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Coil-to-globule transition by dissipative particle dynamics simulation
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The dynamics of a collapsing polymer under a temperature quench in dilute solution is investigated
by dissipative particles dynamics. Hydrodynamic interactions and many-body interaction are pre-
served naturally by incorporating explicit solvent particles in this approach. Our simulation suggests
a four-stage collapse pathway: localized clusters formation, cluster coarsening in situ, coarsening
involving global backbone conformation change into a crumpled globule, and compaction of the
globule. For all the quench depths and chain lengths used in our study, collapse proceeds without the
chain getting trapped in a metastable “sausage” configuration, as reported in some earlier studies. We
obtain the time scales for each of the first three stages, as well as its scaling with the quench depths
£ and chain lengths N. The total collapse time scales as 7, ~ & ~0-46+0.04 ;y0-98+0.09 "yith the quench
depth and degree of polymerization. © 2011 American Institute of Physics. [doi:10.1063/1.3604812]

. INTRODUCTION

The dynamics of coil-to-globule transition has been of in-
terest for decades since the pioneering study by Stockmayer.'
Although the equilibrium properties of an isolated homopoly-
mer under different solvent qualities are well understood,’
the dynamical behavior of a polymer when the solvent is
quenched from the good solvent condition to the poor sol-
vent condition remains controversial. Because of the strict re-
quirements in direct experimental observation of the collapse
process,’™ such as super dilute concentration, a long polymer
with polydispersity index less than 1.1, are difficult to meet,
our current understanding of the transition mechanism relies
primarily on theoretical and simulation studies.

The first theoretical study of the coil-to-globule transi-
tion dynamics was by de Gennes and co-workers.%’ He pro-
posed a phenomenological model known as the “expanding
sausage model.” Later, Halperin and Goldbart® proposed a
“pearl-necklace model.” In both models, the first stage is char-
acterized by formation of localized blobs along the contour.
Then in the “sausage model,” the collapsing chain adopts a
long and thin sausage conformation which gradually short-
ens and thickens until a crumpled globule is formed. In the
“pearl-necklace model,” the blobs grow in size by absorbing
the beads from the bridges connecting them until the bridges
become straightened; the conformation of the polymer at this
stage looks like a “pearl-necklace,” and finally the clusters
join together and then deform into a globule. De Gennes
and co-workers®’ concluded that the collapse time 7. should
scale with the degree of polymerization N as 7. ~ N'/? .
Halperin and Goldbart® proposed three characteristic times
corresponding to the three different stages, which scale as N°,
N'/3, and N3 respectively. Other phenomenological mod-
els with similar ideas were also proposed and attempts were
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made on getting the scaling laws for each stage. However,
there is no consensus on the exact mechanisms in each stage,
and consequently there is no agreement on the scaling laws
for each stage. For example, Klushin’ proposed characteristic
collapse time scaling as 7. ~ N%, Kikuchi et al.'” proposed
7. ~ N*3(N?) with (without) hydrodynamics. Further, Gros-
berg et al.!! extended de Gennes’ model by taking topological
constraint into consideration. According to their theory, ho-
mopolymer first collapses into an unknotted, crumpled glob-
ule and then, through a slow process that involves knotting,
reaches an equilibrium globule, the characteristic times for
these two steps scaling as N2, N3, respectively. Approximate
theories based on Langevin dynamics'>"'® similarly have not
reached consensus with respect to the mechanisms and the
scaling behaviors because of the different approximations in-
voked in the different studies. However, it is generally agreed
that hydrodynamic interactions play a significant role in the
transition kinetics by accelerating the collapse process.

