8
INTERNAL FLOW ENERGY CONVERSION

8.1 INTRODUCTION

One of the most common requirements of a multiphase flow analysis is the
prediction of the energy gains and losses as the flow proceeds through the
pipes, valves, pumps, and other components that make up an internal flow
system. In this chapter we will attempt to provide a few insights into the
physical processes that influence these energy conversion processes in a mul-
tiphase flow. The literature contains a plethora of engineering correlations
for pipe friction and some data for other components such as pumps. This
chapter will provide an overview and some references to illustrative material,
but does not pretend to survey these empirical methodologies.

As might be expected, frictional losses in straight uniform pipe flows have
been the most widely studied of these energy conversion processes and so we
begin with a discussion of that subject, focusing first on disperse or nearly
disperse flows and then on separated flows. In the last part of the chapter,
we consider multiphase flows in pumps, in part because of the ubiquity of
these devices and in part because they provide a second example of the
multiphase flow effects in internal flows.

8.2 FRICTIONAL LOSS IN DISPERSE FLOW
8.2.1 Horizontal Flow

We begin with a discussion of disperse horizontal flow. There exists a sub-
stantial body of data relating to the frictional losses or pressure gradient,
(—dp/ds), in a straight pipe of circular cross-section (the coordinate s is
measured along the axis of the pipe). Clearly (—dp/ds) is a critical factor
in the design of many systems, for example slurry pipelines. Therefore a
substantial data base exists for the flows of mixtures of solids and water
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Figure 8.1. Typical friction coefficients (based on the liquid volumetric
flux and the liquid density) plotted against Reynolds number (based on the
liquid volumetric flux and the liquid viscosity) for the horizontal pipeline
flow (d = 5.2cm) of sand (D = 0.018¢m) and water at 21°C' (Lazarus and
Neilson 1978).

in horizontal pipes. The hydraulic gradient is usually non-dimensionalized
using the pipe diameter, d, the density of the suspending phase (pz, if lig-
uid), and either the total volumetric flux, j, or the volumetric flux of the
suspending fluid (jz, if liquid). Thus, commonly used friction coefficients are

d dp d dp
/ 2pm%< ds) or 2pLj2< ds) ®.1)

and, in parallel with the traditional Moody diagram for single phase flow,
these friction coefficients are usually presented as functions of a Reynolds
number for various mixture ratios as characterized by the volume fraction, «,
or the volume quality, 3, of the suspended phase. Commonly used Reynolds
numbers are based on the pipe diameter, the viscosity of the suspending
phase (v, if liquid) and either the total volumetric flux, j, or the volumetric
flux of the suspending fluid.

For a more complete review of slurry pipeline data the reader is referred to
Shook and Roco (1991) and Lazarus and Neilsen (1978). For the solids/gas
flows associated with the pneumatic conveying of solids, Soo (1983) provides
a good summary. For boiling flows or for gas/liquid flows, the reader is
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Figure 8.2. Typical friction coefficients (based on the liquid volumetric
flux and the liquid density) plotted against Reynolds number (based on the
liquid volumetric flux and the liquid viscosity) for the horizontal pipeline
flow of four different solid/liquid mixtures (Lazarus and Neilson 1978).

referred to the reviews of Hsu and Graham (1976) and Collier and Thome
(1994).

The typical form of the friction coefficient data is illustrated in figures 8.1
and 8.2 taken from Lazarus and Neilson (1978). Typically the friction co-
efficient increases markedly with increasing concentration and this increase
is more significant the lower the Reynolds number. Note that the measured
increases in the friction coefficient can exceed an order of magnitude. For
a given particle size and density, the flow in a given pipe becomes increas-
ingly homogeneous as the flow rate is increased since, as discussed in section
7.3.1, the typical mixing velocity is increasing while the typical segregation
velocity remains relatively constant. The friction coefficient is usually in-
creased by segregation effects, so, for a given pipe and particles, part of the
decrease in the friction coefficient with increasing flow rate is due to the
normal decrease with Reynolds number and part is due to the increasing
homogeneity of the flow. Figure 8.2, taken from Lazarus and Neilson, shows
how the friction coefficient curves for a variety of solid-liquid flows, tend
to asymptote at higher Reynolds numbers to a family of curves (shown by
the dashed lines) on which the friction coefficient is a function only of the
Reynolds number and volume fraction. These so-called base curves pertain
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when the flow is sufficiently fast for complete mixing to occur and the flow
regime becomes homogeneous. We first address these base curves and the
issue of homogeneous flow friction. Later, in section 8.2.3, we comment on
the departures from the base curves that occur at lower flow rates when the
flow is in the heterogeneous or saltation regimes.

