
Chapter 5 

Trigonometric 
Functions 

The derivative of sinx is cosx and of cosx is - sinx; everything else follows 
from this. 

Many problems involving angles, circles, and periodic motion lead to trigono- 
metric functions. In this chapter, we study the calculus of these functions, and 
we apply our knowledge to solve new problems. 

The chapter begins with a review of trigonometry. Well-prepared students 
may skim this material and move on quickly to the second section. Students 
who do not feel prepared or who failed Orientation Quiz C at the beginning of 
the book should study this review material carefully. 

5.1 Polar Coordinates and 
Trigonometry 
Trigonometric functions provide the link between polar and cartesian coordinates. 

21ir This section contains a review of trigonometry, with an emphasis on the topics 
which are most important for calculus. The derivatives of the trigonometric 
functions will be calculated in the next section. 

The circumference C and area A of a circle of radius r are given by 

C = 2nr, A = nr2 

Figure 5.1.1. The (see Fig. 5.1.1), where n is an irrational number whose value is approximately 
circumference and area 3.14159 . . . .' 
of a circle. 

' For details on the fascinating history of a, see P. Beckman, A History o f a ,  Golem Press, 1970. 
T o  establish deeper properties of a such as its irrationality (discovered by Lambert and Legendre 
around 1780), a careful and critical examination of the definition of a is needed. The first explicit 
expression for m was given by Viete (1540-1603) as 

which is obtained by inscribing regular polygons in a circle. Euler's famous expression 
m/4 = 1 - + - . . . is discussed in Example 3, Section 12.5. For an elementary proof of the 

irrationality of m, see M. Spivak, Calculus, Benjamin, 1967. 
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252 Chapter 5 Trigonometric Functions 

If two rays are drawn from the center of the circle, both the length and 
area of the part of the circle between the rays are proportional to the angle 
between the rays. Thus, if we measure angles in degrees, the length C, and 
area A, between rays making an angle 8 (see Fig. 5.1.2) are determined by the 
relations 

Figure 5.1.2. The length CH since a full circle corresponds to an angle of 360 degrees. 
and area A.  are These formulas become simpler if we adopt the radian unit of measure, in 
proportional to 0. which the total angular measure of a circle is defined to be 277. Then our 

previous formulas become 

C, - 8 A, - ' ( 8  in radians) 
27~r 277 ' vr2 277 

or simply 

The formulas of calculus are also simpler when angles are measured in radians 
rather than degrees. Unless explicit mention is made of degrees, all angles in 
this book will be expressed in radians. If you use a calculator to do computa- 
tions with angles measured in radians, be sure that it is operating in the radian 
mode. 

Example 1 An arc of length 10 meters on a circle of radius 4 meters subtends what angle 
at the center of the circle? Wow much area is enclosed in this part of the 
circle? 

Solution In the formula C, = YO, we have C, = 10 and r = 4, so 8 = 9 = 2: (radians). 
The area enclosed is A ,  = + r28 = + . 16 . 5 = 20 square meters. A 

Conversions between degrees and radians are made by multiplying or dividing 
by the factor 3 6 0 / 2 ~  = 1 8 0 / ~  % 57.296 degrees per radian. 

Degrees and Radians 

% 57" 18' = 57.296". To convert from radians to degrees, multiply by 7 
57 1800 = 0.01745. To convert from degrees to radians, multiply by - 

The following table gives some important angles in degrees and radians: 

Degrees 0" 30" 45" 60" 90" 120" 135" 150" 180" 270" 360" 

The measures of right angles and straight angles are shown in Fig. 5.1.3. 

Figure 5.1.3. A complete 
circle, a right angle, and a 
straight angle in degrees 
and radians. 
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5.1 Polar Coordinates and Trigonometry 253 

Negative numbers and numbers larger than 271 (or 360") can also be used 
to represent angles. The convention is that 8 and 8 + 277 represent the same 
geometric angle; hence so do  8 + 471, 8 + 677, . . . as well as 8 - 277, 
8 - 477, . . . (see Fig. 5.1.4). The angle - 8 equals 271 - 8 and is thus the 
"mirror image" of 8 (see Fig. 5.1.5). Note, also, that rays making angles of B 
and 6 + 77 with a given ray point in opposite directions along the same straight 
line (see Fig. 5.1.6). 

Figure 5.1.4. 8,  8 - 271, and 
8 + 2x7 measure the same 
geometric angle. 

Figure 5.1.5. The angle 
- 8, or 271 - 8, is the 
mirror image of 8 .  

Figure 5.1.6. The rays 
making angles of 8 and 
8 + 71 with OP point in 
opposite directions. 

Example 2 (a) Convert to radians: 36", 160°, 280°, -300°, 460" 
(b) Convert to degrees: 571/18, 2.6, 6.27, 0.2, -9.23. 

Solution (a) 36" + 36 x 0.01745 = 0.6282 radian; 
160" + 160 x 0.01745 = 2.792 radians; 
280" + 280 x 0.01745 = 4.886 radians; 
- 300" + - 300 x 0.01745 = - 5.235 radians, or 

- 300 x a/180 = - 5a/3 radians; 
460" + 460' - 360' = 100" + I00 x 0.01 745 = 1.745 radians. 

(b) 5a /18+5~ /18  x 180/n = 50"; 
2.6 + 2.6 x 57.296 = 148.97"; 
6.27 --+ 6.27 X 57.296 = 359.25"; 
0.2 --+ 0.2 x 57.296 = 11.46'. 
-9.23 -+ -9.23 x 180/a = - 528.84" -+720° - 528.84' = 191.16'. A 

Cartesian coordinates (x, y) represent points in the plane by their distances 
from two perpendicular lines. In the polar coordinate representation, a point P 
is associated with each pair ( r , 8 )  of numbers in the following way.2 First, a 
ray is drawn through the origin making an angle of 8 with the positive x axis. 

O r Then one travels a distance r along this ray, if r is positive. (See Fig. 5.1.7.) If 
r is negative, one travels a distance - r along the ray traced in the opposite 

Figure 5.1.7. The polar 
coordinates ( r ,  B )  of a 
point P. 

Figure 5.1.8. Plotting ( r ,  8 )  
for negative r .  

* Polar coordinates were first used successfully by Newton (1671) and Jacques Bernoulli (1691). 
The definitive treatment of polar coordinates in their modern form was given by Leonhard Euler 
in hts 1748 textbook Introductio in analysis infinitorium. See C .  B. Boyer. "The foremost textbook 
of modern times," American Mathematical Monthly 58 (1951): 223-226. 
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254 Chapter 5 Trigonometric Functions 

direction. One arrives at the point P; we call (r, 0) its polar coordinates. Notice 
that the resulting point is the same as the one with polar coordinates 
( - r, 0 + n) (see Fig. 5.1.8) and that the pair (r, 8 + 2an) represents the same 
point as (r, 0), for any integer n. 

Example 3 Plot the points P,, P2, P3, and P, whose polar coordinates are (5,a/6), 
( - 5,7r/6), (5, - 7r/6), and ( - 5, - a/6), respectively. 

Solution (See Fig. 5.1.9.) The point (-5, -a/6)  is obtained by rotating n/6 = 30' 
clockwise to give an angle of - a / 6  and then moving 5 units backwards on 

F i g u r e  5.1.9. Some points 
in polar coordinates. t 

this line to the point P, shown. The other points are plotted in a similar 
way. A 

Example 4 Describe the set of points P whose polar coordinates (r, 0) satisfy 0 < r < 2 
and 0 < B < a .  

Solution Since 0 < r < 2, we can range from the origin to 2 units from the origin. Our 
angle with the x axis varies from 0 to n, but not including a .  Thus we are 
confined to the region in Fig. 5.1.10. The negative x axis is dashed since it is 
not included in the region. A 

If 8 is a real number, we define cos 8 to be x and sin 0 to bey, where (x, y) are 
the cartesian coordinates of the point P on the circle of radius one whose 
polar coordinates are (1,B). (See Fig. 5.1.1 1 .) If an angle +' is given in degrees, 
sin+" or cos +" means sin 8 or cos 8, where 8 is the same angle measured in 

F i g u r e  5.1.10. The region radians. Thus sin 45" = sin(7r/4), cos60° i= cos(m-/3), and so on. 
O < r < 2 , 0 < @ < ~ .  The sine and cosine functions can also be defined in terms of ratios of 

sides of right triangles. (See Fig. 5.1.12.) By definition, cos 8 = 1 OA'I, and by 
similar triangles, 

side adjacent to 8 
hypotenuse 

F i g u r e  5.1.11. The cosine 
and sine of @ are the x and 
y coordinates of the 
point P. 

F i g u r e  5.1.12. The triangles 
OA B and OA ' B '  are 
similar; cosB = lOAl/lOBI 
and sin@ = IABI/ lOB/.  
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5.1 Polar Coordinates and Trigonometry 255 

' t In the same way, we see that 

(AB I - side opposite to 8 
sin8 = - - 

1 o B  1 hypotenuse ' 

It follows (see Fig. 5.1.13) that if the point B has cartesian coordinates 
(x, y)  and polar coordinates (r, 8), then cos8 = 1 OA [ / I  OB I = x / r  and sin 8 
= \A B I/(OB ( = y / r ,  so we obtain the following relations. 

Figure 5.1.13. Converting 
polar to cartesian 
coordinates. 

Example 5 

Solution 

Figure 5.1.14. Find the 
polar coordinates of 
(2, -4). 

x =  rcos8 and y =  rsin8, 

where (x, y)  are cartesian coordinates and (r, 8) are polar coordinates. 

Convert from cartesian to polar coordinates: (2, -4); and from polar to 
cartesian coordinates: (6, - n/8). 

We plot (2, - 4) as in Fig. 5.1.14. Then r = J2' + ( - 4)' = $% = 2 6  and 

cos8 = 2/(2JS) = 116 -0.447214, so from tables or a calculator3, 8 = 

1.107; but we must take 8 = - 1.107 (or 5.176) since we are in the fourth 
quadrant. Thus the polar coordinates of (2, - 4) are (26, - 1.107). 

The cartesian coordinates of the point with polar coordinates (6, - n/8) 
are 

and 

y = rsin8 = 6sin(-n/8) = (6)(-0.38268) = -2.2961. 

That is, (5.5433, -2.2961). This point is also in the fourth quadrant as it 
should be. A 

(a) Show that sin8 = cos(n/2 - 8) for 0 < 8 < n/2. (b) Show that sin is an 
odd function: sin(- 8) = - sin 8 (assume that 0 < 8 < n/2). 

(a) In Fig. 5.1.15, the angle OBA is n/2 - 8 since the three angles must add 
up to n by plane geometry. Therefore sin8 = (opposite/hypotenuse) = 
IABI/IOBI and cos(n/2 - 8)  = (adjacent/hypotenuse) = IABI/IOBI = 
sin 8. 
(b) Referring to Fig. 5.1.16, we see that if 8 is switched to - 8, this changes the 
sign of y = sin'8. Hence sin(- 8) = - sin 8. A 

F i w e  5.1.15. If 6' 
= L BOA, then L OBA 
= 77/2 - 6'. 

odd function. I 

Many calculators are equipped with a cos-' (arc cos) function which computes the angle whose 
cosine is given. If your calculator does not have such a function, you can use the cosine function 
together with the method of bisection (see Example 7, Section 3.1). The inverse cosine (and other 
trigonometric) functions are discussed in Section 5.4. 
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256 Chapter 5 Trigonometric Functions 

The other trigonometric functions can be defined in terms of the sine and 
cosine: 

sin 8 - [ A  B I side opposite 
Tangent: - t ano=  -- - - 

cos 8 I OA I side adjacent ' 

cose - 1 - IOAl Cotangent: cotO=----------- 
sin8 tan8 I A B l '  

Secant: sec8= - 1 - - - IOBI 
cos8 IOAI'  

Cosecant: cscO = - 1 = - IoBI 
sin0 lABl ' 

Some frequently used values of the trigonometric functions can be read 
o off the right triangles shown in Fig. 5.1.17. For example, cos(a/4) = 1 /a, 
6 s in (~ /4 )  = 1 /@, t a n ( ~ / 4 )  = 1, cos(a/6) = 6 / 2 ,  and t a n ( ~ / 3 )  = 6. (The 

proof that the 1 , 2 , 6  triangle has angles a / 3 , ~ / 6 , ~ / 2  is an exercise in 
Figure 5.1.17. Two basic 
examples. euclidean geometry; see Fig. 5.1.18.) 

Figwe 5.1.18. The angles of 
an equilateral triangle are 
all equal to v / 3 .  

..\ 
A I I ( 

Special care should be taken with functions of angles which are not 
between 0 and ~/2-that is, angles not in the first quadrant-to ensure 
that their signs are correct. For instance, we notice in Fig. 5.1.19 that 

F i w e  5.1.19. Illustrating sin(2=/3) = 0 12 and C O S ( ~ = / ~ )  = - i. 
the sine and cosine of The following table gives some commonly used values of sin, cos, and 
2v/3 .  tan: 

Over the centuries, large tables of values of the trigonometric functions 
have been complied. The first such table, compiled by Hipparchus and 
Ptolemy, appeared in Ptolemy's Almagest. Today these values are also on 
many pocket calculators. Since angles as well as some lengths can be directly 
measured (as in surveying), the trigonometric relations can then enable us to 
compute lengths which may be inaccessible (see Example 7). 
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5.IPolar Coordinates and Trigonometry 257 

@ Calculator Disclrssi~n 
You may be curious about how pocket calculators compute their values of 
sin 0 and cos 8. Some analytic expressions are available, such as 

(as will be proved in Section 12.5), but using these is inefficient and inaccu- 
rate. Instead a rational function of 6 is fitted to many known values of sine 
(or cos0, tan@, and so on) and this rational function is used to calculate 
approximate values at the remaining points. Thus when 6 is entered and sin0 
pressed, a program in the calculator calculates the value of this rational 
function. 

If you experiment with your calculator-for example, by calculating tan 0 
for 0 near ~/2-you might discover some inaccuracies in this m e t h ~ d . ~  A 

Example 7 (a) In Fig. 5.1.20, find x. (b) A tree 50 meters away subtends an angle of 53" 
as seen by an observer. How tall is the tree? 

Solution (a) We find that tan22" = 10.3/x, so x = 10.3/tan22", From tables or a 
calculator, tan22" ~ 0 . 4 0 4 0 2 6 ,  so x ~ 2 5 . 4 9 3 4 .  jbj Refer to Fig. 5.1.21. 
lAB = 1 OA ltan 53' = 50 tan 53". Using tables or a calculator, this becomes 
50(1.3270) = 66.35 meters. A 

Figure 5.1.21. Trigonome- 
try used to find the height 
of a tree. 

From the definition of sin and cos, the point P with cartesian coordinates 
x = cos0 and y = sine lies on the unit circle x 2  + ,v2 = 1. Therefore, for any 
value of 0, 

This is an example of trigonometric identity-a relationship among the trigono- 
metric functions which is valid for all 8. 

For more details on how calculators d o  those computations, see "Calculator Function Approxi- 
mation" by C. W. Schelin, Am. Math. Monthly Vol. 90 (1983), 317-325. 
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258 Chapter 5 Trigonometric Functions 

Relationship (1) is, in essence, a statement of Pythagoras' theorem for a 
right triangle (OA'B' in Fig. 5.1.12). For a general triangle, the correct 
relationship between the three sides is given by the law of cosines: with 
notation as in Fig. 5.1.22, we have 

c2 = a 2  + b2 - 2ab cos8. (2) 

law of cosines. 

