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ABSTRACT

The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary
science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc).
Here, we report the discovery of PTF 10fgs, a transient in the luminosity “gap” between novae and supernovae.
Located on a spiral arm of Messier 99, PTF 10fqgs has a peak luminosity of M, = —12.3, red color (g —r = 1.0),
and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width Hex
(930 km s~!) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall
similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery
and controversy (and in some cases, in dust). PTF 10fgs shows some evidence of a broad feature (around 8600 A)
that may suggest very large velocities (210,000 km s~!) in this explosion. Ongoing surveys can be expected to find
a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will
eventually make it possible for astronomers to unravel the nature of these mysterious explosions.
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1. INTRODUCTION

Two reasons motivate us to search for transients in the
local universe (distance < 200 Mpc). First, the emerging
areas of gravitational wave astronomy, high-energy cosmic
rays, very high energy photons, and neutrino astronomy are
limited to this distance horizon either due to physical effects
(optical depth) or instrumental sensitivity. Thus, to effectively
search for an electromagnetic analog, understanding the full
range of transient phenomena is essential. For instance, the
electromagnetic counterpart to the gravitational wave signature
of neutron star mergers is expected to be fainter and faster than
that of supernovae (e.g., Metzger et al. 2010).

Our second motivation is one of pure exploration. The
peak luminosity of novae ranges between —4 and —10 mag,'®
whereas supernovae range between —15 and —22 mag. The

16 Unless explicitly noted, quoted magnitudes are in the R band.

large gap between the cataclysmic novae and the catastrophic
supernovae has been noted by early observers. Theorists have
proposed several intriguing scenarios producing transients in
this “gap” (e.g., Bildsten et al. 2007; Metzger et al. 2009; Shen
et al. 2010; Moriya et al. 2010).

The Palomar Transient Factory'” (PTF; see Rahmer et al.
2008; Law et al. 2009; Rau et al. 2009) was designed to
undertake a systematic exploration of the transient sky in the
optical bands. One of the key projects of PTF is to build a
complete inventory of transients in the local universe. PTF has
a “Dynamic” cadence experiment which undertakes frequent
observations of fields, optimized for inclusion of galaxies in the
local universe. A description of the design sensitivity is given
elsewhere (Kulkarni & Kasliwal 2009). Here, we report on the
discovery of PTF 10fgs, a transient in this “gap” between novae
and supernovae.

17 http://www.astro.caltech.edu/ptf.
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Figure 1. Discovery image of PTF 10fgs (obtained with the Palomar Oschin
48 inch telescope on 2010 April 16.393). The transient is marked by a cross and
located at (J2000) = 12"18™50%16 and §(J2000) = +14°26/39”2. With respect
to the host-galaxy nucleus, the transient is offset by 8”1 E and 9979 N.

2. DISCOVERY

On 2010 April 16.393 (UT dates are used throughout this
paper), the PTF discovered an optical transient toward Messier
99 (M99; see Figure 1). Following the PTF discovery naming
sequence, this transient was dubbed PTF 10fgs and reported via
an ATEL (Kasliwal & Kulkarni 2010).

M99 (NGC 4254),'® an Sc galaxy, is one of the brighter
spiral members of the Virgo Cluster. The recession velocity of
the galaxy is about 2400 km s~!. Over the past 50 years, three
supernovae have been discovered in this galaxy: SN 1967H
(Type 117, Fairall 1972), SN 1972Q (Type II; Barbon et al.
1973),' and SN 19861 (Type II; Pennypacker et al. 1989).

At discovery, the brightness of PTF 10fgs was R = 20.0 £
0.2 mag. There are no previous detections in PTF data taken on
and prior to April 10. If located in M99, the absolute magnitude
(for an assumed distance of 17 Mpc; Russell 2002) corresponds
to Mg = —11.1. We concluded that the object could be (in
decreasing order of probability) a foreground variable star, a
young supernova, or a transient in the “gap.” These possibilities
can be easily distinguished by spectroscopic observations.

3. FOLLOW-UP OBSERVATIONS
3.1. Spectra

We triggered our Target-of-Opportunity (TOO) program on
the 8 m Gemini-South telescope. On 2010 April 18.227, the
Gemini Observatory staff observed PTF 10fqs with the Gemini
Multi-Object Spectrograph (GMOS; Hook et al. 2004). The
parameters for the observations were: R400 grating, order-
blocking filter GG455_G039, and a 170 slit. Two 10 minute

18 http://seds.org/messier/m/m099.html.

19" Curiously, the reported position of SN 1972Q was only 376 from PTF 10fgs.
We did a careful registration of the discovery image of SN 1972Q (Barbon

et al. 1973) and PTF 10fqs and find that the offset is actually 1170 E, 0”8 S.
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Figure 2. Gemini GMOS spectrum of PTF 10fgs (black) taken two days after
discovery. The wavelength coverage is continuous over the range 4600-8800 A.
The most prominent emission feature is Ho. Plotted below for comparison, the
spectrum of M850T-2006-1 (red; Kulkarni et al. 2007).

(A color version of this figure is available in the online journal.)

integrations centered on 6700 and 6800 A were obtained. The
two observations allowed for coverage of the gap between
the chips. The package gemini gmos working in the iraf
framework was used to reduce the data. The spectrum is shown
in Figure 2.

The most prominent emission feature is an intermediate width
(13 A, 600 km s~")2° Ha line consistent with the recession
velocity of the galaxy (2400 km s~'; see below). HB was
not detected. From this spectrum alone, we concluded that
PTF 10fgs is in M99 and the intermediate line width made it
unlikely to be a supernova. PTF 10fqgs appeared to be a transient
in the “gap,” and we initiated extensive multi-band follow-up
observations.