8.2.2 Homogeneous flow friction

When the multiphase flow or slurry is thoroughly mixed the pressure drop
can be approximated by the friction coefficient for a single-phase flow with
the mixture density, p (equation 1.8) and the same total volumetric flux, j =
js + jr, as the multiphase flow. We exemplify this using the slurry pipeline
data from the preceding section assuming that o = 3 (which does tend to
be the case in horizontal homogeneous flows) and setting j = jr./(1 — a).
Then the ratio of the base friction coefficient at finite loading, C¢(«), to the
friction coefficient for the continuous phase alone, C¢(0), should be given by

Crla) _ (1+aps/pr)
Cr0) ~ (1-ap (8:2)
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Figure 8.3. The ratio of the base curve friction coeflicient at finite load-
ing, C(e), to the friction coefficient for the continuous phase alone, C¢(0).
Equation 8.2 (line) is compared with the data of Lazarus and Neilsen
(1978).
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A comparison between this expression and the data from the base curves of
Lazarus and Neilsen is included in figure 8.3 and demonstrates a reasonable
agreement.

Thus a flow regime that is homogeneous or thoroughly mixed can usually
be modeled as a single phase flow with an effective density, volume flow rate
and viscosity. In these circumstances the orientation of the pipe appears
to make little difference. Often these correlations also require an effective
mixture viscosity. In the above example, an effective kinematic viscosity
of the multiphase flow could have been incorporated in the expression 8.2;
however, this has little effect on the comparison in figure 8.3 especially under
the turbulent conditions in which most slurry pipelines operate.

Wallis (1969) includes a discussion of homogeneous flow friction correla-
tions for both laminar and turbulent flow. In laminar flow, most correlations
use the mixture density as the effective density and the total volumetric flux,
7, as the velocity as we did in the above example. A wide variety of mostly
empirical expressions are used for the effective viscosity, pe. In low volume
fraction suspensions of solid particles, Einstein’s (1906) classical effective
viscosity given by

pe = po(1+5a/2) (8.3)
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Figure 8.4. Comparison of the measured friction coefficient with that us-
ing the homogeneous prediction for steam /water flows of various mass qual-
ities in a 0.3cm diameter tube. From Owens (1961).

200



is appropriate though this expression loses validity for volume fractions
greater than a few percent. In emulsions with droplets of viscosity, up, the
extension of Einstein’s formula,
5a (up + 2pc/5)
fe = e {1 T2 (up + o) } (84)
is the corresponding expression (Happel and Brenner 1965). More empirical
expressions for p. are typically used at higher volume fractions.

As discussed in section 1.3.1, turbulence in multiphase flows introduces
another set of complicated issues. Nevertheless as was demonstrated by the
above example, the effective single phase approach to pipe friction seems to
produce moderately accurate results in homogeneous flows. The comparison
in figure 8.4 shows that the errors in such an approach are about +25%.
The presence of particles, particularly solid particles, can act like surface
roughness, enhancing turbulence in many applications. Consequently, tur-
bulent friction factors for homogeneous flow tend to be similar to the values
obtained for single phase flow in rough pipes, values around 0.005 being
commonly experienced (Wallis 1969).

8.2.3 Heterogeneous flow friction

The most substantial remaining issue is to understand the much larger fric-
tion factors that occur when particle segregation predominates. For example,
commenting on the data of figure 8.2, Lazarus and Neilsen show that val-
ues larger than the base curves begin when component separation begins
to occur and the flow regime changes from the heterogeneous regime to the
saltation regime (section 7.2.3 and figure 7.5). Another slurry flow example
is shown in figure 8.5. According to Hayden and Stelson (1971) the minima
in the fitted curves correspond to the boundary between the heterogeneous
and saltation flow regimes. Note that these all occur at essentially the same
critical volumetric flux, j.; this agrees with the criterion of Newitt et al.
(1955) that was discussed in section 7.3.1 and is equivalent to a critical
volumetric flux, j., that is simply proportional to the terminal velocity of
individual particles and independent of the loading or mass fraction.

