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Instituto de F́ısica Teórica, Universidade Estadual Paulista

Rua Pamplona 145, São Paulo, SP 01405-900, BRASIL

Hirosi Ooguri

California Institute of Technology 452-48

Pasadena, CA 91125, USA

Cumrun Vafa

Jefferson Physical Laboratory, Harvard University

Cambridge, MA 02138, USA

Large N topological string dualities have led to a class of proposed open/closed dual-
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brane boundary state for the ten-dimensional open superstring naturally emerges on the

worldsheet of the closed superstring dual.

October 2003



1. Introduction

There is by now a large class of examples in string theory that realizes the idea of ‘t

Hooft of large N dualities for gauge theories. Most of the arguments for the existence of

such dualities derive from the target space perspective: the back-reaction on the gravity

modes by the D-branes. However, the original motivation of ‘t Hooft was a statement

visible at the level of the worldsheet, namely he conjectured that somehow the holes in

the large N expansions of Feynman diagrams close up and lead to a closed string expan-

sion. Thus these dualities are expected to be visible genus by genus in the worldsheet.

Understanding the large N dualities from this viewpoint is crucial because it also will

teach us how the large N dualities, unlike U-dualities, are derivable from perturbative

considerations of closed string theory.

A simple example of large N duality was proposed in [1] which relates large N Chern-

Simons theory on S3, which is equivalent to open topological strings [2], with topological

closed strings on the resolved conifold, where the size of the blown up P1 is given by

the ‘t Hooft parameter. This duality has been derived from a worldsheet perspective in

[3]: Starting from the closed string side and using the linear sigma model description of

the worldsheet theory [4], one discovers that in the limit of small ‘t Hooft parameter, the

worldsheet develops a new phase (the Coulomb phase) which leads to the emergence of the

open string description. The new phase of the closed string worldsheet corresponds to the

‘filled holes’ of the open string worldsheet.

On the other hand, motivated from the meaning of topological string computations

as F term computations in an associated superstring [5], this topological string duality

was embedded in superstrings [6], and extended to a relatively large class of superstring

dualities (see e.g. [7]), and led to a link between N = 1 supersymmetric gauge theories and

matrix models [8]. Even though the worldsheet derivation of the topological string duality

would lead, by a chain of arguments, to the F term dualities in superstring context, a direct

worldsheet derivation of these dualities was missing in the context of the superstring.

In this paper we aim to fill this hole, at least at the level of F terms. A d = 4 spacetime-

supersymmetric description of the superstring on Calabi-Yau threefolds is given by the

hybrid formalism [9,10,11], which is related to the RNS formalism by a field redefinition.

We will show that the computation of F terms using the hybrid formalism is equivalent to

the computation of F terms using a ten-dimensional topological string with ĉ = 5. We will

then use the ĉ = 5 topological string to establish the worldsheet equivalence of F terms
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between open and closed sides. In particular, we will find using the ĉ = 5 description that

the D brane boundary state for the ten-dimensional open superstring naturally emerges

on the worldsheet of the closed superstring dual.

The topological string method has been used in motivating some of the results on

superpotential terms in gauge theories, for example in [12,13,14], which have then been

verified by field theory methods. This paper provides a precise justification of these results

from the string theory perspective. While we establish the equivalence of closed and open

strings only at the level of F terms, the setup we present should be viewed as the first step

in the derivation of the full duality

The organization of this paper is as follows. In section 2 we review the worldsheet

derivation of large N topological string duality [3]. In section 3 we formulate topological

strings directly in ten dimensions, with ĉ = 5, and show its equivalence to the hybrid

formalism [9,10,11] when evaluating F terms for superstring compactifications. In section

4 we use this ĉ = 5 topological formulation of the superstring to establish the worldsheet

equivalence of F terms between open and closed sides.

2. Review of Topological String Duality

In this section, we will briefly review the worldsheet derivation [3] of the duality be-

tween the A-type topological closed string on the resolved conifold and the open topological

string on the deformed conifold with N A-branes wrapping on the S3 of the conifold. The

topological string coupling constants are the same on both sides of the duality and denoted

by λ. The Kähler moduli t of the resolved conifold (the “size” of the P1) in the closed

string side is mapped to the number N of the A-branes in the open string side by the

relation,

t = iNλ. (2.1)

In this sense, this is an example of the ’t Hooft duality. This duality was conjectured in

[1], and various evidences for the duality have been found in [15,16,17,18,19,20].

To derive the duality, we start with the closed string side and expand string amplitudes

in powers of t. What is expected to emerge from the duality is a sum over open string

worldsheets with each boundary weighted by the factor of Nλ = −it. The target space

becomes singular in the limit t → 0, and the worldsheet in the limit is best described by

using the linear sigma model [4]. For the resolved conifold, the linear sigma model consists

of four chiral multiplets, whose scalar fields are denoted by a1, a2 and b1, b2, and one vector
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multiplet, whose scalar field is denoted by σ. The chiral multiplet fields a1, a2 carry charge

+e with respect to the gauge field A in the vector multiplet, and b1, b2 carry −e. After

integrating out the auxiliary fields, the potential U for the bosonic fields are given as

U = |σ|2
(
|a1|

2 + |a2|
2 + |b1|

2 + |b2|
2
)

+ e2
(
|a1|

2 + |a2|
2 − |b1|

2 − |b2|
2
)
. (2.2)

According to the duality relation (2.1), the Kähler moduli is pure imaginary. In this

case, t appears as the theta term for the gauge field ∼ t
∫
dA. If we introduce a twisted

chiral superfield Σ defined from the vector superfield V as Σ = D̄+D−V = σ + · · ·, the

theta term can be also written as as an F term with the superpotential

W = tΣ. (2.3)

We will find this description in terms of Σ to be useful in the following discussion.