We continued to monitor the spectral evolution with the
Marcario Low-Resolution Spectrograph (LRS; Hill et al. 1998)
on the Hobby—Eberly Telescope (HET).?! We used the G1 grat-
ing, with a 2” slit and a GG385 order-blocking filter, providing
resolution R = A/AL ~ 360 over 4200-9200 A. Data were
reduced using the onedspec package in the iraf environment,
with cosmic-ray rejection via the la_cosmic package (van
Dokkum 2001), and with spectrophotometric corrections ap-
plied using standard-star observations (specifically, BD332642).

On May 15, we also obtained relatively higher resolution
spectroscopic observations and relatively better blue coverage
with the Low-Resolution Imaging Spectrograph (Oke et al.
1995) on the Keck I telescope. First, we used the 831/8200
grating centered on 7905 A to get higher resolution spectra
of the calcium lines. On the blue side, we used the 300/5000
grism to cover Ca H + K lines. For higher resolution covering
the Balmer lines, we used the 600/7500 grating (centered on
7201 A ) in conjunction with the 600/4000 grism.

The log of spectroscopic observations is given in Table 1. The
spectral evolution is shown in Figure 3.

20 The velocity quoted here is corrected for instrumental resolution and is
measured as the Gaussian full width at half-maximum (GFWHM) of the
emission line.

21 Director’s Discretionary Time; PI: D. Fox.
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Figure 3. Spectra of PTF 10fqs at various epochs (phase in days is defined relative to discovery epoch). Also shown are spectra of NGC 300-OT (Bond et al. 2009),
M850T2006-1 (Kulkarni et al. 2007), and SN2008S (Botticella et al. 2009). The wavelength has been corrected for the recession velocity of each galaxy (z = 0.0024
for M85, z = 0.008 for M99, z = 0.00048 for NGC 300, and z = 0.00016 for NGC 6946).
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3.2. Optical and Near-infrared Imaging R SR

Observations with the robotic Palomar 60 inch telescope
(Cenko et al. 2006) on April 20.4 confirmed that PTF 10fqs was
rising (r = 19.4+0.1 mag) andred (g —r = 1.0 mag). We show
the photometric evolution in gri bands in Figure 4 and Table 2.
On April 27.2, the light curve peaked at » = 18.9 £ 0.1 mag
corresponding to M, = —12.3 (correcting for foreground
Galactic extinction of E(B — V) = 0.039; Schlegel et al. 1998).
Aperture photometry was done after image subtraction using a
custom modification of the CPM algorithm, mkdifflc (Gal-Yam
et al. 2004). Template images for subtraction and reference
magnitudes for zero-point computation were taken from the
Sloan Digital Sky Survey (Abazajian et al. 2009).

Near-infrared images were obtained with the Peters Auto-
mated Infrared Imaging Telescope (PAIRITEL; Bloom et al.
2006), and reduced by an automated reduction pipeline. We
lack sufficiently deep template images, which are free of light
from PTF 10fqs, to perform reliable image subtraction. Thus,
we measure the flux from the source in a small circular aper-
ture, removing the sky with a nearby background region, and
adopt a systematic error of 0.2 mag in the J and H bands and
0.3 mag in the K, band. The values reported in Table 2 have been

0 20 40 60
Days from peak luminosity

Figure 4. Multi-band light curve of PTF 10fqs obtained with the Palomar 48 inch
(squares) and Palomar 60 inch (circles) telescopes. Upper limits are denoted by
downward arrows. Note that the evolution is relatively faster in the g band
compared to the r band. Also shown for comparison are the VRI-band light
curves of SN2008S (dotted; Botticella et al. 2009) and NGC 300-OT (dashed;
Bond et al. 2009). The light curves are shifted vertically by a constant (+3 mag
for SN2008S and +5.2 mag for NGC 300-OT) such that their R-band light curves
are at the same level as the r-band light curve of PTF 10fqgs.

calibrated against the Two Micron All Sky Survey (2MASS)
system (Cohen et al. 2003).

3.3. Radio Observations

We observed PTF 10fgs with the EVLA on April 20.19-20.26
at central frequencies of 4.96 GHz and 8.46 GHz. We added
together two adjacent 128 MHz subbands with full polar-
ization to maximize continuum sensitivity. Amplitude and
bandpass calibration was achieved using a single observation
of J1331+3030, and phase calibration was carried out every
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Table 2 Table 2
Optical and Near-infrared Light Curve (Continued)