The transition of the flow regime from heterogeneous to saltation results
in much of the particle mass being supported directly by particle contacts
with the interior surface of the pipe. The frictional forces that this contact
produces implies, in turn, a substantial pressure gradient in order to move
the bed. The pressure gradient in the moving bed configuration can be read-
ily estimated as follows. The submerged weight of solids in the packed bed
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Figure 8.5. Pressure gradients in a 2.54cm diameter horizontal pipeline
plotted against the total volumetric flux, j, for a slurry of sand with particle
diameter 0.057cm. Curves for four specific mass fractions, « (in percent)
are fitted to the data. Adapted from Hayden and Stelson (1971).

per unit length of the cylindrical pipe of diameter, d, is

rd*ag(ps — pr) (8.5)

where « is the overall effective volume fraction of solids. Therefore, if the
effective Coulomb friction coefficient is denoted by n, the longitudinal force
required to overcome this friction per unit length of pipe is simply n times
the above expression. The pressure gradient needed to provide this force is
therefore

dp
- (d—) = nag(ps — pr) (8.6)
S friction

With n considered as an adjustable constant, this is the expression for the
additional frictional pressure gradient proposed by Newitt et al. (1955). The
final step is to calculate the volumetric flow rate that occurs with this pres-
sure gradient, part of which proceeds through the packed bed and part
of which flows above the bed. The literature contains a number of semi-
empirical treatments of this problem. One of the first correlations was that
of Durand and Condolios (1952) that took the form

jo = f(a, D) {2gd%}% (8.7)

where f(a, D) is some function of the solids fraction, «, and the particle
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diameter, D. There are both similarities and differences between this ex-
pression and that of Newitt et al. (1955). A commonly used criterion that
has the same form as equation 8.7 but is more specific is that of Zandi and
Govatos (1967):

N[=

Kadg %
C% PL

Je = (8.8)
where K is an empirical constant of the order of 10 — 40. Many other efforts
have been made to correlate the friction factor for the heterogeneous and
saltation regimes; reviews of these mostly empirical approaches can be found
in Zandi (1971) and Lazarus and Neilsen (1978). Fundamental understand-
ing is less readily achieved; perhaps future understanding of the granular
flows described in chapter 13 will provide clearer insights.

8.2.4 Vertical flow

As indicated by the flow regimes of section 7.2.2, vertically-oriented pipe flow
can experience partially separated flows in which large relative velocities de-
velop due to buoyancy and the difference in the densities of the two-phases
or components. These large relative velocities complicate the problem of
evaluating the pressure gradient. In the next section we describe the tra-
ditional approach used for separated flows in which it is assumed that the
phases or components flow in separate but communicating streams. How-
ever, even when the multiphase flow has a solid particulate phase or an
incompletely separated gas/liquid mixture, partial separation leads to fric-
tion factors that exhibit much larger values than would be experienced in a
homogeneous flow. One example of that in horizontal low was described in
section 8.2.1. Here we provide an example from vertical pipe flows. Figure
8.6 contains friction factors (based on the total volumetric flux and the lig-
uid density) plotted against Reynolds number for the flow of air bubbles and
water in a 10.2cm vertical pipe for three ranges of void fraction. Note that
these are all much larger than the single phase friction factor. Figure 8.7
presents further details from the same experiments, plotting the ratio of the
frictional pressure gradient in the multiphase flow to that in a single phase
flow of the same liquid volumetric flux against the volume quality for several
ranges of Reynolds number. The data shows that for small volume qualities
the friction factor can be as much as an order of magnitude larger than the
single phase value. This substantial effect decreases as the Reynolds number
increases and also decreases at higher volume fractions. To emphasize the
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Figure 8.6. Typical friction coefficients (based on total volumetric flux
and the liquid density) plotted against Reynolds number (based on the
total volumetric flux and the liquid viscosity) for the flow of air bubbles
and water in a 10.2c¢m vertical pipe flow for three ranges of air volume
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Figure 8.7. Typical friction multiplier data (defined as the ratio of the
actual frictional pressure gradient to the frictional pressure gradient that
would occur for a single phase flow of the same liquid volume flux) for the
flow of air bubbles and water in a 10.2cm vertical pipe plotted against the
volume quality, 3, for three ranges of Reynolds number as shown (Kytomaa

