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Exact results in 5D from instantons and deconstruction
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We consider nonperturbative effects in theories with extra dimensions and the deconstructed versions of
these theories. We establish the rules for instanton calculations in 5D theories on the circle, and use them for
an explicit one-instanton calculation in a supersymmetric gauge theory. The results are then compared to the
known exact Seiberg-Witten type solution for this theory, confirming the validity both of the exact results and
of the rules for instanton calculus for extra dimensions introduced here. Next we consider the nonperturbative
results from the perspective of deconstructed extra dimensions. We show that the nonperturbative results of the
deconstructed theory do indeed reproduce the known results for the continuum extra dimensional theory, thus
providing the first nonperturbative evidence in favor of deconstruction. This way deconstruction also allows us
to make exact predictions in higher dimensional theories which agree with earlier results, and helps to clarify
the interpretation of 5D instantons.
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[. INTRODUCTION instanton is independent of the fifth coordinatnd no fully
localized 5D instanton solutions are known to exist. This
Theories with extra dimensions might play an importantsituation changes drastically once the fifth coordinate is com-
role in resolving a variety of outstanding issues in particlepactified. In this case the ordinary 4D instanton does give a
physics: they might resolve the hierarchy problghh give finite contribution. In addition there is a tower of instantons
new mechanisms for communicating supersymmetry breakthat contribute, due to the fact that the 4D instanton can wrap
ing [2], or yield new insights into the flavor problem and the extra dimension. In order to gain control over the non-
proton stability[3]. In many of the interesting applications perturbative effects in a strongly interacting theory we will
[2,3] the gauge sector of the SM propagates in the extrde considering supersymmetric extra dimensional theories.
dimension(though not in the models dfl] which aim to  The simplest such theory is &U(2) gauge theory with 8
solve the hierarchy problemlf the gauge fields do propa- supercharges in 5Dwhich corresponds tdvV=2 supersym-
gate along the extra dimension, then nonperturbative effectsietry in 4D). The reason behind the doubling of the minimal
in the low-energy effective theory may differ significantly number of supercharges is that in 5D the Dirac spinor is
from those in ordinary 4D theories. The reason is that oncéreducible. The aim of considering this model is not to build
the extra dimension is compactified, the instanton can wrap realistic theory with extra dimensions, but rather to estab-
the compact extra dimension. Therefore, the presence of tHish the rules for instanton calculations in the presence of
extra dimension itself will modify the rules for instanton extra dimensions, which can later be applied to more realistic
calculus and influence the resulting nonperturbative effectsmodels. Since in this toy model the effective 4D theory is an
In this paper, we initiate the study of nonperturbative ef-A’'=2 theory, it can be exactly solved in terms of a Seiberg-
fects for extra dimensional model building, using explicit Witten curve[13,14]. This solution was first proposed by
instanton calculations, existing exact results in higher dimenNekrasov in[4].
sional gauge theoriegt—11], and deconstructiofil2]. We We begin the first part of this paper by reviewing Nekra-
will concentrate on a single extra dimension compactified orsov’s solution, and slightly modify it to account for an am-
a circle. In 5D with all dimensions non-compact there are nabiguity in the Seiberg-Witten curve. This ambiguity is analo-
known finite action instanton configurations that would con-gous to those appearing in the ordinary 4D Seiberg-Witten
tribute to the semiclassical expression for the path integrakesults discussed if15]. We then turn to an explicit instan-
Ordinary 4D instantons would give a diverging action onceton calculation to verify the exact results of the curve. Dur-
integrated over the fifth coordinat@ssuming that the 4D ing the course of this calculation we show that there are two
towers of instantons that contribute to the effective action.
One of these towers is comprised by the large gauge trans-
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formations of the theory, since it does not obey the necessaqarameter of the theory and show that the result is in agree-
boundary condition. Nevertheless, the transformed instantoment with the improved Nekrasov curve.
solution obtained this way does obey all the conditions for a We begin the study of the dynamics of the deconstructed
proper semiclassical solution. A sum over these two towergheory in Sec. lll. We review the deconstructed theory and its
of instantons does indeed reproduce the exact results. Thuggiberg-Witten curve in Sec. Il A. The matching of the per-
our calculation confirms and improves the exact results, anfirbative mass spectra between the deconstructed and con-
more importantly it establishes the rules for instanton calcutinuous 5D theories is reviewed in Sec. Ill B. After that, in
lus in 5D theories. The agreement of the two calculations>€C: Il C, we study the correspondence between continuum
confirms that there are no fully localized 5D instantons, andnd deconstructed instantons. We show, using the brane pic-
that the full semiclassical results can be obtained by the sufy'® Of the deconstructed theory, how the proper and im-
over the two instanton towers. proper large gauge transformations arise in deconstruction,
A recent major development in the field of extra dimen-and argue that the contribution of the diagotall,1 .. .,
sions is the construction of 4D gauge theories which reprod)-instantons of the deconstructed theory match those of the
duce the effects of extra dimensions. The “deconstructedtwo infinite towers of instantons of the continuum theory. In
theory[12] is based on a product gauge group theory in 4D,Sec. [IID we derive the continuum Seiberg-Witten curve
and in fact provides a latticized version of the extra dimen-Tom the deconstructed theory and show that it matches the

sional theory. This has several interesting applications fofUrve of the continuous theory. Section Il E is devoted to a
model building in four dimension§16—23. So far, the detailed discussion of the matching of moduli between the
equivalence between the deconstructed theory and the highgpntinuous and deconstructed theories. This is an important
dimensional models has been purely based on perturbatiygSue, somewhat complicated by the fact that relations be-
arguments, like matching of the perturbative mass spectra ¢f/een moduli receive corrections from the quantum modifi-
the two theories. In the second part of this paper, we provid&ation of the moduli space of the individual gauge groups of
the first evidence that deconstruction captures the norih€ deconstructed theory. In Sec. Il E1, we give a heuristic
perturbative effects as well. Deconstruction of the simples@rgumentin favor of the correct matching. We strengthen this
5D supersymmetric theory was done [ib9].! The decon- argument by an explicit instanton calculati¢®ec. Il E 2
structed version of the theory turns out to be #fe1, 4D showing that the modulus, which is to be identified with the
product group theory considered [ig4], where some non- continuum theory modulus, does not receive corrections

perturbative results for this theory were obtained. Since th&Om instantons in the broken gauge groups. In Sec. IIIE3,
deconstructed theory only ha¥=1 supersymmetry, one motivated by the brane picture, we point out the existence of
cannot provide a full solution to the low-energy ef"fective a special flat direction where corrections to the holomorphic

theory, like the Seiberg-Witten solutions; exact results aréleconstructed theory moduli from instantons in the broken
restricted to the holomorphic quantities in the theory—in thisg@uge groups vanish. Finally, in Sec. Il F, we show that the
case, the gauge kinetic term which includes the gauge col@rg€ radius limit of the low-energy parameter has the be-
pling. We will show that the nonperturbative information that ha@vior required by SD nonrenormalization theorems.
can be easily extracted from the deconstructed theory agrees
with results f_rom the continu_um_theory. This then SeIVes || 5D SU(2) CURVE AND EXPLICIT INSTANTON
partly as an independent der_lvatlon of the_nonperturbatlve CALCULATIONS
results for the 5D theory, which have previously been ob-
tained from symmetry and consistency requirements, and In this section, we first review the solution of the 5N,
also shows that the deconstructed theory does indeed capture2 pureSU(2) gauge theory, in terms of a Seiberg-Witten
the nonperturbative effects of the higher dimensional theorytype curve, and then show how to perform an explicit instan-
This paper is organized in two major parts: Sec. I, de-ton calculation in the theory. We will explain how to obtain
voted to an analysis of the 5D theory on the circle and itdhe relevant instanton contributions from the ordinary 4D
low-energy nonperturbative dynamics, and Sec. lll, containinstanton, and find that the result of the explicit calculation
ing the corresponding analysis of the deconstructed theorggrees with the curve prediction.
and a comparison with the compactified continuous theory. We will perform a 5D calculation of the path-integral con-
We begin, in Sec. Il A, with a review of the 4D Seiberg- tributions of 4D instantons, summing over two infinite tow-
Witten setup and of the curve describing the low-energy dy-ers of instanton solutions. Every solution we sum over is
namics of the 5D theory on the circle due to NekragBgc. obtained as anxs-dependent large gauge transformation of
[IB). In Sec. IIC we derive the rules for instanton calcula-the usual 4Dxs-independent instanton, giving it a nontrivial
tions in the compactified supersymmetric 5D theory. Wedependence on the compactified coordinate. These instantons
show that a summation over two infinite towers of instantonshave precisely the same number of bosonic and fermionic
is required to restore invariance under the proper and imzero modes as the conventional 4D instantons. In addition,
proper large gauge transformations. We perform a onedue to supersymmetry and self-duality of the instanton back-
instanton calculation of the contribution to the low-enetgy ground, all contributions of non-zero modes to the determi-
nants and higher loops in the instanton background cancel, as
in the 4D case. The dependence of the instanton amplitude
very recently deconstruction of 6D supersymmetric theories ha®n the instanton size is determined entirely by the number of
been considered if23]. bosonic and fermionic zero modes and is the same as in the
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4D instanton calculatiofin particular, the dependence on the
instanton size in the compactified supersymmetric theory is
controlled by the 4DV=2 beta functioh Thus the instanton
effects in the supersymmetric 5D theory turn out to be renor-
malizable in the 4D sense. Therefore, it is meaningful to ap(u)=
compare instanton-induced nonperturbative effects in the Ja
continuum 5D and deconstructed lafyetD theories.

