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Abstract—Polar codes have attracted much recent attention
as one of the first codes with low computational complexity
that provably achieve optimal rate-regions for a large class
of information-theoretic problems. One significant drawback,
however, is that for current constructions the probability of
error decays sub-exponentially in the block-length (more detailed
designs improve the probability of error at the cost of significantly
increased computational complexity. In this work we show how
the the classical idea of code concatenation – using “short” polar
codes as inner codes and a “high-rate” Reed-Solomon code as
the outer code – results in substantially improved performance.
In particular, code concatenation with a careful choice of pa-
rameters boosts the rate of decay of the probability of error to
almost exponential in the block-length with essentially no loss
in computational complexity. We demonstrate such performance
improvements for three sets of information-theoretic problems
– a classical point-to-point channel coding problem, a class of
multiple-input multiple output channel coding problems, and
some network source coding problems.

I. INTRODUCTION

Polar codes [1] are provably capacity-achieving codes for

the Binary Symmetric Channel, with code complexities that

scale as O(N log N) in the block-length N . Polar codes have

since demonstrated their versatility. Capacity-achieving low-

complexity schemes based on polar codes have been demon-

strated for a wide variety of source and channel coding prob-

lems. Examples include some point-to-point discrete memo-

ryless channels, some rate-distortion problems, the Wyner-Ziv

problem and the Gelfand-Pinsker problem [2].

A significant drawback remains. The minimum distance of

the polar codes in [1] is shown in [3] to grow no faster than

o(
√

N) in the block-length N . This is used to show [3] that

the probability of error decays no faster than exp(−o(
√

N))
(compared with the exp(−Θ(N)) probability of error prov-

able for random codes [4]). Low-complexity codes achieving

this performance have been constructed [5]. Further work to

improve the decay-rate of the error probability was partially

successful – a sequence of codes have been constructed [6] that

in the limit (of a certain implicit parameter denoted l) achieves

exp(−o(N)) probability of error; however this improvement

comes at the expense of significantly increased computational

complexity, which scales as O(2lN log N).
In this work we demonstrate that concatenating short polar

codes with a high-rate outer Reed-Solomon code significantly

improves the rate of decay of the probability of error, with
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little or no cost in computational complexity. The price we

pay is that the rate of convergence with block-length N of our

codes to the information-theoretically optimal rates is slower

than that of polar codes. For the point-to-point channel coding

problem we use capacity-achieving polar codes of block-length

Θ(log3 N) as the inner codes. The overall encoding procedure

is linear over the binary field.

There are three cases of interest. The first case is at one

extreme, in which “many” of the inner codes (at least a

log−3/2 N fraction) fail, resulting in a decoding error with

probability exp(−Ω(N/(log−27/8 N))). This is the only sce-

nario in which our scheme decodes erroneously.

The second scenario is at the other extreme, in which none
of the inner codes fail. We show here that if the outer code is

a systematic Reed-Solomon code with a rate that approaches

1 asymptotically as a function of N , the decoder can quickly

verify and decode to the correct output with computational

complexity O(N(poly(log N))). We show that this is the

likeliest scenario since it occurs with probability 1− o(1/N).
The third scenario is the intermediate regime in which at

least one (but fewer than a log−3/2 N fraction) of the inner

codes fail. Here we show that the Reed-Solomon outer code

can correct the errors in the outputs of the inner codes. The

complexity of decoding in this scenario is O(N2), which

is dominated by the Berlekamp-Massey decoding algorithm

for Reed-Solomon codes [7]. However, since this scenario

occurs with probability o(1/N), the average computational

complexity is still dominated by the second scenario.

We then extend these techniques to two other classes of

problems. The first class is a general class of multiple-input

multiple-output channels, which include as special cases the

multiple-access channel and the degraded broadcast channel.

The second class is that of network source coding, which

includes as a special case the Slepian-Wolf problem [8]. Prior

to polar codes, no provable low-complexity capacity achieving

schemes were known that achieved the optimal rates for these

problems. In all cases our codes improve on the rate of decay

of the probability of error that polar codes attain, while leaving

other parameters of interest essentially unchanged.