When t 6= 0, the linear sigma model flows in the infrared limit to the non-linear sigma

model for the conifold. The theta term lifts the Coulomb branch and constrains σ = 0.

Since e → ∞ in the infrared limit, the chiral multiplet fields should obey |a1|2 + |a2|2 =

|b1|2 + |b2|2 modulo the gauge symmetry, (a1,2, b1,2) → (eiθa1,2, e
−iθb1,2). We recognize

this quotient is the conifold geometry.1 In this limit, σ is identified with the chiral primary

field associated to the element of H1,1 dual to the P1.

When we expand around t = 0, however, we need to take into account a new flat

direction where σ can be non-zero. Due to the potential (2.2), the chiral multiplet fields

are now constrained to vanish, a1,2 = b1,2 = 0. We call this flat direction as the C branch.

In comparison, the branch where σ = 0 is called the H branch. When we quantize the

linear sigma-model, we need to integrate over both C and H branches. It is useful to think

that the worldsheet is divided into C and H domains, where the fields take values in the

C and H branches respectively. Performing the functional integral involves summing over

all possible configurations of these two branches.

We expect that quantization of the H branch still leads to the sigma-model on the

conifold away from the conifold point. How to remove the conifold point would depend

on how we divide the integral over σ between the two branches. On the other hand, the

1 The gauge invariant combinations, zij = aibj , obey the relation z11z22 − z12z21 = 0 defining

the conifold geometry. For a given set of zij , the original fields ai and bi are determined mod-

ulo (a1,2, b1,2) → (eρa1,2, e
−ρb1,2), which is taken into account by the gauge symmetry and the

constraint |a1|
2 + |a2|

2 = |b1|
2 + |b2|

2.
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C branch is non-geometric since a1,2, b1,2, which are coordinates for the conifold, become

massive. We regard C domains as holes on the worldsheet and claim that this is how open

strings emerge from the closed string theory. For this interpretation to work, we need that:

(1) Every C domain has the topology of the disk.

Contributions from all other topologies should vanish in string amplitudes.

(2) Each disk in the C branch contributes the factor of −it = Nλ.

It was shown in [3] that both of these statements are true.

To show (1), it was noted that each C domain contributes to a topological string

amplitude as ∮
dσ0

∂

∂σ0
F (C)(σ0), (2.4)

where F (C)(σ) is the partition function for the C domain with the boundary condition

σ = σ0. The action of
∮
dσ0∂/∂σ0 is due to a Jacobian factor that is needed to trade a

part of the functional integral into an integral over configurations of the C domain. By

the topological BRST symmetry, F (C)(σ0) is holomorphic in σ0. This means that the

contribution (2.4) would vanish if F (C) is a single-valued function of σ0. This is the case

when the C domain has a handle or more than one boundaries. The only exception is the

case when the C domain has the topology of the disk. The string amplitude on the disk

is not well-defined unless we have some punctures, and F (C)(σ0) can have a monodromy

around σ0 = 0, which can be picked up by the integral in (2.4).

To evaluate (2.4), we note that the C domain has a description as a Landau-Ginzburg

model with the superpotential W being given by (2.3). The disk amplitude is then given by

an integral of exp(−W ). The only subtlety is the measure factor of σ−2 which arises from

the integral over a1,2, b1,2, which are massive in this domain. Taking this into account, we

find,

F (C)(σ0) =

∫ σ0 dσ

σ2
exp(−tσ).

This show that the disk amplitude is indeed multivalued around σ0 = 0 as F (C)(σ0) ∼

−σ−1
0 − t log σ0 + · · ·. Therefore the contribution of the C domain of the disk topology is

given by ∮
dσ0

∂

∂σ0
F (C)(σ0) =

∮
dσ0

σ2
0

exp(−tσ) ∼ −it = Nλ.

This shows that (1) and (2) are indeed true for the closed string theory.

We have found that the closed string amplitude, when expanded in powers of t, can

be expressed as a sum over holes on the worldsheet with the power of t keeping track
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of the number of holes. Namely the closed string theory is indeed equivalent to an open

string theory with some boundary condition. Is the boundary condition exactly what we

expect from the large N duality? Since the worldsheet variables a1,2, b1,2 become massive

in the C domain, near the interface of the C and H domains, they stay near the tip of

the conifold. Their precise behavior depend on how we divide the σ integral between the

two branches. On the other hand, the A brane for the open string is supposed to wrap on

the S3 of the deformed conifold. Its size is undetermined since changing the radius is a

BRST trivial deformation. When the radius is small, the S3 is near the tip of the conifold.

Therefore, modulo the ambiguities that exist in both sides of the duality, the boundary

of the C domain correctly reproduces the A brane boundary condition in the open string

dual.

3. Equivalence of ĉ = 5 and Hybrid Computation of F Terms

In this section we introduce the concept of topological strings in ten dimensions with

ĉ = 5, generalizing the topological strings often used in the context of Calabi-Yau three-

folds, and establish its direct equivalence to the hybrid formalism for certain F term

computations in type II superstrings.

In the first subsection, we will show that states in the G+ cohomology in the ĉ = 5

topological string include supersymmetry multiplets containing massless compactification

moduli as well as the multiplet containing the self-dual graviphoton field strength. In the

second subsection, we will give a ĉ = 5 topological prescription for computing tree and

loop scattering amplitudes involving these states which will contribute only to F terms in

the low-energy effective action. And in the third subsection, we will show how to describe

these states using the hybrid formalism and will prove that the hybrid prescription for

their scattering amplitudes agrees with the ĉ = 5 topological string prescription.

