impulse is identical to its natural response; the impulse
generates the initial condition in such a short time that it has no other effect on the system. That is, the
system is jarred to the initial position by the impulse.

Generally when a forcing function is applied to a linear constant-coefficient dynamic system, the response
will consist of the superposition of the forced response (a modification of the input signal) and the natural
response governed by the system’s eigenproperties.

Thus far, we have considered a single state variable Vi(t), but in neuronal networks we actually have

a vector of states, V (t) =
[
V1(t) V2(t) · · · VN (t)

]T
, governed by a system of linear constant-coefficient

differential equations. A canonical form is

τ
dV1(t)

dt
+ L11V1(t) + L12V2(t) + · · · + L1NVN (t) = M1(t)

τ
dV2(t)

dt
+ L21V1(t) + L22V2(t) + · · · + L2NVN (t) = M2(t)

... =
...

τ
dVN (t)

dt
+ LN1V1(t) + LN2V2(t) + · · · + LNNVN (t) = MN (t)



2which can be written in matrix-vector form as

τ
dV (t)

dt
+ LV (t) = M(t).

The natural response of such a system with initial condition V (t = 0) = V0 is the vector

V (t) = V0e
(−L/τ)t.

Although this is in principle the solution to the system of differential equations, it is difficult to examine.
Study of system behavior is complicated by the fact that each of the equations is coupled to the others
through the off-diagonal elements of L. It would be desirable to find a new coordinate system in which all
equations are decoupled (such that the coefficient matrix is diagonal).

A vector v is called an eigenmode of a matrix L if it satisfies

Lv = λv

for some number λ, which is called the eigenvalue. Decomposing the coefficient matrix into its eigendecom-
position,1

L =
[
v1 v2 · · · vN

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN

 [v1 v2 · · · vN
]−1

allows us to write the natural response as

V (t) =

N∑
i=1

viαie
(−λi/τ)t,

where αi is the projection of the initial condition vector V0 onto vi.
The essential idea of the eigenmode decomposition is that the natural response of the system can be viewed

as the superposition of a number of distinct types of dynamics—the eigenmodes—each one associated with a
particular natural frequency of the system. The natural frequencies, −λi/τ , of the system are determined by
the eigenvalues λi of L. Each mode involves excitation of one and only one natural frequency of the system.

If an eigenmode is real, then the dynamics associated with the solution can be described by a straight
line in state space. The system moves in the direction of the eigenmode. For example, moving in the

direction of the eigenmode
[
+1 −1 0 0 0 · · · 0

]T
would equalize the values of V1 and V2 but not

affect V3, . . . , VN . A more complicated eigenmode would involve all state variables that are non-zero.
Beyond their simple geometric interpretation in state space, the eigenmodes also have a simple repre-

sentation as time functions, since each one involves a single exponential rather than a mixture of several
exponentials with different exponents. The exponent −λi/τ determines how quickly the system response
in the direction of eigenmode vi decays. For fixed τ , the larger the eigenvalue λi, the more quickly the
eigenmode decays.

The forced response of a network proceeds in the same way as the forced response of a scalar system.
Further details on linear system analysis with eigenmodes can be found, e.g. in the textbooks [3, 4].

1Note that not all matrices have an eigendecomposition. Instead, the Jordan decomposition should be used for these non-
diagonalizable matrices [1]. The three matrices we consider, L, AT , and Φ are diagonalizable and so the eigendecomposition is
identical to the Jordan decomposition.

Another decomposition that has been proposed for use in systems neuroscience is the Schur decomposition [2]. Since the
gap junction network is undirected, the Schur decomposition is also identical to the eigendecomposition. For the chemical and
combined networks, the Schur modes may provide additional insights, but we do not consider them in this work.
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