(2.9

(2.9

Combining these expressions one can ob#ja), which in
turn determines the complete low-energy effective action for
First, let us introduce standard notation for the ordinaryan A’/=2 theory. A few comments are in order. First, the
Seiberg-Witten casgl3]. Consider pureV'=2 SU2) theory  dynamical scale of the theory is defined in the so-called
in 4D. On the Coulomb branch the adjoint scalar field of theSeiberg-Witten scheme. It is relatg2b] to the Pauli-Villars
N=2 vector superfield develops a vacuum expectation valugr\/) or dimensional reductiordR) scheméwhich are used

A. 4D Seiberg-Witten setup

(VEV) for explicit perturbative and instanton calculatipnga the
o3 one-loop exact expressiGnA2=2A3% = ZAé—R. The inte-
(p)=a—, (2.1 grals in the expressions f@(u) and ap(u) can be easily
2 evaluated. In particular, in the weak-coupling reginee,
- : : . . > A, the expression foa(u) can be inverted giving the
and the gauge-invariant moduluss defined via modulus(2.3), and then the expression fap(u(a)) can be
u=(Tr ¢?). (2.2  differentiated with respect ta to determine the coupling
(2.5). All the coefficients of these expansions can be obtained
In the weak coupling regima is given by from the exact solution above. In particular, in the Seiberg-
Witten scheme the one-instanton coefficients are
a2 o A4k
u=—+ G2, 2.3 1 i 3
2 k; kKa? 23 S (2.10

Gl:é_‘r' nT=T Ty
Vglzreéi itsh,;E:r:::glfmzl;n:]urri%r;rsaegésisl?ﬁ;ag;?];nﬁi(gtlrfg;:gnﬁh fact, for all instanton numbers the instanton contributions
of the theory. The complexified coupling,y is given by the to 7sw andu are related via the Matone relati¢26,27]
second derivative of the holomorphic prepotenttaly: i (4k—2)(4k—1)
Tk: - T k-
3a) ™
(2.9

PFsw(@)  4mi 24
S a Tl
(@)= da® :gz(a)+ 2

Alternatively, these coefficients fdt=1,2 can be derived

[28] via direct multi-instanton calculation of the effective

In the weak coupling regime it receives contributions in Per-5ction.

turbation theory at one loop and from all orders in instantons o\ following Nekraso\4] (and keeping all the numeri-

2 * A% cal factors in placewe make a change of variables:

! l0g oy + > 2
Tsw(@)= —10g 71 & Tgak (2.9 0
y=i—AZ2sinhq), (2.12
The low-energy dynamics of the theory can be determined V2
from a genus one auxiliary Riemann surface described by an a2
elliptic Seiberg-Witten curve. The curve is given by x=A*cosKaq). (213
y2=(x2— A%)(x—u) 2.6 The Seiberg-Witten curve becomes
2
wherex andy parametrize the surface. The first step toward u= P +AZ2coshq), (2.149
obtaining the exact low-energy effective action for the 2
tSi{;a||k;\(.arg—W|tten theory is to define the meromorphic dlfferen—and the meromorphic differential is now
ydx __
=2 (2.7 A fzpdq- (2.19

Then the VEVs of the scalaa, and of the dual scalagp,

are determined as functions of the moduluby integrating 2In this section we will use the Seiberg-Witten scheme, while in
the meromorphic form\ over the appropriately chosen Sec. IIl, we use th®R scales. This difference will only be impor-
cyclesy, and Ya, of the Riemann surface.6): tant for our comparison of parameters and is trivial to account for.

085033-3



CSAKI, ERLICH, KHOZE, POPPITZ, SHADMI, AND SHIRMAN PHYSICAL REVIEW D65 085033

The VEVsa(u) andap(u) are given by determined based on symmetry arguments only. This func-
tion is just 1 classically, but it can get instanton corrections at
. i every levelk:
a(u)=(ap(u),a(u)=->— fﬁpdq- (2.16
m Y ©
— 4k
The cyclesy are chosen in such a way that the correct f(T’RA)_lJrgl fi(mRA)™, (2.24
asymptotic behavior o&(u) andap(u) asu—c is repro-
duced. where each coefficierft, has to be determined from an ex-
In particular we have plicit k-instanton calculation. We will see below that the

function f will be needed to remove certain constdne.

VEV independentcontributions from the complexified cou-

pling 7(A). The ambiguity in the curve predictions intro-

duced byf is similar in spirit to the ambiguitiegl5] of the

in agreement with E¢(2.3). For future use we introduce two Seiberg-Witten curves in the presence of matter.

new parameters, In terms of this curve, the vevA(U) and Ap(U) are
determined in exactly the same way as in Ej16):

a(u):—z'—wf:r pdg— y2U, (2.17

2

V2 A 2.18 i

w=\2U, v,=—, : N

T AU~ (Ao AWU) =5 $ pda. (229
Y

and rewrite Eq(2.16) in the convenient form: )
The cyclesy are the same as in E(R.16 such that

da(u) i dq S
“ow 2w ﬁ— 219 A U)——I— v d i h Y(7?R?U)
W 7 J3\J1—v,coskq) (U)= 57 |, Pda—_gcos (m ,
(2.2
B. The improved 5D SU(2) Seiberg-Witten curve ) th Eq(2.29. | fih
in agreement wit .22). In terms of the new param-
The N=1 5D SU?2) theory onR*x S! will be viewed eterg 4(2.22 P
from the perspective of the low-energy effective 4D theory, '
i.e., all the 5D fields are represented as infinite sets of KK 2 f(7RA)(7RA)?2
modes which are functions of tHe* variables. cosa)=m?R°U, vg= . ,
: o : sinF(a)
There is a complex scalab= ¢ +iA5, which develops (2.27
the VEV '
o3 Egs.(2.295 can be expressdd] in the form of Eq.(2.19
<(D>:A_! (220) >
2 dAU) i 35 1 dq (228
and the gauge-invariant modulusis now defined a$4] 9ga 2m J5mR 1-wgcoshq) '
1 cosi27®R) Hence, wherv,=vs, i.e.,
U= (Tr———), (2.21
2 TR A2
u=U0= (7*R*U%-1), (2.29
which has the weak-coupling expansion 2 f(mRA)(7RA)?
cosi7AR) the VEVs of the two theories are simply related to each
= >—— +instantons. (2.22  other,
TR
We claim that the curve describing the low-energy dy- %:ia_é ) (2.30
namics of the theory is given by da wRIW| 5
1 5 From this we can instantly calculateas a function of the
U=z costimRp) V1+2(7RA)?*f(7RA)coskq). modulusU of the 5D theory,
2.2
223 _dAp _dap o~ =~
Here A is exactly the same dynamical scale as before in Eq. (U)= a_A(U)_ Za (U= U)=7swu=U). (2.3)

(2.6). Notice that the curvg2.23 is slightly different from

Nekrasov’'s relativistic generalization of Toda’s chdi: Here on the left hand side we have the couplingf the 5D
The expression on the right hand side of E2}23 contains  theory and on the right hand side we have the couptigg
an a priori unknown functionf(7RA), which cannot be of the 4D Seiberg-Witten theory.
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From Egs.(2.31), (2.30 and(2.5) it is easy to determine

the 5D coupling at one-loop order,

. ;Iog sinhz(qrAR)) |

m2RZAZ

(2.32

PHYSICAL REVIEW [®5 085033

[ (sinhz(wAR)

[ i
=— — Al g — —
T ﬂ_log W) (A7R) (flw+4G1’7T

I 1 1
L sinf(wAR) * "ISintf(7AR)

+2G ) (2.39

We will discuss the interpretation of the perturbative part ofThis expression together with Ed2.10 constitutes the

7in Sec. lll F.

