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Built-in reduction of statistical fluctuations of partitioning objects
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Our theoretical and numerical investigation of the movement of an object that partitions a microtubule filled
with small particles indicates that vibrations warranted by thermal equilibrium are reached only after a time
that increases exponentially with the number of particles involved. This points to a basic mechanical process
capable of breaching, on accessible time scales, the ultimate ergodic constraints that force randomness on bound
microscale and nanoscale systems.
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I. INTRODUCTION

Present-day instrumentation allows the control of matter
from micrometer scales down to those of single molecules.
Nanotechnology aspires to use this mastery to develop and
harness qualitatively new functional systems composed of a
small number of atoms. As scales get smaller, mechanical
parts will jolt erratically even when they are bolted down,
and thermal fluctuations become the dominant drive. These
obey the ergodic hypothesis and are the result of averaging
over all available phase space: as the system gets smaller,
phase space contracts and averaging is less effective. The
result is an unwanted increase in the relative amplitude of
the fluctuations as the system becomes smaller [1]. Bound
systems generally explore their phase-space rapidly, so that
thermal fluctuations cannot be avoided and take over following
a standard exponential law [2], unless extreme conditions
such as dense packing and rapid cooling are implemented [3].
Nonergodic fluctuations can be observed in glass-like systems,
where inhomogeneity and disorder preclude the possibility
of exploring the whole phase space in observable times, a
feature that can amount to a drastic alteration in statistical
fluctuations [4]. The question lies open if nonergodicity and
subthermal fluctuations can be found in a standard nano-
sized mechanical system, providing a method to circumvent
the basic stochastic feature associated to bound nanoscale
objects.

Here we demonstrate how a wide class of bound micro-
scopic mechanical systems can be made to manifest subergodic
fluctuations even though they are normal, that is, they have no
built-in disorder and associated glassy behavior. The paradigm
system is an object that is topologically constrained to partition
its small and agitated environment into two separate sections,
as would occur for a Brownian particle sliding along and
obstructing a tubule. The particle is bound to a specific
position because of the continuous collisions of the opposing
environments (microscopic embodiment of Boyle’s law), but
its fluctuations have novel and unexpected features that are
in contrast with commonly held notions of bound fluctuating
bodies. In fact, we find that thermal equilibrium is not reached
with an exponential law typical of a single relaxation time
constant [2]. Rather, equilibrium fluctuations are reached after
a time that increases exponentially with the number of particles
involved through a series of quasistationary plateaus that

grow ever longer in time, amounting to a continuum of time
scales. The result is that, on accessible time scales, the bound
object fluctuates in space with subergodic quasistationary
fluctuations.

II. PHASE-SPACE ANALYSIS

To demonstrate this subergodic behavior of partitioning
particles, we consider the basic system illustrated in Fig. 1(a):
an object (the large blue sphere) that slides along a microtubule
and is in contact with N microscopic agitated particles
(the red small spheres). The benchmark vibrations are the
equilibrium fluctuations of the object position deduced by
introducing the (N + 1)-dimensional phase space, each point
x1,x2, . . . ,xN ,x of which corresponds to the positions of the
N molecules and of the object (see Fig. 1(b)). The portion
of phase-space volume d� that corresponds to the object’s
position in a range dx depends on x through the constraint
on the particle positions imposed by the object itself: N/2
particles in section A are confined in the region (−L/2,x)
and N/2 in section B in (x,L/2). Accordingly, d� = (L/2 +
x)N/2(L/2 − x)N/2dx = (L/2)N (1 − 4x2/L2)N/2dx, i.e., in
the limit N � 1 and dropping the inessential constant (L/2)N ,
d� = exp (−2Nx2/L2)dx. The ergodic assumption requires
the probability density p(x) of the object being in the range dx

to be proportional to the corresponding phase-space volume,
that is p(x) = (2N/πL2)1/2 exp (−2Nx2/L2), so that the
normalized root-mean-square value of x is

〈x2〉1/2
erg

/
(L/2) = 1/

√
N. (1)

