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EQUIVALENCE CLASSES OF BLOCK JACOBI MATRICES

ROSTYSLAV KOZHAN

(Communicated by Walter Van Assche)

Abstract. The paper contains two results on the equivalence classes of block
Jacobi matrices: first, that the Jacobi matrix of type 2 in the Nevai class has
An coefficients converging to 1, and second, that under an L1-type condition
on the Jacobi coefficients, equivalent Jacobi matrices of types 1, 2 and 3 are
pairwise asymptotic.

1. Introduction and results

A block Jacobi matrix is an infinite matrix of the form

J =

⎛
⎜⎜⎜⎜⎜⎝

B1 A1 0

A∗
1 B2 A2

. . .

0 A∗
2 B3

. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

where An, Bn are l × l matrices with An invertible. The sequences An and Bn are
called Jacobi parameters of J .

Two block Jacobi matrices J and J̃ are called equivalent if their Jacobi param-
eters satisfy

(1.1) Ãn = σ∗
nAnσn+1, B̃n = σ∗

nBnσn

for unitary σn’s with σ1 = 1. The definition comes from the fact that (1.1) holds

if and only if the (matrix-valued) spectral measures of J and J̃ coincide (see [3] for
the details).

Using the convention p−1 = 0, A0 = 1, p0 = 1, the recurrence

xpn(x) = pn+1(x)A
∗
n+1 + pn(x)Bn+1 + pn−1(x)An, n = 0, 1, . . . ,

allows one to define a sequence of matrix-valued polynomials which turn out to be
(right-) orthonormal with respect to the above mentioned spectral measure.

Inductively it is easy to see that

(1.2) p̃n(x) = pn(x)σn+1,

where p̃n are the orthonormal polynomials for J̃ .
We say that a block Jacobi matrix is of type 1 if An > 0 for all n, of type 2 if

A1A2 . . . An > 0 for all n, and of type 3 if every An is lower triangular with strictly
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positive elements on the diagonal. Each equivalence class of block Jacobi matrices
contains exactly one matrix of types 1, 2 and 3 (this follows from the uniqueness
of the polar and QR decompositions; see [3] for the proof).

We say that J is in the Nevai class if

Bn → 0, AnA
∗
n → 1.

Note that this definition is invariant within the equivalence class of Jacobi matrices.

Theorem 1. Assume J belongs to the Nevai class. If J is of type 1, 2 or 3, then
An → 1 as n → ∞.

This result was proven in [3] for the type 1 and 3 cases, and was left open for
type 2. It is proven here in Section 2.

Note that the essence of Theorem 1 is to show that σ∗
nσn+1 → 1, where σn’s are

the unitary coefficients from (1.1) for J , J̃ of type 1, 2 or 3. Looking at (1.2), it is
clear that any result on the asymptotics of pn (see e.g. [1], [4], [5]) would involve
the limit limn→∞ σn. This explains the need for the following definition.

Definition. Two equivalent matrices J and J̃ with (1.1) are called asymptotic to
each other if the limit limn→∞ σn exists.

Clearly this is an equivalence relation on the set of equivalent block Jacobi matri-
ces. Thus, establishing Szegő asymptotics (which simply means limn→∞ znpn(z +
z−1) exists) for any block Jacobi matrix immediately implies the corresponding
asymptotics for any of the Jacobi matrices asymptotic to the original one.

Theorem 2. Assume

(1.3)

∞∑
n=1

[‖1−AnA
∗
n‖+ ‖Bn‖] < ∞.

Then the corresponding Jacobi matrices of types 1, 2 and 3 are pairwise asymptotic.

Remarks. 1. The condition (1.3) doesn’t depend on the choice of the representative
of the equivalence class of equivalent matrices.

2. The proof also shows that any Jacobi matrix, for which eventually each An

has real eigenvalues, is also asymptotic to types 1, 2 and 3.
3. An example of an equivalence class of block Jacobi matrices that fails (1.3)

and that has type 1 and type 2 nonasymptotic to each other can be found at the
end of Section 2.