In contrast to approximations in analytical theory and as-
sumptions in phenomenological models, computer simulation
provides a relatively straightforward way to directly capture
the dynamic pathways of the transition. Because the topo-
logical knotting process is very slow, most simulation stud-
ies have focused on the formation of an unknotted crumpled
globule. We similarly focus on this step during which topo-
logical constraint is not important, while other effects, such as
hydrodynamic interactions, are important. Earlier work used
implicit-solvent methods, such as Brownian dynamics'®?°
and stochastic rotation dynamics,'®?!?? to treat the ener-
getic and hydrodynamic interactions. The acceleration effect
of hydrodynamic interactions mentioned above has been con-
firmed, but the collapse pathway is observed to be indepen-
dent of hydrodynamic interactions, according to Pham et al."”
and Kikuchi and co-workers.'%?! Their results, respectively,
showed that when the quench depth is low, polymer collapse
follows the “pearl-necklace” model into a globule smoothly;
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while when the quench depth is large, the pearl-necklace
stage is rapid and a fat and short sausage forms. In the lat-
ter case, the polymer is observed to be frequently trapped
as a sausage and cannot deform into a globule irrespective
of whether hydrodynamic interactions are included. Clearly,
the sausage conformation is a metastable state. Chang and
Yethiraj?® and Polson and Zuckermann®*2> used molecular
dynamics (MD) with explicit solvent beads and found the
polymer collapses smoothly without getting trapped, for all
the different quench depths and different chain lengths they
studied. They concluded that collision by the solvent particles
can prevent trapping. Later, Reddy and Yethiraj*® used a new
simulation method which does not include hydrodynamic in-
teractions but mimics the many-body interactions by taking
into account the solvent accessible surface area. They found
that all their samples collapse into the equilibrium globule
without getting trapped. Tanaka and co-workers®’” used an-
other method, known as fluid particle dynamics, which treats
the solvent implicitly and can mimic many-body hydrody-
namic interactions down to short length scales. Their simu-
lation showed that hydrodynamic interactions accelerate col-
lapse from a swollen chain, but retard collapse from a slightly
crumpled coil. They concluded that the many-body hydro-
dynamic interactions delay the polymer beads from getting
into direct contact because of “squeezing out” effect and thus
prevent trapping. However, their simulation showed the col-
lapse follows “sausage” mechanism which is different from
other simulations and from our results to be reported here,
and the work also did not obtain scaling exponents. It is clear
from these studies that the many-body solvent-induced inter-
actions, of both energetic and hydrodynamic nature, are im-
portant in order to provide a reliable description of the kinetics
of polymer collapse. We also note that none of these simula-
tions studies have reached a consensus on the scaling laws for
the various dynamic properties.

It should be clear from the preceding discussions that
an appropriate simulation approach must account for the hy-
drodynamic interactions, treat solvent particles explicitly, and
is also computationally efficient. The dissipative particle dy-
namics (DPD) is a mesoscopic method that fulfills all these re-
quirements. While the MD method can naturally account for
the solvent particles and automatically includes hydrodynam-
ics, the mesoscopic nature of the DPD method allows us to
reach longer times, using larger simulation boxes with longer
chains. In this work, we perform a DPD study of the kinetics
of the coil-to-globule transition and focus on the formation
of the unknotted globule. With the computational advantages
afforded by the DPD method, we hope that our study will pro-
vide more definitive results on the transition pathways and the
scaling behavior of the dynamic observables.

Generally, we find that when quench depth is not too
deep the collapse follows the “pearl-necklace” mechanism
and there are four kinetic stages: (1) a rapid, localized clus-
ter formation; (2) a coarsening stage in situ; (3) a coarsening
stage involving global backbone conformation changing into
a crumpled globule; and (4) compaction of the globule. The
last stage will not be discussed here, as it most likely will in-
volve knotting'' and will require very long simulation times.
When the quench depth is very deep, each of the first three
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stage is rapid and the distinction between the different stages
becomes less clear: the pearl-necklace quickly condenses into
a short and fat ellipsoid and the ellipsoid then is observed to
deform into a globule. No trapping phenomenon is observed
in either case. We investigate the scaling laws of the durations
of the first three stages with different quench depths and dif-
ferent chain lengths. The total collapse time 7, scales with the
quench depth £ (defined as the difference in the interaction
parameter from its value at the coil-globule transition) and
degree of polymerization N as 7, ~ & 046004 y0.98:£0.09

Il. METHOD AND MODEL
A. Dissipative particle dynamics

The DPD was developed by Hoogerbrugge and
Koelman?®?° in 1992. In this method, each bead represents
several molecules or molecular groups. For convenience, we
assume the sizes and masses of all beads are the same. The
cutoff radius r. of bead for interactions is set to be 1, and the
mass of each bead is also set to be 1. The velocity and position
of each bead follow Newton’s equations:

dl‘,‘ dV,‘
— =V;, —
dt Vodt
in which r;, v;, and f; are the position, velocity, and force of

bead i, respectively. The force on each bead contains three
pairwise additive parts: a conservative force, FIC,, a dissipative

force, Fg; and a random force, Ff},

=fi, e))