Now we will determine7r(A) in the 5D theory at the
l-instanton level. In order to do this we will

(1) determineA=A(U) from Eg.(2.30,

(2) invert it asU=U(A) and express it asl = U(A) us-
ing EqQ.(2.29,

(3) calculatea?(A) via a’=a?(u=U(A)),

(4) finally obtain 7(A) = rgy(a@2(A)).
Each of these steps is explained in detail below:

(1) At the 1-instanton level equatid@.3) can be inverted:

A4
a’=2u—G,—.
u

(2.33

Substituting this to the right hand side of E.30 we get

1

R

3G, (A7R)

JA 1 Ja N
sint( )

da 7R do

). (2.39

u=
Integrating this with respect ta we obtain

cosr(a)< 1 )

TRA=a+ Gl(AwR)“Smh(a) 2— Sn(a)

(2.35

(2) Evaluating cosh of both sides of E@®.35 and using
the definition ofa (2.27),

cosimRA) . 1
U=z |17 Cu(ATR) (2_ SinA(7RA) | |
(2.36
By Eq. (2.29 we then determin& (A):
~  sinfA(7RA) . costf(7RA)
U= "5 e |1- (AR fi+dGrg e o
cost‘?(wRA)))
~2C1Gni(aRA) | | 2.37

In deriving the last expression we used the definitiofy &q.
(2.24), in the l-instanton approximation.
(3) From Eq.(2.23 we determinea?(A) as

A4

(2.38

(4) Finally, we can write down the expression fefA)
= rgw(@?(A)) via Eq.(2.5),

curve-prediction for the coupling of the 5D theory. Now we
will verify this prediction with an explicit 1-instanton calcu-
lation. As a by-product of this comparison we will also de-
terminef,=—4G;.

C. Rules for instanton calculations and results

In order to carry out the explicit instanton calculation we
first need to identify the classical instanton solutions in this
theory. As mentioned before, there are no known instantons
in a 5D theory with all dimensions infinitely large; that is,
there are no fully localized 5D instanton solutions. Once one
of the dimensions is compactified, the action of an ordinary
4D instanton(which is assumed to be independent of the
coordinate of the extra dimensipwill become finite. How-
ever, it turns out that this is not the only finite action solution
that exists in this theory. In fact, the finite action solutions of
the 5D SU2) theory onR*x St are given by two infinite
towers obtained from the ordinary instantons Bf. The
analysis of these solutions is a generalization to 5 dimensions
of the R®x St analysis carried out ifi29]. There the role of
the 3D instantons was played by the Bogomol'nyi-Prasad-
Sommerfield BPS monopoles.

The first infinite tower of instanton configurations, labeled
by ne Z, is obtained from the ordinariR* instanton by ap-
plying periodic gauge transformations

. Xg
Un=exp(|nﬁa3).

As a result of these gauge transformatiods,—UT®dU

(2.40

+U%9:U, the large-distance asymptotics of the
d-component of the instanton becomes
b0l A+' n 2.4
—0| 5 |R . (2.4

The existence of this tower represents the fact that the ordi-
nary instanton can wrap the extra dimension an arbitrary
number of times. It is also related to the fact that once an
extra compact dimension is added to the ordinary 4D theory,
there will be additional gauge transformations related to the
existence of the extra dimension. A summation over the
whole instanton tower generated as above will ensure that
the final result is gauge invariant under the full 5D gauge
transformations, and not only under the subgroup generated
by 4D transformations.

The second tower is obtained from the first tower by ap-
plying an antiperiodic gauge transformation,

U specia™ €X i§a3 (2.42
special— 2R . .
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This “improper” gauge transformation is not among the [1l. NONPERTURBATIVE RESULTS
usual gauge transformations of the theory, since it obeys an FROM DECONSTRUCTION

antiperiodic boundary condition instead of being periodic. . . . .
However, since all the fields of the model are in the adjointstrlljr::tti(r;'nS ie?;%grﬁ?rmyezui/gstigi 50? ;hgc[))r);huescl)r;g gegozt')
representation of S@@), this gauge transformation does not auge th.eor For an appropriate choice of VEV O{its fields
change the periodicity of the field configurations. Therefored249 Y- pprop ’

the instanton solution generated this way still obeys periodiihhIS 4D theory gives a latticized version of the original 5D

boundary conditions, and has to be considered as an ordinal c%iosg d[lhze]}eT\t]vzstrCc?;;st:alijc[tiig] V:;Z'?/Ceorggf tﬁge?ég dilrs-

instanton solution. The large-distance asymptotics of thefhere for a demonstration of the perturbative agreement of
®d-component of the second instanton tower is : P X 9
the deconstructed and continuum theories. In what follows
we demonstrate exact nonperturbative agreement of the
gauge coupling functions in the deconstructed and con-
(2.43 . . .
tinuum theories. The comparison between the deconstructed
and the continuum theories has to be done in(thénitely)
In order to derive the instanton contributiontof the 5D Strong coupling regime of the deconstructed theory. How-
theory we simply need to sum over the contributions-4g, ~ €ver, the quantities that we are going to calculate are pro-

of all the instanton configurations in each tower. Since thd€cted by holomorphy, and thus our results remain reliable.
contribution of a single instanton is given byA%/a* as in  In addition, the deconstructed theory provides a more precise

A, nT12
27 TR

3

db—o

Eq. (2.5), the sum over the two instanton towers is understanding of the meaning of instanton effects in five di-
mensions.
i At & 1 1 _ o _
at=isip)= = 2 7+ 7 A. Review of the deconstructed theory and its Seiberg-Witten
2" n=a | (A (A+_n+1/2 curve
—+ti= = +i
2 R 2 R Consider the 4DV=1 SU(2)N theory with bifundamen-
AR 1 52 tal chiral multiplets as ih24]. This is the deconstructed ver-
STl 5l sion of the 5DA/=1 SU?2) theory, as described i19]. To
be explicit, the deconstructed theory is givenMy 1 vector
* 1 1 multiplets for each of the S@) gauge groups, and chiral
X Z_m (x+in)?2 + (x+i(n+1/2))2) multiplets Q; transforming as summarized in the following
n= table:
nARY L B Al o SU2);  SUR), SUR); - SUR)y
28 gﬁ_xzsiniF(wa)' (2.44 Q, 0 & 1 e 1
Q 1 O O -1 (30
where we have introduced the notatios AR/2. Combining : : : :
with Itthe perturbative expression far we obtain the final Qy O 1 1 e O
result:
The gauge invariant operatoiwhose VEVs parametrize the
i Sint(7AR) Todull spacg are B_i=detQi_, i=1,...N and T
7= —10g| —=yo— | + (ATR)*7y| ——— =Tr(Qy --Qp). The Seiberg-Witten curve for the product
™ T RA sint'(7AR) group theory is most easily expressg2#l] in terms of a
2 1 composite field which transforms as an adjoint under one of
- the SU2)'s; namely,
*3sm (WAR)). (2.45 u2) Y.
1
Comparing this to Eq(2.39 and usingr;= —(i/7)3G; we P=0Q1QzQn— ETr(QlQZ"'QN)' (3.2
confirm the prediction of the 5D curve and in addition fix the
l-instanton coefficient in the functidhn From this adjoint we form the usual $2J invariant VEV,
T=(Tr®2), which is then re-expressed in terms of the gauge
f,=—4G;=—1. (2.46) invariantsT and B;, taking into consideration the quantum

modified constraints among gauge invariants. The Seiberg-

The consistency of the exact result with the explicit instantonWItten curve is then given bj24]

calculation is strong evidence for the absence of fully local- N
ized 5D instantons with finite action. Such instantons would 2 2_~\2 4

. . o . =(x—u)-—4 A7 3.3
give additional contributions ta@, which we do not see. Fur- y=( ) 11;[1 ! 33

thermore, the agreement between the curve prediction and
our instanton calculation confirms the rules for explicit 5D This has the form of the 4DV=2 Seiberg-Witten curve in
instanton calculations detailed above. terms of the modulu8. This curve was shown to agree with
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a brane picture of the theory jB80]. To compare with the 5D singleU(1). Furthermore, notice that giving the same diag-
theory we first give identical VEV®1 to the Q;, and we onal VEV to all theQ; also satisfies thé-flatness con-
assume all the couplings arids are equal. The VEVs break straints,

the SU(2)" theory to a diagonaBU(2). Thecorresponding £

5D theory (classically has a lattice spacin=1/gv and a QiQi —Qi+1Qi+1> 1. (3.9
radiusR=N/(2m7gv), whereg is the gauge coupling of the
individual SU?2) factors. This identification is most easily
determined by comparing the spectra of the deconstructed v,
and continuum theoriegl2]. However, the exact Seiberg- Qi:(