To prove equation (2), note that the (x ,  y )  coordinates of B are x 
= b cos 8 and y = b sin 8;  those of A are x = a ,  y = 0. By the distance formula 
and equation ( l ) ,  

c2 = (b cos B - a)2 + (b sin B )* = b2cos2@ - 2ab cos 8 + a 2  + b2sin28 

= b2(cos28 + sin2#) + a 2  - 2ab cos 8 = b2 + a 2  - 2ab cos8, 

so equation (2) is proved. 
In Fig. 5.1.22 we situated the triangles in a particular way, but this was 

Figure 5.1.23. Data for the just a device to prove equation (2); since any triangle can be moved into this 
law of c 2  = a 2  + special position, the formula holds in the general situation of Fig. 5.1.23. 
h2 - 2ab cos 0. Note that when 8 =  ~ / 2 ,  cos8 = 0 and so equation (2) reduces to 

Pythagoras' theorem: c2 = a*  + b2. 

Example 8 In Fig. 5.1.24, find x. 

Soiution By the law of cosines 

x2  = (20.2)~ + (13.4)' - 2(20.2)(13.4)co~(lO.3~) 

30  2 = (408.04) + (179.56) - 532.64 = 54.96. 

Taking square roots, we find x x 7.41. A 
1.1 4 

Figure 5.1.24. Find x.  Now consider the situation in Fig. 5.1.25. By the distance formula, 

I P Q / ~  = (COS+ - C O S ~ ) ~ +  (sin+ -  sin^)^ 

v 4 = cos2+ - 2 cos + cos 8 + cos28 + sin2+ - 2 sin + sin 8 + sin2@ 

= 2 - 2cos+cosb' - 2sin+sin8. 

u , u On the other hand, by the law of cosines (2) applied to AOPQ, 

( P Q ( ~  = 1'+ 12- 2cos(+- B ) ,  

;t- 
since + - 8 is the angle at the vertex 0. Comparing our two expressions for 
I PQ l 2  gives the identity 

cos(@ - 0 )  = cos+cosB + sin+sin6', 

Figwe 5.1.25. Geometry which is valid for all @ and 8. If we replace 8 by - 8 and recall that 
for the proof of the cos( - 0) = cos 6' and sin( - 8)  = - sin 8, this identity yields 
addition formulas. cos(8 + @) = cos 8 cos @ - sin 6' sin +. (3) 
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5.1 Polar Coordinates and Trigonometry 259 

Now if we write ~ / 2  - + for + and recall that cos(77/2 - +) = sin+ and 
s i n ( ~ / 2  - +) = cos+, the same identity gives 

sin(@ + +) = sin 8 cos $I + cos @sin +. (4) 

Identities (3) and (4), called the addition formulas for sine and cosine, will be 
essential for calculus. From these basic identities, we can also derive many 
others by algebraic manipulation. 

For integral calculus, two of the most important consequences of (3) are 
the double-angle formulas. Setting 8 = $I in (3) gives 

cos 28 = cos28 - sin2@ = (1 - sin2@) - sin28 = 1 - 2 sin28. 

Thus 

sin28 = i(1 - ~ 0 ~ 2 8 ) .  

Similarly, 

cos 28 = cos28 - sin2@ = 2 cos26 - 1 

gives 

cos28 = 4 (cos 28 + I ) .  (6) 

Example 9 (a) Prove the product formula: cos 6 cos + = f [cos(6 - +) + cos(6 + +)I. 
jb) Prove that I + tan26 = sec2ii. 

Solution (a) Add the identity for cos(6 - +) to that for cos(8 + +): 

cos(@ - +) + cos(6 + cp) = cos + cos 6 + sin +sin 6 + cos 6 cos + - sin 8 sin $I 

= 2 cos 6 cos +. 
Dividing by 2 gives the product formula. 
(b) Divide both sides of sin26 + cos20 = 1 by cos28; then, using tan8 = 

sin B/COS 8 and 1 /cos 0 = sec0, we get tah28 + 1 = sec2B as required. A 

Some of the most important trigonometric identities are listed on the inside 
front cover of the book for handy reference. They are all useful, but you can 
get by quite well by memorizing only (1) through (4) above and deriving the 
rest when you need them. 

From the available values of the trigonometric functions, one can accu- 
rately draw their graphs. The calculus of these functions, studied in the next 
section, confirms that these graphs are correct, so there are no maxima, 
minima, or inflection points other than those in plain view in Fig. 5.1.26 on 
the following page. 

Perhaps the most important fact about these functions is their periodicity: 
When a function f satisfies f(8 + r )  = f(6) for all 8 and a given positive 7, f is 
said to be periodic with period r .  The reciprocal 1 / r  is called thefrequency. All 
the functions in Fig. 5.1.26 are periodic with period 2a;  this enables us to 
draw the entire graph by repeating the segment over an interval of length 2-77. 
The trigonometric functions also have 471,671, 877, . . . as additional periods, 
but the least period of a periodic function is always unique. Note that the 
functions tan and cot have T as their least period, while 277 is the least period 
of the other four trigonometric functions. 

Copyright 1985 Springer-Verlag. All rights reserved.



260 Chapter 5 Trigonometric Functions 

( h )  I ,  = cos  8  1 

Figure 5.1.26. Graphs of 
the trigonometric functions. 

( c )  1, = tali 8  ( d )  y = s e c 8  

(e)  y = c s c 8  ( f )  I. = cot 0 
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Example 10 (a) Sketch the graph y = cos2x. What is the (least) period of this function? 
(b) Sketch the graph of y = 3 cos 58. 

Solution (a) We obtain y = cos 2x by taking the graph of y = cosx and compressing 
the graph horizontally by a factor of 2 (see Fig. 5.1.27). The function repeats 
every a units on the x axis, so it is periodic with (least) period m. 

Figure 5.1.27. The graph of 
y = cos 2x. 

(b) We obtain y = 3 cos 58 by compressing the graph of y = cos8 horizontally 
by a factor of 5 and stretching it vertically by a factor of 3 (see Fig. 5.1.28). A 

Example 111 Where are the inflection points of tan@? For which values of 8 do you expect 
tan 8 to be a differentiable function? 

Solution Recall that an inflection point is a point where the second derivative changes 
sign-that is, a point between different types of concavity. On the graph of 
tan@, notice that the graph is concave upward on (0,r/2) and downward on 
( -  ~ / 2 , 0 ) .  Hence 0 is an inflection point, as are T, - a ,  and so forth. The 
general inflection point is na, where n = 0, + 1, t 2, . . . . (But ~ / 2  is not an 
inflection point because tan8 is not defined there.) 

From the graph, we expect that tan 8 will be a differentiable function of 8 
except at + r /2 ,  + 3 ~ / 2 ,  . . . . A 

Exercises for Seetion 5.6 
1. If an arc of a circle with radius 10 meters sub- 

tends an angle of 22", how long is the arc? How 
much area is enclosed in this part of the circle? 

2. An arc of radius 15 feet subtends an angle of 2.1 
radians. How long is the arc? How much area is 
enclosed in this part of the circle? 

3. An arc of radius 18 meters has length 5 meters. 
What angle does it subtend? Now much area is 
enclosed in this part of the circle? 

4. An arc of length 110 meters subtends an angle of 

24". What is the radius of the arc? How much 
area is enclosed in this part of the circle? 

5. Convert to radians: 29", 54", 255", 130°, 320". 
6. Convert to degrees: 5, n/7, 3.2, 2n/9, f ,  0.7. 
7. Simplify so that 0 < 8 < 277 or 0 < 8" < 360". 

(a) Radians: 7n/3, 16n/5, 15n. 
(b) Degrees: 520°, 174S0, 385". 

8. Simplify so that 0 < 8 < 2n or 0 < 8" < 360". 
(a) Radians: 5n/2, 48n/11, 13n + 1. 
(b) Degrees: 470°, 604", 75", 999". 
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9. Plot the following points given in polar coordi- 
nates: (3,s/2), (5, - s/4), (1,2s/3), (- 3, s/2). 

10. Plot the following points given in polar coordi- 
nates: (6,3s/2), ( - 2, s/6) ,  (7, - 2s/3), (1, s/2), 
(4, - 77/6). 

In Exercises 11-14, sketch the set of points whose polar 
coordinates (r, 8)  satisfy the given conditions. 

11. - 1 < r < 2; s / 3  < 8 < s /2 .  
12. O <  r < 4 ;  - n / 6 <  8 <  n/6. 
13. 2 < r < 3 ;  - s / 2 < 8 < s .  
14. - 2 < r <  - 1 ;  - v / 4 < 8 < 0 .  

15. Find the polar coordinates of ( x ,  y)  = 

(5, -21, 
16. Find the cartesian coordinates of ( r , 8 )  = 

(2, s/6). 
17. Convert from cartesian to polar coordinates: 

(a) (1>0)3 (b) (3>4), (c) (O,l), ( 4  ( 6 ,  - 11, 
(e) ( -  6 , l ) .  

18. Convert from polar to cartesian coordinates: 
(a) (O,v/8), (b) (1,0), (c) (2, n/4), (dl ( 8 , 3 ~ / 2 ) ,  
(el (2, s ) .  

19. Convert from cartesian to polar coordinates: 
(a) ( 1 ,  -11, (b) (0,2), (c) ( f ,7) ,  (d) (-12, -9, 
(el (-3,8), (f) (+>+). 

20. Convert from cartesian to polar coordinates: 
(a) (-441, (b) (1, 151, (c) (19, -31, (d) (-5, -61, 
(el (0.3,0.9), (f) ( - 5 ,  f 1. 

21. Convert from polar to cartesian coordinates: 
(a) (6,7/2),  (b) ( -  12,377/4), (c) (4, - s ) ,  
(d) (2 ,13~/2) ,  (el (8, - 2 ~ / 3 ) ,  ( f )  ( -  1,2). 

22. Convert from polar to cartesian coordinates: 
( a )  ( - 1 ,  -11, ( b )  ( l , s ) ,  (c)  (10 ,2 .7 ) ,  
(dl (5 ,7~ /2 ) ,  (el (8,7771, (f) (4, - 3s). 

23. Show that tan 8 = cot(s/2 - 8 )  assuming that 
0 < 8 s /2 .  

24. Show that sec8 = csc(s/2 - 8)  for 0 < 8 < s /2 .  
25. Show that cos 8 = cos(- 8) for 0 < 8 < s .  
26. Show that tan8 = - tan(-@) for 0 < 8 < T ,  

8 # s /2 .  
Refer to Fig. 5.1.29 for Exercises 27-30. 

27. Find a. 28. Find b. 

29. Find c. 30. Find d.  

Figure 5.1.29. Find a, b,c ,d .  

31. An airplane flying at 5000 feet has an angle of 
elevation of 25" from observer A .  Observer B 
sees that airplane directly overhead. How far 
apart are A and B? 

32. A leaning tower tilts at 9" from the vertical 
directly away from an observer who is 500 me- 
ters away from its base. If the observer sees the 
top of the tower at an angle of elevation of 22", 
how high is the tower? 

33. A mountain 3000 meters away subtends an angle 
of 17' at an observer. How tall is the mountain? 

34. A pedestrian 100 meters from the outdoor eleva- 
tor at the Fairhill Hotel at noon sees the elevator 
at an angle of 10". The elevator, steadily rising, 
makes an angle of 20" after 30 seconds has 
elapsed. How fast is the elevator rising? When 
will it make an angle of 30°? 

Refer to Fig. 5.1.30 for Exercises 35-38. 
35. Find p. 36. Find q. 

37. Find r. 38. Find s. 

Figure 5.1.30. Find p, q, r, and s. 

2 8 - 1 + cose 39. Prove that cos - - - 
2 2 .  

d sin 8 40. Prove that tan - = - 
2 I + c o s 8  

cos(8 - @I) - cos(8 + @I) 
41. Prove that sin 8 sin @I = 

2 
42. Express sin(38) in terms of sin8 and cos8. 

Simplify the expressions in Exercises 43-50. 

49. cos 0 + sin 
2 )  
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Compute the quantities in Exercises 51-54 by using 
trigonometric identities, without using tables or a calcu- 
lator. 

51. ~ 0 ~ 7 4 "  52. tan 2 2 t 0  

53. s e c L  77 

12 
54. sin - 

12 
Derive the identities in Exercises 55-60, making use of 
the table of identities on the inside front cover of the 
book. 

2 sec 8 57. sec2 = - 
2 s e c 8 + 1  

2 8  - 2sec8 58. csc - -- 
2 s e e @ - 1 '  

sec(8 + cp) - sec(8 - 9) 
60. tan 8 tan + = 

sec(8 + cp) + sec(8 - cp) ' 

Sketch the graph of the functions in Exercises 61-68. 

61. 2cos38 62. cos(38 + t )  
38 63. tan - 
2 

8 64. tan - 
2 

65. 4 sin 2x cos 2x 66. sinx + cosx 

67. sin 38 + 1 68. csc28 

69. Locate the inf!ection points of cot B by inspecting 
the graph 

70. Locate the maximum and minimum points of 
sin8 by inspecting the graph. 

71. For what 8 do you expect sec 8 and cot 8 to be 
differentiable? 

72. Where is sec B concave upward? 
73. Light travels at velocity u, in a certain medium, 

enters a second medium at angle of incidence 8, 
(measured from the normal to the surface), and 
refracts at angle 82 while travelling a different 
velocity v2 (in the second medium). According to 
Snell's law, v, /v2 = sin 8, /sin 82. 
(a) Light enters at 60' and refracts at 30°. The 

first medium is air (0, = 3 X 10" centime- 
ters per second). Find the velocity in the 
second medium. 

(b) Show that if v, = v2, then the light travels in 
a straight line. 

(c) The speed halves in passing from one me- 
dium to another, the angle of incidence be- 
ing 45". Calculate the angle of refraction. 

74. Scientists and engineers often use the approxima- 
tions sin8 = 8 and cost9 = 1, valid for 8 near 
zero. Experiment with your hand calculator to 
determine a region of validity for B that guaran- 
tees eight-place accuracy for these approxima- 
tions. 

Exercises 75-78 concern the law of sines. 
75. Using the notation in Fig. 5.1.3 1, prove that 

sin a - sin p sin y - 
a b c 

76. Find a in Fig. 5.1.32. 

77. Show that the common value of ( s ina) /a ,  
(sin P) /b ,  and (sin y)/c is the reciprocal of twice 
the radius of the circumscribed circle. 

78. (a) A parallelogram is formed with acute angle 8 
and sides I ,  L. Find a formula for its area. (b) A 
parallelogram is formed with an acute angle 8, a 
base of length L, and a diagonal opposite 8 of 
length d. Find a formula for its area. 

79. Show that A cos wt + B sin wt = cr cos(wt - 8), 
where (a, 8), are the polar coordinates of (A, B). 

80. Use Exercise 79 to write f(t) = cost + o s i n  t 
as a cos(t - B )  for some a and 8. Use this to 
graph f. 

81. Light of wavelength h is diffracted through a 
single slit of width a .  This light then passes 
through a lens and falls on a screen. A point P is 
on the screen, making an angle B with the lens 
axis. The intensity I at the point P on the screen 

sin([va sin 8 ]/A) 
I = I, 

[na sin 8 ]/A 
I*; 0 < 8 < 7 7 ,  

where I, is the intensity when P is on the lens 
axis. 
(a) Show that the intensity is zero for sin8 

= h/a .  
(b) Find all values of 8 for which 8 > 0 and 

I = 0. 
(c) Verify that I is approximately I, when 

[ ~ a  sin8]/h is close enough to zero. (Use 
sin 8 FZ 8; see Exercise 74.) 

(d) In practice, h = 5 x l op5  centimeters, and 
a = lop2  centimeters. Check by means of a 
calculator or table that sin0 = h / a  is ap- 
proximately 8 = X/a. 

82. The current I in a circuit is given by the formula 
I ( t )  = 20 sin(3 1 1 t) + 40 cos(3 1 1 t). Let r = (202 + 
4o2)'I2 and define the angle 8 by cos8 = 20/r, 
sin 8 = 40/r. 
(a) Verify by use of the sum formula for the 

sine function that I( t )  = r sin(3ll t + 8). 
(b) Show that the peak current is r (the maxi- 

mum value of I).  
(c) Find the period and frequency. 
(d) Determine the phase shift (in radians), that 

is, the value of t which makes 3 11  t + 0 = 0. 
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83. The instantaneous power input to an AC circuit 84. Two points are located on one bank of the 
is p = ui, where u is the instantaneous potential Colorado River, 500 meters apart. A point on the 
difference between the circuit terminals and i is opposite bank makes angles of 88' and 80" with 
the instantaneous current. If the circuit is a pure the line joining the two points. Find the lengths 
resistor, then u = Vsin(wt) and i = I sin(wt). of two cables to be stretched across the river 
(a) Verify by means of trigonometric identities connecting the points. 

that 

(b) Draw a graph of p as a function of t .  