Date (MJD) Filter Mag Facility Date (MJD) Filter Mag Facility
55295.2 Mould-R >20.94 Palomar 48 inch 55381.2 r 19.90 £ 0.08 Palomar 60 inch
55296.5 Mould-R >19.28 Palomar 48 inch 55391.2 r 20.35 + 0.05 Palomar 60 inch
55302.4 Mould-R 19.99 £+ 0.19 Palomar 48 inch 55406.2 r 21.26 £0.13 Palomar 60 inch
55313.2 Mould-R 19.27 £ 0.11 Palomar 48 inch 55407.2 r 21.22 +0.14 Palomar 60 inch
55316.3 Mould-R 19.28 £ 0.11 Palomar 48 inch 55306.3 g 20.32 £ 0.18 Palomar 60 inch
55317.3 Mould-R 19.30 £ 0.13 Palomar 48 inch 55310.3 g 20.09 £ 0.05 Palomar 60 inch
55319.2 Mould-R 19.20 £ 0.10 Palomar 48 inch 55313.2 g 19.91 £ 0.09 Palomar 60 inch
55320.2 Mould-R 19.42 £ 0.12 Palomar 48 inch 55317.3 g 20.08 £ 0.06 Palomar 60 inch
55321.3 Mould-R 19.41 £0.12 Palomar 48 inch 55319.2 g 20.00 £ 0.06 Palomar 60 inch
55323.2 Mould-R 19.39 £ 0.13 Palomar 48 inch 55320.2 g 20.25 £ 0.10 Palomar 60 inch
55324.2 Mould-R 19.53 £ 0.15 Palomar 48 inch 55321.2 g 20.19 £ 0.03 Palomar 60 inch
55329.2 Mould-R 19.55 £ 0.18 Palomar 48 inch 55322.3 g 20.16 £ 0.08 Palomar 60 inch
55330.2 Mould-R 19.67 £ 0.20 Palomar 48 inch 55323.3 g 20.23 £ 0.04 Palomar 60 inch
55331.2 Mould-R 19.74 £ 0.16 Palomar 48 inch 55324.3 g 20.20 £ 0.02 Palomar 60 inch
55332.2 Mould-R 19.68 £ 0.11 Palomar 48 inch 55341.3 g 20.52 £0.11 Palomar 60 inch
55333.2 Mould-R 19.65 £ 0.15 Palomar 48 inch 55348.2 g 20.70 £ 0.07 Palomar 60 inch
55336.3 Mould-R 19.60 + 0.12 Palomar 48 inch 55350.2 g 20.66 + 0.07 Palomar 60 inch
55337.3 Mould-R 19.61 £ 0.17 Palomar 48 inch 55351.3 g 20.78 £0.11 Palomar 60 inch
55343.2 Mould-R 19.81 £0.12 Palomar 48 inch 55352.3 g 20.80 £0.11 Palomar 60 inch
55346.2 Mould-R 19.66 £ 0.13 Palomar 48 inch 55353.2 g 20.88 + 0.09 Palomar 60 inch
55347.2 Mould-R 19.79 £0.17 Palomar 48 inch 55354.2 g 21.01 £0.14 Palomar 60 inch
55348.2 Mould-R 19.66 + 0.13 Palomar 48 inch 55356.3 g 21.25+0.25 Palomar 60 inch
55349.3 Mould-R 19.90 £ 0.19 Palomar 48 inch 55304.4 i 19.32 £ 0.11 Palomar 60 inch
55351.2 Mould-R 19.78 £ 0.16 Palomar 48 inch 55306.3 i 18.94 + 0.07 Palomar 60 inch
55352.2 Mould-R 19.63 +0.12 Palomar 48 inch 55310.3 i 18.98 £ 0.03 Palomar 60 inch
55353.2 Mould-R 19.83 £ 0.21 Palomar 48 inch 55312.2 i 19.06 + 0.04 Palomar 60 inch
55355.2 Mould-R 19.76 + 0.16 Palomar 48 inch 55313.2 i 18.98 4+ 0.09 Palomar 60 inch
55356.2 Mould-R 19.69 £ 0.16 Palomar 48 inch 55317.3 i 19.03 £ 0.06 Palomar 60 inch
55361.2 Mould-R 19.82 £ 0.16 Palomar 48 inch 55319.2 i 19.02 + 0.07 Palomar 60 inch
55362.2 Mould-R 19.80 £ 0.16 Palomar 48 inch 55320.2 i 19.04 + 0.03 Palomar 60 inch
55363.2 Mould-R 19.66 + 0.16 Palomar 48 inch 55321.2 i 19.13 + 0.03 Palomar 60 inch
55364.2 Mould-R 19.84 £ 0.15 Palomar 48 inch 55322.3 i 19.02 £+ 0.04 Palomar 60 inch
55368.2 Mould-R 19.95 +0.14 Palomar 48 inch 553233 i 19.14 + 0.03 Palomar 60 inch
55371.2 Mould-R 19.93 £+ 0.23 Palomar 48 inch 55324.2 i 19.21 £ 0.04 Palomar 60 inch
55372.2 Mould-R 20.10 £ 0.16 Palomar 48 inch 55341.3 i 19.21 £ 0.09 Palomar 60 inch
55373.2 Mould-R 20.15 +0.19 Palomar 48 inch 55343.2 i 19.20 + 0.02 Palomar 60 inch
55375.2 Mould-R 19.97 £ 0.17 Palomar 48 inch 55349.2 i 19.33 £ 0.02 Palomar 60 inch
55377.2 Mould-R 20.00 + 0.24 Palomar 48 inch 55351.3 i 19.30 + 0.03 Palomar 60 inch
55379.2 Mould-R 19.87 £ 0.10 Palomar 48 inch 55353.2 i 19.29 + 0.05 Palomar 60 inch
55304.4 r 19.85 £ 0.12 Palomar 60 inch 55354.2 i 19.31 £+ 0.03 Palomar 60 inch
55306.3 r 19.40 + 0.05 Palomar 60 inch 55356.3 i 19.23 £ 0.16 Palomar 60 inch
55310.3 r 19.29 + 0.03 Palomar 60 inch 55363.2 i 19.40 + 0.05 Palomar 60 inch
55312.1 r 19.41 +£0.03 Palomar 60 inch 55368.3 i 19.41 + 0.05 Palomar 60 inch
55313.2 r 18.87 £ 0.05 Palomar 60 inch 55372.2 i 19.43 £0.07 Palomar 60 inch
55314.2 r 18.94 + 0.17 Palomar 60 inch 55381.2 i 19.55 £ 0.06 Palomar 60 inch
55316.3 r 19.16 £ 0.05 Palomar 60 inch 55391.2 i 19.64 £ 0.06 Palomar 60 inch
55317.3 r 19.30 + 0.05 Palomar 60 inch 55406.2 i 20.38 £ 0.13 Palomar 60 inch
55319.2 r 19.32 £ 0.04 Palomar 60 inch 55307.2 J 18.14 £0.29 PAIRITEL
55320.2 r 19.25 £ 0.01 Palomar 60 inch 55315.2 J 18.37 £0.39 PAIRITEL
55321.2 r 19.33 £ 0.02 Palomar 60 inch 55317.2 J 17.89 + 0.30 PAIRITEL
55322.3 r 19.40 £ 0.02 Palomar 60 inch 55319.2 J 17.86 £+ 0.26 PAIRITEL
55323.3 r 19.55 £+ 0.04 Palomar 60 inch 55321.2 J 17.94 + 0.24 PAIRITEL
55324.3 r 19.47 £ 0.02 Palomar 60 inch 55322.2 J 18.38 £0.25 PAIRITEL
55341.3 r 19.61 £ 0.11 Palomar 60 inch 55324.2 J 17.88 £0.21 PAIRITEL
55343.2 r 19.69 + 0.06 Palomar 60 inch 55325.2 J 17.55 £0.32 PAIRITEL
55347.3 r 19.80 £ 0.04 Palomar 60 inch 55327.2 J 17.86 £ 0.25 PAIRITEL
55348.2 r 19.71 £ 0.01 Palomar 60 inch 55331.2 J 17.25 £0.18 PAIRITEL
55350.2 r 19.76 + 0.03 Palomar 60 inch 55333.2 J 17.82 £0.24 PAIRITEL
55352.3 r 19.65 £ 0.03 Palomar 60 inch 55369.2 J 17.78 £ 0.31 PAIRITEL
55354.2 r 19.80 £ 0.06 Palomar 60 inch 55307.2 H 17.35 £0.21 PAIRITEL
55356.3 r 19.75 £ 0.08 Palomar 60 inch 55315.2 H 17.37 £0.27 PAIRITEL
55357.3 r 19.68 £ 0.08 Palomar 60 inch 55317.2 H 17.14 £0.22 PAIRITEL
55363.2 r 19.81 £ 0.03 Palomar 60 inch 55319.2 H 16.81 £ 0.27 PAIRITEL
55368.3 r 20.01 +0.12 Palomar 60 inch 55321.2 H 17.75 £ 0.18 PAIRITEL
55372.2 r 19.92 £ 0.03 Palomar 60 inch 55322.2 H 17.25 £ 0.16 PAIRITEL
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Table 2
(Continued)