2. Proofs of the results

We will be using the following lemma from [6]. For self-containment purposes
we give a proof of it in the Appendix.

Lemma 1 (Li [6]). Let φ be the map that takes any invertible matrix T to the

unitary factor U in its polar decomposition T = |T |U , where |T | =
√
TT ∗. Then

for any invertible l × l matrices B,D the following holds:

||φ(B)− φ(BD)||HS ≤
√
||1−D−1||2HS + ||1−D||2HS ,

where || · ||HS is the Hilbert–Schmidt norm.
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Proof of Theorem 1. For types 1 and 3, the statement is proven in [3].

Assume J is of type 2. Denote by Ĵ the type 1 Jacobi matrix equivalent to J .

Denote its Jacobi parameters by Ân, B̂n, and let

(2.1) An = σ∗
nÂnσn+1

for some unitaries σn. Since Ân → 1, we get An = σ∗
nÂnσn+1 =

(
σ∗
nÂnσn

)
σ∗
nσn+1

converges to 1 if and only if limn→∞ σ∗
nσn+1 = 1.

Denote Qn = A1 . . . An, which is a positive-definite matrix. Note that Q̂n =

Â1 . . . Ân = A1 . . . Anσ
∗
n+1 = Qnσ

∗
n+1, so Qn = |Q̂n| and σn+1 = φ(Q̂n)

∗. Here φ
is the same as in Lemma 1.

Now Ân+1 → 1, together with Lemma 1, implies that φ(Q̂n+1) − φ(Q̂n) =

φ(Q̂nÂn+1)− φ(Q̂n) → 0. Thus, σn+1 − σn → 0 and limn→∞ σ∗
nσn+1 = 1. �

For the type 3 case of Theorem 2, we will need the following lemma. Recall that
the singular values of a matrix A are defined to be the eigenvalues of |A|.

Lemma 2. There exists a constant c such that for all l × l matrices A

(2.2)
l∑

j=1

(σj − |λj |) ≤ c
l∑

j=1

(1− σj)
2,

where {λj}lj=1 and {σj}lj=1 are the eigenvalues and singular values of A, ordered
by |λ1| ≥ . . . ≥ |λl|, σ1 ≥ . . . ≥ σl ≥ 0, where c depends on l only.

Proof. For sufficiently large matrices A the inequality is clear. It also holds for any
compact set on which the right-hand side of (2.2) does not vanish. Therefore, we

only need to worry about neighborhoods of matrices with
∑l

j=1(1− σj)
2 = 0, that

is, unitary matrices.
Consider any matrix A within distance 1/2 from the unitary group. Let U =

φ(A) be the unitary factor in the polar decomposition of A. Since φ(A) is always
the closest unitary to A (see e.g. [2]), we get

‖A− U‖ ≤ 1/2 and ‖|A| − 1‖ ≤ 1/2.

The second inequality immediately gives |σj − 1| ≤ 1/2, which in turn implies
||λj | − 1| ≤ 1/2 by (2.3) below. The following basic facts are well-known (see
e.g. [7]):

σ1 ≥ |λj | ≥ σl for any j,(2.3)

l∏
j=1

|λj | =
l∏

j=1

σj .(2.4)

Let εj = σj − 1, δj = |λj | − 1. Then from (2.4),

δl =

∏l
j=1 σj∏l−1
j=1 |λj |

− 1 =

∏l
j=1(1 + εj)−

∏l−1
j=1(1 + δj)∏l−1

j=1(1 + δj)
,
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and so

(2.5)

l∑
j=1

(σj − |λj |) =
l∑

j=1

(εj − δj)

=

l−1∏
j=1

(1 + δj)
l∑

j=1

εj −
l−1∏
j=1

(1 + δj)
l−1∑
j=1

δj −
l∏

j=1

(1 + εj) +
l−1∏
j=1

(1 + δj)

l−1∏
j=1

(1 + δj)

.