5.2 Differentiation of the 
Trigonometric Functions 
Differentiation rules for sine and cosine follow from arguments using limits and 
the addition formulas. 

In this section, we will derive differentiation formulas for the trigonometric 
functions. In the course of doing so, we will use many of the basic properties 
of limits and derivatives introduced in the first two chapters. 

v 
The unit circle x2  + y2 = 1 can be described by the parametric equations 

P = o GI) x = cos 0, y = sin 0. As 0 increases, the point (x, y )  = (COSO, sin 0)  moves along 
the circle in a counterclockwise direction (see Fig. 5.2.1). 

The length of arc on the circle between the point (1,0) (corresponding to 

, ,,, f 0 = 0) and the point (cos 0, sin 0) equals the angle 0 subtended by the arc. If 
we think of 0 as time, the point (cos 0, sin 0) travels a distance 0 in time 0, so it 
is moving with unit speed around the circle. At 0 = 0, the tangent line to the 

\ t c i r t  * = O circle is vertical, so the velocity of the point is 1 in the vertical direction; thus, 
we expect that 

Figure 5.2.1. The point P 
moves at  unit speed around - dx = 0 and - 
the circle. do I,=, 

That is, 

We will now derive (1) and (2) using limits. 
According to the definition of the derivative, formulas (1) and (2) amount 

to the following statements about limits: 

lim cosA0 - 1 = 
as+o A0 ( 3 )  

and 

sin A8 - lim - - 
AB+O A@ 

I To prove (3) and (4), we use the geometry in Fig. 5.2.2 and shall denote A0 by 
the letter + for simplicity of notation. When 0 < + < ~ / 2 ,  we have 

Figure 5.2.2. Geometry 
used to determine cos'0 and area triangle OCB = 4 / OC I - I A B / = 4 sin +, 
sin'0. area triangle OCB < area sector OCB = ++, 
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and 

area sector OCB < area triangle OCD = f 1 OC 1 . I CD I 
sin + = i t a n + = :  - 
cos+ ' 

Thus, 

sin+ < + 
and 

sin + 
+<=. 

For - n / 2  < + < 0, sin + is negative, and from (5) we have - sin + = sin(- +) 
< -+, so Isin+l < J+I for all + if= 0. Thus, if + approaches zero, so must sin+: 

lim sin + = 0. 
++o 

Now, lim+,,cos+ = lim+,, 

nuity of the square root function, we can take the limit under the root sign.) 
Thus we have 

Next, we use (5) and (6) to get 

sin qb 
cos+ < - < 1 + 

for 0 < + < a/2 .  However, the expressions in (9) are unchanged if + is 
replaced by -+, so (9) holds for - n / 2  < + < 0 as well. Now (9) and (8) 
imply 

sin + 
lim - - - 1, 
+-to 4' 

since sin +/+ is squeezed between 1 and a function which approaches 1. Thus, 
the limit statement (4) is proved. 

To prove (3), we again use the Pythagorean identity: 

sin2+ = 1 - cos2+ = ( I  - cos +)(l + cos +) 

which implies (1 - cosqb)/+ = sin2+/+(] + cosqb); using the product and quo- 
tient rules for limits, 

1 - cos+ sin + Iim++osin + 
lim = lim - = 1. - =O. 
++o cP ++O + 1 + lim++ocos + 1 + 1  

8 Calculator Discussion 

We can confirm (3) and (4) by some numerical experiments. For instance, on 
our HP- 15C calculator, we compute 

1 - cos(A8 ) sin(A8 ) 
A8 

and ------ 
A8 

for A8 = 0.02 and 0.001 to be 

- cos *@ = 0.009999665 for A8 = 0.02, 
A 8 

- cosA@ = 0.000500000 for A8 = 0.003 
A8 

Copyright 1985 Springer-Verlag. All rights reserved.



266 Chapter 5 Trigonometric Functions 

and 

-- sin no - 0.999933335 for A8 = 0.02, 
A e 

sin = 0.999999833 for A0 = 0.001. 
A0 

Your answer may differ because of calculator inaccuracies. However, these 
numbers confirm that (1 - cosA8)/A8 is near zero for A0 small and that 
(sinAO)/A@ is near 1 for A0 small. A 

Now we are ready to compute the derivatives of sin0 and cos6 at all 
values of 0. According to the definition of the derivative, 

[ sin(@ + aaBg) - sin 0 
d sin 8 = lim 
d8 as+o 

From the addition formula for sin, the right-hand side equals 

lim [ sin 0 cos A0 + cos 0 sin A0 - sin 0 
as-o A 0 1 

sin 0(cos(A0) - 1) cos 8 sin(A8) 
= lim + 

ne+o I 
cos(A6 ) - 1 sin(A0 ) 

= sin @ lirn 
as+o 

by the sum rule and constant multiple rule for limits. Substituting from (3) 
and (4) gives (sin 8)  . 0 + (cos 8)  . 1 = cos 0. Thus 

We compute the derivative of cos8 in a similar way: 

d cos(8 + A@) - case 
- cos 0 = lim 
dB as-0 

cos 0 cos(A8 ) - sin 0 sin(A0 ) - cos 0 
= lim 

as-0 A8 I 

In words, the derivative of the sine function is the cosine and the derivative of 
the cosine is minus the sine. These formulas are worth memorizing. Study Fig. 
5.2.3 to check that they are consistent with the graphs of sine and cosine. For 
example, notice that on the interval (O,a/2), sin0 is increasing and its 
derivative cos 0 is positive. 
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Figure 5.2.3. Graphs of sin, 
cos, and their derivatives. I I 

Example 1 Differentiate 

(a) (sin 8 )(cos 0 ), (b) sin2@ 

(c) sin 58, sin 38 
C O S @ + ~ ~ .  

Solution (a) By the product rule, 

= cos 9 cos 8 - sin 8 sin 8 = cos29 - sin2@. 

(b) By the power of a function rule, 

d .  2 d .  d s i n 2 0  = -(s1n0) = 2sin8-sln8 = 2sinBcos8. 
dB dB dB 

(c) By the chain rule, 

d du d s i n 5 8 = - s i n u -  (whe reu=59)  
dB du d8 

= (cos u)(5) = 5 cos 58. 

(d) By the quotient rule and chain rule, 

d sin38 = - 
(cos 0 + 04)(d/d8)sin 38 - sin 38(d/dO)(cos 8 + 04) 

do cos9 + g4 (cos 6 + 8 4)2 

- (cos8 + 04)3cos38 - sin38(-sin8 + 403) 
- 

(cos 0 + 8 412 

Example 2 Differentiate (a) cos 8 sin2@ and (b) (sin 3x)/(1 + cos2x). 

Solution (a) By the product rule and the power rule, 

d - (cos 9 sin28 ) = 
dB 

= ( - sin 9 )sin2@ + cos 9 . 2 sin 8 cos 9 

= 2 cos28 sin 0 - sin3@. 
(b) Here the independent variable is called x rather than 9. By the chain rule, 

d - sin 3x = 3 cos 3x, 
dx 
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so, by the quotient rule, 

Now that we know how to differentiate the sine and cosine functions, we can 
differentiate the remaining trigonometric functions by using the rules of 
calculus. For example, consider tan 0 = sin B/cos8. The quotient rule gives: 

d cos@(d/d0)sin 8 - sin 8(d/d8 )cos 8 
- t a n @ =  
do C O S ~ ~  

- - cos 8 . cos 8 + sin 0 . sin 8 - I - sec28. 
c0s28 c0s28 

In a similar way, we see that 

Writing csc 0 = 1 /sin 8, we get csc'8 = ( - sin'8)/(sin28) = ( - cos 8)/(sin28) 
= - cot 8 csc 8 and, similarly, sec'8 = tan 8 sec 8. 

The results we have obtained are summarized in the following box. 

Differentiation of Trigonometric Functions 

Function I Derivative I Leibniz notation 

sin 8 

cos 0 

tan 8 

~ o t e  

sec 8 

csc 8 

cos s 

- sin 6 

sec20 

- csc28 

tan 8 sec 8 

-- cot 8 CSC 8 

d(sin 8 ) 
-- 

dB 
- cos 8 

d(cos 8 ) 
d6 

= -sin8 

d(tan 8 )  

dB 
= sec28 

d(cot 8 )  
-- 

dB 
- - csc28 

d(sec 8 ) 
-- 

dB 
- tan 8 sec 8 

Example 3 Differentiate cscx tan 2x. 

Solution Using the product rule and chain rule, 

d d - csc x tan 2x = (tan 2x) + cscx ( - tan 2x) 
dx dx 

= - cot x . csc x - tan 2x + csc x - 2 . sec22x 

= 2 csc x sec22x - cot x csc x tan 2x. A 
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Example 4 Differentiate: (a) (tan 3x)/(1 + sin2x), (b) 1 - csc25x, (c) sin( JG). 
Solution (a) By the quotient and chain rules, 

tan 3x - (3 sec23x)(1 + sin2x) - (tan 3x)(2 sin x cos x)  
- - 

2 dx 1 + sin2x ( I  + sin2x) 

d d (b) -(1 -csc25x)= -2csc5x-(csc5x)= 10csc25xcot5x. 
dx dx 

(c) By the chain rule, 

Example 5 Differentiate: (a) tan(cos&), (b) c s c 6 .  

Solution (a) By the chain rule, 

d d du 
- t an(cos6)  = - tan u - (u = c o s 6 )  
dx du dx 

- 
- sec2(cos&)sin6 

- 

2 6  

(b) By the chain rule, 

By reversing the formulas for derivatives of trigonometric functions and 
multiplying through by - 1 where necessary, we obtain the following indefi- 
nite integrals (antiderivatives). 
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For instance, to check that 

/sec28 dB = tan 0 + C. 

we simply recall from the preceding display that (d/d0)(tan 8)  = sec28. 

Example 6 Find /sec8(sec0 + 3 tan 8)dO. 

Solution Multiplying out, we have 

/(sec28 + 3sec 8 tan 8 ) d8 = /sec20 d8 + 3 sec 8 tan 8 d8 i 
= tan0 + 3sec0 + C. A 

Example 7 Find sin 4u du. i 
Solution If we guess - cos 4u as the antiderivative, we find (d/du)(- cos 4u) = 4 sin4u, 

which is four times too big, so 

Example 8 Find the following antiderivatives: (a) 2 cos 4s ds, (b) (1 + sec20) dB, i i 
(c) /tan2xsec2xdx, (d) (sinx +&)dx.  i 

Solution (a) Since (d/ds)sin 4s = 4 cos 4s, (d/ds) + sin 4s = + 4  cos 4s = 2 cos 4s. Thus 
J2 cos 4s ds = + sin 4s + C. 
(b) By the sum rule for integrals, J( l  + sec20)d0 = 0 + tan8 + C. 
(c) Since (d/dx)sec(2x) = (sec 2x tan 2x) . 2, we have 

1 /tan 2x sec 2x dx = - sec(2x) + C. 
2 

(d) J(sinx +&)dx = -cosx + (x3 l2 / t )  + C = -COSX + f x ~ / ~  + C. A 

We can use these methods for indefinite integrals to calculate some definite 
integrals as well. 

Example 9 Calculate: (a) L1(2 sin x + x3) dx, (b) /7/2cos 2x dx. 
71/4 

Solution (a) By the sum and power rules, 

Thus, by the fundamental theorem of calculus, 

(b) As Ben Example 7, we find that an antiderivative for cos2x is (1/2)sin 2x. 
Therefore, by the fundamental theorem, 

~ / 2  1 1 l;:2cos 2x dx = - sm 2x = - (sinn - sin n/2) = - - . A& i .  2 2 
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Our list of antiderivatives still leaves much to be desired. Where, for instance, 
is JtanedB? The absence of this and other entries in the previous display is 
related to the missing antiderivative for l / x  (see Exercise 65). The gap will be 
filled in the next chapter. 

Exercises for Section 5.2 
Differentiate the functions of 8 in Exercises 1-12. 

1. cos8 + sin6 2. 8 cos 6 - 10 sin 0 43. scos(8 ')0 d8. (Hint: Compute the derivative of 

3. 5 cos38 + 10 sin28 4. 8 sin 108 - locos 88 sin(8 2).) 

5. (cos @)(sin 8 + 6) 6. cos28 - 3 sin38 44.  sin(^^)+^ d+. 
7. cos336 8. sin456 

cos 8 sin 8 

s 
9. - 10. - 45. Find s c o s  8 sin 6 d6 by using a trigonometric 

cos8 - 1 cos6 - 1 

cos 6 + sin 6 , 2, 8 + cos !9 identity. 
11. 

sin0 + 1 cos 8 sin 8 46. Find Scos26d6 by using (a) a half-angle for- 

Differentiate the functions of x in Exercises 13-24. mula; (b) a double-angle formula. 

13. (cos x ) ~  14. sin(20x2) 47. Find sin28d8 + cos28 dB. 

cos& 
15. ( 6  + c ~ s x ) ~  16. - 

i i 
48. Find sin26d8 by using a trigonometric identity. 

7 S 
1 + J x  Evaluate the definite integrals in Exercises 49-56 

17. sin(x + 6 )  18. csc(x2 + &) 
x 49. L7'*sin( ) do 19. 20. COsx 

cos x + sin(x2) tanx + 6 
21. tanx + 2cosx 22. sec x + 8 csc x 50. b27sin( 7 ) do 

23. sec3x 24. tan 10x 
Differentiate each of the functions in Exercises 25-36. 

25. f(x) =6 + cos3x 
26. f(x) = [(sin 2x12 + x2] 
27. f(x) = 

28. f(x) = sin2x 
29. f(t) = (4t3 + 1)sinfi 

30. f(t) = csc t . sec23t 

3 1. f(x) = sin(d-) + tan( ). x 4 +  1 

32. f(8)  = tan 6 + - . i 2 

34. f(r) = 
r2 + \iI-ri 

rs inr  ' 

35. f(u) = (tan J-I 

sin(sV1 + s2 ) 
36. f(s) = 

cos S 

Find the antiderivatives in Exercises 37-44. 
37. s ( x 3  + sinx)dx 

38. (cos 3x + 5x3I2)dx i 
39. (x4 + sec 2x tan 2x) dx i 
40. (sin2x +&)dx S 

51. s-7 (sin t + sin3t)dt. (Hint: No calculation is nec- 

essary.) 

52. i-55(2 cos t + sin9t) dt 

53. b'cos(3nt)dt 

54. j-i:2sin( s)  ds 

55. b"cos26d8 (see Exercise 46). 

56. d ' o " ~ n 2 ~  d (see Exercise 48). 

57. Prove the following inequalities by using trigono- 
metric identities and the inequalities established 
at the beginning of this section: 

sin 2+ 
+ <  1 +cos2+ 

for 0 < + < n/2; 

tan 2q5 
58. Find lim+,o - 

36 . 
SinaAB where a is any constant. 59. Find lim,,,, - 

a 6  
sin aq5 

60. Find lim,,, ---- , where a and b are constants. 
sin b+ 

61. Show that f(x) = sin x and f(x)  = cosx satisfy 
f"(x) + f(x) = 0. 

62. Find a function f(x)  which satisfies f"(x) + 4f(x) 
= 0. 

63. Show that f(x) = tanx satisfies the equation 
f'(x) = 1 + [ f(x)I2 and f(x) = cot x satisfies f'(x) 
= - (1 + [f(x)I2). 