Witten results are most easily written in terms of holomor- v-
phic quantities. In particular, it is the holomorphic Novikov-
Shifman-Vainstein-Zakharo¥NSVZ) gauge coupling31]
that is relevant here. This requires that the normalization o

the fields be changed from the one conventionally used in. . o .
- o . bifundamental scalars. The covariant derivative on the bifun-
deconstructed models, and should instead coincide with th

normalization used in the preceding sections. We can acco'ﬁamental will be given by

plish this by redefining the gauge fieldsAgs=gA,,, so that

Hence, we have

(3.6

Let us first match the perturbative mass spectrum of the
auge bosons of the deconstructed theory to that of the 5D
heory. This is obtained by analyzing the kinetic terms for the

: (i) i)—
i[ A VW)

the gauge kinetic terms in the new variables become D,Qi=3d,Qi— 5 ‘ e}
—(1/4gz)FWFW. Since in the deconstructed theory in the g g 2 ‘/EWSH —Aﬂ)
limit N—c one expects to recovev=2 supersymmetry in . AlG+D WD -
4D [19], one needs to rescale the scalar fields and the fermi- + I—Q- " " (3.7)
i~ L ; 2 ™I \/_VV<'+1)+ _A(|+1) ! ’
ons as well, such that, for example, the bosonic kinetic term 2W,, M
becomes _
where A" denotes the third gauge boson of tite gauge
group, while W*==(A01+A02)/y7  Substituting the
1 . - VEV of Q; into the kinetic terms we obtain a mass term for
_ i v,i T ) !
Lyin= WFMVFM + @D#Qi D*Qi. BD  the gauge bosons of the form

1 . . .
— (i+1) _ A(i)y2 (i)|2 2 2
where the covariant derivative is now given By, ,=(d, 42 [(A A2+ AWE ) (Jo 4 [*+ o)

—iA%T%¢. In fact from the derivation 24,32 of the _ _
Seiberg-Witten curvé.3) it is easy to see that even for finite —4WHFDTWI Ty p* +H.e) ] (3.9
N the moduli in the curve are implicitly defined in terms of
the rescaled fields with the kinetic term given by E84).

In this normalization we then obtain the holomorphic

This will give rise to a mass matrix for th& bosons of the
form

gauge coupling. However, the usual formula for the radius of ] -1

the deconstructed extra dimension has to be modified. The

reason is that in this normalization the physical masses of the (Jos P+ -1 2

gauge bosons are changed w4iré(nm/N), wherev is the 2 21 (3.9

vev of the rescaled scalar bifundamentals. Therefore the lat-
tice spacing is given by=1/v, and the radius of the extra
dimension isR=N/2mv. One can see that this radius is ho- The mass eigenvalues are then given by

lomorphic in the fields, as required from a quantity that we

expect to appear in the SW curve. We will refer to this radius ) 5 5 . ,TN

as the holomorphic radius. Notice that at this point the radius my=2(lv+[*+ v | )SIHZW, (3.10
is defined perturbatively. In particular, the spectra through

which the radius is defined are expected to receive nonpefrom which the radius of the extra dimension in the lahye
turbative corrections. By studying the Seiberg-Witten curvaimit is read off to beR=N/7+2(v2 +v?2), and the corre-
and explicit instanton contributions to the moduli of the de'sponding lattice spacing is given tﬁ/71=(02++027)/21/2-

constructed theory we will be able to make a precise NONpefrhe masses of the W bosons are given by the matrix
turbative definition of the radius of the 5D theory.

-1 -1 2

C —B -B*

B. Matching of the perturbative mass spectra -B* C

N| -

(3.1)

Once we higgs the theory down to the diagonal subgroup : -B |’
with a VEV proportional to the identity for each of the bi- -B —B* C
fundamental®);, we can shift the VEVs of; by an amount
proportional too in order to give a VEV to the adjoint of with C=2(|v,|?>+|v_|?) andB=2v*v_. The mass eigen-
the 5D theory. The shifted VEVs break the gauge group to aalues of the W bosons are then given by
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m2=|v,|?+|v_|?—v*iv_e?TN—y y* g 27NN words, the full gauge invariance of the 5D theory is recov-
ered only after all the semiclassical configurations in each
instanton tower are taken into account.
Now let us consider instanton configurations in the decon-
5 , 2mn . % . 2mn structed theory. This is a four-dimensional product group
=Myt o —v-|*cos—g—+i(v vt —viv)sin—o—. theory and its instanton solutions are given by the complete
(3.12 set of instantons in each of t&@U(2) gauge factors. The
general instanton solution of this theory is kg (Ks,... Ky)
In the large N limit this reduces ton?/R%*+|v, —v_|?, instanton, wherd; stands for an instanton charge in ttib
which has to match the expression in the continuum limit inSy(2) gauge factor.
order to match the eXpeCtation value of the 5D adjOint field In order to establish the Correspondence between instan-
correctly. The corresponding expression for the mass of thgyns in the two theories, we have to identify the contributions
KK modes in the continuum theory in terms of the adjoint of the two instanton towers of chargn the continuum 5D
VEV A is M=n?R*+A% From this we obtain thab.  theory, with the coniributions of the diagonal
—v_=A. (k,k,... k)-instanton in the product group theory in the large
tivéNs th?rlfjl(rjncgn;g]eesntvﬁtnhﬂtfaftag‘ t{‘ha; tgs I?r:gg;N ]f(’)‘?rtflij):ggN limit. At the same time, the off-diagonal or so-called frac-
valuesp of theN egtra moduli(one linear combinatign of the tonal instantons, Ky k... k), with ki#k; have no semi-
N+1 moduli T, By ... By is the SU(2)p modulu. There classg:al analogues in th_e cor_1t_|nugm _5D theory. The argu-
P 21PN p ment in favor of such an identification is as follows:

are several possible ways to deal with the etranodul. (1) In the following section we will derive the matching

For example, in the brane construction reviewed in the next . . )
section (Il C), the N— 1 anomalousU(1) symmetries are of the dynamical scales of two theories, Eg§.26), which

gauged(anomalies are cancelled via Green-Schwarz mechddentifies an instanton chargen 5D with N '3L 1k in 4D.
nism at the cutoff scaje Their D-flat conditions now leave (2) The instanton in the deconstructed theory should break
only 2 moduli, T andB; ...By. One combination of the two the diagonalSU(2)p subgroup in order to be compared to
is then theSU(2), modulus. The real part of the remaining the instanton in the continuum 5D theory in the Coulomb
modulus can be interpreted as the radion of the compactifieBhase. This requirement together withsingles out the(l,
continuum 5D theory, while its imaginary part can be iden-1, . . . ,D-instanton as the counterpart of tke=1 instanton
tified with the Wilson line of the graviphotoBs. It is pos-  in 5D.
sible to stabilize the remaining modulus by adding a We now discuss the analogs of the large gauge transfor-
Lagrange multiplier term foB;...By to the superpotential. mations(2.40 and (2.42 in the deconstructed theory and
In the continuum theory, this term would have the interpre-their relation to the instanton calculus. An instructive way to
tation as arising due to sontanspecifiedl radion stabiliza-  find the large gauge transformations is via the brane con-
tion mechanism. Alternatively, without employing anoma- struction of the four dimensionagU(2)N theory [30]. An
lous U(1)s, onecould stabilize all baryons via Lagrange added bonus of the brane picture is the simple geometric
multipliers L;, e.g., by adding a superpotential of the form jnterpretation of the deconstructed KK mass spectrum.
W=L;(Bj—v?). The brane-engineered deconstructed theoryG4/a,, or-
bifold of the type-lIA construction of puréV=2 SU(2N)
C. Correspondence between continuum and deconstructed ~ theory of Ref.[33]. It involves 2N D4-branes, with world
instantons volumes inx°...x® andx®, suspended between two parallel

We showed that the perturbative spectra of the compactiN€veu-Schwarz 5-branddiS5-branepwith world volumes

fied continuous and large- deconstructed theories agree. " X?---XS and separated "’?'0”96- The orbifold acts on the
The next step towards demonstrating the equivalence of thé +ix° (as well as orx®+ix’) coordinates; the details are
two theories is to find a map between tteemiclassical ~ given in[30].

nonperturbative effects. In this section, we will discuss in What is important for us is the description of the classical
some detail the map between instanton contributions to thenoduli space of the orbifold theory. TheN2D4 branes are
low-energyr parameters in the two theories. only allowed to move in the*+ix®> plane, in aZy symmet-