1987).
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importance of this phenomenon in partially separated flows, a line represent-
ing the Lockhart-Martinelli correlation for fully separated flow (see section
8.3.1) is also included in figure 8.7. As in the case of partially separated
horizontal flows discussed in section 8.2.1, there is, as yet, no convincing
explanation of the high values of the friction at lower Reynolds numbers.
But the effect seems to be related to the large unsteady motions caused by
the presence of a disperse phase of different density and the effective stresses
(similar to Reynolds stresses) that result from the inertia of these unsteady
motions.

8.3 FRICTIONAL LOSS IN SEPARATED FLOW

Having discussed homogeneous and disperse flows we now turn our attention
to the friction in separated flows and, in particular, describe the commonly
used Martinelli correlations.

8.3.1 Two component flow

The Lockhart-Martinelli and Martinelli- Nelson correlations attempt to pre-
dict the frictional pressure gradient in two-component or two-phase flows in
pipes of constant cross-sectional area, A. It is assumed that these multiphase
flows consist of two separate co-current streams that, for convenience, we
will refer to as the liquid and the gas though they could be any two immisci-
ble fluids. The correlations use the results for the frictional pressure gradient
in single phase pipe flows of each of the two fluids. In two-phase flow, the
volume fraction is often changing as the mixture progresses along the pipe
and such phase change necessarily implies acceleration or deceleration of
the fluids. Associated with this acceleration is an acceleration component of
the pressure gradient that is addressed in a later section dealing with the
Martinelli-Nelson correlation. Obviously, it is convenient to begin with the
simpler, two-component case (the Lockhart-Martinelli correlation); this also
neglects the effects of changes in the fluid densities with distance, s, along
the pipe axis so that the fluid velocities also remain invariant with s. More-
over, in all cases, it is assumed that the hydrostatic pressure gradient has
been accounted for so that the only remaining contribution to the pressure
gradient, —dp/ds, is that due to the wall shear stress, 7,,. A simple balance
of forces requires that

—% _ %w (8.9)
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where P is the perimeter of the cross-section of the pipe. For a circular pipe,
P/A = 4/d, where d is the pipe diameter and, for non-circular cross-sections,
it is convenient to define a hydraulic diameter, 4A/P. Then, defining the
dimensionless friction coefficient, Cy, as

1
Cr = 1w/ 50" (8.10)
the more general form of equation 8.1 becomes
dp o P
—— =2C — 8.11
ds — Pz (8.11)

In single phase flow the coefficient, Cf, is a function of the Reynolds number,
pdj /i, of the form

Cy :/C{%j}_m (8.12)

where /C is a constant that depends on the roughness of the pipe surface
and will be different for laminar and turbulent flow. The index, m, is also
different, being 1 in the case of laminar flow and i in the case of turbulent
flow.

These relations from single phase flow are applied to the two cocurrent
streams in the following way. First, we define hydraulic diameters, d; and
dg, for each of the two streams and define corresponding area ratios, x7, and
KG, as

kp = 4Ap/mdr kg = 4Ag/mdZ, (8.13)

where A, = A(1 — a) and Ag = Aa are the actual cross-sectional areas of
the two streams. The quantities k7, and k¢ are shape parameters that depend
on the geometry of the flow pattern. In the absence of any specific informa-
tion on this geometry, one might choose the values pertinent to streams of
circular cross-section, namely k;, = kg = 1, and the commonly used form
of the Lockhart-Martinelli correlation employs these values. However, as an
alternative example, we shall also present data for the case of annular flow
in which the liquid coats the pipe wall with a film of uniform thickness and
the gas flows in a cylindrical core. When the film is thin, it follows from the
annular flow geometry that

kp=1/1—-a) ; kKg=1 (8.14)

where it has been assumed that only the exterior perimeter of the annular
liquid stream experiences significant shear stress.
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In summary, the basic geometric relations yield
a=1-kpd:/d* = kgds/d? (8.15)