64. Show that f(x) = sec x satisfies f "  + f - 2 f = 0. 
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65. Suppose that f'(x) = l / x .  (We d o  not yet have 
such a function at  our disposal, but we will see in 
Chapter 6 that there is one.) Show that / tanBd8 
= - f(cos 8 )  + C. 

66. Show that j tan 8 dB = f(sec 8 )  + C, where f is a 
function such that f'(x) = I /x .  (The apparent 
conflict with Exercise 65 will be resolved in the 
next chapter.) 

67. Show that (d/d@)cos 8 = - sin 8 can be derived 
from (d/d8)sin8 = cos8 by using the identity 
cos 8 = s i n ( ~ / 2  - 8 )  and the chain rule. 

68. (a) Evaluate lim,,,,(tan A8)/A8 using the 
methods of the beginning of this section. 

(b) Use part (a) and the addition formula for 
the tangent (see the inside front cover) to 
prove that tan'@ = sec28, - ~ / 2  < 8 < a /2 ,  
that is, prove that 

tan(@ + A@) - tan 8 
lim 

A8 
= sec28. 

A 8 4 0  

*69. Suppose that +(x) is a function "appearing from 
the blue" with the property that 

d + -  1 
dx cosx ' 

d Calculate: (a) - (9(3x) cos x), (b) - 
dx 

i' ' dx, 
0 cosx 

d (c) ( $ 4 2 ~ )  sin 2x). 
dx 

*70. Let 4 be a function such that 

where + is described in Exercise 69. Prove that 

= - +(x) sin x 

*7 1. Give a geometric "proof" that sin' = cos and 
cos' = -sin by these steps: 
(a) Consider the parametric curve (cos 8, sin 8 )  

as in the beginning of this section. Argue 
that (cos'B)* + ( ~ i n ' O ) ~  = 1, since the point 
moves at  unit speed around the circle (see 
Exercise 34, Section 2.4). 

(b) Use the relation cos28 + sin2@ = 1 to show 
that sin B sin'@ + cos 8 cos'B = 0. 

(c) Conclude from (a) and (b) that (sin'@)' 
= cos20 and ( c o ~ ' 8 ) ~  = sin2@. 

(d) Give a geometric argument to get the cor- 
rect signs in the square roots of the relations 
in (c). 

5.3 Inverse Functions 
The derivative of an inverse function is the reciprocaI of its derivative. 

Sometimes two variable quantities are related in such a way that either one 
may be considered as a function of the other. The relationship between the 
quantities may be expressed by either of two functions, which are called 
inverses of one another. In this section, we will learn when a given function 
has an inverse, and we will see a useful relationship between the derivative of 
a function and the derivative of its inverse. 

A simple example of a function with an inverse is the Iinear function 
y = f(x) = mx + b with m # 0. We can solve for x in terms of y to get 
x = (l/m)y - b/m. Considering the expression (l/m)y - b/m as a function 
g(y) of y,  we find that y = f(x) whenever x = g(y), and vice versa. 

The graphs off and g are very simply related. We interchange the role of 
the x and y axes by flipping the graph over the diagonal line y = x (which 
bisects the right angle between the axes) or by viewing the graph through the 
back of the page held so that the x axis is vertical. (See Fig. 5.3.1 for a specific 
example.) Notice that the (constant) slopes of the two graphs are reciprocals 
of one another. 

Whenever two functions, f and g, have the property that y = f(x) when- 
ever x = g(y), and vice versa, we say that f and g are inverses of one another; 
the graphs off and g are then related by flipping the x and y axes, as in Fig. 
5.3.1. If we are given a formula for y = f(x), we can try to find the inverse 
function by solving for x in terms of y. 
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Figure 5.3.1. The functions 
f ( x )  = - 2 x  + 4 and 
g ( y )  = - +y + 2 are 
inverses to one another. 

Example I Find an inverse function for f(x) = x3. Graph f and its inverse. 

Solution Solving the relation y = x3 for x in terms of y, we find x =3fi, so the 
cuberoot function g(y)  =3fi is the inverse function to the cubing function 
f(x) = x3. The graphs off and g are shown in parts (a) and (b) of Fig. 5.3.2. In 
part (c), we have illustrated the important fact that the names of variables 

Figure 5.3.3. Flipping the 
parabola y = f ( x )  = x 2  
produces a curve which is 

( a  invert Renanie 
variables 

used with a function are arbitrary; since we like to have y as a function of x, 
we may write g(x) = 3&, and so the graph y = 3& is another acceptable 
picture of the cuberoot function. A 

Not every function has an inverse. For instance, if y = f(x) = x2, we may 
solve for x in terms of y to get x = rt 6, but this does not give x as a 
function defined for ally, for two reasons: 

(1) if y < 0, the square root 6 is not defined; 
(2) if y > 0, the two choices of positive or negative sign give two different 

values for x. 

We can also see the difficulty geometrically. If we interchange the axes by 
flipping the parabola y = x2 (Fig. 5.3.3), the resulting "horizontal parabola" is 

not the graph of a function. I I 
not the graph of a function defined on the real numbers, since it intersects 
some vertical lines twice and others not at all. 

This situation is similar to one we encountered in Section 2.3, where a 
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curve like x 2  + y2 = 1 defined y as an implicit function of x only if we looked 
at part of the curve. In the present case, we can obtain an invertible function if 
we restrict f ( x )  = x 2  to the domain [Q, co). (The choice (- co,O] would do 
as well.) Then the inverse function g(y) = 6 is well defined with domain 
[Q, co) (see Fig. 5.3.4). The domain (-  co,Q] for f would have led to the other 

square root sign - 6 for g. 

Figure 5.3.4. The function 
f ( x )  = x2 and its inverse 

R e s t r ~ c t  d o r n a ~ n  Interchange 
i d y l  =fi. t o  [O, -1 .x and L.  axes 

The inverse to a function f ,  when it exists, is sometimes denoted by f  - '  
and read "f inverse". A function with an inverse is said to be invertible. 

Warning Notice from this example that the inverse f  - '  is not in genera1 the same as 

l l f .  

We summarize our work to this point in the following box. 

The inverse function to a function f is a function g for which g(y) = x 
when y = f ( x ) ,  and vice versa. 

The inverse function to f is denoted by f  - I .  

To find a formula for f  - I ,  try to solve the equationy = f ( x )  for x in 
terms of y. If the solution is unique, set f  = x. 

The graph of f-' is obtained from that off by flipping the figure to 
interchange the horizontal and vertical axes. 

It may be necessary to restrict the domain off before there is an 
inverse function. 

Example 2 Let f ( x )  = x 2  + 2 x  + 3. Restrict f  to a suitable interval so that it has an 
inverse. Find the inverse function and sketch its graph. 

Solution We may solve the equation y = x2 + 2 x  + 3 for x in terms of y by the 
quadratic formula: 

gives x = 1-2 &~!-]/2 = - I  +I/-. If we choosey > 2 and 

the + sign, we get x = - 1 + I/- for the inverse function. The restriction 
y > 2 corresponds to x > - 1 (see Fig. 5.3.5). (The answer x = - 1 - 

Jy - 2 for y > 2 and x < - 1 is also acceptable-this is represented 
by the dashed portion of the graph. A 
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Figure 5.3.5. Restricting the 
domain of f(x) to [ -  1, w) 
gives a function with an 
inverse defined on [2, w). 

Example 3 Sketch the graph of the inverse function for each function in Fig. 5.3.6. 

I I Figure 5.3.6. Sketch the I 

graph of the inverse. ( 3 )  (b) (c) 

Solution The graphs which we obtain by viewing the graphs in Fig. 5.3.6 from the 
reverse side of the page, are shown in Fig. 5.3.7. A 

u = /  ' ( 1 )  i Figure 5.3.7. Graphs of the 
inverse functions (compare 
Fig. 5.3.6). (a) (b) 

There is a simple geometric test for invertibility; a function is invertible if each 
horizontal line meets the graph in at most one point. 

Example 4 Determine whether or not each function in Fig. 5.3.8 is invertible on its 
domain. 

inverse? ( 3 )  ( h )  (c) 

Solution Applying the test just mentioned, we find that the functions (a) and (c) are 
invertible while (b) is not. A 

A function may be invertible even though we cannot find an explicit formula 
for the inverse function. This fact gives us a way of obtaining "new func- 
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tions." The following is a useful calculus test for finding intervals on which a 
function is invertible. In the next section, we shall use it to obtain inverses for 
the trigonometric functions. 

Suppose that f is continuous on [a, b] and that f is increasing at each 
point of (a, b). (For instance, this holds if f'(x) > 0 for each x in (a, b).) 
Then f is invertible on [a, b], and the inverse f - '  is defined on the 
interval [f(a), f(b)l. 

Iff is decreasing rather than increasing at each point of (a, b), then f 
is still invertible; in this case, the domain off - ' is [ f(b), f(a)]. 

To justify this test, we apply the increasing function test from Section 3.2 to 
conclude that f is increasing on [a, b]; that is, if a < x, < x, < b, then 
f(x,) < f(x2). In particular, f(a) < f(b). If y is any number in (f(a), f(b)), then 
by the intermediate value theorem (first version, Section 3.1), there is an x in 
(a, b) such that f(x) = y. If y = f(a) or f(b), we can choose x = a or x = b. 
Since f is increasing on [a, b], for any y in [ f(a), f(b)] there can only be one x 
such that y = f(x). Thus, by definition, f is invertible on [a, b] and the domain 
off - '  is the range [ f(a), f(b)] of values off on [a, b]. The proof of the second 
assertion in the inverse function test is similar. 

We can allow open or infinite intervals in the inverse function test. For 
instance, iff is continuous and increasing on [a, m), and if lim,+, f(x) = oo, 
then f has an inverse defined on [ f(a), m). 

Example 5 Verify that f(x) = x2 + x has an inverse iff is defined on [-  f ,  m). 

Solution Since f is differentiable on (-  oo, oo), it is continuous on ( -  oo, m) and hence 
on [ -  4, m). But f'(x) = 2x + 1 > 0 for x > - f . Thus f is increasing. Also, 
lim,,, f(x) = oo. Hence the inverse function test guarantees that f has an 
inverse defined on [ - $, oo). A 

Example 6 Let f(x) = x5 + x. 

(a) Show that f has an inverse on [- 2,2]. What is the domain of this inverse? 
(b) Show that f has an inverse on (-  oo, oo). 
(c) What is f - '(2)? 

a(d)  Numerically calculate f -'(3) to two decimal places of accuracy. 

Solrsll~ra (a) f'(x) = 5x4 + 1 > 0, so by the inverse function test, f is invertible on 
[ - 2,2]. The domain of the inverse is [ f(- 2), f(2)], which is [ -  34,341. 
(b) Since f'(x) > 0 for all x in (- oo, a), f is increasing on (- oo, oo). Now f 
takes arbitrarily large positive and negative values as x varies over (- oo, oo); 
it takes all values in between by the intermediate value theorem, so the 
domain of f - '  is (-  oo, oo). There is no simple formula for f -'(y), the 
solution of x5  + x = y,but we can calculate f -'(y) for any specific values of y 
to any desired degree of accuracy. (This is really no worse than the situation 
for 6. If the inverse function to x5  + x had as many applications as the 
square-root function, we would learn about it in high school, tables would be 
readily available for it, calculators would calculate it at the touch of a key, 
and there would be a standard notation like 9' for the solution of x 5  + x 
= y,  just as 'fi is the standard notation for the solution of x5 = y.) 
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(c) Since f(1) = l 5  + 1 = 2, f-'(2) must equal 1. 
(d) To calculate f -'(3)-that is, to seek an x such that x5 + x = 3-we use the 
method of bisection described in Example 7, Section 3.1. Since f(1) = 2 < 3 
and f(2) -: 34 > 3, x must lie between 1 and 2. We can squeeze toward the 
correct answer by calculating: 

f(1.5) = 9.09375 so 1 < x < 1.5, 

f(1.25) = 4.30176 so 1 < x < 1.25, 

Thus, to two decimal places, x 1.13. (About 10 minutes of further experi- 
mentation gave f(1.132997566) = 3.000000002 and f ( l .  132997565) = 

2.999999991. What does this tell you about f -'(3)?) A 

Calculator Dis~usslsrr 

Recall (see Section R.6) that a function f may be thought of as an operation 
key on a calculator. The inverse function should be another key, which we can 
label f -I. According to the definition, if we feed in any x, then push f to get 
y = f(x), then push f -', we get back x = f the number we started with. 
Likewise if we feed in a number y and first push f '  and then f, we get y 
back again. By Fig. 5.3.4, y = x2 and x = fi (for x 2 0, y > 0) are inverse 
functions. Try it out numerically, by pushing x = 3.0248759, then the x2 key, 
then the 6 key. Try it also in the reverse order. (The answer may not come 
out exactly right because of roundoff errors.) 8, 

As the precding calculator discussion suggests, there is a close relation 
between inverse functions and composition of functions as discussed in 
connection with the chain rule in Section 2.2. I f f  and g are inverse functions, 
then g(y)  is that number x for which f(x) = y,  so f(g(y)) = y ;  i.e., f 0 g is the 
identity function which takes each y to itself: (f 0 g)(y) = y .  Similarly, g (  f(x)) 
= x for all x, so g 0 f is the identity function as well. 

If we assume that f - '  and f are differentiable, we can apply the chain 
rule to the equation 

f - ' (f(x)) = 

to obtain ( f  - I)'( f(x)) . f ' ( x )  = 1, which gives 

Writingy for f(x), so that x = f -'(y), we obtain the formula 

Since the expression (f - I ) '  is awkward, we sometimes revert to the notation 
g(y) for the inverse function and write 
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Notice that although dy/dx is not an ordinary fraction, the rule 

dx - 1 - 
dy dy / d x  

is valid as long as dy/dx # 0. (Maybe the "reciprocal" notation f -I is not so 
bad after all!) 

To differentiate the inverse function g = f - '  at y ,  take the reciprocal of 
the derivative of the given function at x  = f 

+- Notice that our earlier observation that the slopes of inverse linear functions 
are reciprocals is just a special case of the inverse function rule. Figure 5.3.9 
illustrates how the general rule is related to this special case. 

\ 
Assuming that the inverse f - ' is continuous (see Exercise 4 I), we can 

I h \ = - ,  - 
!)I IN grove that f -I is differentiable whenever f' i- O in the following yay. Recall 

thatY(xo) = dy/dx = lim,,,,(Ay/Ax), where Ax and Ay denote changes in x  
and y. On the other hand, 

dx . A x -  g'(yo) = - = hm - - i 
dy A,V-o Ay limAy+o(Ay/Ax) ' 

by the reciprocal rule for limits. But Ax + 0 when Ay + 0, since g is continu- 
Figure 5.3.9. The inverse of ous, So 
the tangent line is the 
tangent line of the inverse. 1 - 1 -- 

" ( Y O )  = limb jo(Ay/Ax) dy/ dx ' 

Example 7 Use the inverse function rule to compute the derivative of 6. Evaluate the 
derivative at x  = 2. 

Solution Let us write g ( y )  =G. This is the inverse function of f ( x )  = x2. Since 
f '(x) = 2x, 

SO ( d / d y ) ( f i )  = 1 /(25). We may substitute any letter for y  in this result, 
including x ,  so we get the formula 

W e n  x  = 2, the derivative is 1/(2@). A 

Example 7 reproduces the rule for differentiaGng x ' I 2  that we learned in 
Section 2.3. In fact, one can similarly use inverse functions to obtain an 
alternative proof of the rule for differentiating fractional powers: (d/dx)xp/q 
= ( p / q ) x  ( P / Y )  - 1. 
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Example 8 Find (f -')'(2), where f is the function in Example 6. 

Solution We know that f - '(2) = 1, so (f - ')'(2) = l /  f'(1). But f'(x) = 5x4 + 1 ,  so 
f'(1) = 6, and hence (f - ' ~ ( 2 )  = i .  A 
The important point in Example 8 is that we differentiated f - '  without having 
an explicit formula for it. We will exploit this idea in the next section. 