3.1. Chiral states using the ĉ = 5 description

The worldsheet fields in the ĉ = 5 formalism include the d = 4 variable xm for m = 0 to

3, the left-moving chiral superspace variables θα and its conjugate momentum pα for α = 1

to 2, and an N = 2 ĉ = 3 superconformal field theory for the internal compactification

manifold. Unlike the superstring in the hybrid formalism, the ĉ = 5 formalism does

not involve dotted superspace variables θ∗α̇ or its conjugate momenta p∗α̇, and also does

not contain the chiral boson ρ. For the type II superstring, the ĉ = 5 formalism also
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includes the right-moving fermionic variables θ̄α and its conjugate momenta p̄α, but does

not involve θ̄∗α̇ or p̄∗α̇. (We will reserve barred notation throughout this paper to denote

right-moving variables, and will use the ∗ superscript to denote dotted spinor variables.)

For the formalism to be Hermitian, one therefore needs to Wick-rotate to either signature

(4, 0) or (2, 2) so that θα is real. Although the reality conditions for spacetime fields

in these signatures are not the standard ones, it is straightforward to Wick-rotate back

to the standard Minkowski reality conditions after computing scattering amplitudes and

determining the corresponding F terms in the effective action.

In the N = 2 ĉ = 5 formalism, the worldsheet action is

S =

∫
d2z(pα∂̄θα + p̄α∂θ̄α +

1

2
ǫαβ∂x

α+̇∂̄xβ−̇) + SCY

and the left and right-moving twisted N = 2 generators are

T = pα∂θ
α +

1

2
ǫαβ∂x

α+̇∂xβ−̇ + TCY ,

G+ = θα∂x
α+̇ +G+

CY , G− = pα∂x
α−̇ +G−

CY ,

J = θαpα + JCY .

T̄ = p̄α∂̄θ̄
α +

1

2
ǫαβ ∂̄x

α+̇∂̄xβ−̇ + T̄CY ,

Ḡ+ = θ̄α∂̄x
α+̇ + Ḡ+

CY , Ḡ− = p̄α∂̄x
α−̇ + Ḡ−

CY ,

J̄ = θ̄αp̄α + J̄CY ,

(3.1)

where xαα̇ = xmσαα̇
m and α̇ = (+̇, −̇), SCY and { TCY , G

+
CY , G

−

CY , JCY } are the worldsheet

action and twisted N = 2 ĉ = 3 generators for the internal compactification manifold, and

G+ and G− carry conformal weight +1 and +2 respectively. In the traditional description

of the topological string, one treats (xα+̇, θα, θ̄α) as holomorphic coordinates on C2 =

R4 and their superpartners and (xα−̇, pα, p̄α) as anti-holomorphic coordinates and their

partners. The four-dimensional part of the twisted N = 2 theory is then the topological

B model whose target space is C2. Note that the N = 2 generators of (3.1) only preserve

a U(1) × SU(2) (or GL(1) × SL(2)) subgroup of SO(4) (or SO(2, 2)) Lorentz invariance

in the signature (4, 0) (or (2, 2)). For simplicity, we will usually restrict our attention to

the left-moving sector.

Since
∮
G+ =

∮
(θα∂x

α+̇ +G+
CY ) plays the role of a BRST operator in the topological

N = 2 string, it is natural to compute its cohomology. Since θα∂x
α+̇ and G+

CY involve

different worldsheet fields, states V in the cohomology of
∮
G+ can be written as V =
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∑
i Φiσi where Φi is constructed from the four-dimensional fields {xm, θα, pα} and is in

the cohomology of
∮
θα∂x

α+̇, and σi is constructed from compactification-dependent fields

and is in the cohomology of
∮
G+

CY . Using the standard quartet argument, states in the

cohomology of
∮
θα∂x

α+̇ can depend only on the zero modes of θα and xα+̇. So the most

general state in the cohomology of
∮
G+ is

V =
∑

i

Φi(xα+̇, θβ, θ̄γ) σi (3.2)

where σi is in the cohomology of
∮
G+

CY . Such states will be called “chiral” states.

In this paper, we shall only consider chiral states where σi contains either +1 or zero

U(1) charge with respect to the left and right-moving internal JCY . (σi carrying zero

internal U(1) charge correspond to the identity operator.) Note that the U(1) charge in

the d = 4 sector is unconstrained in the chiral states considered here.

For the Type IIA (or Type IIB) superstring, chiral states carrying +1 left and right-

moving U(1) charge in the internal sector correspond to massless multiplets associated

with Kähler (or complex) moduli of the Calabi-Yau space. The associated chiral moduli

vertex operator is

V =
∑

i

Φi(xα+̇, θ, θ̄) σi (3.3)

where σi is a chiral primary of (left,right)-moving charge (+1,+1) associated with the

internal N = 2 ĉ = 3 superconformal field theory. The θ = θ̄ = 0 component of Φi

is the chiral modulus field and the θ = θ̄ = 0 component of DαD̄βΦi is the self-dual

Ramond-Ramond (R-R) flux associated with this modulus.

For both the Type IIA and IIB superstring, chiral states carrying zero U(1) charge

in the internal sector correspond to a multiplet containing the self-dual graviphoton. The

associated self-dual graviphoton vertex operator is

V = R(xα+̇, θ, θ̄) (3.4)

where the self-dual graviphoton field strength Fαβ is the θ = θ̄ = 0 component of ∂α+̇∂β+̇R

and the self-dual Riemann tensor Rαγβδ is the θ = θ̄ = 0 component of ∂α+̇∂β+̇DγD̄δR.

Although the chiral states of (3.3) and (3.4) do not have fixed charge with respect to

the U(1) charges
∫
dzJ and

∫
dz̄J̄ of (3.1), they can be defined to have fixed charge with

respect to ∫
dz(J +K) +

∫
dz̄(J̄ + K̄) (3.5)
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whereK = 1
2ǫαβx

α+̇∂xβ−̇−θαpα and K̄ = 1
2 ǫαβx

α+̇∂̄xβ−̇−θ̄αp̄α. Note that
∫
dzK+

∫
dz̄K̄

is a conserved charge which commutes with the N = 2 generators of (3.1). When (3.3) is

independent of xα+̇ and (3.4) is quadratic in xα+̇ (i.e. when Fαβ and Rαβγδ are constants),

these chiral states all have charge +2 with respect to (3.5).