Then, the pressure gradient in each stream is assumed given by the following
coefficients taken from single phase pipe flow:

drup )~ ME douc ) ~™¢
CfL:ICL{pL L L} ; OfG:IC(;{pGG G} (8.16)
K na

and, since the pressure gradients must be the same in the two streams, this
imposes the following relation between the flows:

dp _ 2pLu2 KL, {pLdLUL }_mL _ 2pcugKe {PGdGuG}_mG (8.17)
ds dr, KL dg HG

In the above, my and mg are 1 or i depending on whether the stream is

laminar or turbulent. It follows that there are four permutations namely:

* both streams are laminar so that my; = mg = 1, a permutation denoted by the
double subscript LL

* a laminar liquid stream and a turbulent gas stream so that mp =1, mg =

* a turbulent liquid stream and a laminar gas stream so that my = i, mg =
and

* both streams are turbulent so that my, = mg = 1 (TT)

Equations 8.15 and 8.17 are the basic relations used to construct the
Lockhart-Martinelli correlation. However, the solutions to these equations
are normally and most conveniently presented in non-dimensional form by
defining the following dimensionless pressure gradient parameters:

B . (@

m . 2 _ s ) getual

(d_p> ;o 0G = (d_p> (8.18)
ds L ds Ie.

where (dp/ds)r, and (dp/ds)q are respectively the hypothetical pressure gra-

¢1 =

dients that would occur in the same pipe if only the liquid flow were present
and if only the gas flow were present. The ratio of these two hypothetical
gradients, Ma?, given by

Q

M 2_@_ <%>L _ PLG%;ICG{_“GG_d}_mG

a® = ol <%> —— T~ (8.19)

~ pa G KL {@}‘m
ML
defines the Martinelli parameter, Ma, and allows presentation of the solu-
tions to equations 8.15 and 8.17 in a convenient parametric form. Using the

G
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Figure 8.8. The Lockhart-Martinelli correlation results for ¢;, and ¢ and
the void fraction, «, as functions of the Martinelli parameter, Ma, for the
case, k;, = kg = 1. Results are shown for the four laminar and turbulent
stream permutations, LL, LT, TL and TT.

definitions of equations 8.18, the non-dimensional forms of equations 8.15
become

() (m1=5) 1/ (m=5) _ ~(L4ma)/(ma=5) 41/ (ma=5) (g o)

a=1—-k
and the solution of these equations produces the Lockhart-Martinelli pre-
diction of the non-dimensional pressure gradient.

To summarize: for given values of

e the fluid properties, pr,, pg, pr and pg

e a given type of flow LL, LT, TL or T'T along with the single phase correlation
constants, my,, mg, K1 and Kg

e given values or expressions for the parameters of the flow pattern geometry, sy,
and k¢

e and a given value of «

equations 8.20 can be solved to find the non-dimensional solution to the
flow, namely the values of ¢ and qz%. The value of Ma? also follows and
the rightmost expression in equation 8.19 then yields a relation between the
liquid mass flux, G, and the gas mass flux, G¢. Thus, if one is also given
just one mass flux (often this will be the total mass flux, ), the solution will
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Figure 8.10. Comparison of the Lockhart-Martinelli correlation (the TT
case) for ¢¢ (solid line) with experimental data. Adapted from Turner and
Wallis (1965).

yield the individual mass fluxes, the mass quality and other flow properties.
Alternatively one could begin the calculation with the mass quality rather
than the void fraction and find the void fraction as one of the results. Finally
the pressure gradient, dp/ds, follows from the values of (b% and qz%.