Date (MID) Filter Mag Facility

55324.2 H 17.22 +£0.20 PAIRITEL
55325.2 H 17.19 £ 0.30 PAIRITEL
55327.2 H 17.02 £ 0.20 PAIRITEL
55331.2 H 16.97 £ 0.32 PAIRITEL
55333.2 H 17.07 £ 0.29 PAIRITEL
55369.2 H 17.22 £0.22 PAIRITEL
55307.2 K 16.17 £ 0.18 PAIRITEL
55315.2 K 16.56 £+ 0.31 PAIRITEL
55317.2 K 16.84 £ 0.19 PAIRITEL
55319.2 K 16.90 £ 0.25 PAIRITEL
55321.2 K 16.84 £ 0.40 PAIRITEL
55322.2 K 16.69 £ 0.21 PAIRITEL
55324.2 K 16.29 £ 0.15 PAIRITEL
55325.2 K 16.73 £0.18 PAIRITEL
55327.2 K 16.65 + 0.22 PAIRITEL
55331.2 K >15.80 PAIRITEL
55333.2 K >16.60 PAIRITEL
55369.2 K >16.36 PAIRITEL

10 minutes by switching between the target field and the point
source J1239+0730. The visibility data were calibrated and im-
aged in the AIPS package following standard practice.

A radio point source was not detected at the position of the
transient (Figure 5). After removing extended emission from
the host galaxy, the 3o limits for a point source are 93 uJy and
63 uly at 4.96 GHz and 8.46 GHz, respectively (Table 3). At
the distance of M99, this corresponds to L, < 2.1 X 10% erg
s~! Hz~'. Comparing with the compilation in Chevalier et al.
(20006), this upper limit is at the level of the faintest Type II-P
(SN 2004dj; Beswick et al. 2005) and Type Ic (SN 2002ap;
Berger et al. 2002) supernovae. As noted by Berger et al. (2009),
the nearby NGC 300-OT was also not detected in the radio to
deeper luminosity limits.

3.4. Ultraviolet Observations

We observed PTF 10fqs with Galaxy Evolution Explorer
(GALEX; Martin et al. 2005) on two consecutive orbits starting
at 2010 April 24.387 (total exposure of 2846 s). All images were
reduced and co-added using the standard GALEX pipeline and
calibration (Morrissey et al. 2007).

To create a reference image, we co-added 22 images of M99
prior to 2005 April 2 (total exposure of 18571 s). Next, we
subtracted the reference image from observations of PTF 10fqgs
(see Figure 6). No source is detected (Table 3). We find a 3o
upper limit of NUV 22.7 AB mag in an aperture consistent with
a GALEX point source (7/5 x 7'5).

To constrain the pre-explosion counterpart, we measured the
limiting magnitude at the position of PTF 10fqgs in the co-added
reference image. The faintest detected object consistent with
being a point source within the galaxy had NUV = 20.1 AB mag.
The 30 limit based on measuring the sky rms is NUV >
21.8 AB mag.