3.2. Scattering amplitudes using the ĉ = 5 formalism

To compute scattering amplitudes of chiral states using the ĉ = 5 formalism, we shall

use the topological N = 2 prescription where
∮
G+ is treated as the BRST charge and G−

is treated as the b ghost. For M -point g-loop Type II scattering amplitudes, the N = 2

topological prescription is

Ag,M =

〈
∣∣
3g−3+M∏

j=1

∫
dmj

∫
µjG

−

∣∣2
M∏

r=1

Vr(zr)

〉
(3.6)

where µj denotes the (3g − 3 +M) Beltrami differentials associated with the worldsheet

moduli mj , and
∣∣ ∣∣2 signifies the product of left and right-moving terms. Since ĉ = 5, this

amplitude vanishes by charge conservation unless

5(1 − g) =

M∑

r=1

Jr − (3g − 3 +M), (3.7)

where Jr is the U(1) charge of Vr. So the sum of the U(1) charges of the vertex operators

must be equal to (2 − 2g +M) both in the left and right-moving sectors.

The M -point g-loop amplitudes considered here will involve (M − 2g) chiral moduli

described by the vertex operators of (3.3) and 2g self-dual graviphoton vertex operators

described by the vertex operators of (3.4). With this choice, the charge conservation

equation of (3.7) implies that +2 left and right-moving U(1) charge must come from the

d = 4 sector of the formalism. As will be seen below, this d = 4 U(1) charge comes from

the zero modes of θα and θ̄α. Although it might be interesting to consider more general

scattering amplitudes in the ĉ = 5 formalism, it is not clear if more general ĉ = 5 scattering

amplitudes will be d = 4 super-Poincaré invariant like the amplitudes considered here.

In computing these special scattering amplitudes, it will be convenient to choose 2g of

the (3g−3+M) Beltrami differentials to be associated with the locations of the graviphoton

vertex operators. So the formula of (3.6) becomes

Ag,M =

〈
∣∣

g−3+M∏

j=1

∫
dmj

∫
µjG

−

CY

∣∣2
M−2g∏

r=1

Φir
r σir

(zr)

2g∏

s=1

∫
d2zsWs(zs)

〉
(3.8)
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where

Ws =

∮
G−

∮
Ḡ−R(x, θ, θ̄)

=(pα∂α+̇ + ∂xα+̇

∂

∂θα

)(p̄β∂β+̇ + ∂̄xβ+̇

∂

∂θ̄β

)R(x, θ, θ̄),
(3.9)

and
∮
G−

∮
Ḡ−R signifies the single pole of G− and Ḡ− with R. It will be useful to note

that since (3 − 3g) U(1) charge is needed from the internal sector, only the G−

CY term in

G− contributes in
∫
µjG

−.

In order that the µjG
− integrals in (3.6) reproduce the correct Faddeev-Popov measure

for integration over worldsheet metrics, it is usually required that the vertex operators Vr

have no double (or higher-order) poles with G−. This condition guarantees that
∮
G−V

has no singularities with G− which, together with
∮
G+V = 0, implies that V is an N = 2

chiral primary. For chiral states of the two types considered here, this would imply that

∂

∂θα

∂α+̇Φi = 0 and
∂

∂θα

∂α+̇R = 0. (3.10)

However, for the amplitudes considered here, these conditions are unnecessary since only

the G−

CY term contributes in
∫
µjG

−. So there is no problem with reproducing the

Faddeev-Popov measure if the vertex operators in (3.8) have singularities with the d = 4

part of G−, and there is therefore no need to impose (3.10) for consistency of these scat-

tering amplitudes.

Furthermore, the fact that only G−

CY contributes to
∫
µjG

− implies that the ampli-

tude is spacetime supersymmetric. To show this, define the spacetime supersymmetry

generators in the ĉ = 5 formalism as

qα =

∮
pα, q∗α̇ =

∮
θα∂xαα̇, (3.11)

which anticommute to the usual supersymmetry algebra

{qα, qβ} = 0, {q∗α̇, q
∗

β̇
} = 0, {qα, q

∗

β̇
} =

∮
∂xαβ̇.

Note that these supersymmetries preserve the
∮
G+ cohomology when acting on states

that carry no Pα+̇ momentum since {q∗α̇,
∮
G+} = 0 and {qα,

∮
G+} =

∫
∂xα+̇. Finally,

note that {qα, G−} = {q∗α̇, G
−

CY } = 0 and {q∗α̇, G
−

4d} = δ+̇α̇ T4d where G−

4d and T4d are the

four-dimensional contributions to G− and T . Since G−

4d appears only in the integrated

graviphoton vertex operator of (3.9), the anticommutator {q∗α̇, G
−

4d} = δ+̇α̇ T4d can be

ignored since it only shifts the graviphoton vertex operator by a surface term.
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To obtain the supersymmetric F term associated with the amplitude of (3.8), integrate

over the zero modes of (xm, θα, θ̄α) and use the graviphoton vertex operator of (3.9) to

absorb the zero modes of pα. In terms of the self-dual graviphoton superfield Fαβ =

∂α+̇∂β+̇R, one finds

Ag,M =

∫
d4x

∫
d2θ

∫
d2θ̄

M−2g∏

r=1

Φir
r (x, θ, θ̄)

2g∏

s=1

Fs αβ(x, θ, θ̄)

×

〈
∣∣

g−3+M∏

j=1

∫
dmj

∫
µjG

−

CY

∣∣2
M−2g∏

r=1

σir
(zr)

〉

CY

(3.12)

where 〈 〉CY denotes a functional integral over the internal compactification-dependent

fields and the 2g α indices and 2g β indices in
∏2g

s=1 Fs αβ are contracted with each other

in all possible combinations. So the F term associated with this scattering amplitude is

S = fi1...iM−2g

∫
d4x

∫
d2θ

∫
d2θ̄

(
Fαβ(x, θ, θ̄)Fαβ(x, θ, θ̄)

)g
M−2g∏

r=1

Φir(x, θ, θ̄) (3.13)

where the coefficient fi1...iM−2g
is defined by the N = 2 ĉ = 3 topological amplitude

fi1...iM−2g
=

〈
∣∣

g−3+M∏

j=1

∫
dmj

∫
µjG

−

CY

∣∣2
M−2g∏

r=1

σir
(zr)

〉

CY

.