Supplement to Section 5.3 
inverse Functions and Yogud 

If a yogurt culture is added to a quart of boiled milk and set aside for 4 hours, 
then the sourness of the resulting yogurt depends upon the temperature at 
which the mixture was kept. By performing a series of experiments, we can 
plot the graph of a function S = f(T), where T is temperature and S is the 
sourness measured by the amount of lactic acid in grams in the completed 
yogurt. (See Fig. 5.3.10.) If T is too low, the culture is dormant; if T is too 
high, the culture is killed. 

S (grams of 
lactic ac td l  

Figure 5.3.10. The sourness 
of yogurt as a function of 
fermentation temperature. 

Exercises for Section 5.3 
Find the inverse for each of the functions in Exercises 5. h ( t )  = - ' - l o  o n [ - I , ] ] .  
1-6 on the given interval. t + 3  

1 .  f ( x )  = 2 x  + 5 on [ -4 ,4] .  6. a ( s )  = - 2S ' on [ -  $,{I. 
- s +  l 

2. f ( x )  = - f x + 2 on ( -  oo, w ) .  
7. Find the inverse function for the function f ( x )  

3. f ( x )  = x 5  on ( -  oo, oo). 
= (ax  + b ) / ( c x  + d )  on its domain. What must 

4. f ( x )  = x8 on (0, I]. you assume about a, b, c, and d? 

T 4 In making yogurt to suit one's taste, one might desire a certain degree of 
sourness and wish to know what temperature to use. (Remember that we are 
fixing all other variables, including the time of fermentation.) To find the 

T = g ( S '  temperature which gives S = 2, for instance, one may draw the horizontal line 
S = 2, see if it intersects the graph of f, and read off the value of T (Fig. 
5.3.10). 

From the graph, we see that there are two possible values of T: 38°C and 

lo-- 
52°C. Similarly, there are two possible temperatures to achieve any value of S 
strictly between zero and the maximum value 3.8 off. If, however, we restrict 

I I I 1 1 )  
1 1 1  the allowable temperatures to the interval [20,47], then we will get a unique 

1 1 3 4 5 s  
value of T for each S in [O, 3.81. The new function T = g(S), which assigns to 

Figure 5.3.11. The graph of each the sourness value the proper temperature for producing it, is the inverse 
T as a function of S.  function to f (Fig. 5.3.1 1). 
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8. Fjnd an inverse function g for f ix)  = x2  + 2x + 1 
on some interval containing zero. What is g(9)? 
What is g(x)? 

9. Sketch the graph of the inverse of each of the 
functions in Fig. 5.3.12. 

I Figure 5.3.12. Sketch the 
graph of the inverse of each 

fc) of these functions. 

10. Determine whether each function in Fig. 5.3.13 
has an inverse. Sketch the inverse if there is one. 

( c )  functions have inverses? 

11. Draw a graph of f(x) = (3x + 1)/(2x - 2) and a 
graph of its inverse function. 

12. Draw a graph of f(x) = (x - l)/(x + 1) and a 
graph of its inverse function. 

13. Find the largest possible intervals on which f(x) 
= 1/(x2 - 1) is invertible. Sketch the graphs of 
the inverse functions. 

14. Sketch a graph of f(x) = x/(l  + x2) and find an 
interval on which f is invertible. 

15. Let f ( x ) =  x 3 - 4 x 2 +  1. 
(a) Find an interval containing 1 on which f is 

invertible. Denote the inverse by g. 
(b) Compute g( - 7) and g'( - 7). 
(c) What is the domain of g? 

a id)  Compute g(  - 5) and g'( - 5). 
16. Let f(x) = x5 + x. (a) Find f -'(246). 

@(b) Find f '(4), correct to at  least two decimal 
places. 

17. Show that f(x) = 4x3 - x is not invertible on 
any open interval containing 1. 

18. Find intervals on which f ix)  = x5 - x is invert- 
ible. 

19. Show that if n is odd, fix) = x n  is invertible on 
(- m, m). What is the domain of the inverse 
function? 

20. Discuss the invertibility of f ix)  = x n  for n even. 
21. Show that f(x) = - x3 - 2x + I is invertible on 

[ - 1,2]. What is the domain of the inverse? 
22. (a) Show that f ix)  = x3 - 2x + 1 is invertible on 

[2,4]. What is the domain of the inverse func- 
tion? 
(b) Find the largest possible intervals on which f 
is invertible. 

23. Verify the inverse function rule for y = x3. 
24. Verify the inverse function rule for the function 

y = (ax + b)/(cx + d)  by finding dy/dx and 
dx/dy directly. (See Exercise 7.) 

25. If f(x) = x3 + 2x + 1 ,  show that f has an inverse 
on [O, 21. Find the derivative of the inverse func- 
tion at y = 4. 

26. Find gf(0), where g is the inverse function to 
f(x) = x9 + xS + x. 

27. Let y = x3 + 2. Find dx/dy when y = 3. 
28. If f(x) = xS + x, find the derivative of the in- 

verse function when y = 34. 
For each function f in Exercises 29-32, find the deriva- 
tive of the inverse function g at the points indicated. 

29. f(x) = 3x + 5; find g1(2), g'(:). 
30. f(x) = xS  + x3 + 2x; find gf(0), gf(4). 
31. f(x) = & x 3  - x on [ -  1, I]; find gl(0), gl(#). 
32. f ix)  = on [3, m); find g1(4), g'(8). 

m33. Enter the number 2.6 on your calculator, then 
push the x2  key followed by the fi key. Is there 
any roundoff error? Try the 6 key, then the x2  
key. Also try a sequence such as x 2 , 6 , x 2 ,  
f i , x2 , f i .  DO YOU get the original number? Try 
these experiments with different starting num- 
bers. 

34. If we think of a French-English dictionary as 
defining a function from the set of French words 
to the set of English words (does it really?), how 
is the inverse function defined? Discuss. 

35. Suppose that f(x) is the number of pounds of 
beans you can buy for x dollars. Let g(y)  be the 
inverse function. What does g(y) represent? 
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36. Let f l ( x )  = x,  f2(x) = 1 / x ,  f3(x) = 1 - X ,  f4(x) 
= 1/ (1  - x ) ,  f5 (x )  = ( x  - l ) / x ,  and  f6(x)  = 
x / ( x  - 1 ) .  
(a) Show that the composition of any two func- 

tions in this list is again in the list. Complete 
the "composition table" below. For example 
( f 2  O f3)(x) = f z ( f  - x )  = 1/(1 - x )  = f4(x). 

(b) Show that the inverse of any function in the 
preceding list is again in the list. Which of 
the functions equal their own inverses? 

37. (a) Find the domain of 

(b) By solving for the x in the equation y = 

J(2x + 5) / (3x  + 7 )  , find a formula for the 
inverse function g(y) .  

(c) Using the inverse function rule, find a for- 
mula for f '(x). 

(d) Check your answer by using the chain rule. 
38. Suppose that f  is concave upward and increasing 

on  [a,  b]. 
(a) By drawing a graph, guess whether f - '  is 

concave upward or downward on the inter- 
val [ f(a),  f(b)l. 

(b) What iff is concave upward and decreasing 
on [a, b]? 

39. Show that if the inverse function to f  on S is g, 
with domain T, then the inverse function to g on 
T is f, with domain S.  Thus, the inverse of the 
inverse function is the original function, that is, 
( f - I ) - ' =  f .  

*40. Under what conditions on a, b, c, and d is the 
function f ( x )  = (ax + b)/(cx + d )  equal to its 
own inverse function? 

*41. Suppose that f'(xo) > 0 and f(xo) = y o .  If g is the 
inverse of f  with g(yo) = x,, show that g is 
continuous at  yo by filling in the details of the 
following argument: 
(a) For Ax sufficiently small, 

i f'(xo) > AylAx >4 ~ ' ( x o ) .  

(b) As By + 0, Ax -t 0 as well. 
(c) Let Ay = f(xo + Ax) - j(xo). Then Ax = 

 YO + Ay) - g(y0). 

5.4 The Inverse 
Trigonometric Functions 
The derivatives of the inverse trigonometric functions have algebraic formulas. 

In the previous section, we discussed the general concept of inverse function 
and developed a formula for differentiating the inverse. Now we will apply 
this formula to study the inverses of the sine, cosine, and the other trigonomet- 
ric functions. 

We begin with the function y - sinx, using the inverse function test to 
locate an interval on which sinx has an inverse. Since sin'x = cosx > 0 on 
(- n/2, a/2), sinx is increasing on this interval, so sinx has an inverse on the 
interval [ -  a/2,77/2]. The inverse is denoted sin-).4 We obtain the graph of 
sin- $ by interchanging the x and y coordinates. (See Fig. 5.4.1.) 

The values of sin-$ may be obtained from a table for sinx. (Many 
pocket calculators can evaluate the inverse trigonometric functions as well as 
the trigonometric functions.) 

x = sin-) means that sinx = y and - a / 2  < x < a/2. The number 
sin- $ is expressed in radians unless a degree sign is explicitly shown. 

Although the notation sin? is commonly used to mean (sin y)2, sin-) does not mean 
(sin y ) - '  = l/sin y. Sometimes the notatlon arcsin y is used for the inverse sine function to avoid 
confusion. 
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Figure 5.4.1. The graph of 
stn x on [ -  n / 2 ,  ~ / 2 ]  
together with its inverse. 1 I - 

Example 1 Calculate sin-'1, sin-'0, sin-'(- l), sin-'(- i), and sin-'(0.342). 

Solution Since sin(n/2) = 1, sin-'1 = n/2. Similarly, s i n  '0 = 0, sin-'(- 1) = - n/2. 
Also sin(- n/6) = - f , so sin-'(- f )  = - m/6. Using a calculator, or tables, 
we find sin-'(0.342) = 0.349 (or 20"). A 

We could have used any other interval on which sinx has an inverse, such as 
[77/2,3n/2], to define an inverse sine function; had we done so, the function 
obtained would have been different. The choice [ -  m/2, n/2] is standard and 
is usually the most convenient. 

Example 2 (a) Calculate sin-'(;), s in-I(-0/2) ,  and sin-'(2). (b) Simplify tan(sin-'y). 

S s l ~ t i ~ r ~  (a) Since sin(n/6) = f , sin-'(+) = n/6. Similarly, sin-'(- 6 /2) = - n/3. 
Finally, sin-'(2) is not defined since sinx always lies between - 1 and 1. 
(b) From Fig. 5.4.2 we see that 0 = sin- 5 (that is, sin 0 5. IAB I / /  OB I 

B 
A 

= y)  and tan0 = y/\iG, so tan(sin-'y) = y/d-. A 

Let us now calculate the derivative of sin- 5. By the formula for the derivative 
of an inverse function from page 278, 

d - sin- 'y = 1 - 1 -- 
d~ (d/dx)sin x cos x ' 

figwe 5.4.2. tan(sin - 5 )  where y = sin x. However, cos2x + sin2x = 1, so cos x = \l- . (The nega- 
= ,y/ J1-'. tive root does not occur since cosx is positive on ( -  a/2, a/2).) 

Thus, 

Notice that the derivative of sin- 'y is not defined at y = + 1 but is "infinite" 
there. This is consistent with the appearance of the graph in Fig. 5.4.1. 

Example 3 (a) Differentiate h(y) = sin-'(3y2). (b) Differentiate f(x) = xsin-'2x. 
(c) Calculate (d/dx)(sind ' 2 ~ ) ~ / ' .  

Soiutlon (a) From (1) and the chain rule, with u = 3y2, 

- 1/2 
hl(y) = ( I  - u2)-"2& = 6y(l - 9y4) . 

dv 
(b) Here we are using x for the variable name. Of course we can use any letter 
we please. By the product and chain rules, and equation (I) ,  

(sin- '2x) + x d ( s i n  '2x) 
dx 
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" I (c) By the power rule, chain rule, and ( I ) ,  

Example 4 Differentiate tan(cos 'x). 

It is interesting that while sin-) is defined in terms of trigonometric func- 
tions, its derivative is an algebraic function, even though the derivatives of the 
trigonometric functions themselves are still trigonometric. 

The rest of the inverse trigonometric functions can be introduced in the 
same way as sin- ). The derivative of cosx, - sinx, is negative on (0, n), so 

Solution By the chain rule and equation (2) (with x in place of y),  

t 

- I 

d - tan(cos- 'x) = sec2(cos- 'x) . - 1 
dx JS- 

; b o s x  on ( 0 , ~ )  has an inverse cos-'y. Thus for - 1 6 y S 1, cos-'y is that 
number (expressed in radians) in [O, T] whose cosine is y. The graph of cos- ) 
is shown in Fig. 5.4.3. 

From Fig. 5.4.4 we see that sec(cos-'x) = l /x ,  so 
dT-7 d - [ tan(cos 'x) ]  = - 1 

dx ~~fi-7- 

The derivative of cos-b can be calculated in the same manner as we 

Figure 5.4.3. The graph of calculated (d/dy)sin- 'y : 
cos and ~ t s  inverse. d 

- cos- 'y = 1 - 1 -- 
dv (d/dx)cos x - sin x 

Figure 5.4.4. sec(cos- 'x) Another method is to use Fig. 5.4.4 directly to obtain 

= l / x .  
tan(cos 'x) = JS 

x 

Differentiating by the quotient and chain rules, 

which agrees with our previous answer. A 
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Next, we construct the inverse tangent. Since tan'x = sec2x, tanx is increasing 
at every point of its domain. It is continuous on (- ~ / 2 , 7 ~ / 2 )  and has range 
(-  oo, a ) ,  so tan-$ is defined on this domain; see Fig. 5.4.5. Thus, for 
- oo < y < oo, tan-) is the unique number in ( -  a/2,a/2)  whose tangent 
is y .  

The derivative of tan- 'y can be calculated as in (1) and (2): 

v 4 

77 - 
2 ----- - 

I' 

d 1 Thus - tan- 'y = - 
dr  1 + y 2  ' 

-- 
n - 

- 1 

Figure 5.4.5. tan x and its 
inverse. 

Example 5 Differentiate f(x) = (tan- '&)/(cos- 'x). Find the domain of f and j"'. 

-------- 

ScluOlon By the quotient rule, the chain rule, and (3), 

d tan-'& - 
dx cos- IX 

The domain off  consists of those x for which x >, 0 (so that & is defined) 
and - 1 < x < 1 (so that COS-'X is defined and not zero)-that is, the domain 
o f f  is [@,I). For f' to be defined, the denominator in the derivative must be 
nonzero. This requires x to belong to the interval (0,l). Thus, the domain off' 
is (0,l). A 

The remaining inverse trigonometric functions can be treated in the same way. 
Their graphs are shown in Fig. 5.4.6 and their properties are summarized in 
the box on the next page. 

Remembering formulas such as those on the next page is an unpleasant 
chore for most students (and professional mathematicians as well). Many 
people prefer to memorize only a few basic formulas and to derive the rest as 
needed. It is also useful to develop a short mental checklist: Is the sign right? 
Is the sign consistent with the appearance of the graph? Is the derivative 
undefined at the proper points? 
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Figure 5.4.6. cot, see, csc, 
and their inverses. 

Domain on 
Derivative of Domain 

-- 

[o , ; )and((5 , . ]  tanxsecx s e c - 5  ( - a , - I ]  

[ - ; ,0 ) ,and(0 . (5]  - c o t x c s c x  c s c - 5  ( - m , - I ]  - 
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Example 6 Calculate cos- I(-+), tan- ' ( l) ,  and csc- ' ( 2 / 6 ) .  

Solution We find that cosp'(- +) = 2 ~ / 3  since cos(2~/3)  = - +, as is seen from Fig. 
5.4.7. Similarly, t anp ' ( l )  = n/4  since tan(a/4) = 1. Finally, c sc - ' ( 2 /6 )  
= ~ / 3  since c sc (~ /3 )  = 2 / 6 .  A 

Figure 5.4.7. Evaluating 
some inverse trigonometric 
functions. I 

Example 7 Differentiate: (a) secp'(y2), y > 0; (b) cotp'[(x3 + 1)/(x3 - 1)) 

SoPution (a) By the chain rule, 

(b) By the chain rule, 

Example 8 Differentiate f(x) = ( c s c - ' ~ ~ ) ~ .  Find the domain off and f'. 