3.5. X-ray Observations

We observed PTF 10fgs with Swift/XRT on April 20.466 for
2507.3 s and April 22.024 for 2623.5 s. No source is detected to
a 3o limiting count rate (assuming an 18” radius) of 4.6 x 10~*
counts s~!'. Assuming a power-law model with a photon index of
two, this corresponds to a flux limit of 1.6 x 10~"* ergem™2 571,
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Figure 5. Observation of PTF 10fgs (denoted by a plus sign) with the EVLA
at 4.96 GHz, just four days after discovery. The gray-scale range is —40 to
1000 uJy per beam and the size of the synthesized beam is shown at the bottom
left corner.

4. ARCHIVAL DATA
4.1. Hubble Space Telescope (HST)

A query to the Hubble Legacy archive returned HST images of
M99 in the F606W (2001), F336W (2009), and F814W (2009)
filters. We multidrizzled these data (PI: Regan; Proposal ID
11966) and registered our Gemini/GMOS acquisition image
with the HST/WFPC?2 images. Unfortunately, PTF 10fqs is just
off the edge of the chip for the F606W filter image.

The total 1o registration error, added in quadrature, was
0.59 pixels. Their sources of error are as follows: centroiding
error (0.17 in x, 0.30 in y), registration error between the Gemini
image and the HST/F814W image (0.19 in x, 0.44 in y), and
registration error between the HST/F814W image and the HST/
F336W image (0.04 in x, 0.02 in y). Hence, in Figure 7, we plot
a 5o radius of 3 pixels or 0727.

No source is detected at the location of PTF 10fgs. To estimate
the limiting magnitude, we ran SExtractor and performed
photometry following Holtzman et al. (1995). We find 3o
limiting Vega magnitudes of I > 26.9 and U > 26 in the
1800 s and 6600 s exposures, respectively.

4.2. Spitzer Space Telescope

M99 was part of the sample of the SIRTF Nearby Galaxies
Survey (SINGS) galaxies (Kennicutt et al. 2003). This program
undertook IRAC and MIPS imaging in 2004-2005. No point
source is detected at the location of PTF 10fgs (see Figure 8).
We downloaded IRAC images from the final data release of
SINGS and MIPS images from the standard Spitzer pipeline.
Computed upper limits (see Table 4) assume a 2 pixel aperture
radius and sky rms based on a 20 x 20 pixel box at the location.

4.3. Katzman Automatic Imaging Telescope

The 0.76 m Katzman Automatic Imaging Telescope (KAIT??;
Li et al. 2000; Filippenko et al. 2001) had extensively imaged

22 http://astro.berkeley.edu/~bait/kait.html.
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Figure 6. Observation of PTF 10fgs with GALEX. Reference data are taken from 22 images between 2005 March 28 and 2005 April 2 (left panel). Observations of
PTF 10fgs were taken on 2010 April 24 (center panel). No source is detected in the difference image (right panel).

PTF10fgs

o

Gemini R band 18/04/2010

Figure 7. HST/F814W and HST/F336W observations from 2009. Top panel: zoomed-in view (28 x 276) to show the absence of a pre-explosion counterpart. This
rules out red supergiants fainter than My = —3 mag and blue supergiants fainter than My = —4.3 mag. Bottom panel: zoomed-out view (8172 x 8271) to show
registration stars. Stars used to register the Gemini/R-band image with the HST/F814W image are denoted by triangles. Stars used to register the HST/F814W image
with the HST/F336W are denoted by squares.

(A color version of this figure is available in the online journal.)

HST WFPC2 F814W 29/01/2009

HST WFPC2 F336W 28/01/2009

Table 3
PTF 10fgs Broadband Measurements
Date MID Filter Magnitude /Flux v v F, Facility
(UT 2010) (Hz) (ergecm=2s71)
Apr 20.23 55306.23 4.96 GHz <93 wly 4,960 x 10° 4613 x 10718 EVLA
Apr 20.23 55306.23 8.46 GHz <63 uly 8.460 x 10° 5.330 x 10~18 EVLA
Apr 20.466 55306.466 0.3-10 keV < 4.6 x 10~* cps 4200 x 10 17 2.864 x 1013 Swift/XRT
Apr 24.646 55310.646 NUV (AB) >22.7 mag 1.295 x 101 3.885 x 10714 GALEX
M99 in the past decade—113 images in the period 1999-2010. 5. ANALYSIS
We stacked the images in each season and find no point source at S SED

the location of PTF 10fgs. Limiting magnitudes for each season
are summarized in Table 5.

4.4. DeepSky Imaging

DeepSky”® (Nugent 2009) also has imaging at the position
of this field over the interval 2006-2008. No point source is
detected in a yearly sum of these images (see Table 5).

23 http://supernova.lbl.gov/~nugent/deepsky.html.

We fit a blackbody spectrum to the optical and near-infrared
fluxes of PTF 10fgs without taking into account any local
extinction. The best fit gives a lower limit on the temperature of
~3900 K.

