A Caltech Library Service

Numerical Computation of Shock Waves in a Spherical Cloud of Cavitation Bubbles

Wang, Yi-Chun and Brennen, Christopher E. (1999) Numerical Computation of Shock Waves in a Spherical Cloud of Cavitation Bubbles. Journal of Fluids Engineering, 121 (4). pp. 872-880. ISSN 0098-2202.

See Usage Policy.


Use this Persistent URL to link to this item:


The nonlinear dynamics of a spherical cloud of cavitation bubbles have been simulated numerically in order to learn more about the physical phenomena occurring in cloud cavitation. A finite cloud of nuclei is subject to a decrease in the ambient pressure which causes the cloud to cavitate. A subsequent pressure recovery then causes the cloud to collapse. This is typical of the transient behavior exhibited by a bubble cloud as it passes a body or the blade of a ship propeller. The simulations employ the fully nonlinear continuum mixture equations coupled with the Rayleigh-Plesset equation for the dynamics of bubbles. A Lagrangian integral method is developed to solve this set of equations. It was found that, with strong bubble interaction effects, the collapse of the cloud is accompanied by the formation of an inward propagating bubbly shock wave, a large pressure pulse is produced when this shock passes the bubbles and causes them to collapse. The focusing of the shock at the center of the cloud produces a very large pressure pulse which radiates a substantial impulse to the far field and provides an explanation for the severe noise and damage potential in cloud cavitation.

Item Type:Article
Additional Information:Contributed by the Fluids Engineering Division for publication in the Journal of Fluids Engineering. Manuscript received by the Fluids Engineering Division September 15, 1997; revised manuscript August 9, 1999. The authors are very grateful for the support for this research provided by the National Science Council, Taiwan, R.O.C., under Contract NSC 87-TPC-E-006-009 and by the Office of Naval Research under Contract N00014-91-J-1295.
Issue or Number:4
Record Number:CaltechAUTHORS:WNGjfe99
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:231
Deposited By: Christopher Brennen
Deposited On:15 Dec 2004
Last Modified:02 Oct 2019 22:31

Repository Staff Only: item control page