The solutions for the cases k;, = kg = 1 and kK, = 1/2(1 — ), kg = 1 are
presented in figures 8.8 and 8.9 and the comparison of these two figures yields
some measure of the sensitivity of the results to the flow geometry parame-
ters, Kz, and k. Similar charts are commonly used in the manner described
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Figure 8.11. Ratios demonstrating the velocity ratio, uy, /u¢, implicit in
the Lockhart-Martinelli correlation as functions of the Martinelli parame-
ter, Ma, for the LL and T'T cases. Solid lines: k;, = kg = 1; dashed lines:
kL =1/(1 — @), kg = 1.

above to obtain solutions for two-component gas/liquid flows in pipes. A
typical comparison of the Lockhart-Martinelli prediction with the experi-
mental data is presented in figure 8.10. Note that the scatter in the data
is significant (about a factor of 3 in ¢¢) and that the Lockhart-Martinelli
prediction often yields an overestimate of the friction or pressure gradient.
This is the result of the assumption that the entire perimeter of both phases
experiences static wall friction. This is not the case and part of the perimeter
of each phase is in contact with the other phase. If the interface is smooth
this could result in a decrease in the friction; one the other hand a roughened
interface could also result in increased interfacial friction.

It is important to recognize that there are many deficiencies in the
Lockhart-Martinelli approach. First, it is assumed that the flow pattern
consists of two parallel streams and any departure from this topology could
result in substantial errors. In figure 8.11, the ratios of the velocities in the
two streams which are implicit in the correlation (and follow from equation
8.19) are plotted against the Martinelli parameter. Note that large velocity
differences appear to be predicted at void fractions close to unity. Since the
flow is likely to transition to mist flow in this limit and since the relative
velocities in the mist flow are unlikely to become large, it seems inevitable
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that the correlation would become quite inaccurate at these high void frac-
tions. Similar inaccuracies seem inevitable at low void fraction. Indeed, it
appears that the Lockhart-Martinelli correlations work best under condi-
tions that do not imply large velocity differences. Figure 8.11 demonstrates
that smaller velocity differences are expected for turbulent flow (7'T") and
this is mirrored in better correlation with the experimental results in the
turbulent flow case (Turner and Wallis 1965).

Second, there is the previously discussed deficiency regarding the suit-
ability of assuming that the perimeters of both phases experience friction
that is effectively equivalent to that of a static solid wall. A third source of
error arises because the multiphase flows are often unsteady and this yields
a multitude of quadratic interaction terms that contribute to the mean flow
in the same way that Reynolds stress terms contribute to turbulent single
phase flow.

8.3.2 Flow with phase change

The Lockhart-Martinelli correlation was extended by Martinelli and Nelson
(1948) to include the effects of phase change. Since the individual mass fluxes
are then changing as one moves down the pipe, it becomes convenient to use
a different non-dimensional pressure gradient

(#)

ds actual
dp
( ds ) Lo

where (dp/ds)ro is the hypothetical pressure gradient that would occur in
the same pipe if a liquid flow with the same total mass flow were present.

$1o = (8.21)

Such a definition is more practical in this case since the total mass flow is
constant. It follows that qb%o is simply related to (b% by

¢r0=(1—X)>""¢7 (8.22)

The Martinelli-Nelson correlation uses the previously described Lockhart-
Martinelli results to obtain (b% and, therefore, qb%o as functions of the mass
quality, X. Then the frictional component of the pressure gradient is given

by
2 2 —mr
(—d—p> = g R {@} (8.23)
ds Frictional pLd 222

Note that, though the other quantities in this expression for dp/ds are
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constant along the pipe, the quantity qb%o is necessarily a function of the
mass quality, X, and will therefore vary with s. It follows that to integrate
equation 8.23 to find the pressure drop over a finite pipe length one must
know the variation of the mass quality, X' (s). Now, in many boilers, evapo-
rators or condensers, the mass quality varies linearly with length, s, since

ax _ 9,
ds AGL

(8.24)

Since the rate of heat supply or removal per unit length of the pipe, Qy,
is roughly uniform and the latent heat, £, can be considered roughly con-
stant, it follows that dX'/ds is approximately constant. Then integration of
equation 8.23 from the location at which X = 0 to the location a distance,
¢, along the pipe (at which X = A,) yields

2G2IK Gd) " ——
(B poa = Pz — (P, = 25 LS 0
PL mr
where
__ Xe
$o = $FodX (8.26)