5.2. Spectral Modeling

We combined the four spectra obtained with HET (between
+5 days and +17 days). The most prominent (narrow) features in
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Table 4
Progenitor Constraints for PTF 10fqs
Date Filter Magnitude/Flux Facility
2005 NUV (AB) >21.8 mag GALEX
2009 F336W (Vega U) >26 mag HST/WFPC2
2009 F814W (Vega I) >26.9 mag HST/WFPC2
2004 3.6 um <53 uly Spitzer/IRAC
2004 4.5 pm <3.5uly Spitzer/IRAC
2004 5.8 um <51 uly Spitzer/IRAC
2004 8.0 um <344 nly Spitzer /IRAC
2004 23.68 um <240 uly Spitzer/MIPS
Table 5
Historical Optical Observations
Date Range Exposure Limiting Mag Facility
{Um (s) (R Band)

1998 Dec 27-1999 Jun 1 680.0 >20.4 KAIT
1999 Nov 262000 Jun 7 567.0 >20.4 KAIT
2001 Apr 11-2001 Jun 7 192.0 >20.1 KAIT
2002 Jan 14-2002 Jun 8 486.0 >20.4 KAIT
2003 Jan 15-2003 Jun 4 318.0 >20.4 KAIT
2004 Jan 29-2004 Jun 16 392.0 >20.3 KAIT
2004 Dec 25-2005 Jun 1 110.0 >20.3 KAIT
2006 Jan 12-2006 May 18 665.7 >22.2 DeepSky
2006 Mar 24-2006 May 18 78.0 >20.4 KAIT
2007 Jan 4-2007 May 6 1749.9 >22.4 DeepSky
2007 Jan 13-2007 Jun 4 178.0 >20.4 KAIT
2007 Dec 22-2008 Jun 16 332.0 >20.4 KAIT
2008 May 18-2008 May 18 241.2 >20.7 DeepSky
2009 Mar 28-2009 Apr 27 64.0 >20.3 KAIT
2010 Feb 11-2010 Mar 22 32.0 >20.0 KAIT

Note. All images in a season were stacked.

the spectra of PTF 10fgs are He, [Ca11], the Ca 11 near-IR triplet,
Na1 D, and HB. The measured line fluxes and equivalent widths
are summarized in Table 6. The Ho FWHM is ~930 km s~!
(taking into account the instrumental resolution).

The Can near-IR triplet is of particular interest. The HET
spectra appear to show a flux excess longward of 8300 A beyond
that expected from a simple, low-order polynomial fit to the
continuum. Together with a possible broad flux deficit near
8300 A, the overall effect suggests a P-Cygni profile. If we fit
three Gaussians, the Ca1 near-IR triplet features are broader
than the [Ca11] doublet, and quite likely even broader than the
narrow component of the Ho profile. There is a surplus of flux
at 8600 A, which falls right between the 8498.02, 8542.09 A
pair and the more isolated 8662.14 A line, such as one would
expect from an underlying broad feature.

We test this hypothesis further with SYNOW (Jeffery &
Branch 1990) modeling. We do not get a good fit to the overall
shape of the spectrum with an extinguished blackbody of any
temperature (assuming standard dust). To fit the red end of the
spectrum, we need high temperature and extinction (consistent
with the strong Na1 D absorption). We find that in addition to
narrow emission from Calr IR, there is also a likely underlying
broad component (see Figure 9). The width (FWHM) of this
feature is ~10,000 km s~ !,

A caveat to this interpretation is that a similar broad fea-
ture is not seen in the Ho profile. However, as noted below
(Section 6.2), reinspection of the spectra of related transients
shows possible evidence of a similar broad feature. Thus, we
cautiously accept the interpretation that in addition to the low-

KASLIWAL ET AL.
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Figure 8. Pre-explosion observations with Spirzer/IRAC. No source is found to
be consistent with PTF 10fgs.

Table 6
PTF 10fgs Spectrum Properties
Line Obs A Flux Equivalent Width
A) (ergem™s7h) A)
Ha 6621.2 1.0 x 1071 —-19.9
HpB 4907.3 1.3 x 10716 -3.7
Na1D 5939.0 —3.1 x 10716 6.4
[Can] 7355.8 2.9 x 10710 —6.1
[Cam] 7387.2 1.8 x 10716 —3.7

Note. Above line fluxes are measured on combined HET spectra (phase between
+5 days and +17 days).

velocity outflow seen in He, there is a higher velocity outflow
in this explosion.

6. WHAT IS PTF 10fqs?

In a nutshell, PTF 10fgs is a red transient with a peak
luminosity of M, = —12.3 and a spectrum dominated by
Ha, [Ca1r], and Ca1l emission. The width of the Ha line is
~930 km s~ !, and there is some evidence for a ~10,000 km s !
broad Cam IR feature.

The peak absolute magnitude and the Ho line width of
PTF 10fqs are similar to those seen in M850T2006-1 (hereafter
MB85-OT; Kulkarni et al. 2007), SN 2008S (Prieto et al. 2008;
Smith et al. 2009), and NGC 300-OT (Bond et al. 2009; Berger
et al. 2009). However, there are some differences amongst these
four sources. Thus, to aid a better classification, we review the
similarities and differences between these four sources.

6.1. The Light Curve

The light curves of all four transients (PTF 10fgs, SN 20088,
NGC 300-OT, and M85-OT) were red and evolved slowly for
the first couple of months. PTF 10fgs had a well-sampled rise
(Figure 4)—it rose by 1.1 mag in the » band in 10.8 days. After
maximum, PTF 10fgs declined slowly in the r band by 1 mag
in 68 days. Subsequently, it evolved more rapidly, declining by
the next 1.3 mag in 16 days. PTF 10fgs had g — r = 1.0 at peak
and declined relatively faster in the g band (1 mag in 40 days)
than the r-band. In comparison, SN 2008S declined by 1 mag
in 51 days in the R band and 44 days in the V band. The epoch
of maximum light is uncertain for NGC 300-OT due to lack of
observations and is constrained to be anywhere between 2008
April 24 and May 15 (Bond et al. 2009). If we assume it to be
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Figure 9. SYNOW fit to summed HET spectra of PTF 10fgs. Note the broad, possibly P Cygni, feature under the Ca11 near-IR triplet.
(A color version of this figure is available in the online journal.)