Solution By the chain rule, 
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For f(x) to be defined, 3x should lie in [l, oo) or (- oo - I] ;  that is, x should 
lie in [ f ,  oo) or ( -  oo, - f].  The domain of f' is (4, oo), together with 

(- oo, - f ) .  r 

Example 9 Explain why the derivative of every inverse cofunction in the preceding box is 
the negative of that of the inverse function. 

Solution Let f(x) be one of the functions sinx, tanx, or secx, and let g(x) be the 
corresponding cofunction cosx, cotx or cscx. Then we know that 

f( q - x) = g(x). 

If we let y denote g(x), then we get 
77 - - x = f and x = g-l(y) ,  
2 

It follows by differentation in y that 

Hence, the derivatives of f and g- ' (v)  are negatives, which is the 
general reason why this same phenomenon occurred three times in the box. llg 

The differentiation formulas for the inverse trigonometric functions may be 
read backwards to yield some interesting antidifferentiation formulas. For 
example, since (d/dx)tan-'x = I / (!  + x2), we get 

I = t a n  Ix + C. 

Formulas like this will play an important role in the techniques of integration. 

Example 10 Find x2 dx [Hint: Divide first.] 

Solution Using long division, x2/(1 + x2) = 1 - 1/(1 + x2). Thus, by (4), 

dx 

= x - tan-'x + C. A 

Exercises for Section 5.4 
Calculate the quantities in Exercises 1 - 10. Differentiate the functions in Exercises 11-28. 

12. sin- '(d-) 
14. (x2 - 1)sin-'(x2) 

3. sin-'(- 2 )  4. sin - '(0.4) 1 5 .  (sin - 'x12 16. cos- I (&)  

5. cos-'(I) 6. cos- '(0.3) 18. cotC'(1 - y2)  
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23. sin-' t 7 +  t 4 +  1 
tS + 2t 

2 
24. + 2 s i n - '  1 

4 

25, cos-'X 
I - sin 'x 

26. [ s i n  '(3x) + c o s  '(5x)][tan- '(3x)l. 
27. (x2cos- 'x + tan x ) ~ ' ~ .  
28. (x3sin- 'x + cot x)~/ ' .  

1 

dx 

37. Prove: t an(s in  'x) = x/d-. 
38. Prove c s c l ( l / x )  = s i n ' x  = n / 2  - C O S ' X .  
39. Is c o t  'y = I /(tan- $)? Explain. 
40. Is the following correct: 

Explain. 
Calculate the quantities in Exercises 41-46. 

45. The rate of change of cos-'(8s2 + 2) with respect 
to s at  s = 0. 

46. The rate of change of h( t )  = sin- '(31 + i)  with 
respect to t a t  t = 0. 

47. What are the maxima, minima, and inflection 
points of f (x)  = sin- 'x? 

48. Prove that y = tan- 'x has an inflection point a t  
x = 0. 

1 49. Derive the formula (d/dy)cot-'y = - - 
1 + y 2  ' 

- m < y < c o .  
50. Derive the formula 

- 3 0 < y <  - 1 ,  I < ,v<m.  

51. (a) What is the domain of cos- '(x2 - 3)? Differ- 
entiate. (b) Sketch the graph of c o s ' ( x 2  - 3). 

52. What is the equation of the line tangent to the 
graph of cos- '(x2) at x = 0? 

53. Let x and y be related by the equation 

and assume that cos(x + y )  > 0. 
(a) Find dy/dx. 
(b) If x = t / ( l  - t2), find dy/dt. 
(c) If y  = s i n  'i, find d.x/di. 
(d) If x = t3 + 2t - 1, find dy/dt 

54. Find a function f(x)  which is differentiable and 
increasing for all x ,  yet f (x)  < n/2  for all x. 

Calculate the definite integrals in Exercises 55-58. 

a59. Suppose that sin-' had been defined by invert- 
ing sinx on [n/2,3n/2]  instead of on [O,n]. 
What would the derivative of sin- '  have been? 

a60. It is possible to approach the trigonometric func- 
tions without using geometry by defining the 

function a(x) to be j;du/J- and the letting 
sin be the inverse function of a .  Using this defini- 
tion prove that: 
(a) (sin Q)2 + is constant and equal to I ; 
(b) sin"@= -sin@. 
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5.5 Graphing and Ward 
Problems 
Many interesting word problems involve trigonometric functions. 

The graphing and word problems in Chapter 3 were limited since, at that 
point, we could differentiate only algebraic functions. Now that we have more 
functions at our disposal, we can solve a wider variety of problems. 

Example 1 A searchlight 10 kilometers from a straight coast makes one revolution every 
30 seconds. How fast is the spot of light moving along a wall on the coast at 
the point P in Fig. 5.5.1? 

Figure 5.5.1. How fast is 
spot P moving if the beam 
LP revolves once every 30 
seconds? 

Solution Let B denote ihe angle PLQ, and let x denote the distance IPQl. We know 
that d8/dt = 27~/30, since 8 changes by 257 in 30 seconds. Now x = 10 tan8, 
so dx/d8 = 10 sec28, and the velocity of the spot is dx/dt = (dx/dO)(d8/dt) 
= 10 . sec28 . 2 ~ / 3 0  = (257/3)sec28. At x = 8, see 8 = I PLl/ l  t Q  I = 

d=/l0, so the velocity is dx/dt = ( 2 ~ / 3 )  x (S2 + l0')/10~ = (82a/75) 
w 3.4 kilometers per second (this is very fast!). A 

Example 2 Find the point on the x axis for which the sum of the distances from (0, 1)  and 
(p, q) is a minimum. (Assume that p and q are positive.) 

Solution Let (x,O) be a point on the x axis. The distance from (0, l )  is dl + x 2  and 

the distance from ( p ,  q) is \lm. The sum of the distances is 

To minimize, we find: 

- -  d s  - l (1 + x ' )  Il2(2X) + f [(x - P)2 + q2] - Il22(x - p) 
dx 2 

Setting this equal to zero gives 

Instead of solving for x, we will interpret the preceding equation geo- 

metrically. Referring to Fig. 5.5.2, we find that sins, = x / J s  and 

sine, = ( p  - x ) / G p ) '  + q2 ; our equation says that these are equal. so 

8, = 8,. Thus (x,O) is located at the point for which the lines from (x,O) to 

Copyright 1985 Springer-Verlag. All rights reserved.



290 Chapter 5 Trigonometric Functions 

Figure 5.5.2. The shortest 
path from (0, I )  to (p, q) via 
the x axis has 8 ,  = 4. 

(0, 1) and (p, q) make equal angles with a line parallel to they axis. This result 
is sometimes called the law of reflection. A 

Example 3 Two hallways, meeting at right angles, have widths a and b. Find the length of 
the longest pole which will go around the corner; the pole must be in a 
horizontal position. (In Exercise 51, Section 3.5, you were asked to do the 
problem by minimizing the square of the length; redo the problem here by 
minimizing the length itself.) 

Solution Refer to Fig. 5.5.3. The length of PQ is 

Figwe 5.5.3. The pole in I 
the corner. Q 

The minimum of f(@), 0 < @ < ~ / 2 ,  will give the length of the longest pole 
which will fit around the corner. The derivative is 

which is zero when acos38 = b sin3@; that is, when tan3@ = a /b ;  hence B 
=  tan'^@). Since f is large positive near 0 and r /2, and there are no 
other critical points, this is a global minimum. (You can also use the second 
derivative test.) Thus, the answer is 

where 61 = t a n  I('@). Using sin(tan- 'a) = a /  Jg and cos(tand la) 
= I//= (Fig. 5 .54 ,  one can express the answer, after some simplifica- 

dix7 A tion, as (a2/) + b2/3)3/2. 
One way to check the answer (which the authors actually used to catch 

an error) is to note its "dimension." The result must have the dimension of a 
I length. Thus an answer like a'/3(a2/3 + b2/3)3/2, which has dimension of 

Figure 5.5.4. = tan-'a. (length)'/3 X length, cannot be correct. A 
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Example 4 (This problem was written on a train.) One normally chooses the window seat 
on a train to have the best view. Imagine the situation in Fig. 5.5.5 and see if 
this is really the best choice. (Ignore the extra advantage of the window seat 
which enables you to lean forward to see a special view.) 

Train compartment 

Figure 5.5.5. Where should 
you sit to get the widest 
view? 

Solution It is convenient to replace the diagram by a more abstract one (Fig. 5.5.6). We 
assume that the passenger's eye is located at a point 0 on the line A B  when he 
is sitting upright and that he wishes to maximize the angle L POQ subtended 
by the window PQ. Denote by x  the distance from O  to B, which can be 
varied. Let the width of the window be w  and the distance from A B  to the 
window be d. Then we have 

L POQ = L BOQ - L POB, 

w  + d ian(L B O Q )  = - , 
X 

and 

d  tan(L P O B )  = - . 
X 

So we wish to maximize 

I w + d   XI = i POQ = t a n  (T)  - t a n 1 ( $ )  

Differentiating, we have 

Setting ' ( x )  = 0 yields the equation 

( x 2  + d 2 ) ( w  + d )  = [ x 2  + ( w  + d l 2 ]  d, 

wx2 = ( w  + d)2d - d2(w + d ) ,  

The solution, therefore, is x  = d ( w  + d ) d  . 
For example (all distances measured in feet), if d  = 1 and w  = 5, we 

should take x  = 6 m 2.45. Thus, it is probably better to take the second seat 
from the window, rather than the window seat. 

There is a geometric interpretation for the solution of this problem. We 
may rewrite the solution as 
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This second formula leads to the following construction (which you may be 
able to carry out mentally before choosing your seat). Draw a line R P  through 
P and parallel to A B .  Now construct a circle with center at the midpoint M of 
PQ and with radius MB. Let Z be the point where the circle intersects RP. 
Then x = ZP. (See Fig. 5.5.7.) 

Figure 5.5.7. Geometric 
construction for the best A 

seat. Best seat 

Let us turn from word problems to some problems in graphing, using the 
methods of Chapter 3. 

Example 5 Discuss maxima, minima, concavity, and points of inflection for f(x) = sin2x. 
Sketch its graph. 

Solution If f(x) = sin2x, f'(x) = 2 sin x cos x and f "(x) = 2(cos2x - sin2x). The first de- 
rivative vanishes when either sin x = 0 or cosx = 0, at which points f "  is 
positive and negative, yielding minima and maxima. Thus, the minima of f 
are at 0, +a,  +2a ,  . . . , where f = 0, and the maxima are at +a /2 ,  
+ 3 ~ / ' 2 , . . . ,  wheref= 1. 

The function f(x) is concave upward when f"(x) > 0 (that is, cos2x 
> sin2x) and downward when f "(x) < O (that is, cos2x < sin2x). Also, cosx 
= ks inx  exactly if x = k 77/4, + n /4  + a ,  +- 77/4 + 2n, and so on (see the 
graphs of sine and cosine). These are then inflections points separating regions 
where sin2x is concave up and concave down. The graph is shown in Fig. 
5.5.8. 

' f Inflection potnth 

Now that we have done all this work, we observe that the graph could 
also have been found from the half-angle formula sin28 = + ( I  - cos28). A 

Example 6 Sketch the graph of the function f(x) = cosx + cos2x. 

Solution The function is defined on (- oo, oo); there are no asymptotes. We find that 
f(- X) = COS(- X) + COS(- 2x) = cosx + cos 2x  = f(x), SO f is even. Further- 
more, f (x + 277) = f(x), so the graph repeats itself every 2 n  units (like that of 
cosx). It follows that we need only look for features of the graph on [0, n], 

because we can obtain [ -  a ,  0] by reflection across the y axis and the rest of 
the graph by repetition of the part over [ -  n, a]. 

We have 

Y(x)= -s inx-2sin2x and f U ( x ) =  -cosx-4cos2x.  
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To find roots of the first and second derivatives, it is best to factor using 
the formulas 

sin 2x = 2 sin x cos x and cos 2x = 2 cos2x - 1. 

We obtain 

and 

The critical points occur when sin x = 0 or 1 + 4 cos x = 0-that is, when 
x = 0, m, or cos- I ( -  $)  x 1.82 (radians). 

We have 

f(0) = 2, f(m) = 0, ~ [ C O S - I ( -  i)] 4 = - 1.125; 

Hence 0 and m are local maximum points, and cos-I(- $ )  is a local minimum 
point, by the second derivative test. 

To find the points of inflection, we first find the roots of ff'(x) = 0; that 
is, 

-8cos2x - cosx + 4 = 0. 
This is a quadratic equation in which cosx is the unknown, so 

- 1 + J129 
cosx = 

16 
~ 0 . 6 4 7  and -0.772. 

Thus our candidates for points of inflection are 

x ,  = cosC'(0.647) = 0.87 and x, = cos- '( - 0.772) x 2.45. 

We can see from the previously calculated values for f"(x) that f"  does 
change sign at these points, so they are inflection points. We calculate f(x) 
and f'(x) at the inflection points: 

f (x , )  x 0.48, f'(x,) x - 2.74; 

f(x2) w - 0.58, f'(x2) x 1.33. 

Finally, the zeros off may be found by writing 

f(x)  = COS X + COS 2x 

= cosx + 2cos2x - 1 

= 2(cosx + l)(cosx - 4). 
Thus, f(x) = 0 at x = m and x = cos-'(4) x 1.047. The graph on [O, m] ob- 
tained from this information is shown in Fig. 5.5.9. Reflecting across they axis 

Figure 5.5.9. The graph of 
cos x + cos 2x on 10, v ] .  
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a n d  then repeating the  pattern, we  ob ta in  t h e  g r a p h  shown i n  Fig. 5.5.10. S u c h  
graphs, with oscillations of varying amplitudes, a r e  typical when s ine and 
cosine funct ions with different frequencies a r e  added .  A 

graph of cos x + cos 2x. I 

- 

Exercises for Section 5.5 
1. The height of an object thrown straight down post according to h(t) = 55 + 5 sin t ( t  in sec- 

from an initial altitude of 1000 feet is given by onds, height in meters). How fast is the length of 
h( t )  = 1000 - 40r - 16t2. The object is being the shadow of the 2-meter statue changing a t  
tracked by a searchlight 200 feet from where the t = 20 seconds? 
object will hit. How fast is the angle of elevation L~ght 

of the searchlight changing after 4 seconds? 
2. A searchlight 100 meters from a road is tracking 

a car moving at  100 kilometers per hour. At 
,,( 

what rate (in degrees per second) is the search- 
light turning when the car is 141 meters away? 

3. A child is whirling a stone on a string 0.5 meter 
long in a vertical circle at 5 revolutivns per 
second. The sun is shining directly overhead. 
What is the velocity of the stone's shadow when 

Figure 5.5.12. How fast is the stone is at the 10 o'clock position? 
4. A bicycle is moving 10 feet per second. It has the shadow's length 

changing when the light wheels of radius 16 inches and a reflector at- 
oscillates up and down? tached to the front spokes 12 inches from the 

center. If  the reflector is at its lowest point at 
t = 0, how fast is the reflector accelerating verti- 
cally at t = 5 seconds? 

5. Two weights A and B together on the ground are 
joined by a 20-meter wire. The wire passes over a 
pulley 10 meters above the ground. Weight A is 
slid along the ground at  2 meters per second. 
How fast is the distance between the weights 
changing after 3 seconds? (See Fig. 5.5. l I.) 

7. Consider the situation sketched in Fig. 5.5.13. At 
what position on the road is the angle B maxi- 
mized? 

Figure 5.5.13. Maximize 8. 

Figure 5.5.11. How fast are 
A and B separating? 