C D R
fi:Z(Fij+Fij+Fij)’ (2)
J#
where the force f; include contributions from all the beads
within the cutoff radius r.. Each term in Eq. (2) is defined as

aij(1 —rij /1, rij < re

. 5 _ , 3)
0, Tij = Te

F,D, =~y (ri))(Ej - vij T, @

Ff =00 (rijF;. ©)

where a;; is the maximum repulsion between beads i and
j, and rij=1r; —rrij= |l'l'j|, rij = l','j/l‘,'j, Y is a viscos-
ity coefficient, and o2 =2ykpT. Vij =V, —V; is the rela-
tive velocity between beads i and j. Here, w? and X are

r-dependent weight functions taken to be of the form,
(l_rij/rc)za Iij =T
o’ =[] = . ©®
0, Fij > Te
where ¢;; is a random fluctuating variable following Gaussian
statistics,
(€ij(®) =0, (& (Ot = Sidji + 8ud )8 — t'). (7)

In the present simulation, we connect consecutive par-
ticles with a spring force to construct a full flexible poly-
mer chain.*® The Fraenkel spring constant of the bond is Kg
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= 80.0kpT/ rf with the equilibrium spring length r,,
= 0.86r, and the form is in = Kg(rij — req)e;j. Other pa-
rameters used here are kgT = 1.0 which is the energy scale
and a dissipation coefficient o = 3.0(*m /r?)!/3.

The present simulation contains two types of particles
representing polymer P and solvent S. The interaction pa-
rameters between the three types of pairs are app = agg =
25.0kgT /1., and apy is varied. The larger this interaction pa-
rameter is, the more repulsive is between a polymer segment
and a solvent particle, which corresponds to a deeper quench.

Our simulations are performed on cubic boxes with peri-
odic boundaries along the three directions. In order to elimi-
nate the effect of the finite box size, we consider different box
sizes corresponding to different polymer chain lengths, such
as L = 30.0r, with 80 polymer beads, L = 40.0r, with 120
and 160 polymer beads, L = 50.0r, with 240 and 320 poly-
mer beads. The equation of motion is integrated using mod-
ified velocity-Verlet algorithm with A = 0.65 and time step
At = 0.027 , where the DPD time scale T = (mrf/kg T)'/2,

B. Units

In this paper, we use scaled length unit r, and time unit
7. To map from the scaled units to physical units, we fol-
low Groot and Rabone’s method?! and estimate the length and
time scales as follows.

We take the solvent molecule to be of the same size as
water. The volume of a water molecule is 30A3 and each sol-
vent bead in DPD contains three water molecules, and each
cell of length . of DPD contains three solvent beads. There-
fore, r. = ~/270A = 6.4633A.

Then assume Ry is the center of mass of the solvent bead
which contains three real water molecules corresponding to
R, Ry, and R3;. The mean-square displacement of solvent
bead is R} = ((R1 - R1) + (R2 - R2) + (R3 - R3))/9 = R?/3,
in which R? is the mean square displacement of a real wa-
ter molecule. We took average among 10000 samples and
obtained the diffusion constant of the water bead according
to (Ro(t) — Ro(0))?> = 6Dt and eventually got D = 0.291‘3/1.

The real water diffusion constant is 2.43 x 10> cm? /s. Thus,
D — 243x107%em?/s

3 and we get T ~ 1.5 x 107'% = 1.5ns.

C. Definition of a cluster

In this paper, we record the growth of the average cluster
size with time by the number-average (S,(¢)). The definition
is as follows:

Y, sn(s)

(Sa(0)) = S0t

®)

in which s is the cluster size, i.e., the number of beads in the
cluster; n(s) denotes the number of clusters of size s. We fol-
low the same way as other authors to define a cluster,'>? i.e.,
non-bonded beads are considered to be in the same cluster
when the separation between each pair of them is less than

the cutoff radius r,.
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lll. RESULTS AND DISCUSSION
A. Locating the 6-point

The “O-point” of a polymer chain is the condition where
the excluded volume interaction is exactly balanced by the
effective attraction between the monomers, so that the chain
behaves ideal. Thermodynamically this condition corresponds
to the vanishing of the second virial coefficient for monomer-
monomer interactions. The mean square radius of gyration of
a polymer in different solvent conditions should follow:?

N3, good
(R2)/N ~ {1, 0 )
N—1/3, poor.

Because at the 6-point (Ré)/N is independent of chain
lengths, we can locate the 6-point by plotting this quan-
tity as a function of the interaction parameter for different
chain lengths and finding the point at which the different
curves meet;’>3 see Fig. 1. With this method, we obtain
the value of the interaction parameter at the 6-point to be
a?,s ~ 27.0kgT/r..