April 27, the evolution is that R band and 7 band are similar to
that for PTF 10fqs (Figure 4).

6.2. The Spectrum

The spectral evolution of SN 2008S (Botticella et al. 2009)
and NGC 300-OT (Berger et al. 2009) were very well studied as
they were in very nearby galaxies. We took this opportunity to
reanalyze the spectrum of M85-OT reported by Kulkarni et al.
(2007)**.

Armed thus, we compare and contrast the spectral features of
these four transients (see Figure 10).

1. The He profile of SN 2008S showed a narrow component
(unshocked circumstellar material (CSM; ~250 km s~ 1),
an intermediate component (shocked material between
the ejecta and the CSM; ~1000 km s~!), and a broad
component (underlying ejecta emission; ~3000 km s~1).
NGC 300-OT exhibited narrow (560 km s~!) and
intermediate-width components (1100 km s~!). M85-OT
only had a narrow component (350 km s~'). PTF 10fgs
shows an intermediate-width component (930 km s~') in
the Ho emission line.

2. SN 2008S had an Ho/Hp ratio that evolved from 4 to
10. NGC 300-OT had a ratio of 6, while M85-OT showed
a ratio of 3.5. PTF 10fgs has a ratio of 6.5. All events
show flux ratios higher than 3.1 (the expectation from Case
B recombination). This may be evidence for collisional
excitation (Drake & Ulrich 1980).

3. PTF 10fgs, NGC 300-OT, and SN 2008S exhibit three
calcium features: Ca11 H&K in absorption, [Ca11] and Ca1t
near-IR triplet in emission. A reanalysis of M85-OT shows
Cann H&K, as well as lower signal-to-noise ratio detections
of both [Ca1] and Cam IR. Smith et al. (2009) show a
similarity between the spectra of SN2008S and a Galactic

24 1n addition to the features mentioned by Kulkarni et al. (2007), we can
securely identify Ca11t H&K and see evidence of [Ca11] and the Ca1n near-IR
triplet. Furthermore, we can identify the lines previously marked .
“unidentified”: 4115 A is Hy, 6428 A is likely Fe 11 (multiplet 74), 6527 A is
likely Fe i1 (multiplets 40 and 92).

hypergiant (IRC+10420) and suggest that strong [Ca11] is
due to destruction of dust grains.

4. As noted earlier (see also Figure 9), there is evidence for a
broad feature around 8600 A in the spectrum of PTF 10fgs.
Motivated by this finding, we reinspected the spectra of
previous transients and find that a similar broad feature may
also be present in the spectra of M85-OT and NGC 300-OT.

5. Narrow Fen lines are visible in NGC 300-OT and
SN 2008S. Reanalysis of M85-OT spectra possibly shows
Fen (74) and Fe 11 (40, 92).

6. For SN 2008S, Na1 D evolves from strong absorption at
early times to emission at very late times. This suggests a
very dense CSM. O 117774 is also in emission at late times.
For NGC 300-OT, Na1 D has a much lower equivalent
width at early times, but it also evolves from absorption
to emission. Neither Na1 D nor OT1 are seen in M85-OT,
but there is possibly K1 in emission. PTF 10fgs has an
equivalent width of Na1 D of 6.4, higher than SN 2008S
(2.3-4.4) and NGC 300-OT (1.0-2.1). The equivalent width
of Nar D is too high to apply a standard correlation to
estimate extinction.

6.3. The Pre-explosion Counterpart

We plot the upper limits on the pre-explosion counterpart for
PTF 10fgs in Figure 11. The most constraining limits are in the
optical. Following the Geneva stellar evolution tracks (Lejeune
& Schaerer 2001) for unenshrouded stars, the luminosity limit of
M; > —4.3 corresponds to a progenitor mass <4 M. If there
was extinction of, say 1.5 mag, this would change the limit
to <7 Mg. None of SN 2008S, NGC 300-OT, M85-OT, and
PTF 10fgs have an optical counterpart in deep, pre-explosion
optical images. The limits in all cases are deep enough to at least
rule out red supergiants and blue supergiants.

For both SN 2008S and NGC 300-OT, an extremely red
and luminous mid-infrared pre-explosion counterpart is seen
(Prieto et al. 2008; Thompson et al. 2009). Recently, Khan et al.
(2010) show that such progenitors are as rare as one per galaxy
(and possibly associated with a very short-lived phase of many
massive stars). Thus, both of these transients can be reasonably
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Figure 10. Comparison of specific lines in spectra of PTF 10fqs (black), M85-OT (red; Kulkarni et al. 2007), SN2008s (blue; Botticella et al. 2009), and NGC 300-OT
(green; Bond et al. 2009). From left to right: Panel 1 shows Ca11 H&K in all three transients. Panel 2 shows the extreme Na1 D absorption in PTF 10fqs. Panel 3 shows
the similar Ho widths in all three transients. Note the presence of Fe 11 in M85-OT. Panel 4 shows narrow [Ca11] in all three transients. Panel 5 shows Ca1 near-IR
triplet. Note that in addition to the narrow lines, there is possibly an underlying broad feature.

(A color version of this figure is available in the online journal.)

associated with massive stars. Unfortunately, the large distance
to M85 and M99 means that the pre-explosion Spitzer limits on
MS85-0OT and PTF 10fgs are not deep enough by a factor of few
to constrain their progenitors to similar depths (see Figure 12).