X,

Given a two-phase flow and assuming that the fluid properties can be es-
timated with reasonable accuracy by knowing the average pressure level of
the flow and finding the saturated liquid and vapor densities and viscosities
at that pressure, the results of the last section can be used to determine qb%o
as a function of X. Integration of this function yields the required values
of qb%o as a function of the exit mass quality, X, and the prevailing mean
pressure level. Typical data for water are exhibited in figure 8.12 and the
corresponding values of the exit void fraction, ag, are shown in figure 8.13.
These non-dimensional results are used in a more general flow in the
following way. If one wishes to determine the pressure drop for a flow with a
non-zero inlet quality, &;, and an exit quality, X, (or, equivalently, a given
heat flux because of equation 8.24) then one simply uses figure 8.12, first, to
determine the pressure difference between the hypothetical point upstream
of the inlet at which X =0 and the inlet and, second, to determine the
difference between the same hypothetical point and the outlet of the pipe.
But, in addition, to the frictional component of the pressure gradient there
is also a contribution caused by the fact that the fluids will be accelerat-
ing due to the change in the mixture density caused by the phase change.
Using the mixture momentum equation 1.50, it is readily shown that this
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Figure 8.14. The Martinelli-Nelson acceleration pressure drop function,
2 for water as a function of the prevailing pressure level and the exit mass
quality, X.. Case shown is for kK, = kg = 1.0 and my = mg = 0.25.

acceleration contribution to the pressure gradient can be written as

x? 1—X)2
<_d_p) — Cﬁi{ T ( ) } (8.27)
ds Acceleration ds pGe pL(l - Of)

and this can be integrated over the same interval as was used for the frictional
contribution to obtain

(Ap(Xe))Acceleration = G2pL¢¢21(Xe) (828)

where

(8.29)

2 — {Mﬁ NCEEA y

PGCe (1 - ae)

As in the case of QSTLO, ¢2(X,) can readily be calculated for a particular
fluid given the prevailing pressure. Typical values for water are presented in
figure 8.14. This figure is used in a manner analogous to figure 8.12 so that,
taken together, they allow prediction of both the frictional and acceleration
components of the pressure drop in a two-phase pipe flow with phase change.
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8.4 ENERGY CONVERSION IN PUMPS AND TURBINES

Apart from pipes, most pneumatic or hydraulic systems also involve a whole
collection of components such as valves, pumps, turbines, heat exchangers,
etc. The flows in these devices are often complicated and frequently require
highly specialized analyses. However, effective single phase analyses (homo-
geneous flow analyses) can also yield useful results and we illustrate this
here by reference to work on the multiphase flow through rotating impeller
pumps (centrifugal, mixed or axial pumps).

8.4.1 Multiphase flows in pumps

Consistent with the usual turbomachinery conventions, the total pressure
increase (or decrease) across a pump (or turbine) and the total volumetric
flux (based on the discharge area, A4) are denoted by Ap” and j, respec-
tively, and these quantities are non-dimensionalized to form the head and
flow coefficients, 1 and ¢, for the machine:

W= S
pQ2ra 7 Qry

(8.30)

where Q and ry are the rotating speed (in radians/second) and the radius
of the impeller discharge respectively and p is the mixture density. We note
that sometimes in presenting cavitation performance, the impeller inlet area,
A;, is used rather than Ay in defining j, and this leads to a modified flow
coefficient based on that inlet area.

The typical centrifugal pump performance with multiphase mixtures
is exemplified by figures 8.15, 8.16 and 8.17. Figure 8.15 from Herbich
(1975) presents the performance of a centrifugal dredge pump ingesting
silt /clay /water mixtures with mixture densities, p, up to 1380kg/m3. The
corresponding solids fractions therefore range up to about 25% and the fig-
ure indicates that, provided ¢ is defined using the mixture density, there
is little change in the performance even up to such high solids fractions.
Herbich also shows that the silt and clay suspensions cause little change in
the equivalent homogeneous cavitation performance of the pump.