On the compactified 5D theory side, the semiclassical calric manner, as shown in Fig. 1. The most general configura-
culation of the instanton corrections to the “photon’pa-  tion is that of two branes in eadh, wedge, away from each
rameter involves a sum over two towers of instantons. Thesether and from the origin. As indicated in the figure, one can
two towers of instanton solutions are obtained from the fouridentify the positions of the two branes with the parameters
dimensional BPST instanton by applying the “proper” peri- v. of Eq. (3.6). The center of mass of the two branes in a
odic (2.40 and “improper,” i.e., antiperiodic(2.42, large  given Zy wedge is identified with the VEW, breaking
gauge transformations. These transformations only exist iSU(2)N to the diagonal group, while the relative displace-
the unbrokenU(1) subgroup of theSU(2) theory onSt ment is the expectation value of the diagoB84ak2) adjoint
since 71(U(1))=2Z, while 7,(SU(2)/U(1))=m7(SU(2)) field, i.e., Za=A. In particular, the mass spectrum given in
=0. The summation over these towers of instantons ensurdsgs.(3.10,(3.12 can be easily derived from the picture. The
that the instanton amplitude is gauge invariant. In otheiKK masses in the deconstructed theory are given by the

=|v, —v_e?mN]2
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FIG. 1. The classical moduli
. . space of the SU(2)N theory
(shown for N=8) and thek=1
° ° large gauge transformation in the
brane construction.
[ ]
[ ]
[ ]
® [ )
[ ]

lengths of the strings stretched between the branes in a givdiranes in the 1st wedge with the image of the other brane in
Zy wedge and their images. For example, in the simplesthe kth (counting clockwisg wedge. The resulting transfor-
case of unbroker8U(2)p, v, =v_=v, the length of a mation is

string stretched between a brane a distané®m the origin

and itskth image ism,=2v sink=/N), as in Eq.(3.10; the vi—a Y., v_—v,, (3.14
masses in the broke®U(2), vacuum(3.10,(3.12 can also _ _ . _
be easily derived from the geometry of the brane construcwith k=1, ... N; the transformation wittk=N gives, of

tion. In a picture where alZ, wedges are identified, the course, the original pair.
deconstructed KK modes correspond to open strings winding It is clear from the mass formula8.10,(3.12 that the
around the con@. mass spectrum is invariant under the transformati@nk4):

It is important to note that there is a discrete arbitrarineséhe masses of the KK tower of the vector supermultiplet,
in the assignment of pairs of branes Z§ wedges in this neutral under the diagonaJ(1), areinvariant, while the
picture. As we will see, one can regroup the branes into pair§ansformations wittk+N shift the KK number of thev™
in N different Zy, invariant ways, one of which is shown on Vector supermultiplets bl units. It is easy to see that, in the
Fig. 1. One can pair a brane in a given wedge with the imagéargeN limit, the action of the transformatio(8.14) on the
of the other brane in the neighboring wedge and then redra®iPectrum is exactly that of the continuous large gauge trans-
the Z,, wedges to pass between the original pair. The “old” formations(2.40,(2.42. At large N and fixedR, recalling
and “new” wedges are shown on the left and right in Fig. 1,v=N/(27R), Eq.(3.14 reduces to
respectively. The resulting world volume theory is, of course, )
identical to the original one in all aspects, including masses b, A —a— ﬁ (3.15
and interactions. ’ 2R’ ’

It is easy to work out the transformation corresponding to
the regrouping shown on the figure in termsvof: from the  The minus sign can be undone by a transformation in the
picture one can immediately see that the relation between Weyl group,a— —a (or equivalently, by accompanying Eq.
(the VEVs in the “old” wedge andv, . (the VEVs in the (3.14 with an interchange of, andv_). Hence, recalling

“new” wedge) is the identificationa= A/2, we see that the action of both the
. proper and impropef2.40,(2.42 continuum large gauge
V1+=Q@ "V, U1 -TUy, (3.13  transformations is reproduced by the deconstructed theory,

for even and odd, respectively.

It is possible to construct the discrete transformations giv-
ing rise to Eq.(3.14 directly in the field theory. The ones
with evenk correspond then to gauge transformations, while
those with oddk are “improper” gauge transformations, in
. ; . . Bne to one correspondence with the continuum theory. It is
theory T duality may be underlying deconstruction, at least in the .

’ ) o . easy to check that both types of large gauge transformation
supersymmetric cases. To see this, note that the Migeait of Fig. . .
are symmetries of the deconstructed theory action.

1 looks like a continuous distribution of branes on a circle of radius Instant b v added into the b ict
v (in string units; recall that 1/ is the size of the UV cutoff in the nstantons can now be easily added Into the brane picture

deconstructed 5D theoryThe distance between two neighboring of the deconstructed theory. In fact, ar! mstan-to_n.of the type
branes is=2o/N (in string units and at larght). T duality relates (11, - - ., 3 corresponds to a DO-brane in the vicinity of each

a straight infinite periodic chain ddp branes, with period 2v/N,  Of the N pairs of D4-branes. In other words, there is a DO-
to a D(p+1) brane with world volume wrapped on a circle of brane in each of th&l wedges depicted in Fig. 1. Now, we
circumference 2R=N/v. The worldvolume theory of the latter is can redraw the wedges in exactly the same way as above and
a compactified §+ 1)-dimensional Yang-Mills theorgthe use off  discover that there is still precisely one DO brane inside each
duality to the construction on Fig. 1 can be strictly justified only in new wedge. Of course its position inside the wedge has
the v — o limit). changed, but we need to integrate over the DO-brane posi-

wherea=¢"2"N. Clearly, one can generalize this regrouping
in N differentZy symmetric ways, by combining one of the

3It is interesting to note that the brane picture suggests that strin
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tions when we calculate instanton partition functions. Inte-Seiberg-Witten curves for the two theories. We should stress
grations over instanton collective coordinaté®sonic and again that the deconstructed theory has only four super-
fermionig in field theory correspond to integrations over the charges, while the continuum theory has eight. Therefore, a
DO-brane positions in each wedge. This means that the intgriori, the curve obtained through deconstruction contains
gral over the(1,1, . . . ,2-instanton measure is automatically less information than the original Seiberg-Witten curoee
invariant under Eq(3.14). This transformation is a symme- Nekrasov's curve With eight supercharges one can exactly
try not only of the microscopic action, but also of the solve both for the Khaler potential and the gauge kinetic
D-instanton theory. In the deconstructed theory there is néunction, while in this case only the gauge kinetic function
need to sum over the instanton images under(Bd.4). can be obtained.

We can understand the difference between the continuum As explained before, in order to obtain the Seiberg-Witten
and the deconstructed case in more detail by consideringurve for the deconstructed theory one needs to evaluate
what the gauge transformations in these two theories are. Is(Tr®?), with & given in Eq. (3.2. Using Q
the continuum calculation we have viewed the theory from=diag@, v_)=(@+A2v—A/2) we can now writeD clas-
the effective 4D theory’s point of view. This means that all sically as
information about the 5th coordinate in that theory was lost,
all we kept was a tower of 4D KK modes. Then we have <I>=[vN—vN]2=vN
considered the 1-instanton in this effective theory. Since we U2
omitted thexs dependent gauge transformations from the (3.1
effective theory, the instanton measure and action will not be

invariant under the large gauge transformations. In order to N mRAWN 7RA\N]| o5

reproduce the correct 5D answer, this additional symmetry =l T\ N 2 (3.17)
has to be imposed by hand, which is achieved by the sum-

mation over the two towers of the gauge-transformed instan- — oV sinh( 7RA) . (3.18

tons. The analog of this procedure in the deconstructed
theory would be to take the 1-instanton in the unbroken di-

agonal SU(2), gauge group. This instantofand its mea Here we have used the holomorphic radRis N/27rv. This
D . = H H i
suré would not be invariant under all the brok@U(2) corresponds to the radius that appears in Nekrasov’'s curve

) . 2.23), since this is the correct holomorphic variable. We also
gauge groups, and a way to restore the full gauge invarian

would be to sum over the discretized versions of the large ave

gauge transformations.described above. However_, a more T=(Tr ®2)— (202N sink(7RA)). (3.19
natural way to proceed in the deconstructed theory is to con-

sider the effect of thé€l,1, . .. ,1 instanton. In this case, the
situation is very different from before. The main difference is
that, as explained above, the discretized version ofxthe
dependent gauge transformations are themselves part of t
gauge symmetries of the theory, they are simply given by
dependent gauge transformations in tB&J(2); factors.
Also, as explained above, instead of considering a singl
instanton, one would have to look at thk1, .. .,) instan-
ton calculation, and thus in effect calculate Mninstanton
amplitude. However, th&l instanton measure must be con-
structed in a way that it is completely gauge invariant. Thus
there would be no need for additional summation over th

Thus we can see tha@i includes the correct variable of the
5D curve in the continuum limit. The appearance of the
auge invariant sirfigRA) in the 5D curve is predicted from

e deconstructed theory.