Our concatenated code constructions preserve the linearity

of the polar codes they are built upon. This is because both

the inner polar codes and the outer Reed-Solomon code have

a linear encoding structure, albeit over different fields (F2 and

Fq respectively). However, if we choose the field for the outer

code so that q = 2r for some integer r, all linear operations

required for encoding over Fq may be implemented as r × r
matrix operations over F2. Hence the encoding procedures for

both the inner and the outer code may be composed to form
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a code that is overall a linear code over F2.

II. BACKGROUND

A. Polar codes [1] are provably capacity-achieving codes with

low encoding and decoding complexity for arbitrary binary-

input symmetric discrete memoryless channels. To simplify

presentation we focus on binary symmetric channels [8]

(BSC(p)) though many of the results can be generalized to

other channels [2]. A crucial component of a polar code is

a binary l × l “base matrix” denoted G which defines many

of their properties. We replicate here some such important

properties relevant for this work.

Since polar codes are used as inner codes in our construc-

tion, we call its rate the inner code rate, which we denote by

RI . The polar encoder takes as input RIn bits, and outputs

n bits into the channel. The BSC(p) channel flips each bit

independently with a probability p. The polar decoder then

attempts to reconstruct the encoder’s RIn bits.

Probability of error: The best known rate of decay of the

probability of error of polar codes with increasing block-length

N (see [2], [5], [6]) is (exp(−o(Nβ(l)))). Here β(l), called

the exponent of the polar code, is challenging to compute,1

but for instance it is known that β(2) = 0.5, β(l) ≤ 0.5 for

l ≤ 15, and β(l) ≤ 0.6 for l ≤ 30.

Complexity: The encoding and the decoding complexities of

polar codes are O(lN log N) and O(2lN log N) respectively2.

Rate: While the exact speed of convergence of the rate to the

Shannon capacity is not known, it is known that polar codes

are asymptotically rate-optimal. In this work we denote the

(unknown) rate redundancy of polar codes by δ(n).
Other rate-optimal channel codes: There has been much at-

tention on the excellent empirical performance (asymptotically

capacity achieving, low encoding and decoding complexity,

fast decay of the probability of error) of LDPC codes [9].

However, as of now these results are still not backed up by

theoretical guarantees. On the other side, the state of the art

in provably good codes are those of Spielman et al. [10],

which are asymptotically optimal codes that have provably

good performance in terms of computational complexity and

probability of error. However, these codes too have their

limitations – their computational complexity blows up as the

rate of the code approaches capacity.

B. Reed-Solomon codes [11] (henceforth RS codes) are

classical error-correcting codes. Let the outer code rate RO

of the RS code be any number in (0, 1). The RS encoder

takes as input ROm symbols3 over a finite field Fq (here the

rate RO, the field-size q, and the outer code’s block-length

m are code design parameters to be specified later). The RS

1Upper and lower bounds on the growth of β(l) with l are known [6] –
these bounds are again not in closed form and require significant computation.

2We note that the rate of decay of the probability of error can be traded
off with the computational complexity of polar codes. However, due to the
exponential dependence of the computational complexity on the parameter l,
this cost may be significant for codes that have an exponent close to 1.

3As is standard, we assume here that m/RO is an integer – if not, choosing
a large enough m allows one to choose R′

O ≈ RO resulting in codes with
approximately the same behavior in all the parameters of interest.

encoder outputs a sequence of m symbols over Fq that are

then transmitted over the channel. The encoding complexity

of RS-codes is low – clever implementations are equivalent to

performing a Fast Fourier Transform over Fq [12]. This can

be done with O(m log m) operations over Fq, or equivalently

O(m log m log q) binary operations (for large q).

The channel is allowed to arbitrarily corrupt up to m(1 −
RO)/2 symbols. Given such a channel, for all q ≥ m the

standard RS decoder [7] reconstructs the source message

exactly. The fastest known RS decoders for such channels

have time complexity O(m2 log m log q) (for large q) [7]. In

this work, we are interested in systematic RS codes [7]. In a

systematic RS code the first ROm symbols are the same as

the input to the RS encoder, and the remaining (1 − RO)m
parity-check symbols correspond to the output of a generic RS

encoder. These are used in our concatenated code constructions

to give efficient decoding of “high-rate” RS codes when, with

high probability no errors occur.