6. Consider the two posts in Fig. 5.5.12. The light 
atop post A moves vertically up and down the 

8. Two trains, each 50 meters long, are moving 
away from the intersection point of perpendicu- 
lar t rack  at the same speed. Where are the trains 
when train A subtends the largest angle as 
seen from the front of train B? 
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9. Particle A is moving in the plane according to 
x = 3s in3 t  and y = 3cos3t  and particle B is 
moving according to x = 3 cos 2 t and y = 3 
sin2t. Find the maximum distance between A 
and B. 

10. Which points on the parametric curve x = cost, 
y = 4 sin t are closest to (0, l)? 

11. A slot racer travels a t  constant speed around a 
circular track, doing each lap in 3.1 seconds. The 
track is 3 feet in diameter. 
(a) The position (x, y) of the racer can be writ- 

ten as x = r cos(wt), y = r sin(ot). Find the 
values of r and w. 

(b) The speed of the racer is the elapsed time 
divided into the distance traveled. Find 
its value and check that it is equal to 

\l(dx/dt)' + (dY/dt)' . 
12. The motion of a projectile (neglecting air friction 

and the curvature of the earth) is governed by 
the equations 

x = uot cosn y = uOt sin n - 4.9t2, 

where uo is the initial velocity and a is the initial 
angle of elevation. Distances are measured in 
meters and t is the time from launch. (See Fig. 
5.5.14.) 

Figure 5.5.14. Path of a 
projectile near the surface 
of the earth. 

(a) Find the maximum height of the projectile 
and the distance R from launch to fall as a 
function of a. 

(b) Show that R is maximized when a = n/4.  
13. Molasses is smeared over the upper half ( y  > 0) 

of the (x, y )  plane. A bug crawls at  1 centimeter 
per minute where there is molasses and 3 centi- 
meters per minute where there is none. Suppose 
that the bug is to travel from some point in the 
upper half-plane ( y  > 0) to some point in the 
lower half-plane ( y  < 0). The fastest route then 
consists of a broken line segment with a break on 
the x axis. Find a relation between the sines of 
the angles made by the two parts of the segments 
with t h e y  axis. 

14. Drywall sheets weighing 6000 Ibs are moved 
across a level floor. The method is to attach a 
chain to the skids under the drywall stack, then 
pull it with a truck. The angle 6' made by the 
chain and the floor is related to the force F along 
the chain by F = 6000k/(k sin 6' + cos 8), where 
the number k is the coefficient of friction. 
(a) Compute dF/dB. 
(b) Find 6' for which dF/dB = 0. (This is the 

angle that requires the least force.) 
15. Discuss the maxima, minima, concavity, and 

points of inflection for y = sin 2x  - 1. 
16. Find the maxima, minima, concavity, and inflec- 

tion points of f (x)  = cos23x. 
17. Where is f (x)  = x sin x + 2 cos x concave up? 

Concave down? 
18. Where is g(6') = sin3@ concave up? Concave 

down? 
Sketch the graphs of the functions in Exercises 19-26. 

19. y = cos2x 20. y = 1 + sin 2x 
21. y = x + cosx 22. y = x sin x 
2 3 . y = 2 c o s x + c 0 ~ 2 x  2 4 . y = c o s 2 x + c o s 4 x  
25. y = X * / ~ C O S X  26. y = x 'l2sin x 

27. Do Example 2 without using calculus. [Hint: 
Replace (p ,  q) by ( p ,  - q).l 

28. The displacement x ( t )  from equilibrium of a 
mass m undergoing harmonic motion on a spring 
of IHooke's constant k is known to satisfy the 
equation mx"(r) + kx(t) = 0. Check that x ( t )  
= A cos(wt + 8) is a solution of this equation, 
where w = m; A ,  6' and w are constants. 

29. Determine the equations of the tangent and nor- 
mal lines to the curve y = c o s  '2x + c o s  'x at 
(0.71). 

30. Find the equation of the tangent line to the 
parametric curve x = t2, y = c o s  'r when r = f . 

a 31. Sketch the graph of the function (sin x ) / ( l  + x2) 
for 0 < x < 271. (You may need to use a calcula- 
tor to locate the critical points.) 

*32. Let f (x )  = s i n  ' [2x/(x2 + I)]. 
(a)  Show thatf(x)  is defined for x in ( -  oo, a). 
(b)  Compute f'(x). Where is it defined? 
(c) Show that the maxima and minima occur at 

points where f is not differentiable. 
(d)  Sketch the graph of f. 

+33. Show that the function (sin x ) / x  has infinitely 
many local maxima and minima, and that they 
become approximately evenly spaced as x + oo. 

*34. Given two points outside a circle, find the short- 
est path between them which touches the circle. 
(Hint: First assume that the points are equidis- 
tant from the center of the circle, and put the 
figure in a standard position.) 
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5.6 Graphing in Polar 
Coordinates 
Periodic functions are graphed as closed curves in polar coordinates. 

The graph in polar coordinates of a function f consists of all those points in 
the plane whose polar coordinates (r,O) satisfy the relation r = f(0). Such 
graphs are especially useful when f is built up from trigonometric functions, 
since the entire graph is drawn when we let 0 vary from 0 to 277. 

Various properties of f may appear as symmetries of the graph. For 
instance, if f ( 8 )  = f(-0),  then its graph is symmetric in the x axis; if 
f ( v  - 0)  = f(B), it is symmetric in the y axis; and if f ( 0 )  = f(71 + B), it is 
symmetric in the origin (see Fig. 5.6.1). 

Figure 5.6.1. Symmetry in x axis: f ( 0 )  = f ( -  8 ) ;  
symmetry in y axis: f ( ~  - 8 )  = f ( 0 ) ;  
symmetry in origin: f ( 8 )  = f(n + 8) .  

Example 1 Plot the graph of r = cos28 in the xy plane and discuss its symmetry. 

Solution We know from the cartesian graph y = cos 2 x  (Fig. 5.1.27) that as 0 increases 
from O to 71/4, r = cos28 decreases from 1 to 0. As 0 continues from 71/4 to 
71/2, r = cos 20 becomes negative and decreases to - 1. Thus (r, 0)  traces out 
the path in Fig. 5.6.2. 

Figure 5.6.2. The graph 
r = cos 28 for 0 < 0  < v / 2 .  

We can complete the path as 0 goes through all values between O and 277, 
sweeping out the four petals in Fig. 5.6.3, or else we may use symmetry in the 
x and y axes. In fact, f ( -  0) = cos(-28) = cos28 = f ( B ) ,  so we have symme- 
try in the x axis. Also, 
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f ( a -  B)=cos [2 (a -  B ) ]  

= cos 277 cos 20 + sin 2 a  sin 28 
= cos28 = f(B), 

which gives symmetry in they axis. Finally, 

8 + " = cos(28 + a )  
2 ) 

= cos28cos7~ - sin28sinn 
= -cos28 = - f(8) .  

I 

Thus, the graph is unchanged when reflected in the x axis and the y axis. 
Figure 5.6.3. The full graph 
r = cos 28,  the "four- 

When we rotate by 90°, r = f(8) reflects through the origin; that is, r changes 

petaled rose." to - r. A 

Example 2 Sketch the graph of r = f(6) = cos38. 

Solullon The graph is symmetric in the x axis and, moreover, f(8 + m/3) = - f(8). 
This means that we need only sketch the graph for 0 < 8 < ~ / 3  and obtain 
the rest by reflection and rotations. Thus, we expect a three- or six-petaled 
rose. As 6 varies from 0 to n/3, 38 increases from O to a ,  and cos 38 decreases 
from 1 to-!, Hence, we get the graph in Fig. 5.6.4. 

graph of r = cos 30.  I 
Reflect across the x axis to complete the petal and then rotate by 77/3 

and reflect through the origin (see Fig. 5.6.5). ~r. 

Figure 5.6.5. The graphing Reflect 

of r = cos 38. 
Rota te  and reflect 
through the orlgln 

Full grapli 

Example 3 If f(O + a/2)  = f(8), what does this tell you about the graph of r = f(B)? 

Solution This means that the graph will have the same appearance if it is rotated by 
90°, since replacing 8 by 19 + a / 2  means that we rotate through an angle 
77/2. A 
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Figure 5.6.6 shows two other graphs in polar coordinates with striking symme- 
try. (The curve in (b) is discussed in Example 7 below.) 

Figure 5.6.6. 
(a) r = I + cosB 
("cardioid"); 
(b) r = 1 + 2cosB 
("limaqon"). ( d l  

Example 4 Convert the relation r = 1 + 2 cos 8 to cartesian coordinates. 

Solution We substitute r = dx?+y2 and cos8 = x / r  = x / d + y '  to get 

J.V~= 1 + 2 x 

That is, x2 + y2 - dw - 2x = 0. A 

Calculus can help us to draw graphs in polar coordinates by telling us the 
slope of tangent lines (see Fig. 5.6.7). 

Figure 5.6.7. What is the 
slope of the tangent line? 1 

This slope at a point ( r ,  8) is not f'(0), since f'(0) is the rate of change of r 
with respect to 8, while the slope is the rate of change of y with respect to x. 
To calculate dy/dx, we write 

x =  rcosB=f(0)cosB and y =  rsinB=f(0)sin0. 

This is a parametric curve with 8 as the parameter. According to the formula 
dy/dx = (dy /d t ) / (dx /d t )  from Section 2.4, with t replaced by 8, 

Dividing numerator and denominator by cos 0 gives 
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Example 5 (a) Find the slope of the line tangent to the graph of r = 3 cos228 at 8 = .n/6. 
(b) Find the slope of the line tangent to the graph of r = cos38 at (r,8) = 

( - 1,77/3). 

Solullon (a) Here, f(8) = 3 cos228, so dr/d8 = y(8)  = - 12 cos 28 sin 28 (by the chain 
rule). Now f(n/6) = 3 cos2(.n/3) = + and f'(.n/6) = - 12 cos(~/3)sin(.n/3) 

= - 12 .+  .6 /2 = - 3 6 .  Thus formula (1) gives 

so the slope of the tangent line is 3 6 / 1 3 .  
(b) Here, f(8) = cos38, so the slope is, by formula ( I ) ,  

Hence, at 8 = n/3, the slope is 1 / - 1.732 = - 0.577. 

Calculus can aid us in other ways. A local maximum of f(8) will be a point on 
the graph where the distance from the origin is a local maximum, as in Fig. 
5.6.8. The methods of Chapter 3 can be used to locate these local maxima (as 
well as the local minima). 

Tangent line 
\ 

Figure 5.6.8. The point P 
corresponds to a local 
maximum point of f(8). 

Exampie 6 Calculate the slope of the line tangent to r = f(8) at (r, 8) if f has a local 
maximum there. Interpret geometrically. 

Solution At a local maximum, f'(8) = 0. Plugging this into formula (1) gives 

Since dy/dx is the negative reciprocal of tang, the tangent line is perpendicu- 
lar to the line from the origin to (r,B). (See Fig. 5.6.8.) A 
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Exampie 7 Find the maxima and minima of f(B) = 1 + 2cosB. Sketch the graph of 
r = 1 + 2 cosB in the xy plane. 

Solullon Here dr/dB = - 2 sin 8, which vanishes if B = 0, n. Also, d2r/dB = - 2 cos 8, 
which is -2  at 8 = 0, + 2  at B = n. Hence r = 3, B = 0 is a local maximum 
and r = - 1, B = a is a local minimum. The tangent lines are vertical there. 
The curve passes through r = 0 when B = -+2n/3. The curve is symmetric in 
the x axis and can be plotted as in Fig. 5.6.9. A 

Figure 5.6.9. The maxima 
and minima of 1 + 2 cos B 
correspond to the points P, 
and P,. I 

Exercises lor Section 5.6 
In Exercises 1-10, sketch the graph of the given func- In Exercises 23-32, find the slope of the tangent line at  
tion in polar coordinates. Also convert the given equa- the indicated point. 
tion to cartesian coordinates. 2 7r 23. r = tan0: B = , . 

I .  r = cosB 2. r = 2 sin 6 J 
n 

24. r =  t an@;  Q =  - 
3. r =  1 - s i n 8  4 .  

77 25. r = 2 sin 58; B = - 
5. r = 3  6. sin B = I 2 

7. r 2 + 2 r c o s Q +  1 = O  8. r2s in2B=$ 

9. r = sin 38 10. r = cos B - sin B 

11. Describe the graph of the equation r = constant. 
12. What is the equation of a line through the origin? 
13. If f ( a / 2  - 8 )  = f(B), what does this tell you 

about the graph of r = f ( B ) ?  
14. If f(B + a )  = -f(B), what does this tell you 

about the graph of r = f(B)? 
Convert the relations in Exercises 15-22 to polar coor- 
dinates. 

26. r = 1 + 2 sin 28; B = 0. 
77 27. r = cos 4B; B = - . 
3 

7r 28. r = 2 - sin 8; B = - 
6 ' 

29. r = 3 sin B + cos(B2); B = 0. 

30. r = sin38cos28; B = 0. 
31. r = B 2 +  1; B = 5 .  

32. r =  sec8+2B3;  B =  n .  
6 

Find the maximum and minimum values of r for the 
functions in Exercises 33-38. Sketch the graphs in the 
xy plane. 

33. r = cos48 34. r = 2 sin 50 
35. r = tang 36. r = 2 - sin 0 
37. r = 1 + 2sin28 38. r = B 2 +  1 
39. Find the maximum and minimum values of r 

= sin 38cos 28. Sketch its graph in the xy plane. 
*40. Sketch the graph of r = s1n33B. 

Supplement to Chapter 5 
Length of days 

We outline an application of calculus to a phenomenon which requires no 
specialized equipment or knowledge for its observation-the setting of the sun. 

Using spherical trigonometry or vector methods, one can derive a for- 
mula relating the following variables: 
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A =angle of elevation of the sun above the horizon; 
1 =latitude of a place on the earth's surface; 
a =inclination of the earth's axis (23.5" or 0.41 radian); 
T = time of year, measured in days from the first day of summer in the 

northern hemisphere (June 2 1); 
t =time of day, measured in hours from noon.5 

The formula reads: 

We will derive (1) in the supplement to Chapter 14. For now, we will simply 
assume the formula and find some of its c o n ~ e ~ u e n c e s . ~  

At the time S of sunset, A = 0. That is, 

sin a cos(2~T/365) 
(2) 

1 - sin2a cos2(2aT/365) 

Solving for S ,  and remembering that S > 0 since sunset occurs after noon, we 

sin a cos(2aT/365) ] 
T 

1 - sin2a cos2(2aT/365) 
(3)  

For example, let us compute when the sun sets on July 1 at 39" latitude. 
We have 1 = 39", a = 23.5", and T = 11. Substituting these values in (3), 
we find tan 1 = 0.8098, 2nT/365 = 0.1894 (that is, 10.85"), cos(2~T/365) 
= 0.9821, and sin a = 0.3987. Therefore, S = ( 1 2 / ~ ) c o s -  ' ( -  0.3447) = 

(12/~)(1.9227) = 7.344. Thus S = 7.344 (hours after noon); that is, the sun 
sets at 7:20:38 (if noon is at 12:OO). 

For a fixed point on the earth, S may be considered a function of T. 
Differentiating (3) and simplifying, we find 

sin a sin(2aT/365) - - -  
dT  [ 1 - sin2a cos2(2aT/365)] \/I - sin2a cos2(2n~/365)sec21 

The critical points of S occur when 2.rrT/365 = 0, T, or 271; that is, T = 0, 
365/2, or T = 365-the first day of summer and the first day of winter. For 
the northern hemisphere, tan1 is positive. By the first derivative test, T = 0 (or 
365) is a local maximum and T = 365/2 a minimum. Thus we get the graph 
shown in Fig. 5.S. 1. 

By noon we mean the moment at  which the sun is highest in the sky. To  find out when noon 
occurs in your area, look in a newspaper for the times of sunrise and sunset, and take the 
midpoint of these times. It will probably not be 12:00, but it should change only very slowly from 
day to day (except when daylight savings time comes or goes). 