In order to actually match the deconstructed curve to the
5D curve obtained above, we have to first calculate the rela-
fion between the scald appearing in the deconstructed
curve (3.3) and the low-energy scalé which appears in
the 5D curve. The matching is slightly non-trivial due to the
presence of the KK modes, whose effects on the running of
the coupling have to be taken into account. The matching of
&he holomorphic gauge couplings at the scale of the highest

images of the(1,1, . ..,2 instanton, that sum is implicitly P
performed by using the correbt-instanton measure for the KK mode My =2v is given by
theory. Hence we conclude that the contribution of the 1 N
(1,1,... d-instanton in the largeN-limit must match the —=—. (3.20
contribution of the two 1-instanton towers in the continuum 9% 9
theory. ] )
This argument applies directly to all diagorial1, . ..,3- Ve now wantto run the diagonal coupling down to a sgale

instanton effects. We have thus constructed a dictionary révhich is below the mass of the lowest KK mode. The renor-

lating theS U(2),, instantons, contributing to theparameter ~ Malization group evolution equation is given by
in the deconstructed theory to those in the continuum theory. N
1 N 2 Mgk 2 Mkk
= — —log——— — >, log ,

ap(p)  a(mgg) M Tn=1 my,
D. Deriving the continuum Seiberg-Witten curve (3.20)
from deconstruction

Given the identification of the instantons in the continuum
and deconstructed theories, we are now ready to compare théSee, however, the discussion at the end of Sec. Ill E 3.
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where the first logarithm is the effect of the zero modespus. In the largeN limit we can also rewrite Eq(3.26) in
while the sum gives the contribution of the KK modes, andusing the gauge invariant definition of the radius
a=g?%/47. The mass ratio in the logarithm is just given by

Mgk /m,= 1/sin(hz/N). Using the relatiof21] 4 AN
Ab=gN 5 ma- (329

N-1 B (27R)

I si? nm  4N?

L ST T (322 The curve we obtain then is given by
we obtain the expression for the low-energy gauge coupling y2=(x?—U)2—4A}. (3.30

1 N 2 1 4N? _
= —log MK + —log—r. (3.23 Finally, we note that in the continuum limid is related via
ap(p)  a(Mq) T 72 Eq. (3.29 to the modulus that appears in the continuum

curve (2.23, and A is the dynamical scale in that theory;
hence, we exactly reproduce the expected gauge coupling
Ag:/ﬁe—swz/géw, A= mﬁKe—swzng(mm, 7(U) in the continuum theory. In fact, to be more precise the
(3.24 modulus that appears in the continuum theorjdihinvolves
(cosh@RA))>—1 and in the deconstructed theory it is

Using the definitions of the scales

we obtain the scale matching relation (v®N sinh(@AR?/(v?N. Hence, deconstruction leads us to
AN AN suspect t_hat the _origin of the functidf7RA) in Eq. (_2.24)
A4 = AT 2T (3.29 are the diagonal instantons that relate these moduli. Note that
D mgk * 16N* ' this function cannot be fixed by symmetry arguments, but an
explicit instanton calculation of the sort we have performed
Using mkx=2v and 27R=N/v this can be rewritten as is necessary to determine it at every instanton level. How-
N ever, this possibility implies that matching of additional op-
A 1 erators between deconstructed and continuous theories may

(3.26

be rather nontrivial. In Sec. IllE3 we will argue that the
correspondence between deconstructed and continuum mod-
There maya priori be instanton corrections to these match-els may be more direct along certain special flat directions of
ing relations, but we can make precise the correspondena@e deconstructed theory.
between the parameters of the deconstructed and continuum
Seiberg-Witten curves as follows.

First, we define aZy symmetric gauge invariant radius
(along the branch of moduli space where this identification

Ao~y Zary

E. The role of instantons in the broken groups and
of the quantum modified constraints

makes sensevia In the following we clarify one subtlety: the role of quan-
tum modified constraints in the relation between moduli of
N |28 N the deconstructed and continuum theories.
(m) - Bi. (3.27) The moduludJ, defined in terms of the moduli andB;

via classical constraints, and the modullishat becomes the
In the continuum limit along the branch of moduli space wemodulus of the continuum theory in the appropriate limit,
are considering B;—uv?. For simplicity we defineB  differ by instanton contributions even though they have the
=(II;B,)"N. Let us now rescale the curve in EQ.3) by x? same classical limit. So the question is which modulus to
—x?BN(27R)? andy?—y?B2N((27R)?)?, and rescale the equate with the continuum modulus in the continuum limit.
modulus by We first answer this by a physical argument, and then dem-
onstrate that it is correct by a technical one.
— T (2 sintf(7RA))
BN(ZWR)zﬂ (27TR)2 . (3.28 1. Relations between moduli

o ) The continuum variabl® in Eq. (2.21) was defined in the
The last relation in Eq(3.28 deserves some comment. It is |ow-energy effective 4D theory, where the only instantons
obtained by identifyingv®")~(v?)N. We will demonstrate that exist are the usual 4BU(2) instantons. However, in
in the next section that there are no corrections to(B@8  the deconstructed theory there is more than just one kind of
from instantons in the broken gauge groups. There may b@stanton. Before breaking the diagon@lJ(2) group to
diagonal instanton corrections to this relatigwhich we do (1) there are two types of instantons: the instantons in the
not calculatg which may be related to the functid7RA)  giagonal unbrokers U(2), which will be mapped to the in-
in Eq. (2.24. In what follows the first relation in Eq3.28  stantons that remain in the effective 4D theory, but there are
should serve as the definition Bf, which is then unambigu- also instantons in the broke®iU(2) factors. We can denote
these a91,0,...,0,(0,1,0...,0 instantons, while the in-
stanton in the diagoneébU(2) factor is the(1,1, ...,) in-
®Recall that in this limit,A/v—0, so thaty . —uv. stanton 34]. Since the instantons in the broken gauge groups
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have no analogs in the effective 4D theory, the definitions oNotice that this agrees with our earlier definitiontofor the
the two variablesU and U, may differ by the effects of generalSU(2)" theory up to a dimensionful constant. How-
these instantons. To highlight the issue, we write the decorever, we would like to express the curve in terms of the
structed curve in terms of the moduli and B; as in[24] natural variableu’, which is defined as the invariant

(along the flat directior{3.6)):

u’ =detM, (3.37)
N 4 2
y?= XZ—Uc|(T,Bi)+;l m —4AL. where M ;= 3Qaa1Qpa€e?Pe"B. We can now express the
(3.31 variableu’ in terms ofti. An explicit calculation shows that
' the relation between the two invariants is given by
So it is important that it i&) and notU, that corresponds to o
. . +u'= .
the modulus in the continuum curg.23. We can under- AfU+U=PIM, (339
stand why this is the case as follows. where the Pfaffian B is most easily expressed in terms of

For the purpose of demonstration we study the simplg,s 5y4) symmetric meson matrixobtained by ignoring
case ofN=2, with the discussion easily extended to higher,, gauge interactions of the second gauge group since
N. ForN=2, the theory is given by <A,). One can translate between the two sets of indices of

SU2) SU2) SU2) Matgg @nd the SU(4) notation M,z by the assignment
(11)—1, (12)—2, (21)—3, (22)—4. With this translation
Qaar O O O -1 (12 _
PfM = 5€“77°M ,4sM , 5. However, the R is exactly the
(3.32 quantity which classically vanishésnce expressed in terms
of the underlying quark fieldsbut receives a one-instanton
where one has an addition&lJ(2) global symmetry in the correction quantum mechanically and yields the quantum
special casedN=2, which is the lastSU(2) factor in EQ.  modified constraint
(3.32. This is the theory considered by Intriligator and
Seiberg in[32], and the derivation of the relation between PfM=A1. (3.39
moduli for this case is basically already contained 32].
Here we repeat it in order to make the argument completelThe coefficient of the one-instanton contribution was fixed
and also to give a more physical explanation for the origin ofoy Seiberg 35] by matching to the ADS superpotent[&7]
these extra terms in E§3.31). The argumentwhich in fact  after integrating out one flavor, and by Finnell and Pouliot
is the essence of the whole derivation of the curveg3]  [25] by a direct instanton calculation. Using this relation we
and [24]) is as follows. Consider the case when the firstobtain
gauge group is much stronger than the second dng, X .
>A,. Then the second gauge group can be neglected and AfU+Uu'=AT (3.40
the first gauge group is simply a@U(2) theory with two ) ) )
flavors (four fundamentals This theory was described in The curve(3.35 is now rewritten(after rescaling andy) as
35] (see alsd36]). At low energies it is described by the
E:or1]fi51ed mescf)ns]) ’ g Y= (<= (U= A7))?— 4ATAS. (3.4