Lower fluctuations can occur only if equilibrium is reached
on inaccessibly long times. This is where the partitioning
feature of the object intervenes: in so much that the internal
degrees of freedom of the body do not intervene, particles
in section A are never directly in contact with particles in
section B, and their mutual interaction is forced to occur
through collisions with the single rigid vibrating object.
Even though the most probable energy exchange mechanism
involves successive alternate collisions with an A and a B

particle on the object, for complete ergodicity to occur, the
passage of energy from one section to the other must also
involve extremely less probable events, such as those in
which a finite number of particles from one section collide
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FIG. 1. (Color online) Partitioning object in a microtubule and reduced vibrations. (a) General layout of an object (large blue sphere) sliding
along a microtubule filled with smaller particles (red spheres). (b) Molecular dynamics scheme. (c) Example of the object trajectory x(t)/(L/2)
(full blue curve) for N = 200, m = 1, and M = 20. Superimposed are the values of x/(L/2) = ±1/

√
N (top and bottom red dashed lines)

and x/(L/2) = ±1/
√

2N (blue dashed lines), corrected for the effect of the finite covolume [15]. (d) Fluctuations are evaluated through the
corresponding value of 〈x2〉1/2/(L/2) = {(1/t)

∫ t

0 [x(t ′)/(L/2)]2dt ′}1/2 (root-mean square of the object position), which saturates to the value
0.045 (blue squares) considerably lower than the ergodic expectation 1/

√
N � 0.071 (0.066 taking into account the finite covolume [15], red

dashed line). The approach to this first quasiequilibrium indicates a tp � 2 × 104. For N < 200, see Fig. 3(b) and its discussion.

with the object while no particle from the other side hits it.
More precisely, the time to reach ergodicity can be estimated
as that required for a relative energy fluctuation, from one
section to the other, of the order of 1/

√
N/2, to occur [5].

This requires a
√

N/2-particle event, i.e., a sequence of√
N/2 collisions occurring on the object from only one of

the two sections, and hence a time 2
√

N/2tp, where tp is the
characteristic thermalization-time for each separate section
(the microscopic time scale associated to normal gas/liquid
systems). Hence, on experimentally available times, the object
will fluctuate on the basis of a partial set of dynamical
events in which the improbable collisions are absent (weak
ergodicity breaking) [6,7]. For a small enough partitioning
object [7], the ergodic equilibrium is simply a theoretical
limit that will be practically violated. To grasp how this leads
to subergodic fluctuations [i.e., below the limit of Eq. (1)],
consider the situation in which all the less probable asymmetric
collisional events are neglected. This means neglecting large
pressure fluctuations and corresponds to the quasiequilibrium
regime conjectured in adiabatic piston models, for which the
pressure in the two sections is assumed equal [8–13]. In turn,
equal pressures imply that the maximum energy of the single
particles in A and B is correlated to the position x of the object,
because its value is now proportional to (L/2 + x) in A and
to (L/2 − x) in B. In other words, the correlation between
the maximum energy of the single particles and the object
position implies maximum values of their momentum px and
py proportional to (L/2 + x)1/2 for the particles in A, and
(L/2 − x)1/2 for the particles in B. This modifies the phase
space available to each particle from (L/2 + x) to (L/2 +
x)(1+1/2+1/2) = (L/2 + x)2 (particles in A), and (L/2 − x)2

(particles in B). The resulting motion suffers a partially
ergodic dynamic associated with the volume d� = (L/2 +
x)N (L/2 − x)Ndx = (L/2)2N (1 − 4x2/L2)Ndx. Thus, in the
limit N � 1 and dropping inessential factors, d� =
exp(−4Nx2/L2)dx. The probability density is now p(x) =
(4N/πL2)1/2 exp (−4Nx2/L2), and the fluctuations are

reduced by a factor 1/
√

2, which leads to the subergodic
result

〈x2〉1/2/(L/2) = 1/
√

2N. (2)

III. MOLECULAR DYNAMICS

To detect these reduced fluctuations we carry out molecular
dynamics (MD) simulations on the flat system illustrated in
Fig. 1(b). The partitioning object is therefore a rigid segment
of mass M (the blue wall) and side L that slides along one
axis (the x axis) of a square of side L (the microtubule). The
opposing agitated molecular environment is composed of a gas
of diluted N rigid disks of mass m (the red disks) contained in
the microtubule and separated into two closed compartments,
A and B, each containing N/2 disks, by the sliding particle
[14].