Because the transition from good solvent to poor solvent
across the 6-point is not sharp for polymers of finite chain
lengths, below the theta temperature or above a', there is
still a range in which the polymer retains its behavior as a
coil.*>3* Therefore, we choose apg large enough to ensure
that the final equilibrium conformation is a compact globule.

B. Kinetics of the transition

Our simulation starts with polymer chains which have
been equilibrated in good (athermal) solvent conditions, i.e.,
app = ags = aps = 25.0kgT /r. for durations longer than
their relaxation time. Then the systems are quenched into
poor solvent conditions by abruptly increasing the interac-
tion parameter apg above the transition point. In Fig. 2,
the snapshots capture the typical collapse pathway of a
polymer chain with N = 320 beads at repulsive parameter

; .
Chain Length|
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——160
= 016 | ) ~=240 1
A |
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v |
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0.08 | | g
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25.0 -point 30.0 35.0
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FIG. 1. Scaled mean square radius of gyration (Rg)/N as a function of in-
teraction parameter for four different chain lengths. The 0-point is located at
alg ~ 27.0kgT /1.
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FIG. 2. Pathway of a collapsing polymer with 320 beads at apg
=60.0kgT /rc.

aps = 60.0kgT /r.. The time shown is in dimensionless DPD
units. Here, t = 0 corresponds to the time when the system is
suddenly quenched from the athermal solvent condition into
the poor solvent condition.

We have performed simulations with different quench
depths and chain lengths. In all the simulations, the collapse
follows a pearl-necklace pathway. Figure 2 shows a typi-
cal sequence of events along the transition pathway. Accord-
ing to the snapshots, three different stages can be identified:
rapid formation of local clusters (Fig. 2(b)), in situ coarsening
(Fig. 2(c)), coarsening involving global backbone conforma-
tion change into a globule (Figs. 2(c)-2(h)). As an aggregate
measure of the collapsing process, we monitor the evolution
of the mean-square radius of gyration with time; this is shown
in Fig. 3. The curves are all seen to be monotonic and smooth,
with no obvious pause, which means that there is no trapping
in our system. It can also be seen that the deeper the quench
depth is, the faster the collapse is.

During collapse, the polymer beads cluster to minimize
contact with solvent particles. The average number of sol-
vent particles in contact with a polymer bead (Ng) vs. t
is recorded in Fig. 4. The time-dependent (Ng(¢)) can be
normalized as Ng(¢) = ((Ng(t)) — Noo)/({Ns(0)) — Noo) and
three stages of the collapse pathway can be found correspond-
ing to each stage mentioned above (Figs. 4(a) and 4(b)). Dur-
ing the first stage, Ng(¢) decrease rapidly, and then the rest
of the curve can be fitted approximately by two different ex-
ponential functions. By this way, we investigate the effect of
different quench depths and chain lengths on the duration of
each stage during collapse. We now describe each stage sepa-
rately in some detail.

Stage I: The first stage is characterized by rapid forma-
tion of localized clusters along the polymer chain after a sud-
den quench (see Figs. 2(a) and 2(b)). The locations of local-
ized clusters after quench are regions which possess a rela-
tively high density of beads along the chain due to fluctuation
before the quench (Fig. 2(a)). Initially, the polymer chain un-
dergoes local contraction as the clusters start to form along
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FIG. 3. (a) (R;(t)) vs. t for different quench depths; the polymer length is

N = 160 beads. (b) (Rg(t)) vs. t for different chain lengths. The repulsive
parameter is aps = 60.0kgT /r.. Each curve in Fig. 3 is averaged over 20
samples for polymers with 80-160 beads, and 16 samples for polymers with
240 and 320 beads, respectively.

the chain. Solvent particles are squeezed out during this pro-
cess. The dots on each curve set the end of this process as
shown in the insets of Figs. 4(a) and 4(b). It is clear that the
deeper the quench depth is, the faster the process. We find
that this stage is well fitted with Gaussian function, i.e., Ng(t)
= exp(—12/(27})), we obtain approximately 7; ~ &~0-36£001
for polymer chain length N = 160 as shown in Table I, in
which 7; is the time scale of the local contract process.
Similarly, we get other scaling exponents as —0.36 £ 0.01,
—0.40 £0.06, —0.38 £ 0.07, and —0.43 £0.07 for chain
length N = 80, 120, 240, and 320, respectively. Because this
process occurs on a local scale, we do not expect any chain
length dependence; indeed, we find no chain length depen-
dence in t; (Table II shows t; for different chain lengths at
a fixed quench depth aps = 60.0kgT /r.). Generally, we find
the scaling law of this stage as 7; ~ £~ 93+005 N0 Indepen-
dence of this time scale on the chain length has also been ob-
tained by other authors,® 4 while no previous result has been
given on the scaling with the quench depths &.