C. Code concatenation [13]–[15] proposed by Forney in

1966, means performing both encoding and decoding in two

layers. The source information is first broken up into “many”

chunks each of “small” size, and some redundancy is added

via an outer code. Then each chunk is encoded via a separate

inner code. The small block-length of each chunk results in

a relatively high probability of error of the inner code but

low code complexity. In contrast, since the outer code is over

a large alphabet, it requires that error be concentrated in a

“few” symbols for good performance. Given such conditions,

it achieves a relatively small probability of error with efficient

encoding and decoding algorithms (such as for RS codes).

Combining the two layers with the appropriate choice of

parameters results in an overall code with low computational

complexity and fast decay of probability of error.

III. MAIN RESULTS

For ease of exposition we first outline our main ideas for a

point-to-point binary symmetric channel BSC(p). Let the input

block-length of the channel code be N .

Theorem 1. For each N large enough there exists a (concate-
nated polar) code with computational complexity O(N log N)
that achieves the capacity of BSC(p) asymptotically in N , with
a probability of error of at most exp(−Θ(N/log27/8 N)).

This can be extended to more general scenarios.

Corollary 1 (Multiple Access Channel and Degraded

Broadcast Channel). For the two user multiple access
channel pY |X1X2(·|·) and the degraded broadcast channel
pX1X2|Y (·|·), there exist asymptotically rate-optimal codes
constructed by concatenating a polar code of block length
log3 N with a RS code of block length N log−3 N that have
an error probability that decays as exp(−Ω(N log−27/8 N))
and can be encoded and decoded in O(N log N) time.

In Section V we then give corresponding constructions for

network source coding problems. Let the input block-length

of the source codes be M .

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

919



Parameter Meaning Our parameter choice

n Block-length of inner codes (over F2) log3 N

RI Rate of inner codes 1 − Hb(p) − δ(log3 N)
pi Probability of error of inner codes exp(−Ω(log9/8 N))

q = 2RIn Field-size of outer code 2RI log3 N

m Block-length of outer code (over Fq) N log−3 N

RO Rate of outer code 1 − 2 log−3/2 N
N = nm Block-length of overall code (over F2) N

M = RIRON Number of source bits
(
1 − Hb(p) − δ(log3 N)

) (
1 − 2 log−3/2 N

)
N

Pe Probability of error of overall code exp(−Ω(N log−27/8 N))

Fig. 1. Summary of notation for the binary symmetric channel

Corollary 2 (Network Source Codes). Let N be a network
such that there exists a sequence of polar codes that are
asymptotically rate-optimal for some corresponding source-
coding problem. Then, there exists a sequence of asymptot-
ically rate-optimal concatenated codes for which, the error
probability decays as exp(−Ω(M log−27/8 M)). Further, the
code complexity is O(M log M).

IV. CHANNEL CODING

As is well-known, the optimal rate achievable asymptoti-

cally in the block-length for a BSC(p) equals 1−Hb(p), where

Hb(.) refers to the binary entropy function.

A. Binary symmetric channel

Figure 1 provides a summary of code parameters.

1) Encoder: Let n = log3 N be the inner polar codes’

block-length, RI = 1−Hb(p)−δ(n) = 1−Hb(p)−δ(log3 N)
be their rate, and pi = exp(−Ω(log3β N)) be their probability

of error. (Here β is any value4 in (1/3, 1/2). To be concrete,

say β = 3/8.) Let fI : F
RIn
2 → F

n
2 and gI : F

n
2 → F

RIn
2

denote respectively their encoders and decoders.

Correspondingly, let m = N/n = N/ log3 N be the block-

length of the outer systematic RS code, q = 2RIn = 2RI log3 N

be the field-size5 and RO = 1 − 2 log−3/2 N be its rate (so

the code can correct up to a fraction log−3/2 N of symbol

errors). Let fO : F
ROm
q → F

m
q and gO : F

m
2n → F

ROm
2n denote

respectively the encoder and (Berlekamp-Massey) decoder for

the outer systematic RS code.

