
Chapter 6 

Exponent ia 
Logarithms 

The inverse of y = e ' is x = In y .  

In our work so far, we have studied integer powers ( b n )  and rational powers 
(bm/") as functions of a variable base, i.e., y = x"' or y = xm/". In this 
chapter, we will study powers as functions of a variable exponent, i.e., y = b x .  
To do this, we must first define bX when x is not a rational number. T h s  we 
do  in Section 6.1; the rest of the chapter is devoted to the differential and 
integral calculus of the exponential functions y = bx and their inverses, the 
logarithms. The special value b = e = 2.7182818285.. . leads to especially 
simple formulas. 

6.1 Exponential Functions 
Any real number can be used as an exponent i f  the base is positive. 

In Section R.3, we reviewed the properties of the powers br, where r was first 
a positive integer and then a negative number or a fraction. The calculus of 
the power function g ( x )  = x r  has been studied in Section 2.3. We can also 
consider b as fixed and r as variable. This gives the function f ( x )  = bx, whose 
domain consists of all rational numbers. The following example shows how 
such exponential functions occur naturally and suggests why we would like to 
have them defined for all real x. 

Example 1 The mass of a bacterial colony doubles after every hour. By what factor does 
the mass grow after: (a) 5 hours; (b) 20 minutes; (c) 2f hours; (d) x hours, if 
x is rational? 

Solution (a) In 5 hours, the colony doubles five times, so it grows by a factor of 
2 . 2 . 2 . 2 . 2 = 2 5 = 3 2 .  
(b) If the colony grows by a factor of k in f hour, it grows by a factor 
k . k . k = k3 in 1 hour. Thus k3 = 2, so k = 2'13 = 3fi m 1.26. 
(c) In f hour, the colony grows by a factor of 2'12, so it grows by a factor of 
(2"2)5 = 25/2 w 5.66 in 24 hours. 
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308 Chapter 6 Exponentials and Logarithms 

(d) Reasoning as in parts (a), (b), and (c) leads to the conclusion that the mass 
of the colony grows by a factor of 2" in x hours. A 

Time is not limited to rational values; we should be able to ask how much the 
colony in Example 1 grows after 6 hours or .rr hours. Since the colony is 
increasing in size, we are led to the following mathematical problem: Find a 
function f defined for all real x such that f is increasing, and f(x) = 2" for all 
rational x. 

Computing some values of 2" and plotting, we obtain the graph shown in 
Fig. 6.1.1. By doing more computations, we can fill in more points between 
those in Fig. 6.1.1, and the graph looks more and more like a smooth curve. It 
is therefore plausible that a smooth curve can be drawn through all these 
points (Fig. 6.1.2). 

Figure 6.1.1. Some points 
on the graph y = 2X for 
rational x. 

Figure 6.1.2. Interpolating 
a smooth curve between the 
points in the previous 
graph. 

The proof that one can really fill in the graph of b x  for irrational x to 
produce a continuous function defined for all real x is rather technical, so we 
shall omit it (it is found in more theoretical texts such as the authors' Calculus 
Unlimited). It can also be shown that the laws of exponents, as given in 
Section R.3 for rational powers, carry over to all real x. 

(a) For any b  > 0, f(x) = b x  is a continuous function. 
(b) Let b, c, x,  and y be real numbers with b > 0 and c > 0. Then: 

1 .  bX+Y = bXbY. 

3. (bc)" = bxcx .  
4. f is increasing if b  > 1, constant if b = 1, and decreasing if 

Property 4 says that b x  < by whenever b > 1 and x < y;  i.e., larger powers of 
b  > 1 give larger numbers. If b < 1 and x < y, then b x  > by. For example, for 
b  = 2, 23 < 24, but for b = 4, (4)) > (4)4. If you examine property 4 for 
rational powers given in Section R.3, you will see that it corresponds to 
property 4 here. 
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6.1 Exponential Functions 309 

Example 2 Simplify (a) (@1(3-"/~) and (b) (2& + 2-')(2& - 2-JS). 

Sometimes the notation expbx is used for bx; exp stands for "exponential." 
One reason for this is typographical: an expression like exp,(x2/2 + 3x) is 
easier on the eyes and on the typesetter than b(x2/2f 3X).  Another reason is 
mathematical: when we write expbx, we indicate that we are thinking of bX as 
a function of x. 

Example 3 Which is larger, 2& or 4&? (Do not use a calculator.) 

Solution We may write 4& as = 2*& = 2&. Since J8 >6, it follows from 

property 4 in the previous box that 4JS = 2' is larger than 2JS. A 

Calculator Discussion 
When we compute 2' on a calculator, we are implicitly using the continuity 
of f(x) = 2". The calculator in fact computes a rational power of 2-namely, 

2'.732050808, where 1.732050808 is a decimal approximation to 6. Continuity of 
f(x) means precisely that if the decimal approximation to x is good, then the 
answer is a good approximation to f(x). The fact that f is increasing gives 
more information. For example, since 

we can be sure that 

so 2' = 3.322 is correct to three decimal places. A 

Example 4 (a) Sketch the graphs of exp,, exp,/,,exp,, exp2/,, and expl,2. (b) How are 
the graphs of expi/, and exp, related? 