After the rapid local contraction, polymer beads begin
to gather to form clusters. Interestingly the process is not a
simple monotonic one, but involves a visible overshoot and
small oscillations; see insets in Figs. 4(a) and 4(b). We do
not have a simple explanation for this phenomenon, except to
note that the local contraction may lead to a rapid increase of
tension along the chain backbone, which must subsequently
relax. Several researchers® !'>14 argued that the first stage is
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FIG. 4. (a) Normalized average number of solvent particles in contact with a polymer bead Ng(¢) vs. ¢ during collapse for the same chain length N = 160
beads at different quench depths. (b) Ns(¢) vs. ¢ during collapse for the different chain lengths at the same repulsive parameter. The insets in both (a) and (b)
show the first stage, with the dots indicating the time scale of this stage. (c) Average number of clusters along the contour (N,szer (1)) Vs. ¢ for the polymer with
160 beads at aps = 60.0kpT /r.. (d) A log-log plot of the number average cluster size (S,(¢)) as a function of time ¢ during collapse of different chain lengths
ataps = 60.0kpT /r.. The straight line is fitted to the linear region of the curves.

akin to “spinodal decomposition,” and some identified a char-
acteristic blob size. Visual inspection of the collapse transi-
tion pathway indeed shows resemblance to spinodal decom-
position; however, it is difficult to quantify the characteristic
blob size and “uphill” diffusion against the density gradient®
in the current simulation.

Following the first stage is the coarsening process dur-
ing which clusters absorb nearby beads and coalescence with
other clusters. As a result, clusters grow while their number
decreases (Figs. 4(c) and 4(d)). We separate it into two stages
by fitting into two exponentials, using the physical picture of
the collapse pathway as a guide. For the stage 2 which im-
mediately follows the first stage, we smooth out the oscilla-
tions using a standard numerical algorithm—adjacent averag-
ing. We characterize the time scale for each stage and note
little similarity between our results and results from previ-

ous works. Generally, the time scales are longer if the quench
depth is shallower and/or the chain is longer.

Stage 2: This stage corresponds to the coarsening of the
clusters in situ (Fig. 2(c)). At the beginning of this stage, clus-
ters are small, typically only containing 3-5 beads, and they
grow in size mainly by absorbing polymer beads and some
other small clusters that form the bridges between clusters.
Then larger clusters form and roughly stay stationary while
single beads and smaller clusters approach them as single
beads and smaller clusters in the bridges that are not taut have
higher mobility. Gradually, the “wiggly” bridges are straight-
ened. This is also a fairly rapid process but much slower
than the first stage. We measure the time scale of this pro-
cess from the intersection between the fitting for this stage
and that for the following stage and find 7, ~ £~0-32+0:02 for
the chain length N = 160 as shown in Table I. For other

TABLE I. Durations for each stage at different quench depths for the same chain length of 160 beads. y is the
apparent exponent in the scaling of the time scale of each stage with the quench depth (i.e., T ~ &7).

Apg §' T1 %) 3 Tc

40.0 0.48 0.15 7.65 61.86 69.78
50.0 0.85 0.12 6.99 41.52 48.63
60.0 1.22 0.11 5.77 36.01 41.89
80.0 1.96 0.09 5.01 31.32 36.42
100.0 2.70 0.08 4.58 26.03 30.69

y —0.36 £ 0.01 —0.32+0.02 —0.47 £ 0.05 —0.45 £ 0.04
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TABLE II. Durations for each stage of different chain lengths at the same
repulsive parameter aps = 60.0kpT /r.. y is the exponent in the apparent
scaling of the time scale of each stage with the chain length (i.e., T ~ NYV).