6.4. The Large-scale Environment

MS85-0T is located in the lenticular galaxy M85 (also in the
Virgo Cluster). Fortunately, this galaxy was observed with HST
for the ACS Virgo Cluster Survey as well as for a GO program.
The transient is not associated with any star-forming region
and the absolute magnitude of the progenitor is fainter than
M, ~ —4 (<7 Mg not correcting for extinction; Ofek et al.
2008). Thus, a massive-star origin is quite unlikely.

In contrast, SN 2008S, NGC 300-OT, and PTF 10fgs oc-
curred in star-forming galaxies. It may be worth noting here
that three supernovae (all of the core-collapse variety) have pre-
viously been discovered in the host galaxy of PTF 10fgs. It is
perhaps of some significance that eight supernovae (six core
collapse, two unclassified) were discovered in NGC 6946 in
addition to SN 2008S. Only one supernova (of Type Ia) has
been discovered in NGC 300. Small-number statistics and dis-
covery bias (incompleteness from variety of different searches)
notwithstanding, we make the suggestion that galaxies with a
high supernova rate preferentially produce luminous red novae.
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Figure 11. Spectral energy distribution (mid-IR to UV) constraints on the pre-
explosion counterpart of PTF 10fgs. Upper limits are denoted by downward
arrows.

If this suggestion is correct, then it would be worth the effort to
systematically maintain close vigilance on the nearest galaxies
having large supernova rates.

Kulkarni et al. (2007) suggested that V838 Mon, V4332 Sgr,
and M31 RV may also be luminous, red novae. We note here
that the two Galactic sources are located in star-forming regions.
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Figure 12. Pre-explosion detections (circles) or upper limits (downward
triangles) from Spitzer for PTF 10fgs, SN 2008S, NGC 300-OT, and M85-
OT. The non-detection of a progenitor for PTF 10fgs and M85-OT does not rule
out a progenitor of luminosity comparable to that detected for NGC 300-OT
and SN 2008S.

(A color version of this figure is available in the online journal.)

Specifically, V838 Mon is in a young (25 Myr) star cluster
and may even have a B3 companion (Afsar & Bond 2007).
V4332 Sgr (Martini et al. 1999) is located toward the inner
Galaxy (in Sagittarius). On the other hand, M31 RV is located in
the bulge of M3 1. HST observations (undertaken with WFPC2 in
parallel mode) taken about a decade ago show that the immediate
environs of M31-RV are typical bulge-population stars (Bond &
Siegel 2006). No unusual remnant star is seen at the astrometric
position of M31 RV, nor any evidence of a light echo (consistent
with the absence of dense circumstellar or interstellar gas that
is essential to form echoes). Separately, there is no evidence
for any luminous outbursts in this area in the period 1942—-1993
(Boschi & Munari 2004). Thus, M31 RV appears to have been
a cataclysmic event in the bulge of M31.

7. CONCLUSION

PTF 10fgs is the fourth member of a class of extragalactic
transients>> which possess a peak luminosity between that
of novae and supernovae, and have spectral and photometric
evolution that bear no resemblance to either supernovae or
novae. The other members of this class are M85-OT, NGC 300-
OT, and SN 2008S.

NGC 300-OT and SN 2008S are remarkable for their very
bright mid-infrared progenitors. Though sensitive pre-explosion
observations of M85-OT and PTF 10fgs do exist, the large
distance to the Virgo Cluster (17 Mpc) relative to that of
NGC 300 (1.9 Mpc) and NGC 6946 (5.7 Mpc) results in
weak constraints on the luminosity of any pre-explosion star.
PTF 10fgs, NGC 300-OT, and SN 2008S occurred in star-
forming regions whereas M85-OT was in the bulge. Prima facie,
this group of explosive events can be divided into a disk and a
bulge group.

The discovery of PTF 10fgs in itself cannot address whether
the two groups of luminous, red novae are one and the same.
The proposed models to explain this group are diverse: electron
capture within an extreme asymptotic giant branch (AGB) star,
common-envelope phase (stellar merger), inspiral of a giant
planet into the envelope of an aging parent star, a most peculiar
nova, and a most peculiar supernova.

25 Henceforth we use the term “luminous red novae” as a functional short
name for such events.
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The possible evidence of the broad feature centered around
the Can near-IR triplet with an inferred velocity spread of
10,000 km s~! may be an important clue. It would mean that
these events possess both a low- and a high-velocity outflow. By
comparison with other astronomical sources, one can envisage
a high-velocity polar outflow and a slower equatorial outflow
(but with a larger mass). To this end, continued sensitive
spectroscopy of PTF 10fgs (and of course other such future
events) would be very valuable.

The “Transients in the Local Universe” key project of the
PTF is designed to systematically unveil events in the gap
between novae and supernovae. It surveys ~20,000 nearby
galaxies (d < 200 Mpc) yearly at 1 day cadence and a depth
of R < 21 mag. (If the maximum luminosity of this class is
—14 mag, then we would be sensitive to events out to 100 Mpc.)
Furthermore, Spitzer has a growing archive of deep images of
nearby galaxies (e.g., SINGS; Kennicutt et al. 2003; LVL, Dale
et al. 2009, and S4G, Sheth et al. 2010), and WISE (Wright
et al. 2010) has an ongoing all-sky survey in the mid-IR. This
will allow us to probe deeper in search of the pre-explosion
counterpart and possibly present a new channel for discovery
of luminous red novae. The discovery of PTF 10fgs is only the
harbinger of the uncovering of a large sample of such transients
to unveil the nature of this new class of explosions.
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