Solution (a) 1" = 1 for all x,, so exp, is the constant function with graph y = 1. The 
functions exp, and exp,/, are increasing, with exp,x > exp,/,x for x > 0 and 
exp2x < exp,,,x for x < 0 (by property 4). 

Likewise, exp,/,x > expl12x for x > 0 and exp,,, and expi/, are decreas- 
ing. Using these facts and a few plotted points, we sketch the graphs in Fig. 
6.1.3. 

Figure 6.1.3. y = exp,x for b = j, j, 1, ;, and 2.  

(b) Using the properties of exponentiation, exp,/,x = ( t )" = 2-X = 

exp,(- x), so the graph y = explI2x is obtained by reflecting y = exp2x in the 
y axis; y = exp,/,x and y = exp,/,x are similarly related. A 
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Example 5 Match the graphs and functions in Figure 6.1.4. 

( a )  ( h )  (c) t d )  

Figure 6.1.4. Match the graphs and functions: (A) y = xS; (B) y = x i / ' ;  (C) y = ( 0 ) " ;  (D) y = ( 1 / 0 ) " .  

Solution Only functions (A) and (B) have graphs going through the origin; xJS < x for 
x < 1, so (A) matches (d) and (B) matches (b). The function y = (6)" is 
increasing, so (C)  matches (a) and (D) matches (c). A 

Example 6 Match the graphs and functions in Fig. 6.1.5. 

('0 t h )  ( L )  ( d )  

Figure 6.1.5. Match the graphs and functions: (A) y = - 2'; (B) y = x2 9 I ;(C) y = 2-  ' + 1 ; (D) y = 2' + 1. 

Solution (a) must be the graph of y = ( f  )' shifted up one unit, so it matches (C). 
(b) is the graph of 2" shifted up one unit, so i t  matches (D). 
(c) is a parabola, so it matches (B). 
(d) is y = 2X reflected in the x axis, so it matches (A). A 

Example 7 A curve whose equation is polar coordinates has the form r = b s  for some b is 
called an exponential spiral. Sketch the exponential spiral for b = 1 . I .  

Solution We observe that r + cc as 8 + oo and that r -+ 0 as 8 + - oo. To graph the 
spiral, we note that r increases with 8; we then plot several points (using a 
calculator) and connect them with a smooth curve. (See Fig. 6.1.6.) Every turn 
of the spiral is (1 .I)*" = 1.82 times as big as the previous one. A 

Figure 6.1.6. The exponen- 
tial spiral r = (1.1)'. 
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Exercises for Section 6.1 
1. The mass of a certain bacterial culture triples 28. How are the graphs of exp5(x) and exp,(-x) 

every 2 hours. By what factor does the mass related? 
grow after (a) 4 hours; (b) 6 hours, (c) 7 hours, 29. Match the graphs and functions in Fig. 6.1.7. 
(d) x hours? 

2. The amount of a radioactive substance in an ore 
sample halves every 5 years. How much is left 
after (a) 10 years, (b) 30 years, (c) 45 years, (d) x 
years? 

m3. The amount of money in a bank account in- 
creases by 8% after being deposited for 1 year. 
How much is there in the account after (a) 2 
years (b) 10 years, (c) x years? 

g4 .  A lender supplies an amount P to a borrower at 
an annual interest rate of r. After t years with 
interest compounded n times a year, the bor- 

+: +: 
(a) (b)  

rower will owe the lender the amount A = P [1 + 
(r/n)]"' (compound interest). Suppose P = 100, 
r = 0.06, t = 2 years. Find the amount owed for 

v 

interest compounded: (a) monthly, (b) weekly, 
(c) daily, (d) twice daily. Draw a conclusion. 

Simplify the expressions in Exercises 5-12. 

( c )  ( d )  

Figure 6.1.7. Match the graphs and functions: 

(A) y = -3"; (B) y = 3-"; 
(C) y = -3-"; (D) y = 3". 

30. Match the graphs and functions in Fig. 6.1.8. 

11. (3" - 2(3'j2))(3-" + 2-(3'j2 ) )  

12. 
(0)" - ( P ) ~  

4 J 3 n  + 26/4  

In Exercises 13-16, dec~de which number IS larger 
without uslng a calculator. 

13. 3fi or 9'16 

1 4  %* 2'" ( a )  ~ b )  

IS, 0. se i 1 

16. 10' or gf i  

Sketch the graphs of the functions in Exercises 17-24. 
17. f(x) = exp,(x) 18. f(x) = exp, /,(x) 

25. How are the graphs of exp,x and exp,/,(x) re- ~d 
lated? 

Figure 6.1.8. Match the graphs and functions: 
26. How are the graphs of exp4/3(x) and exp3/4(x) 

(A)y = - 2-x  + (B) = 2x - ,; 
related? ( C ) y = - 2 " + l ;  ( D ) y = 2 - " - 1 .  