The first-order terms (i.e. those involving only one of ε’s or δ’s) of the numerator
cancel out:

l∑
j=1

εj −
l−1∑
j=1

δj −

⎛
⎝1 +

l∑
j=1

εj

⎞
⎠+

⎛
⎝1 +

l−1∑
j=1

δj

⎞
⎠ = 0.

Now note that by (2.3), |δj | ≤ |ε1| + |εl|. Using this and |εjεk| ≤ (ε2j + ε2k)/2
we can bound all of the second-order terms (i.e. those with εjεk, εjδk and δjδk)

by c̃
∑l

j=1 ε
2
j , where c̃ will depend on l only. All of the higher-order terms can be

taken care of by using |εj | < 1, |δj | < 1 to reduce it to the second-order. Finally, the
denominator on the right-hand side of (2.5) is bounded below by 1/2l. Therefore,
we obtain

l∑
j=1

(σj − |λj |) ≤ c

l∑
j=1

ε2j = c

l∑
j=1

(1− σj)
2,

which proves our lemma. �

Lemma 3. There exists a constant c so that

(2.6) ‖1−A‖ ≤ c‖1− |A|‖
for any l × l matrix A with real positive eigenvalues, where c depends only on l.

Proof. By the equivalence of norms, we can prove (2.6) for the Hilbert–Schmidt
norm instead. Let λ1 ≥ . . . ≥ λl > 0 be the eigenvalues of A, and let σ1 ≥ . . . ≥
σl > 0 be the singular values of A. Note that

‖1−A‖2HS = Tr [(1−A)(1−A)∗] = l − 2
l∑

j=1

Reλj +TrAA∗

= l − 2

l∑
j=1

λj +

l∑
j=1

σ2
j ,

‖1− |A|‖2HS = Tr
[
(1− |A|)2

]
= l − 2

l∑
j=1

σj +
l∑

j=1

σ2
j ,

and so ‖1−A‖2HS ≤ M‖1− |A|‖2HS holds if and only if

2

l∑
j=1

(σj − λj) ≤ (M − 1)

l∑
j=1

(1− σj)
2.

Since λj = |λj |, the previous lemma proves the result. �
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Proof of Theorem 2. As in Theorem 1, let Ân be of type 1, and let An be of type 2
with the equivalence (2.1). Then keeping the notation of Theorem 1 and using
Lemma 1, we have

∞∑
n=1

‖σn − σn+1‖HS =

∞∑
n=1

‖φ(Q̂n−1)− φ(Q̂n)‖HS

≤
∞∑

n=1

√
||1− Â−1

n ||2HS + ||1− Ân||2HS

≤
∞∑

n=1

||1− Â−1
n ||HS +

∞∑
n=1

||1− Ân||HS

≤ (sup
n

||Ân||HS + 1)
∞∑
n=1

||1− Ân||HS

≤ (sup
n

||Ân||HS + 1) sup
n

||(1+ Ân)
−1||HS

∞∑
n=1

||1− Â2
n||HS < ∞,

since Ân → 1, and so supn ||Ân||HS < ∞ and supn ||(1+ Ân)
−1||HS < ∞. This

implies that σn is Cauchy and so converges.
An alternative indirect way of proving that type 1 and type 2 are asymptotic

to each other is as follows: it is proven in [4] that under condition (1.3) Szegő
asymptotics for the type 2 block Jacobi matrix holds. In [5] the same fact is obtained
for the type 1 Jacobi matrix. Therefore (1.2) implies that the limit limn→∞ σn

exists.
Now assume that Ân is of type 1, and An of type 3 with the equivalence (2.1).

Since all eigenvalues of An are real and positive, Lemma 3 applies, and we get

∞∑
n=1

‖1−An‖ ≤ c
∞∑
n=1

‖1− |An|‖ = c
∞∑

n=1

‖1− Ân‖

since |An| = σ∗
nÂnσn by (2.1). Now

∞∑
n=1

||1− Ân|| ≤ sup
n

||(1+ Ân)
−1||

∞∑
n=1

‖1− Â2
n‖ < ∞,

which implies

∞∑
n=1

‖σn − σn+1‖ =

∞∑
n=1

‖1− σ∗
nσn+1‖ ≤

∞∑
n=1

‖1−An‖+
∞∑

n=1

‖An − σ∗
nσn+1‖

=

∞∑
n=1

‖1−An‖+
∞∑

n=1

‖Ân − 1‖ < ∞.