If 71/2 - u < Ill < 71/2 (inside the polar circles), there will be some values of t for which the 
right-hand side of formula (I)  does not lie in the interval [ -  1, I]. On the days corresponding to 
these values of t ,  the sun will never set ("midnight sun"). 

If I = -t 71/2, then tan I = m, and the right-hand side does not make sense at  all. This reflects 
the fact that, at  the poles, it is either light all day or dark all day, depending upon the season. 
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Figure 5.S.l. Sunset time as 
a function of the date. The 
sun sets late in summer, 
early in winter. 

Using the first-order approximation, we can also determine how much the 
sunset time changes from one day to the next. If we set AT = 1, we have 

and d S / d T  is given by (4). Thus, if the number of days after June 21 is 
inserted, along with the latitude I, formula (4) gives an approximation for the 
number of minutes later (or earlier) the sun will set the following evening. 
Note that the difference between sunset times on two days is the same whether 
we measure time in minutes from noon or by the clock ("standard time"). 

Formula (3) also tells us how long the days are as a function of latitude 
and day of the year. Plotting the formula on a computer (taking careful 
account of the polar regions) gives Fig. 5 . ~ 2 . ~  Graphs such as the one shown 
in Fig. 5.S.1 result if I is fixed and only T varies. 

Example Use (4) and (5) to compute how many minutes earlier the sun will set on July 
2 at latitude 39" than on July 1. 

Solution Substituting T = 11 into (41, we obtain A S  m - 0.0055; that is, the sun should 
set 0.0055 hour, or 20 seconds, earlier on July 2 than on July 1. Computing the 
time of sunset on July 2 by formula (3), with T = 12, we obtain S = 7.338, or 

7Note that, in this figure, the date is measured from December 21st rather than June 21st. 
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7:20: 17, which is 21 seconds earlier than the time computed by (4) and (5) for 
sunset on July 2. The error in the first-order approximation to A S  is thus 
about 1 part in 20, or 5%. A 

Differentiating formula (4), we find that the extreme values of dS/dT 
occur when 2 ~ T / 3 6 5  = n/2 or 3 ~ / 2 .  (These are the inflection points in Fig. 
5.6.1.) When 2?rT/365 = ?r/2 (the first day of fall), dS/dT is equal to 
- (24/365)tan I sin a; at this time, the days are getting shorter most r a p i d l ~ . ~  
When 2 ~ T / 3 6 5  = 3 ~ / 2  (the first day of spring), the days are lengthening 
most rapidly, with dS/dT = (24/365)tan 1 sin a. 

It is interesting to note how this maximal rate, (24/365)tanlsina, de- 
pends on latitude. Near the equator, tan I is very small, so the rate is near zero, 
corresponding to the fact that seasons don't make much difference near the 
equator. Near the poles, tan I is very large, so the rate is enormous. This large 
rate corresponds to the sudden switch from nearly 6 months of sunlight to 
nearly 6 months of darkness. At the poles, the rate is "infinite." (Of course, in 
reality the change isn't quite sudden because of the sun's diameter, the fact 
that the earth isn't a perfect sphere, refraction by the atmosphere, and so 
forth.) 

The reader who wishes to explore these topics further should read the 
supplements to Section 9.5 and Chapter 14 and try the following exercises. 

Exercises for the Supplement lo Chapter 5 
1. According to the Los Angeles Times for July 12, 

1975, the sun set a t  8:06 P.M. The latitude of Los 
Angeles is 33.57' North. Guess what time the 
July 13 paper gave for sunset? What about July 
14? 

2. Determine your latitude (approximately) by mea- 
suring the times of sunrise and sunset. 

3. Calculate d 2 ~ / d ~ 2  to confirm that the inflection 
points of S occur at the first days of spring and 
fall. 

4. Derive formula (4) by differentiating (3). (It may 
help you to use the chain rule with u = 

sin a cos(2~T/365) as the intermediate variable.) 
5. At latitude I on the earth, on what day of the 

year is the day 13 hours long? Sketch the relation 
between T and I in this case. 

6. Near springtime in the temperate zone (near 
45O), show that the sunsets are getting later at a 
rate of about 1.6 minutes a day (or 11 minutes a 
week). 

7. Planet VCH revolves about its sun once every 
590 VCH "days." Each VCH "day"= 19 earth 
hours = 1140 earth minutes. Planet VCH's axis is 
inclined at 31'. What time is sunset. at a latitude 
of 12O, 16 VCH days after the first day of 
summer? (Assume that each VCH "day" is di- 
vided into 1440 "minutes.") 

8. For which values of T does the sun never set if 
I > 90" - a (that is, near the North Pole)? Dis- 
cuss. 

9. (a) When the sun rises at the equator on June 21, 
how fast is its angle of elevation changing? 
(b) Using the linear approximation, estimate how 
long it takes for the sun to rise 5" above the 
horizon. 

10. Let L be the latitude at which the sun has the 
highest noon elevation on day T. (a) Find a 
formula for L in terms of T. (b) Graph L as  a 
function of T. 

* One of the authors was stimulated to do these calculations by the observation that he was most aware of the shortening of the days 

at  the beginning of the school year. This calculation provides one explanation for the observation; perhaps the reader can think of 

others. 
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Revlew Exercises for Chapter 5 
Perform the conversions in Exercises 1-6. 

1. 66" to radians. 
2. n/10 radians to degrees. 
3.. ~?,71/2) from polar to cartesian coordinates. 
4. (3,6) from cartesian to polar coordinates. 
5. The equation y = x2  from cartesian to polar co- 

ordinates. 
6. The equation r2 = cos 26 from polar to cartesian 

coordinates. 

7. Prove that 
tan 6 + tan + 

tan(6' + +) = 1 - tanBtan+ ' 
8. Prove that 

sin(6' + +) + sin(@ - +) 
tan 6 = 

cos(0 + +) + cos(6 - +) ' 

Refer to Fig. 5.R.1 for Exercises 9-12. 
9. Find a. 10. Find b. 

h 

11. Find c. 12. Find d. 

Figure 5.R.1. Find a ,  b, c, and d. 

13. Side BC of the equilateral triangle ABC is tri- 
sected by points P and Q. What is the angle 
between AP and AQ? 

14. A 100-meter building and a 200-meter building 
stand 500 meters apart. Where between the 
buildings should an observer stand so that the 
taller building subtends twice the angle of the 
shorter one? 

Differentiate the functions in Exercises 15-34. 
15. y = -3  sin2x. 
16. y = 8 tan lox. 
17. y = x + x sin 3x. 
18. y = x2cosx2. 

6 19. f(6') = 0 2 +  ?. 
sin 6 

20. g(x) = sec x + [ x cos(x + 1) I. 
21. h(y) = y3 + 2y tan(y3) + 1. 

22. x(6) = [sin(;)I4/' + 0 9 +  1 1 8  + 4. 

23. y(x) = cos(xs - 7x4 - 10). 
24. f(y) = (2y3 - 3 ~ s c f i ) ' / ~ .  

25. f (x) = sec- '[(x + sin x12]. 
26. f(x) = cot-'(20 - 4&). 
27. r(6) = 6 cos3(6' + 1) + 1 .  

28. r(0) = . sin . a, b, c constants. 
sin b6 + cos c6 ' 

29. sin- ' ( 6 ) .  
30. tan-'( J-). 
3 1. tan(sin6). 
32. tan(cos x + c s c 6 ) .  
33. sin- ' ( 6  + cos 3x). 

s i n 6  
34. 

cos- '(6 + 1) 

35. Let y = x2  + sin(2x + 1) and x = t3 + 1. Find 
dy/dx and dy/dt. 

36. Let g = l / r 2  + (r2 + 4)'13 and r = sin 26. Find 
dg/dr and dg/d6'. 

37. Let h = x sin-'(x + 1) and x = y - y3. Find 
dh/dx and dh/dy. 

38. Let f = x3/5 + J2x4 + x2  - 6 and x = y + sin y.  
Find df/dx and df/dy. 

39. Let f = tan-'(2x3) and x = a + bt, where a and 
b are constants. Find df/dx and df/dt. 

40. Let y = sin-'(u2) and u = cos x + 1 , Find 
x 2 +  1 

dy/du and dy/dx. 
Find the antiderivatives in Exercises 41-50. 

41. sin3xdx. s 
43. (4 cos 4x - 4 sin 4x) dx. j: 
44. J (cos x + sin 2x + cos 3x) dx. 

48. (x3 + 3 sec2x) dx. s 
1 49. ,[---I dy. 

(4 + y2) 

-2cos5s ds. I 
Fipd the definite integrals in Exercises 51-54. 

52. si3>s2u du [Hint: Use a trigonometric identity.] 
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55. (a) Verify that 

J s i n i x d x =  x s i n ' x  + J-+c. 

(b) Differentiate f(x)  =. cos-'x + sin-'x to con- 
clude that f is constant. What is the con- 
stant? 

(c) Find j c o s ' x  dx. 

(d) Find Jsin- '3x dx. 

56. (a) If F and G are antiderivatives for f and g, 
show that F(x)G(x)  + C is the antideriv- 
ative of f(x)G(x) + F(x)g(x). 

(b) Find the antiderivative of x sin x - cosx. 
(c) Find the antiderivative of 

x sin(x + 3) - cos(x + 3). 
57. Let f (x)  = x 3  - 3x + 7. 

(a) Find an interval containing zero on which f 
is invertible. 

(b) Denote the inverse by g. What is the domain 
of g? 

(c) Calculate g'(7). 
58. (a) Show that the function f(x)  = sinx + x has 

a n  inverse g defined on the whole real line. 
(b) Find g'(0). 
(c) Find g'(2v). 

(d) Find g' 1 + - . 3 
59. Let f be a function such that f'(x) = l / x .  (We 

wiil~find such a function in the next chapter.) 
Show that the inverse function to f is equal to its 
own derivative. 

60. Find a formula for the inverse function to y 
= sin2x on [O, v/2]. Where is this function differ- 
entiable? 

61. A balloon is released from the ground 10 meters 
from the base of a 30-meter lamp post. The 
balloon rises steadily at  2 meters per second. 
How fast is the shadow of the balloon moving 
away from the base of the lamp after 4 seconds? 

62. Three runners are going around a track which is 
an equilateral triangle with sides 50 meters long. 
If the runners are equally spread and all running 
counterclockwise at  20 kilometers per hour, at 
what rate is the distance between a pair of them 
changing when they are: 
(a) leaving the vertices? 
(b) arriving at  the vertices? 
(c) a t  the midpoints of the sides? 

63. A pocket watch is swung counterclockwise on 
the end of its chain in a vertical circle; it under- 
goes circular motion, but not uniform, and the 
tension T in the chain is given by T = 

m[(u2/R) + gcosB], where B is the angle from 
the downward direction. Suppose the length is 
R = 0.5 meter, the watch mass is m = 0.1 
kilograms, and the tangential velocity is o = 

f(B); g = 9.8 meters per second per second. 

(a) At what points on the circular path d o  you 
expect dv/dB = O? 

(b) Compute dT/dB when du/dB = 0. 
(c) If the speed v is low enough at  the highest 

point on the path, then the chain will be- 
come slack. Find the critical speed v, below 
which the chain becomes slack. 

64. A wheel of unit radius rolls along the x axis - 
uniformly, rotating one half-turn per second. A 
point P on the circumference at  time t (in sec- 
onds) has coordinates (x, y )  given by x = a t  - 
sin vt, y = 1 - cos nt. 

(a) Find the velocities dx/dt,  dy/dt and the ac- 
celerations d2x/dt2, d$/dt2. 

(b) Find the  peed J(dx/dt)' + (dy/dt)' when 

y is a maximum. 
65. Refer to Fig. 5.R.2. A girl a t  point G on the 

riverbank wishes to reach point B on the oppo- 
site side of the river as quickly as possible. She 
starts off in a rowboat which she can row a t  
4 kilometers per hour, and she can run at  16 
kilometers per hour. What path should she take? 
(Ignore any current in the river.) 

Figure 5.R.2. Find the best 
path from G to B. 

66. The angle of deviation 6 of a light ray entering a 
prism of Snell's index n and apex angle A is 
given by 

6 = sin- '(n sin P) + sin- '(n sin(A - p)) - A 

where p depends on the angle of incidence @ of 
the light ray. (See Fig. 5.R.3.) 

Figure 5.R.3. Light passing 
through a prism. 

(a) Find dS/dp. 
(b) Show that dS/dp = 0 occurs for p = A/2. 

This is a minimum value for 6. 
(c) By Snell's law, n = sin @/sin p. Verify that 

n = sin[(A + 6)/2] /s in(A/2)  when p = 

A/2. 
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67. A man is driving on the freeway at  50 miles per 
hour. He sees the sign in Fig. 5.R.4. Wow far 
from the sign is 8 maximum? How fast is 8 
changing at this time? 

Figure 5.R.4. At what 
distance is B biggest? 

68. Two lighthouses on a straight coastline are 10 
kilometers apart. A ship sees the two lights, and 
the lines of sight make an angle of 120" with one 
another. How far from the shore could the ship 
possibly be? 

69. Where is f (x)  = 1 + 2 sin x  cos x concave up- 
ward? Concave downward? Find its inflection 
points and sketch its graph. 

70. Sketch the graph of y = x + sin x on [ -  2a,  2711. 
7 1. Prove that f ( x )  = x - 1 - cos x  is increasing on 

10, co). What inequality can you deduce? 
72. Suppose that the graph of r = f(%) is symmetric 

in the line x = y. What does this imply about f ?  
Sketch the graphs in the xy plane of the functions in 
Exercises 73-76 given in polar coordinates. 

73. r = cos 68. 
74. r = 1 + 3cos8. 
75. r = sin 8 + cos 8. 

m76. r = 82cos28. (Use your calculator to locate the 
zeros of dr/dB.) 

In Exercises 77 and 78, find a formula for the tangent 
line to the graph at  the indicated point. 

77. r = cos48; 8 = ~ / 4 .  

79. (a) Using a calculator, try to determine whether 
tan-'[tan(a - is in the interval (0, 1 ) .  
(b) D o  part (a) without using a calculator. 
(c) D o  some other calculator experiments with 
trigonometric functions. How else can you "fool" 
your calculator (or vice versa!)? 

80. On a calculator, put any angle in radians on the 
display and successively press the buttons "sin" 
and "cos," alternatively, until you see the num- 
bers 0.76816 and 0.69481 appear on the display. 

(a)Try to explain this phenomenon from the 
graphs of sin x and cos x,  using composition 
of functions. 

(b) Can you guess the solutions x, y of the 
equations sin(cos x )  = x,  cos(sin y )  = y ?  

*(c)Using the mean value and intermediate 
value theorems, show that the equations in 
(b) have exactly one solution. 

*81. I ff  is differentiable with a differentiable inverse, 
and g(x)  = f - I ( & ) ,  what is gl(x)? 

*82. Consider water waves impinging on a breakwater 
which has two gaps as in Fig. 5.R.5. With the 
notation in the figure, analyze the maximum and 
minimum points for wave amplitude along the 
shore. The two wave forms emanating from P 
and Q can be described at any point R as 
LY cos(kp - wt), where p is the distance from the 
source P or Q; k, w,  a are constant. The net wave 
is described by their sum; the amplitudes d o  not 
add; ignore complications such as reflections of 
waves off the beach.9 

f p------rl el---..- Breakwdter 

Figure 5.8.5. Find the 
wave pattern on the shore. 

*83. Find a formula for the second derivative of an 
inverse function. 

*84. Prove that the function 

is differentiable for all x ,  but that f ' ( x )  is not 
continuous at zero. 

lt85. Show that the function 

is twice differentiable but that the second deriva- 
tive is not continuous. 

We recommend the book Waves and Beaches by W. Bascom (Anchor Books, 1965; revised, 1980) as a fascinating study of  the 
mathematics, physics, engineering, and aesthetics of water waves. 

Copyright 1985 Springer-Verlag. All rights reserved.