Data on the same centrifugal pump with air/water mixtures of different
volume quality, (3, is included in figure 8.16 (Herbich 1975). Again, there
is little difference between the multiphase flow performance and the homo-
geneous flow prediction at small discharge qualities. However, unlike the
solids/liquid case, the air/water performance begins to decline precipitously
above some critical volume fraction of gas, in this case a volume fraction con-
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Figure 8.15. The head coefficient, 1), for a centrifugal dredge pump ingest-
ing silt/clay/water mixtures plotted against a non-dimensional flow rate,
$Aq/r3, for various mixture densities (in kg/m?). Adapted from Herbich
(1975).
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Figure 8.16. The head coefficient, 1, for a centrifugal dredge pump in-
gesting air/water mixtures plotted against a non-dimensional flow rate,
$Aq/r3, for various volumetric qualities, 3. Adapted from Herbich (1975).

sistent with a discharge quality of about 9%. Below this critical value, the
homogeneous theory works well; larger volumetric qualities of air produce
substantial degradation in performance.

Patel and Runstadler (1978), Murakami and Minemura (1978) and many
others present similar data for pumps ingesting air/water and steam/water
mixtures. Figure 8.17 presents another example of the air/water flow through
a centrifugal pump. In this case the critical inlet volumetric quality is only
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Figure 8.17. The ratio of the pump head with air/water mixtures to the
head with water alone, 1/t (8 = 0), as a function of the inlet volumetric
quality, 3, for various flow coefficients, ¢. Data from Patel and Runstadler
(1978) for a centrifugal pump.

about 3 = 3% or 4% and the degradation appears to occur at lower vol-
ume fractions for lower flow coefficients. Murakami and Minemura (1978)
obtained similar data for both axial and centrifugal pumps, though the per-
formance of axial flow pumps appear to fall off at even lower air contents.

A qualitatively similar, precipitous decline in performance occurs in sin-
gle phase liquid pumping when cavitation at the inlet to the pump becomes
sufficiently extensive. This performance degradation is normally presented
dimensionlessly by plotting the head coefficient, v, at a given, fixed flow coef-
ficient against a dimensionless inlet pressure, namely the cavitation number,
o (see section 5.2.1), defined as

g =
1 2
EPLQ%%'

where p; and r; are the inlet pressure and impeller tip radius and py is the
vapor pressure. An example is shown in figure 8.18 which presents the cavi-
tation performance of a typical centrifugal pump. Note that the performance
declines rapidly below a critical cavitation number that usually corresponds
to a fairly high vapor volume fraction at the pump inlet.

There appear to be two possible explanations for the decline in perfor-
mance in gas/liquid flows above a critical volume fraction. The first possi-
ble cause, propounded by Murakami and Minemura (1977,1978), Patel and
Runstadler (1978), Furuya (1985) and others, is that, when the void frac-
tion exceeds some critical value the flow in the blade passages of the pump
becomes stratified because of the large crossflow pressure gradients. This
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Figure 8.18. Cavitation performance for a typical centrifugal pump
(Franz et al. 1990) for three different flow coefficients, ¢

allows a substantial deviation angle to develop at the pump discharge and,
as in conventional single phase turbomachinery analyses (Brennen 1994),
an increasing deviation angle implies a decline in performance. The lower
critical volume fractions at lower flow coefficients would be consistent with
this explanation since the pertinent pressure gradients will increase as the
loading on the blades increases. Previously, in section 7.3.3, we discussed
the data on the bubble size in the blade passages compiled by Murakami
and Minemura (1977, 1978). Bubble size is critical to the process of stratifi-
cation since larger bubbles have larger relative velocities and will therefore
lead more readily to stratification. But the size of bubbles in the blade pas-
sages of a pump is usually determined by the high shear rates to which the
inlet flow is subjected and therefore the phenomenon has two key processes,
namely shear at inlet that determines bubble size and segregation in the
blade passages that governs performance.

The second explanation (and the one most often put forward to explain
cavitation performance degradation) is based on the observation that the
vapor (or gas) bubbles grow substantially as they enter the pump and subse-
quently collapse as they are convected into regions of higher pressure within
the blade passages of the pump. The displacement of liquid by this volume
growth and collapse introduces an additional flow area restriction into the
flow, an additional inlet nozzle caused by the cavitation. Stripling and Acosta
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(1962) and others have suggested that the head degradation due to cavita-
tion could be due to a lack of pressure recovery in this effective additional
nozzle.
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