Let M = RORIN . Define the concatenated code through

the encoder function f : F
M
2 → F

N
2 such that for each source

message uM ∈ {0, 1}M , f(uM ) = (fI(x1), fI(x2), . . . , fI(xm)),

where for each i in {1, 2, . . . , m}, xi represents the ith symbol

of the output of the outer systematic RS encoder fO(uM ),
viewed as a length-RIn bit vector.

As noted in the introduction, since the inner code is linear

over F2, and the outer code is linear over a field whose size

is a power of 2 (and as such may be implemented via matrix

operations over F2) the overall encoding operation is linear.

4The upper bound arises due to the provable rate of decay of the probability
of error of polar codes [2], and the lower bound arises due to a technical
condition required for (1) to hold.

5For this choice of parameters q = ω(m), as required for RS codes.

2) Channel: The channel corrupts each transmitted inner

code vector fI(xi) to yi resulting in the output yN .

3) Decoder: Our decoder:

1) Decodes each successive n-bit vector yi, i ∈ {1, . . . , m}
using the inner polar code decoder gI to the length-RIn bit

vectors x̂i = gI(yi), i ∈ {1, . . . , m}
2) Passes the first ROm outputs x̂1, x̂2, . . . , x̂ROm of the inner

code decoders through the systematic RS encoder fO.

3) If fO(x̂1, x̂2, . . . , x̂ROm) = x̂1, x̂2, . . . , x̂m, it declares

x̂1, x̂2, . . . , x̂ROm as the decoded message (denoted by x̄M )

and terminates.

4) Otherwise it passes x̂1, x̂2, . . . , x̂m through the outer de-

coder gO (a standard RS Berlekamp-Massey decoder), de-

clares the length-M bit-vector corresponding to the output

x∗1,x
∗
2, . . . ,x

∗
ROm = gO(x̂1, x̂2, . . . , x̂m) as the decoded mes-

sage (denoted by x̄M ), and terminates.

The rationale for this decoding algorithm is as follows. Step

1 uses the inner code to attempt to correct the errors in each

symbol of the outer code. If each resulting symbol is indeed

error-free, then, since the outer code is a systematic code,

re-encoding the first ROm symbols (Step 2) should result in

the observed decoder output (Step 3). On the other hand, if

the inner codes do not succeed in correcting all symbols for

the outer code, but there are fewer than (1 − RO)m/2 =
N log−9/2 N errors in these m = N log−3 N symbols, then

the RS outer decoder succeeds in correcting all the outer code

symbols (Step 4). Hence an error occurs only if there are

N log−9/2 N or more errors in the outer code. The probability

of this event can be bounded from above, as shown in the proof

of Theorem 1 below.
Proof of Theorem 1 By the polar code exponent of [5] and our
specific choice of β = 3/8, for large enough n the probability
that any specific inner code fails is at most exp(−nβ) =
exp(− log9/8 N). As noted above, our code construction fails

only if N log−9/2 N or more of the m = N log−3 N inner
codes fail. Hence the probability of error is bounded as

Pe ≤
 

N log−3 N

N log−9/2 N

!“
exp

“
− log9/8 N

””N log−9/2 N

≤ exp

„
N

log3 N
Hb

„
1

log3/2 N

««
exp

„
− N

log27/8 N

«
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where the second inequality is due to Stirling’s approximation.
Next we note that limε→0 Hb(ε)/εα = 0 for every α ∈ [0, 1).
In particular, by choosing α = 1/2, we obtain,

Pe ≤ exp
“
N
`
log−3 N

´ “
log−3/4 N

”
−
“
N log−27/8 N

””
< exp

“
Θ(N log−27/8 N)

”
for large enough N . Finally, we see that this construction

is capacity achieving since the inner codes and outer code

are constructed at rates approaching channel capacity and 1
respectively, as N grows without bound.