This shows that σn is Cauchy and so converges. �

Example 1. Let Dk =
(
(k+1)/k 0

0 1

)
for k ≥ 1. Note that Dk → 1.

Pick some unitary τ , and define the sequence Ân as follows: Â1 = τ∗D1τ ,

Â2 = D1, Â3 = D−1
1 , Â4 = D2, Â5 = D3, Â6 = D−1

3 , Â7 = D−1
2 , Â8 = D4, and so

on: we define Âk’s for 2
j ≤ k < 2j+1 in terms of further and further chunks of the
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sequence Dk as

Â2j = D2j−1 , . . . , Â3·2j−1−1 = D2j−1,

Â3·2j−1 = D−1
2j−1, . . . , Â2j+1−1 = D−1

2j−1 .

Note that Ân > 0; i.e. the sequence corresponds to a block Jacobi matrix of type

1. Using the notation from Section 2, let Q̂n = Â1 . . . Ân. Then

Q̂2j−1 = Â1, Q̂3·2j−1−1 = Â1D2j−1 . . . D2j−1 = Â1D1,

and σ2j = φ(Q̂2j−1)
∗ = 1, σ3·2j−1 = φ(Q̂3·2j−1−1)

∗ = φ(τ∗D1τD1)
∗. Now choose τ

such that φ(τ∗D1τD1) is not positive definite. This gives us the fact that limn→∞ σn

does not exist; i.e. type 1 and type 2 are not asymptotic to each other.
Of course, the reason is that (1.3) fails here:

∑
‖1−AnA

∗
n‖ diverges as

∑
1
n .

Appendix A. Proof of Li’s lemma

Proof of Lemma 1. Let B = UΣV ∗ and BD = ŨΣ̃Ṽ ∗ be the singular value de-

compositions of B and BD (i.e. U, Ũ , V, Ṽ are unitary, and Σ, Σ̃ are positive and
diagonal). Denote

Y = Ũ∗(B −BD)V = Ũ∗UΣ− Σ̃Ṽ ∗V,

Z = U∗(B −BD)Ṽ = ΣV ∗Ṽ − U∗ŨΣ̃.

Then

(A.1) Y − Z∗ = (Ũ∗U − Ṽ ∗V )Σ + Σ̃(Ũ∗U − Ṽ ∗V ) = XΣ+ Σ̃X,

where X = Ũ∗U − Ṽ ∗V . On the other hand,

(A.2)
Y − Z∗ = Ũ∗(B −BD)V − Ṽ ∗(B∗ −D∗B∗)U

= Σ̃Ṽ ∗(D−1 − 1)V − Ṽ ∗(1−D∗)V Σ = Σ̃E − FΣ,

where E = Ṽ ∗(D−1 − 1)V , F = Ṽ ∗(1 −D∗)V . Note that Σ and Σ̃ are diagonal,
and therefore the solution of (A.1)=(A.2) is

xij =
σ̃iieij − fijσjj

σjj + σ̃ii
,

where X ≡ (xij), E ≡ (eij), F ≡ (fij), Σ ≡ (σij), Σ̃ ≡ (σ̃ij). Note that σjj > 0
and σ̃ii > 0, and thus by the Schwarz inequality,

|xij |2 ≤
σ2
jj + σ̃2

ii

(σjj + σ̃ii)2
(|eij |2 + |fij |2) ≤ |eij |2 + |fij |2,

which implies

||X||2HS ≤ ||E||2HS + ||F ||2HS = ||1−D−1||2HS + ||1−D||2HS .

Finally, note that φ(B) = UV ∗ and φ(BD) = Ũ Ṽ ∗, so ||φ(B) − φ(BD)||HS =

||ŨXV ∗||HS = ||X||HS , and we are done. �
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