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Abstract. The Spitzer Infrared Spectrograph (IRS) data are taken via read-
without-reset measurements to obtain multiple samples forming a photometric
“ramp” for each pixel in an echellogram. Each ramp is linearized via a quadratic
model. After linearization, a quality-assurance test is performed to determine
how linear each pixel’s ramp has become. This is accomplished by fitting a
straight line to the ramp via χ2 minimization. The goodness of fit is of primary
importance, since this determines whether the inevitable deviations from linear-
ity are statistically significant given the estimated photometric noise. Because
the latter is dominated by photon noise which is summed up the ramp, the χ2

parameter used to measure goodness of fit must include the effects of correlated
errors. This paper describes the construction of the full error covariance matrix
and its use in the χ2 minimization.

1. Introduction

One of the challenges in the scientific application of new hardware technology
is quantifying the extent to which the hardware behavior is understood. The
depth of this understanding is invariably revealed most accurately by the state of
the corresponding data-analysis algorithms devoted to the “error analysis”, i.e.,
the mathematical modeling of the uncertainty in the values of any parameters
derived from measurements obtained via the hardware. This uncertainty may
originate in both the object of measurement (e.g., fluctuations in the arrival rate
of photons) and the hardware itself (e.g., dark current drifts). The characteriza-
tion of uncertainty determines the scientific usefulness of the measurements, so
it is desirable to model the hardware as accurately as possible in order to min-
imize the uncertainty, then to evaluate the irreducible uncertainty accurately
enough to make reliable statistical interpretations (e.g., to be confident in judg-
ing the difference between an expectable fluctuation and an externally generated
“glitch” such as a cosmic ray hit).

It may happen that the errors in two measurements are correlated through
mutual dependence on common random events. This can significantly affect sta-
tistical interpretations and thus must be taken into account in the error model.
A typical example arises in the evaluation of “goodness-of-fit” parameters, the
most common of which is the χ2 statistic. In practice, the effect of ignoring
correlations when computing χ2 is usually underestimation, which tends to sug-
gest misleadingly that the errors are slightly overestimated and thus comfortably
conservative. Including the correlations could reveal that the statistical signif-
icance of the discrepancies is actually larger than expected, indicating possible
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Figure 1. The error ellipse for correlated errors is rotated and has a smaller
area than the error ellipse whose covariance matrix has the same diagonal
elements but zero off-diagonal elements. Ignoring correlation would underes-
timate the significance of the deviation of the point marked by X.

problems with the modeling. In any case, an accurate χ2 value is highly desir-
able for its ability to signal most problems with the hardware model or the error
estimation.

An easily visualized example of correlated errors is that of celestial coordinates
whose uncertainty involves an error ellipse that is rotated with respect to the
coordinate system. Figure 1 shows a case in which a positive error on the
horizontal axis is more likely to accompany a negative error on the vertical axis,
i.e., the errors are negatively correlated. The smaller error ellipse includes the
correlation information, while the larger unrotated ellipse corresponds to an
error covariance matrix with the same diagonal elements but zero off-diagonal
elements. The area inside a one-sigma contour is clearly greater when the off-
diagonal elements are taken to be zero.

2. Correlated Errors in Spitzer Infrared Spectrograph Ramps

The Spitzer Infrared Spectrograph employs several echelle spectrographs whose
measurements are formatted as FITS data cubes, i.e., a stack of N 128×128
image planes, where 4 ≤ N ≤ 32. Each pixel has N nondestructive readouts in
the data cube. Since photo-electrons accumulate between each readout, the pixel
values generally increase with plane number, and so the set of values is called
a “ramp”. Ideally each ramp would take the form of a straight line, but noise
and nonlinear response prevent perfect linearity. The nonlinear response can be
well approximated as quadratic, and each pixel is calibrated accordingly. This
calibration is applied as part of the data reduction process, i.e., the quadratic
model is inverted to “linearize” the ramp. For quality assessment purposes, the
linearized ramp is fit to a straight line, and three goodness-of-fit parameters are
evaluated: the linear correlation coefficient, RMS dispersion, and χ2 statistic.
χ2 depends on the deviations of the linearized data from the best-fit straight

line and on the a priori uncertainties in these data. The uncertainties are
provided by an error model that incorporates such instrumental effects as cali-
brated read noise, dark subtraction uncertainty, linearization uncertainty, etc.,
and “photon noise” caused by “counting-statistics” fluctuations in the incoming
photon stream. The photon noise is well approximated as a Poisson process, and
the sum of the other uncertainties is well approximated as a Gaussian process.
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The Poisson process is generally well into its Gaussian limit also, but the Poisson
character is retained in that the variance is equal to the mean, where the mean
is the measured number of photo-electrons in the detector well at readout time.
Errors in this mean due to Poisson fluctuations at one readout are inherited at
the next readout, and so each readout above the first contains the sum of all
fluctuation errors below, correlating these errors. The other sources of error oc-
cur downstream from the well and are effectively independent from one readout
to the next. The error in readout no. i of a ramp is

εi = εpi + εui =
i
∑

j=1

∆εpj + εui

where εpi is the total Poisson photon noise at plane i, i.e., the sum of the
incremental fluctuations ∆εpj over all lower planes up to and including plane
i, and εui is the total uncorrelated noise at plane i. We are interested in the
expectation value of the product of the errors at any two planes m and n:

εmεn =





m
∑

j=1

∆εpj + εum





(

n
∑

k=1

∆εpk + εun

)

=
m
∑

j=1

(

∆εpj

n
∑

k=1

∆εpk

)

+ εumεun + εum

n
∑

k=1

∆εpk + εun

m
∑

j=1

∆εpj

Since εum is uncorrelated with all errors in the ramp other than itself (i.e.,
εun when n = m), the last two terms on the right will become zero when we
take expectation values. Similarly, the second term’s expectation value will
be zero for m 6= n. Furthermore, each incremental photon-noise error ∆εpj is
uncorrelated with each other ∆εpk except for j = k. For m = n, the expectation
values are therefore

〈

ε2n

〉

≡ vn =

〈

n
∑

k=1

∆ε2pk

〉

+
〈

ε2un

〉

= σ2
pn + σ2

un

where vn is the total error variance at plane n (i.e., vnn with the second index
suppressed), the sum of the photon noise variance σ2

pn and the total uncorrelated

noise variance σ2
un at that plane. This total error variance is computed from the

error model and is available at each processing stage. What is not provided
and must be reconstructed are the off-diagonal elements of the error covariance
matrix, vmn, which we obtain by considering m > n:

〈εmεn〉 ≡ vmn =

〈

n
∑

k=1

∆ε2pk

〉

= σ2
pn

So the covariance of the error at plane m with that at the lower plane n is the
photon noise at plane n. Because of the Poisson character of the photon noise,
this is just the number of electrons at plane n, which we will denote yn to be
consistent with the linear equation used in the fitting,

y = ax+ b

where x is the plane number.
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3. Linear Fit via χ2 Minimization With the Full Error Covariance
Matrix

We can now construct the full error covariance matrix. The diagonal elements vn

are supplied by the error model, and the off-diagonal elements vmn are just yn,
where m > n. For example, a five-plane ramp would have the error covariance
matrix:

Ω =













v1 y1 y1 y1 y1

y1 v2 y2 y2 y2

y1 y2 v3 y3 y3

y1 y2 y3 v4 y4

y1 y2 y3 y4 v5













We define the vector u whose ith component is the fitting deviation at plane i :

ui ≡ yi − axi − b

With a full N ×N error covariance matrix, χ2 is

χ2 = uWuT

where uT is the transpose of u, and W is the inverse of Ω and has elements wij .
Expanding the vector-matrix-vector multiplication yields

χ2 =
N
∑

i=1

N
∑

j=1

wijuiuj

Inserting the definition of the components of u, differentiating with respect to
the fitting coefficients a and b, and setting the results to zero gives a 2×2 system
of linear equations

a
N
∑

i=1

wixi + b
N
∑

i=1

wi =
N
∑

i=1

wiyi

a
N
∑

i=1

xizi + b
N
∑

i=1

wixi =
N
∑

i=1

yizi

where

wi ≡
N
∑

j=1

wij , zi ≡
N
∑

j=1

wijxj

This system of equations is easily solved for a and b, and then the value of χ2 is
computed from the equation defining it above.

When applied to well behaved simulation data, the calculations described
above reveal the typical features of curve fitting via χ2 minimization with the
inclusion of correlated errors: the coefficients obtained are rather insensitive to
whether the error correlation is taken into account, but the value of χ2 tends
to be highly dependent on it. As Figure 1 shows, while the significance of a
deviation depends noticeably on which error ellipse is used in the interpretation,
the weighted average of many points spread randomly according to the smaller
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ellipse would not tend to depend strongly on which ellipse supplied the inverse-
variance weighting.

Simulation data were generated for five 16-plane ramps with illumination de-
signed to sample the dynamic range of real IRS pixels. The nominal increments
in electrons per plane varied linearly from 2,250 to 20,250 from pixel 1 to pixel
5. With a gain of 5.0, this produces a DN of 64,800 at plane 16 of the brightest
pixel, close to the limit of an unsigned 16-bit integer. A nominal read noise of
10 electrons/read supplied the uncorrelated non-photon noise. Pseudorandom
noises were added to the nominal signal to generate the ramps, and then the lin-
ear fits were computed. Numerous trials were performed, and the results shown
in the table below are typical.

Table 1. Linear Fits With and Without Error Correlation Included

Pixel ∆e−/P lane χ2
uncorr/Ndf P (χ2

uncorr) χ2
corr/Ndf P (χ2

corr)

1 2250 0.31 0.00719 1.41 0.86001
2 6750 0.24 0.00173 0.86 0.39928
3 11250 0.26 0.00294 1.32 0.81334
4 15750 0.42 0.03064 1.09 0.63516
5 20250 0.29 0.00474 0.98 0.52799

Notes: Ndf is the number of degrees of freedom, here 14, since there are 16 planes
and 2 fitting coefficients; the expectation value of χ2/Ndf is unity, and the significance
of a given deviation from unity increases with Ndf ; P (χ2) is the fraction of all χ2 that
have Ndf degrees of freedom and are less than or equal to the argument.

For all pixels, χ2 is too small when error correlation is ignored. P (χ2) should
be approximately uniformly distributed over multiple trials, and this is clearly
not the case unless the error correlation is taken into account. Similar trends are
seen in real flight data, but so far these are somewhat diluted by the presence of
many uncorrelated errors, some of which are known to be overestimated. Work
is underway to refine the error models.
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