Notice here that with the above choice of parameters n and

m, the expected number of errors in the received codeword

for the outer codeword approaches zero. Therefore, with a

high probability, we receive the transmitted codeword without

any error. We exploit this fact in showing that the average

complexity of the decoding algorithm is dominated by the

complexity of the verification step. Our inner decoder decodes

each of the Θ(N/ log3 N) inner codes using the standard polar

code decoder. By the standard polar code successive cancel-
lation decoding procedure [1], the computational complexity

of decoding each inner code is O(log3 N log(log3 N)), which

equals O(log3 N log log N)). Since there are Θ(N/ log3 N)
inner codes, the overall decoding complexity of the inner code

decoders is O(N log log N)). This is dominated by the next

decoding step, and hence we neglect this.
For our code construction, the average decoding complexity

of a systematic RS code can be reduced almost to its encoding

complexity (O(m log m log q) binary operations), as follows.
Recall our outer decoder does the following. It first encodes

the first Rom symbols and compares the output of this

encoding process with the observed m symbols. If these two

sequences are the same the decoder outputs the first Rom
symbols as the decoded output and terminates. If not the

decoder then applies standard RS decoding [7] to the observed

m symbols and outputs Rom symbols.
Let P1 denote the probability that at least one sub-block has

been decoded erroneously by the polar decoder. Since P1 <
m exp(−n3/8) for our choice of β = 3/8, P1 decays as

P1 < exp(O((log N)9/8))(log−3 N) = o(1/m). (1)

We now consider the complexity of this decoder for the

three scenarios described above.

1. At least m(1 − Ro)/2 inner codes fail: This happens

with probability at most exp(−Ω(−N log27/8 N)). This adds

O(m2 log m log q) to the decoding complexity.

2. None of the inner codes fail: This happens with probability

at least 1−o(1/m). The decoder then stops after the first step,

with overall decoding complexity O(m log m log q).
3. At least one, but fewer than m(1−Ro)/2 inner codes fail:
This happens with probability at most o(1/m). The decoder

stops after the second step. This adds O(m2 log m log q) to

the decoding complexity.
Thus the expected decoding complexity is

O(m log m log q). Recalling our choice of parameters

m = Θ(N/ log3 N) and q = exp(Θ(log3 N)), this gives an

expected complexity of O(N log N).

Calculating the multiplicative factors hidden by the Landau

notation would require a more precise analysis of polar code

complexity than those available to date.To get a sense of the

numbers involved, we present the following examples. Each

gives a rough estimate of the rate achieved under different

parameter choices by abusing Landau notation and assuming

that the constant multiplicative factor equals 1 everywhere.

Example 1. For a block-length N = 214 ≈ 16, 000, the block-
length of the inner polar code is 2744 and that of the outer RS
code is 5. Looking at Figure 1, the parameter of most concern
then is the rate of the outer code – if the RS code has even one
redundant symbol, then the difference between the overall rate
and capacity is then greater than 1/5, which is significant.6

Example 2. For a block-length N = 220 ≈ 106, the block-
length of the inner polar code is about 8, 000 and that of
the outer RS code is 125. In this case the rate of our outer
code should equal 1 − 2/

√
8000 ≈ 44/45. This suggests that

about 3 of 125 symbols of the RS code should be redundant,
which is perhaps more tolerable. While a block-length of 106

might seem excessive, we note that it is not inconceivable
from a computational perspective when the resulting delay is
acceptable. Both encoding and (with high probability) decod-
ing can be implemented via finite field FFTs. The Cooley-
Tukey algorithm [16] for FFTs allows for a parallelized
implementation on multiple processors. Given current trends
in computer hardware, it is not inconceivable that 100 different
cores can each handle FFTs of length 10, 000, and combine
them appropriately to get the overall transforms.

Discussion of Corollary 1: Observe that outer code only op-

erates on the message bits and can be chosen independently of

the channel under consideration. Therefore, at each transmitter

in a multiple-input multiple-output channel, the systematic RS

code can be applied to each message independently as an outer

code. Next, an inner code can be chosen to match the given

channel and can be applied to the codewords from the outer

code as earlier. Correspondingly, at each decoder, the overall

code can be decoded by first decoding the inner code, and

then using the outer code to correct failures in the inner code.

Finally, noting that polar codes have been shown to be optimal

for certain multiuser channels [2], and the probability of error

decays in a manner similar to the single-user channel, the proof

of Corollary 1 follows.

