Baker, M. and Ball, James S. and Zachariasen, F. (1995) Effective quarkantiquark potential for the constituent quark model. Physical Review D, 51 (4). pp. 19681988. ISSN 24700010. doi:10.1103/PhysRevD.51.1968. https://resolver.caltech.edu/CaltechAUTHORS:BAKprd95

PDF
See Usage Policy. 2MB 
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:BAKprd95
Abstract
We use Dual QCD to derive an effective potential to order (quark mass)2 for a constituent quark and antiquark. This is done by expanding the dual QCD Lagrangian to second order in the qq¯ spins and velocities around the static central potential, in which the quarks are both spinless and stationary. The field equations are then used to eliminate the dual gluon fields and the Higgs fields of dual QCD in favor of quark variables for an arbitrary but slowly moving qq¯ pair with a Dirac string of arbitrary shape connecting them. The result is a Lagrangian, and therefore, a potential, which depends only on the qq¯ positions, velocities, and spins. Dual QCD contains only three parameters, which can be determined from the vacuum energy density, the string tension, and the strength of the Coulomb singularity of the central potential. The only free parameters in the spin and velocitydependent part of the effective potential are, therefore, the masses of the c and b quarks. When inserted into a Schrödinger equation these potentials provide a complete effective constituent quark theory which can be used to calculate qq¯ energy levels in terms of the masses and the masses can thereby be fixed (agreement with experiment is excellent). The various potential, spinspin, spinorbit, and spinless velocity dependent, can also in principle be compared to lattice calculations of the same quantities. For the spinorbit case, for example, the agreement is good, although lattice results are not yet precise enough for a real comparison to be made. For the potentials proportional to the velocity squared lattice results do not yet exist. We also attempt to extend the use of these potentials to heavylight quarkantiquark systems through use of the Salpeter equation and the Dirac equation. The results of this effort are described in two Appendices.
Item Type:  Article  

Related URLs: 
 
Additional Information:  ©1995 The American Physical Society (Received 28 February 1994; revised manuscript received 18 October 1994) We are grateful to Lewis Fulcher for advice on how to deal with the Salpeter equation as described in Appendix B. The work of M.B. was supported in part by the U.S. Department of Energy under Contract No. DOE/ER/40614. The work of J.S.B. was supported in part by the U.S. National Science Foundation Grant No. PHY 9008482. The work of F.Z. was supported in part by the U.S. Department of Energy under Grant No. DEFG0392ER40701.  
Issue or Number:  4  
DOI:  10.1103/PhysRevD.51.1968  
Record Number:  CaltechAUTHORS:BAKprd95  
Persistent URL:  https://resolver.caltech.edu/CaltechAUTHORS:BAKprd95  
Usage Policy:  No commercial reproduction, distribution, display or performance rights in this work are provided.  
ID Code:  2295  
Collection:  CaltechAUTHORS  
Deposited By:  Archive Administrator  
Deposited On:  22 Mar 2006  
Last Modified:  08 Nov 2021 19:46 
Repository Staff Only: item control page