Chain length N 71 %) 3 Te

80 0.11 4.90 19.38 24.39
120 0.12 5.98 27.74 33.84
160 0.11 5.77 36.01 41.89
240 0.11 11.43 50.47 62.01
320 0.12 13.09 72.40 85.61

y 0 *4 0.93 £0.04 0.90 +0.03

“x indicates that the quality of the data is not good enough to obtain a meaningful scaling
exponent.

chain lengths N = 80, 120, 240, and 320, the scaling ex-
ponents are —0.43 +0.10, —0.25 £ 0.02, —0.23 £ 0.03, and
—0.23 £ 0.03, respectively. Halperin and Goldbart® proposed
7, ~ N/3 for this stage, but the quality of our data (Table II)
is not sufficient to allow us to obtain an exponent with rea-
sonable accuracy. It is clear, however, that the time scale in-
creases with the chain length. Combining the results for dif-
ferent chain lengths, we obtain the scaling law of this stage as
T, ~ £~0.30£0.05

Stage 3: As the bridges are straightened, clusters grow in
size mainly by moving in the solvent and coalescing with each
other (Figs. 2(c)-2(h)). The decreased mobility of clusters (as
a consequence of their increased size) results in a slower de-
crease of N g(t) and longer duration compared to the second
stage. According to the thesis of some earlier works, at this
stage, clusters are regarded as a spherical ball and there exist
an energy barrier in bringing two different clusters close.®’
But in our simulations, we find that clusters undergo facile
shape distortion when approaching each other (see discus-
sions below) and coalescence rather quickly, without any ap-
parent barrier.

Shape distortion is allowed by the fluctuation of cluster
beads in their position. During this stage, clusters are not yet
quite compact and are relatively small; a large fraction of the
beads, especially those on the surface are in contact with the
solvent molecules. These beads are subjected to frequent col-
lision with solvent particles, and hence the polymer beads are
subjected to large fluctuations in their position. A quantitative
measure of the fluctuations of these beads can be obtained by
examining the mean-square amplitudes of the normal modes
of the polymer. In Fig. 5, we plot the amplitude of the p-
modes (X7 (1)) of the polymer. The small p-modes (X7 (1))
represent relatively global fluctuation of polymer and large
ones represent relatively local fluctuation of polymer. The
amplitude of the p-modes are observed to decrease toward
equilibrium, implying local structures at such length gradu-
ally are included into clusters of increasing size. As shown
in Fig. 5(a), (X;(t)) reach equilibrium from p =8 to p = 1
one by one as clusters grow larger and larger. But as shown
in Fig. 5(b), the curves of (Xgo(t)) and (XfGO(t)), which rep-
resent single monomer fluctuation, do not reach equilibrium
until the end of the collapse. We note that in Ref. 14, large
p-modes fall to equilibrium rapidly, which is quite different
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FIG. 5. (a) Amplitude of normal mode (X i (1)) vs. time step ¢ of a polymer
with 160 beads at repulsive parameter aps = 60.0kgT /1. in which p =1, 2,
5, 8, 80, and 160, respectively. (X éo(z‘)) and (X fﬁo(t)) keep decreasing until
equilibrium at the end of the transition. The lines are used to guide readers.

from ours. This difference could be due to both their use of
the implicit solvent model and the introduction of approxima-
tions in their analysis.

When some of clusters get close to each other, although
clusters have lower mobility due to their size and the con-
straint of the polymer chain, the outer polymer beads with
high fluctuation in their position allows clusters to undergo
shape distortion that can help two separated clusters get into
contact and then join together. The clusters that just touch
soon merge into a new bigger spherical one because of cap-
illary forces as sausage-like clusters are unstable in solvent,
which is also discussed by other works.® 3¢ This stage fol-
lows a pearl-necklace mechanism with decreasing number of
“pearls” along the “necklace.” In almost all of the samples,
we find that the “pearl-necklace” shortens to a dumbbell con-
formation at the late coarsening stages (Fig. 2(f)). We reason
that the dumbbell conformation is a consequence of the higher
mobility of two end-clusters which retract from the ends and
grow and dominate by coalescing with the neighboring clus-
ters. This phenomenon was discussed in some detail in the
work by Ostrovsky ef al.3"-3

Eventually, the dumbbell joins together into an ellipsoid
(Figs. 2(f) and 2(g)). As the new sausage-like cluster is not
yet compact, the collision with solvent particles provides the
mechanism for it to search for a lower-energy state and thus
the sausage-shaped cluster deforms into a crumpled globule
smoothly (Figs. 2(g) and 2(h)). In contrast, in methods which
treat the solvent implicitly, the solvent-monomer repulsion
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TABLE III. Overall collapse time with different quench depths and different chain lengths. y; is the exponent
in the apparent scaling of the time scale with the quench depths (i.e., T ~ &1). y, is the exponent in the apparent
scaling of the time scale with the quench depths (i.e., T ~ §72).