If we denote the Kähler (complex) moduli by ti and denote the topological string amplitude

at genus g by Fg(ti), then

fi1...iM−2g
= ∂i1 ...∂iM−2g

Fg(ti).

3.3. Hybrid description of chiral states

It will be shown here that the scattering amplitudes of chiral moduli states and self-

dual graviphoton states computed in (3.12) using the ĉ = 5 formalism agree with those

computed using the hybrid formalism. Note that hybrid scattering amplitudes involv-

ing only self-dual graviphoton states were computed previously in [10]. As discussed in

[9,10,11], the hybrid formalism is related to the RNS formalism by a field redefinition. In

the hybrid formalism, physical superstring states are described by chiral primary fields of

+1 U(1) charge with respect to the twisted N = 2 ĉ = 2 generators

T =
1

2
∂xm∂xm + pα∂θ

α + p∗α̇∂θ
∗α̇ +

1

2
∂ρ∂ρ+

1

2
∂2ρ+ TCY ,

G+ = e−ρ(d∗)2 +G+
CY , G− = eρ(d)2 +G−

CY ,

J = ∂ρ+ JCY ,

(3.14)
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where

dα = pα + iθ∗α̇∂xαα̇ − (θ∗)2∂θα, d∗α̇ = p∗α̇,

and { TCY , G
+
CY , G

−

CY , JCY } are the same twisted N = 2 ĉ = 3 generators as before. Note

that ρ is a negative-energy chiral boson satisfying the OPE

ρ(y)ρ(z) ∼ − log(y − z)

and dα and d∗α̇ are defined such that they anticommute with the supersymmetry generators

qα =

∮
pα, q∗α̇ =

∮
(p∗α̇ − iθα∂xαα̇)

and satisfy the OPE’s

dα(y)d∗α̇(z) ∼
1

y − z
(∂xαα̇ + iθ∗α̇∂θα). (3.15)

To compare scattering amplitudes using the hybrid formalism with those of (3.12), one

first needs the hybrid version of the vertex operators for the chiral moduli and graviphoton

multiplets. The superstring states corresponding to compactification moduli multiplets are

described in the hybrid formalism by the vertex operators

V =

i∑
Φi(x, θ, θ̄)σi, (3.16)

where σi is the same compactification-dependent field as in the ĉ = 5 description and

carries +1 left and right moving U(1) charge. One can easily check that V is chiral (i.e.

is annihilated by
∮
G+ and

∮
Ḡ+) if D∗α̇Φi = D̄∗α̇Φi = 0 and is a chiral primary (i.e. has

no double poles with G−) if DαD
αΦi = D̄αD̄

αΦi = 0.

Because of the additional condition DαDαΦi = D̄αD̄αΦi = 0, the ĉ = 5 vertex

operator V =
∑

i Φi σi is not necessarily a chiral primary vertex operator in the hybrid

formalism. However, as will be seen later in this subsection, the condition DαDαΦi =

D̄αD̄αΦi = 0 will not be necessary for consistency of hybrid scattering amplitudes involving

only chiral states. This is because, just as in the ĉ = 5 formalism, only the G−

CY term

will contribute in G− for these scattering amplitudes in the hybrid formalism. So there

is no problem if the vertex operators have singularities with the four-dimensional d2eρ

term in G−. This implies that one can prove equivalence of scattering amplitudes even

for chiral states such as V = (θ − θ̄)α(θ − θ̄)α σ which are not N = 2 primary fields in

the hybrid formalism and therefore do not correspond to on-shell superstring states. This

11



vertex operator V , which corresponds to a supersymmetric combination of the R-R and

NS-NS fluxes associated to the moduli σ, will play an important role in the next section.

The superstring state corresponding to the self-dual graviphoton multiplet will be

described in the hybrid formalism by the vertex operator

V = e−ρp∗+̇e−ρ̄p̄∗+̇R(x, θ, θ̄). (3.17)

This vertex operator is chiral if D∗

α̇R = D̄∗

α̇R = 0 and is primary if Dα∂
α+̇R = D̄α∂

α+̇R =

0. Although this vertex operator carries zero U(1) charge in the internal sector, it carries

+1 left and right-moving U(1) charge in the four-dimensional sector because of its ρ de-

pendence. Using the OPE’s of (3.15), one finds that the integrated form of the graviphoton

vertex operator is

∮
G−

∮
Ḡ−V

=

∫
d2z

(
dα∂

α+̇ + (∂xα+̇ + θ∗+̇∂θα)Dα

)(
d̄β∂

β+̇ + (∂̄xβ+̇ + θ̄∗+̇∂θ̄β)D̄β

)
R.

(3.18)

So if one sets θ∗α̇ = θ̄∗α̇ = 0, this expression coincides with the ĉ = 5 expression of (3.9).