V. CODE DESIGN FOR NETWORK SOURCE CODING

Using a concatenation based construction similar to the

previous section, we next show that the error probability for

network source coding may be similarly reduced. As earlier,

we outline the strategy for a simple network first.

A. Source Coding with Side Information at the decoder

Consider a point-to-point source coding system with side

information at the decoder. The source sequence uM ∈ F
M

is observed at the encoder and is demanded losslessly at the

6We thank the anonymous reviewer for pointing out these numbers.
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decoder. In addition, the decoder also observes side informa-

tion yM ∈ F
M . The vector ((u1, y1), (u2, y2), . . . , (uM , yM ))

is drawn i.i.d. from a joint probability mass function

pUY (uM ,yM ) = ΠM
i=1pUY (ui, yi). For this system, it is

known that polar codes can asymptotically achieve the optimal

rate H(U |Y ) with complexity O(M log M) and probability of

error exp (−Ω(2Mβ

)) for every β < 1/2 [3].

Borrowing the parameters from the previous construction,

fix n = log3 M and m = M log−3 M to be the input block-

lengths for the inner and outer codes. The outer code is

chosen to be a systematic RS code. The concatenated code

construction for this case is similar to that for channel coding,

except for a few differences.

1) Encoder: Let the input blocklength for the encoder be

M = nm. Let fI : F
n
2 :→ F

nRI
2 be a polar code for this

system that operates at a rate RI and on a blocklength n and

let gI : F
nRI
2 × F

n
2 :→ F

n
2 be the corresponding decoder. Let

RO = (1− 2/n4β/3). Let the outer code be a systematic R-S

code defined via the mapping fo : F
m
2n :→ F

m/RO

2n . Let go

be the corresponding decoder. Note that since fo is chosen

to be a systematic code, fo(uM ) = (uM , f̃o(uM )) for some

function f̃o. The concatenated code is now defined through

the mapping f : F
M
2 :→ F

MRI
2 × F

M(1−RO)
2 where, for each

u ∈ F
M
2 , f(uM ) � (fI(u

n
1 ), fI(u

2n
n+1), . . . fI(u

M
M−n+1), efo(u

M )).

2) Decoder: The decoder g : (FMRI
2 × F

M(1−RO)
2 )× F

M
2 :→

F
M
2 first decodes the polar codes and then use the redundant

symbols from the R-S code to correct for block errors in

the polar codes. The analysis used for probability of error

and encoding and decoding complexity in Section IV can be

repeated to derive similar expressions even in this case.

B. General network source coding problems

Following the observation made in Corollary 1, the strategy

outlined above can be extended readily to general network

source coding problems. Consider a network with multiple

sources (uM (s) : s ∈ S) such that the source uM (s) is

demanded losslessly at all sink nodes in the set Ts. We make

the assumption that there is a directed path consisting of non-

zero capacity links from a source node s to each sink node

in Ts. For this setup, the concatenated code consists of a

systematic R-S code as the outer code and a given network

source code as the inner code. The outer code is applied to

each source separately to obtain a few redundant symbols at

each source node in addition to the observed source sequences.

The network source code is now applied to only the observed

source symbols, while the redundant symbols from the outer

code are transmitted from each source s to the sinks in Ts

without any coding. It can be shown that if RO is the rate for

each of the outer codes, then the extra rate required on any link

is at most |S|RO. Finally, observing that for specific networks

such as Slepian-Wolf network and Ahlswede-Körner network

etc, polar codes are optimal and the error probability vanishes

as exp (−nβ) for β < 1/2 [2], by choosing the length of the

inner code and the outer code, and the rate of the outer code, in

the same way as the concatenated channel code construction,

Corollary 2 follows.

VI. CONCLUSION

In this work we examine the tradeoff between the com-

putational complexity and the probability of error of polar

codes. We demonstrate that using the well-studied technique

of concatenation, the probability of error can be boosted to

essentially optimal performance. The question of the corre-

sponding speed of convergence of the code rates to the optimal

rate-region is still an interesting open question, as it is for the

original formulation of polar codes.
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