Mareg= QaarQbage™"- (3.33

This meson contains three singlets and an adpunder the
weakly gauged second gauge group. This adjoint is forme§©MeS
by the field

This explains the extra shift in the curve due to instantons in
the first gauge group, and there is a similar shift due to in-
stantons in the second gauge group, and the final curve be-

y2=(x>—(u'—A1—A3)?—4ATA;. (342

fgCB, (3.34  This derivation of theSU(2) <X SU(2) curve teaches us that
the variablél obtains a correction from its classical value in

. L o . terms of the fundamental mod;; due to the instantons in

In terms of this adjoint field the theory is simply described e individual gauge groups. These are the instantons which

g 1
(I)AZZ_A1 Matcge

by an ordinary\'=2 SU(2) Seiberg-Witten curve after the breaking to the diagonal gauge group become in-
5 2~ 4 stantons in the broken gauge group. The extra instanton
y =(x"+1)"—4A;. (339 terms in Eq.(3.3)) arise due to the fact that the curve has

. . ) . .. been expressed in terms of a variable which obtains a cor-
Here u s the invariant formed from the composite adjoint raction from these instantons. We have used this expression
field ® for the curve since these are the variables that are natural for

the deconstructed theory. However, in the continuum limit it

CBhi DA is more convenient to work with the varialdle in terms of
which instantons in the broken group never appear. This
(3.36 modulus is directly related to the modulus of the continuum

~ 1 2 1 f
UZETr(I) :_SAZ MAngMBhDiE 9¢
1
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theory because the low energy continuum theory simply doesates of fundamental and antifundamental fermion zero
not have such instantons in it. modes. Thdanti)-fundamental scalar components of the in-
To stress the point, the deconstructed analog of the corstanton read15]
tinuum modulus proportional tésinh(mRA)?) is related to
Toc(uN[(1+ 7RAN)N— (1— 7RA/N)N]). This gauge in- . »
variant VEV, not being directly related to the fundamental qu \/m
gauge invariantsvl;; (or T and B; in the general cageis e
subject to quantum modified constraints among the moduli.

U_+ )'B+ i |X| B]C
5, o e

When expressed in terms of the “fundamental” gauge invari- e e XPAM 4K 3.4
antsT and B; there appears to be a superfluous term in the 2v2 x| (x*+p?)** g (349

Seiberg-Witten curve, but this is only because of the choice

of gauge invariants in terms of which we expressed the 2 (v, i IX| -
curve, and is not relevant for comparison with the 5D theory. ;= \/ 7 _ ) —— > mKiup
It remains to be proven that(A) does not receive broken X“tp V-Ttp 2v2 (X°+p%)
instanton corrections, and we will demonstrate flaisleast ) 1
for one-instanton correctiohg the next section. p ~ .
——— i ———ap KiMPx,. (3.45
2v2 [X| (x4 p?) 2T 788

2. Explicit instanton calculation of U(A)

In the following, we perform an explicit one-instanton Here MP={M*,M?} denote supersymmetric fermion zero
calculation to confirm that the moduliis does not receive modes, and the Weyl indicgg and 3 are raised and lowered
any contribution from instantons in the broken groups. Wwith the e-symbols. The fermion-bilinear terms in the scalar
priori, a zero mode counting would allow such a term, but ancomponents above arise from the Yukawa sources in the cor-
exact cancellation demonstrates that such terms are absentr@sponding Euler-Lagrange equations.

the (1,0, . .., O-instanton level. This verifies the identifica-  Finally, the instanton measure of tB&J(2) N=1 super-

tion of T(A) as the modulus of the continuum theory. symmetric QCD withN;=2 flavors is given by(cf. [15])
Let us consider a single instanton in the sec&id(2)

factor of the deconstructed theof®.1)—the (0,1,Q0..., 2° ,u‘év

0)-instantorf. The field components of this instanton are the d“instz? ?j d*xop dpdMd?udiC; dK; KoK,
SU(2), gauge field and gaugions, and flaati)-fundamental
flavorsQ, andQ, comprising fermions and scalars. Instan- xexd —S], (3.46
ton components of all other fields are trivial. Thus, from the
perspective of thé0,1,Q . . . ,0-instanton, the product group Where X, is the instanton position angipy is the Pauli-
theory (3.1) is equivalent to the ordinarU(2) supersym- Villars renormalization scale,
metric QCD withN;=2 real flavors:Q,¢ with f=1,2, play 5
the role of the antifund_amental chiral flavo@, and Q¢ MgveXp( - ZgL) — gv (3.47
are the fundamental chiral flavo€; . 9°(umpv)

We can now apply the standard rules of instanton calculus
to the case at hand. For calculating instanton contributions tdhe instanton contribution @ is given by
U we need three ingredients: the instanton action, the instan-

ton components of théant)-fundamental scalars, and the ~
instantonpmeasure. eant u:(Tr(I)2>:f dpsinsiTr 02, (348
Using conventions of{15,28, the instanton action is
given by where the instanton component ®fcan be found from Eq.
(3.2 and Egs(3.44), (3.45.
) o — B To simplify things a little we will now take the larg
S= 81+27T2p2(|v 124+ ]v_|2) - '_( * ) limit and hence set , =v_=v. Then the expression fab
9’ ! - V2 v_/, takes form
X (ks +Ks), (3.43 IV ~
pe Pin=0""2 Gpaf— 5 omTr(@a) |, (349

wherep is the instanton sizeuz={u1,u,} are the Grass- _
mann collective coordinates of superconformal fermion zer@ndt is

modes andC; and K; are the Grassmann collective coordi- 1
TJ=v2N‘4< Tr(4qgq) — ETr(“dq)Tr(“Qq)> . (350

5The contributions tdi of an instanton in theith SU(2) factor _ ) ) )
does not depend on the valuerosinceli involves a trace over all The instanton solution fofig can be schematically writ-
bifundamentals. ten as
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right-hand side of Eq(3.55 cancel each other. But the last
term, A%, remains, giving a nonvanishing single-instanton
+”6/.LM K. (3.51) contribution to Eq.(3.55.

ﬁq=vz+v,ulC+l~C,uv+leC+ka-HE,ule-I—IEMZIC

Here we made explicit only the Grassmann collective coor- 3. A special flat direction

h?nd side of Eq(3.51) is proportional to the unit matrix, for which the partially broken instantons do not contribute to

v?e1, and can be dropped as it does not contribute to eithethe curve, even when the curve is expressed in terms of the

® EXVh'Chd!S tlracerl]es)soru..b . 3 take f ¢ E modulusU(T,B;) of Eg. (3.3) (which, along a generic
ccordingly, the contributions tai take form[cf. EQ. gjrection, does receive corrections from the instantons in the

(3.50] partially broken gauge groups
_ _ _ - This flat direction is easiest to infer from Fig. 1. Recall
Hzf d?Md?ud K d K dC,d [ (v ) (KM2KC)ev#h that in the brane picture, the positions of the center of mass
of the branes in th&th Z wedge correspond to the expec-
+(k/~LU)(]A€M ZK:)eU’UJC‘f'(UM]C)(]%,LLU)EUM}C*—U’M% tation ValuedQO:Uk(To, Wheré
v=a*v. (3.56

+(Kpl0)(KM2K) + (KuMK)(KeMK)].  (3.52

Performing the integrations over Grassmanian collective co-—rhe D'f:at cond|;[|o?sthand masts tmatrlc?see;ge |r_1t\;]ar|3iar;t under
ordinates and keeping careful track of the raised and lowere € replacement of the expectation valyass) with (3.56. .
here are a few points to make about the relevance of this

indices of the supersymmetric and superconformal zer . : . X )

mode$ in Egs.(3.44—(3.52) one discovers that the first term phase (;:Shgcze,N\:c\(hllghhmlghtbappear arbitrary in th? decon-

on the right hand side of E¢3.52 cancels against the sec- structe (2)" field theory, butis a consequence o e
symmetry of the brane configuratidit can, of course, also

ond term, the third term is vanishing and the fourth term>7" d he field theanTh : T
cancels against the fifth term. Thus we conclude that the tot e Imposed on the 1€ t_ec)ry e most important pomt_ IS
that, along the flat directioi3.56), the baryon expectation

contribution of single instantons of th&,0, .. . ,0-type to e !