§ 780 7120 7160 7240 7320 V2
0.48 37.12 51.69 69.78 96.73 163.05 1.03 £0.09
0.85 27.83 38.30 48.63 63.85 121.49 0.99+0.14
1.22 24.39 33.84 41.89 62.01 85.61 0.90 £ 0.03
1.96 19.65 27.22 36.42 47.24 81.08 0.95+£0.09
2.70 16.82 23.07 30.69 45.55 70.43 1.02 £0.07
Vi —0.45+0.01 —0.45 £ 0.02 —0.45 +0.04 —0.44 £ 0.06 —0.49 £ 0.06

is represented by monomer-monomer attraction. When the
quench depth is low, the attraction between monomers can
be readily overcome by thermal fluctuation and the sausage-
like cluster can search for the lower-energy state and reach
equilibrium into a spherical one without being trapped. But
when the quench depth is deep, the attraction between poly-
mer beads can be so strong that the relatively small ther-
mal fluctuation is insufficient to help the sausage deform
into a globule on short time scales. This is probably the rea-
son that, in implicit solvent models, the conformation of the
polymer is frequently trapped in the sausage-like metastable
state.!%1%:27:39 The duration of this stage roughly scales
as 173 ~ £7047H005 for N = 160 and 73 ~ NOP3+004 4t gpg
= 60.0kpT /r. as shown in Tables I and II. We also
obtain the scaling exponents as —0.45=+0.03, —0.50
+0.02, —0.47 £0.07, and —0.56 £0.08 for the chain
length N = 80, 120, 240, and 320, respectively; and
1.06 +0.10, 1.03 £ 0.16, 0.95 £ 0.13, and 0.97 £ 0.07 for
aps = 40.0, 50.0, 80.0, 100.0k5 T /r., respectively. Thus the
overall scaling law of this stage is approximately t3
~ g~049£0.05 0992011 Halperin and Goldbart® once got 73
~ N®5 which has a larger exponent than our results.

As a result of the coarsening process including second
and third stages, the number of clusters decreases and their
sizes increase. During this process, the growth of the aver-
age cluster size (S,(¢)) with time ¢ at a given quench apg
= 60.0kgT /r. is recorded as shown in Fig. 4(d). The log-
log plots show power-law behavior for the growth of the av-
erage cluster size with time as (§) = At¢?, where z is a col-
lapse exponent. We obtain scaling exponents z as 0.98 = 0.11,
0.95 +0.07, 0.93 £ 0.11, 0.97 + 0.04, and 0.94 £ 0.07 and
repulsive parameters aps = 40.0, 50.0, 60.0, 80.0, and 100.0,
respectively. Thus during the coarsening process, (S,(t))
~ (095008 "We note that similar results were also obtained
in the work of Pham et al.,'® but not in other previous works.
We also note that the growth exponents for (S,(¢)) is larger
than Klushin’s’ and Byrne et al.’s'> theoretical predictions.
We suspect that the cluster shape fluctuation that was not con-
sidered in these theoretical studies can accelerate the coales-
cence of the clusters.

We note that numerically the curves in Figs. 4(a) and 4(b)
during stage 3 can be better fitted by two different exponen-
tial functions, with two different relaxation times. This would
suggest that stage 3 can be further divided into two separated
stages. Visual inspection of the collapse pathway seems to

show that the first part corresponds to coarsening associated
with backbone conformation change until the coalescence of
the “dumbbell,” while the latter part corresponds to rounding
of an ellipsoidal shaped globule into a spherical one. How-
ever, the two time scales associated with these two processes
are very similar with respect to their scaling in the quench
depth and chain length. Given the error bars in the simulation,
we are unable to definitively state whether the two processes
constitute different mechanistic stages.

Stage 4: This is the relaxation towards the final equilib-
rium globule. Experimentally, this stage has been examined
by several groups.>= But it is difficult to find this stage by
monitoring (Rg(t)) and (Ng(?)) in our simulation as these
two dynamic measures are insensitive to the small (largely
internal) rearrangements. However, analysis of the normal
modes as shown in Fig. 5(b) reveals that the large-p modes
continue to decrease long after (Rg(t)) and Ng(¢) reached
their equilibrium values. As discussed by Grosberg et al.,"!
for long polymers, this stage most likely involves the self-
entanglement due to knotting, which will require very long
simulation times. Furthermore, the softness in the potential
used in the DPD method is not strong enough to prevent chain
crossing. Therefore, we will not discuss this stage further in
this paper.

