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Abstract. = We propose a nonlinear partial differential equation to control the
trade-off between smoothing and segmentation of images. Its solutions approx-
imate discontinuities, thus leading to detection of sharp boundaries in images.
The performance of the approach is evaluated by applying it to images obtained
by the Multiband Imaging Photometer for Spitzer (MIPS), 70pum imaging band.

1. Introduction

The principal goals of image enhancement are noise removal, or smoothing, and
recognition of objects of interest, which is also called image segmentation. These
operations are not independent and their connection is the source of major diffi-
culties encountered in the field of image processing. The trade-off is inevitable,
and a balance between these two desirable but incompatible objectives depends
on a specific application. The traditional approach to the noise removal problem
ignores this connection by simply convolving an image with a Gaussian. Though
such approach effectively removes noise, at the same time, it drastically smears
point sources and blurs boundaries and edges. The first breakthrough in tackling
this problem was achieved by Witkin (1983), who recognized that convolving an
image with a Gaussian, is equivalent to solving a Cauchy problem for the linear
partial differential equation (PDE) of diffusion with the noisy image as initial
condition, thus explaining the blurring of boundaries, as one would expect from
diffusion. This insight has led to the construction of multi-scale representations
of image data.

2. A Multi-scale Representation of Images by Using PDEs

The multi-scale representations of image data are obtained by embedding the
given image into a one-parameter family of derived images. This family should
be parameterized by a scale parameter and be generated in such a way that
fine-scale structures are successively suppressed when the scale parameter is in-
creased. Such construction allows to obtain a separation of the image structures
in the original image, such that fine scale image structures only exist at the
finest scales in the multi-scale representation thus simplifying the task of ob-
ject detection. This objective can be achieved by employing the aforementioned
connection between image processing and partial differential equations. Starting
with pioneering works of Rudin (1987) and Perona & Malik (1987), nonlinear
filtering based on nonlinear PDEs has become very useful in multiscale descrip-
tion of images, image segmentation, edge detection, image enhancement (Sapiro
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2001). This approach is a state of art based on the design and analysis of PDEs.
Perona and Malik (1987) proposed a nonlinear diffusion equation with the coef-
ficient of diffusion D as a nonnegative function of the magnitude of local image
gradient. The desirable D decays when the gradient grows and increases when
the gradient decays. A different PDE was introduced by Rudin (1987) as means
for nonlinear denoising of images without blurring sharp boundaries. He used a
modification of a nonlinear equation describing evolution of shock waves (thus
preserving or even sharpening objects). The approach suggested by Rudin had
to deal with the following complications: the original equation was not symmet-
ric in space, and it required a two-dimensional generalization. We use here an
equation which was derived in Shrira and Pesenson (1983) (see also Pesenson
1991) to describe diffraction and stability of multi-dimensional shock waves and
solitons. The equation has later become known as Shrira-Pesenson(SP) equation
(Kivshar & Pelinovsky 2000). The SP equation can be written in the following
form Ij;—c?Al+ (I} +12+12);—V(DV1;) = 0. It turns out, that this equation
naturally overcomes the aforementioned difficulties. Indeed, its two dimensional,
rotationally invariant and thus, following Rudin (1987), can be used to develop
a nonlinear filter.

3. Mosaics, Completeness and Reliability

Mosaics of two astronomical observation requests - AOR 3865856 and AOR
6070016 (NGC300) - are presented on Figures 1 and 2. Images were obtained
by MIPS, 70 microns imaging band (Rieke et al. 2004). Mosaic size is 0.9 deg
x 0.5 deg. Effective exposure time for one AOR is 30 sec. Effective exposure
time for four AORs is 120 sec. Basic calibrated data (BCD) is from SSC pipeline
version 10.0. Mosaic image is made by MOPEX (Makovoz & Khan 2004). There
are three images in each figure, showing from top to bottom respectively - the
mosaic before filtering, after a linear filtering (point sources are smeared), and
the mosaic after the nonlinear filtering (point sources remain sharp). One of the
goals of nonlinear filtering is to improve point source extraction. We applied
point source extraction software included in MOPEX (Makovoz & Khan 2004),
to a single AOR3865856 before and after filtering. The results were compared
with a true list of sources from an image obtained by combining four AORs
for the same field of view as AOR3865856. Figure 3 shows the completeness
and Figure 4 shows the reliability of the point source extraction (the solid line
corresponds to the filtered image, and the dashed line to the non-filtered image)
vs. logarithm of true flux in pmJy. Here completeness is defined as the ratio
of the number of matched sources to the number of true sources; reliability is
defined as the ratio of the number of detected sources to the number of matched
sources. The improvement is in the highest flux range, reaching 100% reliability.

4. Conclusion

It can be seen from the completeness and reliability plots (Figs. 3,4), that the
nonlinear filtering ensures better completeness and reliability for higher fluxes.
Stopping filtering at less coarse levels of scale (smaller times, in PDE‘s termi-
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Figure 1.  One AOR mosaic. From top to bottom - before filtering, after a
linear filtering (point sources are smeared), and after the nonlinear filtering
(point sources remain sharp).
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Figure 2. NGC300 mosaic. From top to bottom - before filtering, after a
linear filtering (point sources are smeared), and after the nonlinear filtering
(point sources remain sharp).



Figure 3.

Figure 4.
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nology) will increase completeness and reliability of the point source extraction
at lower flux levels as well.
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