To compute scattering amplitudes in the hybrid formalism, one first extends the ĉ = 2

N = 2 generators of (3.14) to a set of N = 4 generators

{ T,G+, G̃+, G−, G̃−, J++, J, J−− }

by defining

J++ ≡ exp

(∫ z

J

)
, J−− ≡ exp

(
−

∫ z

J

)

to form an SU(2) set of generators together with J , and by defining

G̃− ≡

[∮
J−−, G+

]
, G̃+ ≡

[∮
J++, G−

]
,

to transform together with G+ and G− as two doublets under this SU(2). As discussed in

[10], the M -point g-loop amplitude is defined by the formula

AM,g(u1, u2, ū1, ū2)

=

g∏

i=1

∫
d2vi

〈
∣∣

g−1∏

i=1

̂̃G+(vi)J(vg)

3g−3+M∏

j=1

dmj

∫
µjĜ−

∣∣2V1...VM

〉
,

(3.19)
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where

Ĝ− = u1G
− + u2G̃

−, ̂̃G+ = u1G̃
+ + u2G

+,

and

Ag,M(u1, u2, ū1, ū2)

=

2g−2∑

P=2−2g−M

2g−2∑

P̄=2−2g−M

(u1)
P+2g−2+M(u2)

2g−2−P (ū1)
P+2g−2+M(ū2)

2g−2−P̄Ag,M,P,P̄

is a polynomial of degree (4g − 4 + M, 4g − 4 + M) in (u, ū). The different components

Ag,M,P,P̄ correspond to amplitudes which violate (left,right)-moving R-charge by (P, P̄ ).

Note that R-charge in the hybrid formalism is equivalent to picture in the RNS formalism.

For scattering amplitudes corresponding to F terms with (M − 2g) chiral moduli and

2g graviphoton superfields, R-charge is violated by (g − 1, g − 1). This is because chiral

moduli superfields carry zero R-charge, self-dual graviphoton superfields carry (1
2 ,

1
2 ) R-

charge, and F terms carry (−1,−1) R-charge from the d2θd2θ̄ integration. So we are

interested in computing the component which violates R-charge by (P, P̄ ) = (g− 1, g− 1).

To compute the Ag,M,g−1,g−1 component of Ag,M using the formula of (3.19), first note

that all terms in this component contain an equal number of G̃− and G̃+ operators. To

compare with the ĉ = 5 prescription of (3.8), it will be useful to first turn all pairs

of (G̃+, G̃−) operators into pairs of (G+, G−) operators by performing the appropriate

contour deformations.

For example, suppose one has a pair of G̃+(y1)G̃
−(y2) operators at y1 and y2. First

write G̃− = [
∮
G+, J−−(y2)] and deform the

∮
G+ contour off of J−−(y2) until it hits

the J(vg) operator, turning it into G+(vg). Secondly, write G̃+(y1) = [
∫
G̃+, J(y1)] and

deform the
∫
G̃+ contour off of J(y1) until it hits the J−−(y2) operator, turning it into

G−(y2). Finally, write G+(vg) = [
∮
G+, J(vg)] and deform the

∮
G+ contour off of J(vg)

until it hits the J(y1) operator, turning it into G+(y1). So this procedure has turned

G̃+(y1)G̃
−(y2) into G+(y1)G

−(y2).

In performing these contour deformations, we have ignored possible surface terms on

the moduli space of the worldsheet coming from the commutator [
∮
G+,

∫
µjG

−] =
∫
µjT ,

where
∫
µjT produces a total derivative on the moduli space. However, for the scattering

amplitudes discussed here, one can show that internal U(1) charge conservation implies

that these surface terms do not contribute. As in the ĉ = 5 computation, internal U(1)

conservation implies that the d = 4 part of G− only contributes to the scattering amplitude
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when it acts on the graviphoton vertex operator. Also, one can argue by internal U(1)

conservation that only the d = 4 part of G+ contributes. So the only possibility of

producing a surface term comes from [
∮
G+

4d,
∫
µjG

−

4d] =
∫
µjT4d where the subscript 4d

denotes the four-dimensional contribution to these generators and µj is associated with the

location of the graviphoton vertex operator. But this type of surface term is harmless since

it does not involve the (3g− 3) worldsheet moduli whose boundary describes degeneration

of the genus g surface.

After replacing all (G̃+, G̃−) pairs with (G+, G−) pairs and choosing 2g of the Beltrami

differentials to be associated with the locations of the graviphoton vertex operators, one

obtains the formula

AM,g =

g∏

i=1

∫
d2vi

〈
∣∣

g−1∏

i=1

G+(vi)J(vg)

g−3+M∏

j=1

∫
dmj

∫
µjG

−

∣∣2

×

M−2g∏

r=1

Φir
r σir

(zr)

2g∏

s=1

∫
d2zsWs(zs)

〉

H

(3.20)

where Ws is defined in (3.18) and 〈 〉H denotes the functional integral using the hybrid

formalism which includes the (θ∗α̇, p
∗

α̇) and ρ fields.

To compare this formula with the ĉ = 5 formula of (3.8), insert the identity operator

1 = [
∮
G+, θ∗α̇θ

∗α̇eρ(w)] in (3.20) and pull the
∮
G+ contour off of θ∗α̇θ

∗α̇eρ(w) until it hits

J(vg) to give the formula

AM,g =

g∏

i=1

∫
d2vi

〈
∣∣(θ∗α̇θ∗α̇eρ)(w)

g∏

i=1

(p∗α̇p∗α̇e
−ρ)(vi)

g−3+M∏

j=1

∫
dmj(

∫
µjG

−

CY )
∣∣2

×

M−2g∏

r=1

Φir

r σir
(zr)

2g∏

s=1

∫
d2zsWs(zs)

〉

H

.

(3.21)

To derive (3.21), we have used that U(1) charge conservation implies that only G−

CY

contributes in the µjG
− terms and that only G+

4d contributes to G+(vi).

