CaltechAUTHORS
  A Caltech Library Service

Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays

Spurgeon, Joshua M. and Walter, Michael G. and Zhou, Junfeng and Kohl, Paul A. and Lewis, Nathan S. (2011) Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy and Environmental Science, 4 (5). pp. 1772-1780. ISSN 1754-5692. https://resolver.caltech.edu/CaltechAUTHORS:20110519-094752518

[img]
Preview
PDF - Published Version
See Usage Policy.

542Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20110519-094752518

Abstract

The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were suitable for operation in acidic or alkaline media, respectively. The ionic conductivity of the Si wire array/Nafion composite films in 2.0 M H_(2)SO_4(aq) was 71 mS cm^(−1), and the conductivity of the Si wire array/QAPSF composite films in 2.0 M KOH(aq) was 6.4 mS cm^(−1). Both values were comparable to the conductivities observed for films of these ionomers that did not contain embedded Si wire arrays. Two Si wire array/Nafion membranes were electrically connected in series, using a conducting polymer, to produce a trilayer, multifunctional membrane that exhibited an ionic conductivity in 2.0 M H_(2)SO)4(aq) of 57 mS cm^(−1) and an ohmic electrical contact, with an areal resistance of ~0.30 Ω cm^2, between the two physically separate embedded Si wire arrays. All of the wire array/ionomer composite membranes showed low rates of hydrogen crossover. Optical measurements indicated very low absorption (<3%) in the ion-exchange polymers but high light absorption (up to 80%) by the wire arrays even at normal incidence, attesting to the suitability of such multifunctional membranes for application in solar fuels production.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1039/C1EE01028J DOIUNSPECIFIED
http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/c1ee01028jPublisherUNSPECIFIED
Additional Information:© 2011 Royal Society of Chemistry. Received 11th January 2011, Accepted 23rd February 2011. First published on the web 28 Mar 2011. This work was supported by the Department of Energy, Office of Basic Energy Sciences, DE-FG02-07ER46405 and by DARPA contract #W911NF-09-2-0011. We acknowledge use of facilities supported by the Caltech Center for Science and Engineering of Materials, an NSF MRSEC, and the Caltech Center for Sustainable Energy Research. The financial support (J.Z. and P.K.) from the Army Research Laboratory, contract LCHS22067 is gratefully acknowledged. M.G.W. acknowledges the financial support from an NSF-ACCF postdoctoral fellowship (CHE-0937048).
Funders:
Funding AgencyGrant Number
Department of Energy (DOE) Office of Basic Energy Sciences DE-FG02-07ER46405
Defense Advanced Research Projects Agency (DARPA)W911NF-09-2-0011
Issue or Number:5
Record Number:CaltechAUTHORS:20110519-094752518
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20110519-094752518
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:23726
Collection:CaltechAUTHORS
Deposited By: Jason Perez
Deposited On:20 May 2011 20:08
Last Modified:03 Oct 2019 02:49

Repository Staff Only: item control page