Operationally, the characteristic duration of the collapse
transition 7. can be calculated as Ré(t) =/ 100)(R§(0)
— (R;)eq) + (R;)gq).l“’ 19 During the last stage, the change in
(Rg(t)) is insignificant, so the characteristic duration of the
transition defined this way primarily involves the first three
stages. Here we add the duration of each stage as a measure
of the collapse time; the behaviors of these two differently
defined collapse times are similar. The results in Table III
show the scaling of the characteristic collapse time with the
quench depth & = (aps — a%)/a% of various chain lengths;
our best fit yields 7. ~ & ~046*004 (RFig_6(a) shows the case of
polymer of N = 160 beads). We note that there no previous
simulations have yielded reliable results for the scaling law
between 7. and £. Buguin et al.” once proposed 7, ~ &2 by
a phenomenological model that neglected the hydrodynamic
interactions. Our results are clearly different —zt,. decreases
slower with the quench depth than that predicted by them.
We emphasize that all the scaling exponents reported in our
work are apparent ones. In particular, when adding all the time
scales from the three stages to get the total collapse time, the
scaling of the latter is expected to be the same as the longest
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FIG. 6. (a) The log-log plot of the collapse time 7, vs. quench depth & with
the same polymer chain length N = 160 beads. (b) The collapse time . vs.
the chain length N ataps = 60.0kgT /1.

time scale from the three stages. That in some cases we get a
scaling exponent in the N dependence for the overall collapse
time that is less than some of the stages is a reflection of the
error bars in our data. Here we just report the apparent value
obtained from numerical data fitting.

For the chain length dependence, the results in Ta-
ble III show that the collapse time increases with chain
length as 7. ~ N09%8+09 (Fig_ 6(b) shows the case at apg =
60.0kgT /r..). We note that some other simulation methods,
such as Lee and Kapral,”> Pham et al."” also reported lin-
ear scaling. Lee and Kapral.?> used stochastic rotation dy-
namics and got 7. ~ N. However, using the same method,
Kikuchi et al.'” obtained 7, ~ N*/3, which agreed well with
their own phenomenological model. Pham et al.'® used Brow-
nian dynamics also obtained 7. ~ N !, but only for shallow
quenches when there is no trapping at the sausage-like stage.
We do not have a clear understanding of the discrepancy be-
tween the various previous studies. However, it is worth not-
ing these aforementioned studies all employed implicit sol-
vent models.

Using the scaling law of the collapse duration 7, to
rescale Figs. 3(a) and 3(b), we find (R;(t)) with different
quench depths £ and chain lengths N can superpose well with
each other as shown in Figs. 7(a) and 7(b).

Finally, we obtain the overall collapse time with dif-

ferent quench depths and different chain lengths as t.
o £ 0462004 77 0.9820.09,

J. Chem. Phys. 134, 244904 (2011)
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FIG. 7. (a) Normalized (Rg(t)) vs. scaled ¢ at different quench depths. (b)
Normalized (Rg(t)) vs. scaled ¢ for different chain lengths.

IV. CONCLUSIONS

In this work, dissipative particle dynamics simulation
is employed to investigate the dynamics of coil-to-globule
transition. The focus of this paper is to investigate the col-
lapse pathway and the many-body interaction of solvent par-
ticles on the collapse pathway. According to our results, the
collapse follows the “pearl-necklace” mechanism with four
stages without trapping into a metastable “sausage-like” con-
formation as seen in implicit solvent methods. The first stage
is characterized by formation of localized clusters which in
some respects resembles spinodal decomposition, but fails
to exhibit some key signatures of spinodal decomposition,
such as characteristic length scale corresponding to the fastest
growing Fourier mode in the density fluctuation and the
growth of this mode. The second to third stages correspond to
various coarsening processes with different mechanisms for
each stage: coarsening in situ, coarsening involving global
backbone motion into a spherical globule. The growth of
clusters in size satisfies (S,(t)) ~ t%9*0-08 at a given quench
depth. During the last stage, the crumpled globule relaxes into
a compacted globule eventually. By monitoring the normal-
ized solvent molecules in contact with the polymer N(t),
the first three stages are identified and the time scale of
each stage is obtained. The overall collapse time is shown
to scale with the quench depth & and the chain length N as
T, ~ £704620.04 50982009 Many of these results differ from
those reported in earlier analytical and simulation studies that
did not include solvents explicitly.
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