Finally, one needs to do the functional integral over the worldsheet fields (θ∗α̇, p
∗

α̇, ρ)

which are present in the hybrid formalism but not in the ĉ = 5 formalism. Since all p∗α̇

variables in G+(vi) must be used to soak up the 2g zero modes of p∗α̇, none of the θ∗α̇

variables in the vertex operators can contribute and the θ∗α̇θ
∗α̇(w) soaks up the zero modes

of θ∗α̇. Because the ρ chiral boson has negative energy (like the φ chiral boson in the

RNS formalism which comes from fermionizing the (β, γ) ghosts), it is subtle to define
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its functional integral. However, for the amplitudes being considered here, the ρ field

always appears together with the (θ∗
+̇
, p∗+̇) fields in the combination θ∗

+̇
eρ or p∗+̇e−ρ. For

this reason, the functional integral over the ρ chiral boson precisely cancels the functional

integral over the (θ∗
+̇
, p∗+̇), even for the zero modes. So after performing the functional

integral over the (θ∗α̇, p
∗

α̇, ρ) fields, one obtains the amplitude

AM,g =

〈
∣∣

g−3+M∏

j=1

∫
dmj(

∫
µjG

−

CY )
∣∣2

M−2g∏

r=1

Φir

r σir
(zr)

2g∏

s=1

∫
d2zsWs(zs)

〉
, (3.22)

which agrees with the ĉ = 5 formula of (3.8).

4. Large N Duality in Superstring

It was pointed out in [6] that the duality between the open and closed topological string

theories can be uplifted to the type IIA superstring on the conifold times R4 with N D5

branes wrapping on the P1 of the conifold and extended in the R4 direction to another

compactification with N units of R-R flux and without D branes. As far as the F terms are

concerned, this superstring duality is inferred from the topological string duality combined

with the relation between the superpotential terms and the topological string amplitudes

[5,15]. This duality is supposed to hold beyond the superpotential computation, along the

line of construction described in the closely related papers [21,22]. A derivation of the

full duality would require controlling back-reactions of the R-R fluxes to the metric and

understanding worldsheet dynamics in such a background, and it would be tantamount

to proving the AdS/CFT correspondence. In this section, we will make the first step

in this direction by giving a direct worldsheet derivation of the duality restricted to the

superpotential computation, where the back-reaction to the metric can be ignored as being

a BRST trivial deformation of the background.

As we saw in the last section, the ĉ = 5 formalism allows us to compute superpotential

terms as topological string amplitudes. In this formalism, in addition to the ĉ = 3 model

discussed in section 2, we have four bosons xαα̇ and four pairs of fermions (pα, θ
α) and

(p̄α, θ̄
α). In the ĉ = 3 model on the Calabi-Yau space, basic observables are associated

to cohomology elements of the Calabi-Yau space. For example, for ω ∈ H1,1, we have

σ = ωij̄ψ
i
Lψ

j̄
R. In the ĉ = 5 formalism, it can be multiplied by any function of θ, θ̄ as

Φ(θ, θ̄) σ, giving rise to a vertex operator for the N = 2 vector multiplet in four dimensions
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associated to σ. We can turn on the auxiliary fields in this multiplet to break the N = 2

supersymmetry to N = 1.2 For example, we can turn on the perturbation,
∫
d2zG−Ḡ−

[
N(θ − θ̄)2σ

]
.

This corresponds to turning on R-R flux through the cycle dual to ω, represented by

ǫαβθ
αθ̄β σ [6], combined with an appropriate amount of NS-NS flux, represented by

ǫαβ(θαθβ + θ̄αθ̄β) σ, through the dual cycle. The strength of the NS-NS flux (related to the

coupling constant τ of the dual gauge theory) is dictated by the condition of extremization

of the glueball superpotential [6], leading to preservation of N = 1 supersymmetry. Note

that this term reduces the supersymmetry to N = 1 given by simultaneous shift of θ, θ̄.

With these fluxes turned on and the supersymmetry reduced, the N = 2 vector

multiplet is decomposed into an N = 1 vector multiplet vα and the chiral multiplet t.

These couple to the worldsheet as
∫
d2zG−Ḡ−

[(
t+ vα(θ − θ̄)α +N(θ − θ̄)2

)
σ
]

(4.1)

where we included the effect of the fluxes. In section 2, we saw that, in the ĉ = 3 model,

the Kähler moduli appears as a coefficient of the linear superpotential (2.3). The coupling

(4.1) in the ĉ = 5 model can also be written in term of a superpotential given by

W =
(
t+ vα(Θ − Θ̄) +N(Θ − Θ̄)2

)
Σ, (4.2)

where Σ is the superfield in the ĉ = 3 model with σ as the lowest component, and Θ, Θ̄

are fermionic superfields whose lowest components are θ and θ̄. The contribution of W to

the worldsheet action is

Sint =

∫
d2zG−Ḡ−W. (4.3)

2 Normally one does not consider “turning on” auxiliary fields since their values are fixed by

equations of motion. However, in Wick-rotated signatures (2,2) or (4,0), there may be supersym-

metric backgrounds which violate equations of motion. For example, the auxiliary fields Dij in

an N = 2 vector multiplet transform as a triplet under the R-symmetry group which gets Wick-

rotated from SU(2) to SL(2). For a free N = 2 multiplet, the potential is D++D−− + (D+−)2

and one has an N = 1 supersymmetric background when D++ = −D−− = D+− = N for any

value of N . After Wick-rotation back to Minkowski space, the value of N is uniquely determined

by the reality conditions on Dij . For example, for a free multiplet in Minkowski space, N = 0

is the unique supersymmetric background consistent with the reality condition D++ = (D−−)∗.

However, in a non-trivial background such as that of [21] or [22], the reality conditions together

with supersymmetry may imply a non-zero value for N .
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Noting that G− is a linear combination of operators acting on the 4d part and the Calabi-

Yau part, we can express it as

∫
d2zG−Ḡ−W =

∫
d2z

[ (
t+ vα(θ − θ̄) +N(θ − θ̄)2

)
G−

CY Ḡ
−

CY σ

+
(
vα∂x

α−̇ + 2N(θ − θ̄)α∂x
α−̇

)
Ḡ−

CY σ

+
(
vα∂̄x

α−̇ + 2N(θ − θ̄)α∂̄x
α−̇

)
G−

CY σ − 2Nǫαβ∂x
β−̇∂̄xα−̇σ

]
.

