A Caltech Library Service

Hybrid Models for Human Motion Recognition

Fanti, Claudio and Zelnik-Manor, Lihi and Perona, Pietro (2005) Hybrid Models for Human Motion Recognition. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings - IEEE Computer Society Conference on Ccmputer Vision and Pattern Recognition. IEEE , Los Alamitos, CA, pp. 1166-1173. ISBN 0-7695-2372-2.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Probabilistic models have been previously shown to be efficient and effective for modeling and recognition of human motion. In particular we focus on methods which represent the human motion model as a triangulated graph. Previous approaches learned models based just on positions and velocities of the body parts while ignoring their appearance. Moreover, a heuristic approach was commonly used to obtain translation invariance. In this paper we suggest an improved approach for learning such models and using them for human motion recognition. The suggested approach combines multiple cues, i.e., positions, velocities and appearance into both the learning and detection phases. Furthermore, we introduce global variables in the model, which can represent global properties such as translation, scale or view-point. The model is learned in an unsupervised manner from unlabelled data. We show that the suggested hybrid probabilistic model (which combines global variables, like translation, with local variables, like relative positions and appearances of body parts), leads to: (i) faster convergence of learning phase, (ii) robustness to occlusions, and, (iii) higher recognition rate.

Item Type:Book Section
Related URLs:
URLURL TypeDescription
Perona, Pietro0000-0002-7583-5809
Additional Information:© 2005 IEEE. Issue Date: 20-25 June 2005. Date of Current Version: 25 July 2005. We wish to thank Mark Paskin, Marzia Polito and Max Welling for proficuous discussions. This research was supported by the MURI award SA3318, by the Center of Neuromorphic Systems Engineering award EEC-9402726 and by JPL grant 1261654.
Funding AgencyGrant Number
Multidisciplinary University Research Initiative (MURI)SA3318
Center for Neuromorphic Systems Engineering, CaltechUNSPECIFIED
Other Numbering System:
Other Numbering System NameOther Numbering System ID
INSPEC Accession Number8599300
Series Name:Proceedings - IEEE Computer Society Conference on Ccmputer Vision and Pattern Recognition
Record Number:CaltechAUTHORS:20110714-150011256
Persistent URL:
Official Citation:Fanti, C.; Zelnik-Manor, L.; Perona, P.; , "Hybrid models for human motion recognition," Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on , vol.1, no., pp. 1166- 1173 vol. 1, 20-25 June 2005 doi: 10.1109/CVPR.2005.179 URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:24429
Deposited By: Tony Diaz
Deposited On:15 Jul 2011 22:02
Last Modified:09 Nov 2021 16:23

Repository Staff Only: item control page