A typical trajectory of the object is shown in Fig. 1(c) (full
blue curve). Analyzing the stochastic process, we find (see
Fig. 1(d)) the remarkable result that the system undergoes a
quasi-stationary initial dynamic phase that settles to a value
for the fluctuations in position 〈x2〉1/2/(L/2) � 0.045. This
result is consistent with the subergodic behavior described in
Eq. (2), smaller by a factor 1/

√
2 than the ergodic value �

0.071 predicted by Eq. (1).
The equal pressure condition leading to Eq. (2) is tested

in Fig. 2, where we compare the values of the total energy
in section A, EA(t), and that in section B, EB(t), normalized
to the total energy in the system EA + EB = E0, with the
object position x(t) (blue squares) for the case of the dynamics
reported in Fig. 1. Comparing the averaged values of 〈EA(t)〉,
〈EB(t)〉 and 〈x(t)〉 along the trajectory indicates a direct
average proportionality between the volume of each section
[i.e., for A, L(x + L/2), and for B, L(−x + L/2)] and the
energy there contained. This corresponds to a movement of
the object in conditions in which the pressures in the two
sections are loosely equal and constant, and is a signature of
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FIG. 2. (Color online) Phase-space analysis of x(t) and detection of occupation-time anomalies. (a) Plot of EA(t)/E0 [EA(t) is the total
energy in section A] versus x(t)/(L/2) (blue squares), that shows that for average values (taken over intervals of �t = 1250, red circles) an
approximate and loose validity of an “equation of state” holds, i.e., EA/E0 = (1/2)[x/(L/2)] + 1/2 (black dashed line). (b) The same analysis
for EB (t)/E0 [where correspondingly EB (t) is the total energy of section B].

the occupation-time anomaly at the basis of the breaking of
ergodicity.

For limited values of N the breakdown of ergodicity can be
directly observed (by suitably expanding the duration of the
MD simulation), while this is practically impossible for larger
values of N . For the still tractable case of N = 200, using an
event-driven MD (see for example [16]), we are able to span

the entire phase space, thus achieving the final ergodic result
predicted by Eq. (1), by increasing the time window by more
than 6 orders of magnitude with respect to the observed first
asymptotic-like subergodic behavior of Fig. 1(d). The results
are reported in Fig. 3(a) and have remarkable features. Even
though the system is composed of extremely simple rigid and
diluted particles, it reproduces in its fluctuations (and, through

FIG. 3. (Color online) Complexity: a self-similar and ever slower approach to equilibrium. (a) The blue line represents the evolution of
〈x2〉1/2/(L/2) for a sample in the conditions of the run of Fig. 1 (N = 200, the mass of the object M = 20). The short time region (t ∼ tp) below
the lower blue dashed line [the n = 2 prediction of Eq. (3)] is where the condition of practical equilibrium is reached and violates the 1/

√
N

law. In this regime only the probable molecule-molecule interaction events in the separate sections/partitions are active, and weak ergodicity
breaking occurs. The second long time (t > tp) region above the lower blue dashed line is so long that even the increasingly improbable events
involving energy/information transfer through the object partake in the dynamics, leading to the restoration of ergodicity (top red dashed line).
(b) Comparison of MD results (blue squares) to the ergodic prediction of Eq. (1) (top red dashed line) and the nonergodic prediction for
different values of N , middle green dashed line for n = 1 and lower blue dashed line for n = 2 [see Eq. (3) and discussion thereafter], for
the quasiequilibrium condition, first plateau in the evolution of (a). (c,d) Fluctuations follow a power-law, as highlighted by the self-similarity
observed at different time scales in the linear time plots of (c), (d), and (e).
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FIG. 4. (Color online) Short time region of trajectory reported in
Fig. 3(a) fitted with an exponential law of the type 〈x2〉1/2/(L/2) ∝
1 − exp (−t/tp), with tp � 19.5 × 103.

the fluctuation-dissipation theorem, in its relaxation processes
[17]) the basic signatures of complexity [6]. For short times
(t ∼ tp), fluctuations are compatible with an exponential-like
law as reported in Fig. 4. For long time scales (t � tp),
the nonlinear behavior in the logarithmic plot indicates a
power-law behavior, with no characteristic time scale. This
is evidenced by the self-similarity of time evolution (see
Figs. 3(c)–3(e)).

IV. DISCUSSION

The dimensionality of the system determines the ampli-
tude of the reduction in the spontaneous fluctuations: each
successive quadratic energy term that thermalizes in each
section separately becomes correlated to x and adds in the
phase space d� a factor (L/2 + x)1/2 for each particle in A,
and (L/2 − x)1/2 for each particle in B. This change of d�

generalizes Eq. (2) into

〈x2〉1/2/(L/2) = 1/
√

(2 + n)N/2, (3)

where n is the number of quadratic energy terms: more degrees
of freedom will induce a stronger fluctuation reduction.