Since W is annihilated by
∮
G+ and

∮
Ḡ+ of (3.1), W is a chiral superpotential which

implies that (4.3) is in the BRST cohomology. Actually, annihilation by G+ and Ḡ+ of

(3.1) implies that W is chiral using the worldsheet equations of motion of the undeformed

theory. In principle, one still needs to check that W is chiral after including any possible

back-reaction to the worldsheet equations of motion. Fortunately, there is no back-reaction

to the worldsheet equations of motion for the d = 4 fields (xα−̇, θα, θ̄α) which appear in

W . This is clear since the equations of motion for these d = 4 fields come from varying

(xα+̇, pα, p̄α), which are absent from (4.3).

On the other hand, since the vertex operator for the spacetime curvature and the

graviphoton field strength contain pα and p̄α, in the ĉ = 5 formalism formulated in the

last section, there may be a subtlety in simultaneously turning on the gravity fields and

the R-R flux. Since it is clear from the target space point of view that supersymmetry is

still preserved with both of them turned on, there should be a manifestly supersymmetric

description of such a background on the worldsheet. It would be interesting to understand

how to apply the ĉ = 5 formalism in this case. On the open string side, turning on the

spacetime curvature and the graviphoton field strength generates the C-deformation of the

gluino field [12,13]. Thus it is reasonable to expect a phenomenon dual to it in the closed

string side. In the following, we will consider the large N duality in the absence of the

gravity field strengths.

As in the ĉ = 3 model for the conifold, the ĉ = 5 model has two branches, theH branch

with σ = 0 and the C branch with σ 6= 0. We identify each C domain as a hole on the

worldsheet. Whereas the C branch of the ĉ = 3 model is described as the Landau-Ginzburg

model with the superpotential (2.3) (and with the path integral measure dσ/σ2), the C

branch in the ĉ = 5 model is the Landau-Ginzburg model with (4.2). In particular, its

target space is the supermanifold with coordinates (Σ,Θα, Θ̄α). As in the ĉ = 3 case, the

C branch does not contribute to a string amplitude unless its domain has the topology of
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the disk. This statement just follows from the functional integral over Σ and the operation

of
∮
dσ∂/∂σ and is independent of whether there are extra degrees of freedom.

The functional integral over the disk C domain indeed gives the correct boundary

condition for the N D branes extended in the R4 direction with the gluino field Wα

turned on. To see this, let us integrate over Σ first. As in the case of the ĉ = 3 model [3],

it gives

∮
dσ

σ2
exp

[
−

(
t+ vα(θ − θ̄)α +N(θ − θ̄)2

)
σ
]

= t+ vα(θ − θ̄)α +N(θ − θ̄)2. (4.4)

According to the large N duality [6], t and vα are related to the open string variable Wα

as
t = trWαW

α

vα = trWα

N = tr1.

(4.5)

Using this, the right-hand side of (4.4) can be written as

t+ vα(θ − θ̄)α +N(θ − θ̄)2 = tr

[
exp

(
Wα ∂

∂θα

)
(θ − θ̄)2

]
. (4.6)

We can then identify (θ − θ̄)2 as the boundary state for the D brane extended in the

R4 direction. As in any state which is invariant under the topological BRST symmetry,

the boundary state can be decomposed into a chiral primary state and a BRST trivial

part. It was shown in [23] that the chiral primary part is determined by the (quantum)

period of the cycle on which the D brane is wrapped. For the D brane extended in the

R4 direction, the chiral primary part is (θ − θ̄)2; indeed it imposes the correct boundary

condition θα = θ̄α, which is associated with Neumann boundary conditions for xm. We

can then identify the action of the differential operator exp
(
Wα ∂

∂θα

)
as an insertion of

∮
Wα(pα + p̄α) on the boundary of the disk, giving rise to the correct coupling of the

gluino on the boundary. This shows that the superpotential for t and the kinetic term for

vα computed in the closed string theory agree with those for the glueball superfield and

the U(1) part of Wα in the open string theory according to the correspondence (4.5). This

is what we wanted to show.

We note that one can start with a different combination of fluxes, for example,

∫
d2zG−Ḡ−

[
N(θ1 ± θ̄1)(θ2 ± θ̄2)σ

]
, (4.7)
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and repeat the derivation. (We can also consider more general quadratic combinations of θ

and θ̄ that preserve 4 supercharges. Here we are presenting simple ones for an illustration.)

One will then find the boundary state whose chiral primary part is represented by (θ1 ±

θ̄1)(θ2 ± θ̄2). We can interpret it as the boundary state for a D2n+2 brane wrapping on

the S3 of the deformed conifold and extending in a 2n-dimensional plane in R4, where n is

the number of minus signs in (4.7). This is consistent with what one expects from T-dual

of the open/closed string duality that we discussed in this paper.

The original argument [24] for the existence of the large N dualities of the type

discussed in this paper starts with the conjectured equivalence of the D brane description

involving open strings and the closed string description motivated by the computation of

the R-R charges [25]. The result of this paper provides the worldsheet explanation for

the equivalence of the two descriptions, at the level of F terms. For the closed string, the

vertex operator N(θ − θ̄)2σ represents the closed string background with N units of R-R

flux turned on. We have found that turning on this worldsheet interaction generates the

open string sector whose boundary state for the 4d part of the target space is represented by

N(θ− θ̄)2. This boundary state indeed carries the correct amount of R-R charge expected

from the duality. We hope that our result in this paper will turn out to be a useful step

toward deriving the full large N duality in the superstring.
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