the modulusti vanishes. This fact is in agreement with ourvaluesdobeyBkg @ v Reca!l nﬁw that. t”hebterlg |n2the
identification ofti with the modulus of the continuum theory ©€4rV€ rl:e toht fe mstan';gn;s 2'2 t_ e partially brokebi(2)
which can receive instanton corrections only of the typegrolJpS as the forrtsee Ref[24]):

(k,k,... k). N
We co_nclude thls_ discussion Wlt_h an obs_ervatlo_n_lhat such 2 AﬁBl---Bk—lék ...By., (3.57)
cancellation of the instanton contributions is specifi€itcA k=1

modulus defined in a different way would not enjoy these o o .
cancellations. To illustrate this point one can consider avhere hats indicate that the corresponding fields are omitted

slightly different quantity and 0=N. Let us, for the moment, assume that all theare
equal complex numbers. Then E(.57) vanishes identi-
(Tr(9qQq) — detq detq). (353 cally:
Classically this is equal tdTr(gqgq) —1/2 Tr@Gq) Tr(ga)) N
«T, but there are quantuifi-instanton corrections. In fact, ( > a4k> a? AN 4=0. (3.58
k=1

it is well known [32] that there is a quantum-modified con-

stra2|L1t in the N=N; supersymmetric QCD, dM__BB . Hence, in the vacuun.56), the instantons in the partially
=A™ For our case oN=2=Ny, the meson determinantis -, ensU(2) groups do not contribute to the curve and
detM=det'E| detq, and the baryons ar8='d1'd2 and B parameter of the |OW_energy(1)_
=012, where 1, 2 denote flavor indices and the color indi-  Now we need to justify our assumption of equal phases of
ces are summed over. The quantum-modified constraint is the A} factors(the assumption of equal couplings is inherent
~ o~ to the idea of deconstructipnTo this end, note that the
(defq detq) = (T18,02) + A%, (3.54 SU(2)N field theory hasN anomalous global (1) symme-

and Eq.(3.53 can be written as tries with parameters,, acting as follows:

(Tr(Gqa) — detd detq) =(Tr(GqYq)) — (101T202) +( 3A;.5) Q€' Qy, (359

Aﬁ:—>62iwk+2iwk’1/\ﬁ
Repeating the samé),1,Q . ..,0-instanton calculation as
above one concludes that the first and the second termonthe

8The relation(3.56 holds more generally, i.e., the VEVS of the
_ . SU(2)p-breaking adjoint also obesy= aa, as is evident from the
"Note thatf d?upu,uf =612, [d?up pmp=—e .42, etc. brane picture.
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wherek=1, ... N andk=0 is identified withk=N. The related to the coefficient of the Chern-Simons term. In the
transformations of\ reflect theU (1) anomalies. From the SU(2) theory that we are considering, a tree-level Chern-
last line in Eq.(3.59 it follows that thed parameters trans- Simons term is not allowed; the only contribution to the CS
form as follows: coefficient occurs at one loop along the Coulomb branch and
is computed in7]. We will check, in what follows, that the
O— O+ 2w+ 2wy 1 - (3.60  curve(2.23 reproduces these results in the laRémit.
To begin, consider the perturbative part of thparameter
It is easy to see, by writing Eq3.60 as anNXN matrix  in the deconstructed theory. It is clear from the expression in
equation, that for odd all # parameters can be put to zero Eq. (2.45 that the instanton contributions vanish in tRe
by field redefinitions. Thus, th&, can be assumed real from _,« |imit (the instantons, which are Euclidean particles in
the very beginning, justifying our assumption of equal5p, have infinite action in this limit and so can not contribute

phases. In the case of evéh the rank of the matrix in EQ. to the path integra) hence the perturbative part of(in the
(3.60 is N—1 and there is one physic#l parameter—the DR schemgis

combination:
" Tpert 1 | 4p?N sint? 7AR (3.62
1 dmi 4m2 09T A :
Bonys= Ry &, (~ 1 bic (3.61) T

Let us make some comments on the meaning Rf(A).

It is easy to verify thatf,ps is invariant under Eq(3.60 ~ Using the product formula sinb=XI1-o(1+ X% (n*7%)),
only for even N. By appropriate field redefinitions, any We can rearrange equati¢8.62 as follows:

choice of 6, can be brought to the form,=(— 1)“+1¢9N1ys 1 A2
for some 6,p,. It follows that for N even, pIuggingA@1 Tpeft: ——log-— + — > log| A2+ n_2
—el(= D" *pnysA 4 and the VEVS(3.56) into (3.57), the con- 4mi 4wt TAp A7 iFo R
tribution of partially broken instantons is proportional to (3.63

N/2 LidmkIN/2 i i
Sp=q€ =0 (for N>4). Thus, along the flat direction the formula(3.63 has a simple physical interpretation. It
(3.56), the contributions of instantons in the partially broken gives the perturbative running of the diagoSdl(2) gauge

gauge groups cancel. coupling as a function of the scafg recall that Imre(A)
The brane picture suggests that the world volume theorLllg%(A)_ The leading~logA term accounts for the run-

ﬁle.cotn"llesl\/z %hintt)he infrarec:c(i.e. Iargefv, attlheast;%r If(ijx;?d d ning of the 4D coupling at small scalés obeyingAp<A
); at largev the branes are far away from the orbifold fixe <1/R. The sum oven+#0 correctly(i.e., consistent with the

point and thus do not “feel” the reduced SUp.erSymmEt.rY'symmetrie$ takes into account the contributions of the KK
This leads to the hope that more nonperturbative quantities] Jas to the running. To see this, note that for fikedhe
could be matched between the deconstructed and continuumain contribution to .the sum in ' Eq3.63 comes from

theory than just the agreement oparameters considered in modesn<AR, while the contribution of KK modes with

this paper. We leave this for future study. >AR cancels between the two terms in the sum. Hence,

It is also worth commenting that it may be more natural 0 hodes of mass greater thandecouple from the running of

relate th_e continuum th_eory_ to the (_jeconstructed theor¥he Wilsonian coupling, consistent with our interpretation of
along this special flat direction, despite the fact that the

. ! Y Toert(A).
modulus that appears in the Seiberg-Witten curve does not’ Next, we can also consider the limit of largeand fixed

receive broken instanton corrections in either case. Other OB% 11 this limit. as discussed in the beginning of this section
erators might still receive such corrections, and the nonper-’ L . . o o
turbative matching of those operators between the decorfnIy the linear term i (corresponding to a trilinear prepo
structed and continuum theories may be nontrivial. For
example, along generic flat directions in the deconstructed
theory operators like coshAR), which are related to the
operatorT in the largeN limit, are expected to receive non-
perturbative correction due to the dynamics in partially bro- = . _— )
ken gauge groups. On the other hand, it is natural to conjec?Sing the definition ofA from Eq. (3.24;:
ture that along the special flat direction considered in this 87

2 2
section all such corrections vanish. A4=1604 ex;{ - — ) —_— p( - BZL)
9°(2v) 9°(v)

2 2

—Iog@.

entia) survives int.

Tpert]

4q7i

A 2N
—) ) (3.69
v

1
| — W(ZWRA— |OQ
arge-R

(3.6

F. Large radius limit

The exact result for the curve should reproduce correctlyve then obtain, at largh!:
the infrared behavior in the larde-limit. The 5D SU(2)
theory has been studied [5]; for analysis of general 5D Tpert _ WR( N + i) =27R i+ i
) - : 2 2 2 2]
theories sed6]. In the 5D uncompactified case, the non-  4mi 2mRg*(v) 4 gs 4w
renormalization theorem restricts the prepotential to contain
at most cubic terms. The coefficient of the cubic term is (3.66
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The interpretation of the two terms in E(.66 is as fol-  dinary 4D instanton. Our results are in agreement with an
lows. The overall ZrR factor can be interpreted as an inte- improved version of the exact results obtained for this model
gration over the extra dimension and ti@imensionfu]  in [4]. In the second part of the paper, we have considered
combination (27R/N)gz(v)=vflgz(v)=g§ as the 5D the deconstructed version of the same theory. We have
gauge coupling. The real part of the term linearArmgives  shown that the Seiberg-Witten curve for the deconstructed
the power-law running of the couplifi88] (recall that in the  model is in agreement with exact results and an explicit in-

“Weyl wedge” of the 5D theory R&>0[5]). The imaginary  stanton calculation for the continuum theory, thus providing

part of the second term originates in the one-loop 5D Chernthe first nonperturbative evidence in favor of deconstruction.

Simons term mentioned above. The imaginary parRah

Eq. (3.66 can be made to vanish by choosingeal or, as

already mentioned in Sec. Il B, be interpreted as an expec- ACKNOWLEDGMENTS
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