To investigate the size dependence of the subergodic regime
and to validate the result of Eq. (3), we analyze 〈x2〉1/2/(L/2)
as a function of N . As shown in Fig. 3(b), first plateau results
(weak ergodicity breaking) are in good agreement with the
prediction of Eq. (2) for N = 200 while, for decreasing N ,
〈x2〉1/2/(L/2) tends to the value given by Eq. (3) for n = 1.
This is caused by the reduced number of particle-particle
collisions which in turn implies that the thermalization pro-
cess occurs predominantly through particle-object collisions,
which affect only momentum exchange along x, so that
y-velocity thermalization is ineffective over reasonable times.
Congruently, this implies a progressive change of n from n = 2
to n = 1 in Eq. (3) as N decreases.

The reduction in spontaneous fluctuations can have far-
reaching practical implications in many areas of microscience,
providing insight into the workings of microengines embedded
in a noisy environment, and into the ultrasensitive sensors.
For example, it could favor the preservation of quantum
coherence in living cells [18]. To get an estimate of the
effect, consider microtubules in the cellular cytoskeleton,
i.e., polymeric tubes composed of the tubulin protein of

varying length and a 15 nm internal diameter, normally
associated to biased Brownian motion occurring on their
external surface [19]. Consider a single microtubule with
L = 50 nm, hosting (on the inside) a partitioning colloidal
sphere (the object) of 15 nm diameter and N = 200 colloidal
particles of 1 nm diameter, of mass m = 0.5 × 10−24 Kg,
at T = 300 K. When the mass of the partitioning object is
M = 20m, subergodic fluctuations (first plateau in Fig. 1(d))
are reached in a time tp � 1 μs, remain fixed to the basic
correction of Eq. (2) (the actual value will depend on the
value of n of the system) on the scale of 10 μs, and grow
at an ever slower rate, to reach the ergodic fluctuations on
a scale of 1 s (Fig. 3(a)). We note that the presence of the
fluidic medium hosting the particles may play a significant
role, in which case a more detailed model of the system
must be invoked. It should, however, be noted that from a
conceptual perspective, our results indicate the unexpected
emergence of complex behavior for rigid-particle systems
even in the highly diluted regime and without dispersion in
their radius, suggesting a basic role in complex phenomena
for partitioning topologies. In evaluating the relevance of our
results, we must underline that the reduction in vibrations
turns out to be a robust property in that it is only dependent
on the presence of partitioning objects. For example, for
NA 
= NB fluctuations around the equilibrium position [at
a distance LNA/(NA + NB) from the fixed wall of section
A] turn out to be 〈x2〉1/2

erg /(L/2) = 2/(N
√

1/NA + 1/NB ) and
〈x2〉1/2/(L/2) = (2)−1/2〈x2〉1/2

erg /(L/2), where N = NA + NB ,
that respectively generalize Eqs. (1) and (2). Analogously,
when an external force contributes to bind the object to
the equilibrium position. In fact, introducing the exter-
nal potential V (x) = (1/2)kx2, Eqs. (1) and (2) general-
ize into 〈x2〉1/2

erg /(L/2) = {2kBT /[2kBT N + k(L/2)2]}1/2 and
again 〈x2〉1/2/(L/2) = (2)−1/2〈x2〉1/2

erg /(L/2). In general, our
findings can be extended to a network of interconnected
microtubules with numerous partitioning objects, so that even
the condition that the microtubules are closed at the end can
have a negligible influence.

Fruit of topology, the weak-ergodicity breaking is expected
also in different systems, such as nanomagnets riddled by
Johnson noise, where they could significantly increase storage
capacity. In the microtubule, information can be stored in
the position of the object (using NA 
= NB). At each specific
equilibrium position X = LNA/(NA + NB) (measured from
the top of the tubule in section A), the 〈x2〉1/2 in the ergodic
case is expressed as function of X and the number of
distinguishable states (i.e, separated by a distance 〈x2〉1/2)
is n

erg
bits � ∫ L

0 dX
√

N/[X(L − X)] = π
√

N . In the subergodic
case, this number is increased to nbits = √

2n
erg
bits.

V. CONCLUSIONS

In conclusion, we have demonstrated that a microscopic
object partitioning a microtubule evolves toward equilibrium
with no characteristic time scale, following a sequence of
quasiequilibrium states that globally lasts for an interval of
time that grows exponentially with

√
N/2. The result is that

the bound object fluctuates in a notably subergodic manner on
accessible intervals of time.
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