27. How are the graphs of exp,(x) and exp3(-x) 
related? 
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3 1. Match the graphs and functions in Fig. 6.1.9. 

I 
(hi  

( c )  ( d t  

Fiwe 6.1.9. Match the graphs and functions: 
( ~ ) ~ = x ~ - l ;  ( B ) y = 2 " - I ;  
( C ) y = 2 - " +  1; ( D ) y = x - 2 -  I .  

32. Match the graphs and functions in Fig. 6.1.10. 

( C I  ( d l  

33. Graph the exponential spiral r = (1.2)'. 
34. Graph the exponential spiral r = ( l / l . l ) ' .  
35. Graph the exponential spiral r = ( 1 . 1 ) ~ ' .  
36. Graph the exponential spiral r2  = (1.1)'. 
37. Graph y = 3"+2 by "shifting" the graph of y 

= 3" by 2 units to the left. Graph y = 9(3") by 
"stretching" the graph of y = 3" by a factor of 9 
in the direction of t h e y  axis. Compare the two 
results. In general, how does shifting the graph of 
y = 3" by k units to the left compare with 
stretching the graph by a factor of 3k in the 
direction of t h e y  axis? 

38. Carefully graph the following functions on one 
set of axes: (a) f (x)  = 2", (b) g(x)  = xZ + 1, (c) 
h(x) = x + 1. Can you see why f'(1) should be 
between 1 and 2? 

39. From the graph of f(x)  = 2', make a reasonable 
sketch of what the function f'(x) might look like. 

40. Answer the question in Exercise 39 for f (x)  
= 2-". 

41. Compute the ratio of the area under the graph of 
y = 3" between x = 0 and x = 2 to that between 
x = 2 and x = 4 (see Exercise 37). 

42. Compare the areas under the graph of y = 3' 
between x = 1 and x = 2 and between x = 2 and 
x = 3 (see Exercise 37). 

Solve for x in Exerc~ses 43-46. 
43. 10' = 0.001 
44. 5' = 1 
45. 2' = 0 

46. x - 2 6  - 3 = 0 ((Hint: factor) 

Figure 6.1.10. Match the graphs and functions: 

(A) y = x 3  (B) Y = @ 
(C) y = ( 2 ' +  I)-' (D)y =10"''00 
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Logarithms 
The function log, is the inverse of exp,. 

If b > 1, the function exp,x = b" is positive, increasing, and continuous. As 
x -+ oo, expbx becomes arbitrarily large, while as x -+ - oo, exp,x decreases to 
zero. (See Review Exercise 85 for an outline of a proof of these facts.) Thus 
the range of exp, is (0, oo). It follows from the inverse function test in Section 
5.3 that exp, has a unique inverse function with domain (0, oo) and range 
( -  oo, oo). This function is called logb. By the definition of an inverse 
function, logby is that number x such that b" = y .  The number b is called the 
base of the logarithm. 

Example I Find lo@, loglolOa, and log$. 

Solution Let x = log,9. Then 3" = 9. Since 32 = 9, x must be 2. Similarly, loglolO" is a ,  
and log93 = 4 since 9'/* = 3. A 

The graph of logbx for b > 1 is sketched in Fig. 6.2.1 and is obtained by 
flipping over the graph of expbx along the diagonal. As usual with inverse 
functions, the label y in logby is only temporary and merely stresses the fact 
that logby is the inverse of y = exp,x. From now on we will usually use the 
variable name x and write log,x. In Fig. 6.2.1, the negativey axis is a vertical 
asymptote fory .= log,x. 

Figure 6.2.1. The graphs of 
y = exphx and y = loghx 
forb > I .  

Example 2 Sketch the graphs of log,x and log,/,x. 

Solution This is done by flipping the graphs of 2" and (f )", as shown in Fig. 6.2.2. The 
graphs of log,x and log,,,x are reflections of one another in the x axis. A 

Figure 6.2.2. Exponential 
and logarithm functions 
with base = 2 > 1 and 

I base = f < 1. 

Notice that for b > 1, loghx is increasing. If b < 1, exp,x is decreasing and so 
is log,x. However, while exp,x is always positive, logbx can be either positive 
or negative. Since exp,O = 1, we can conclude that log,l = 0; since expbl = b,  
log,b = 1. These properties are summarized in the following box. 

Copyright 1985 Springer-Verlag. All rights reserved.



314 Chapter 6 Exponentials and Logarithms 

Definition: log,x is that number y such that b y  = x ;  i.e., biUghx = x. 

1. log,x is defined for x > 0 and b > 0 (but log,x can be positive or 

Example 3 Match the graphs and functions in Fig. 6.2.3. 

Figure 6.2.3. Match the 
graphs and functions: 
( A )  y  = 3'; 
(B) y = log,x; 
(C) y  = log, /,x; 
( D ) y = ( f ) * .  

Solution The functions (A) and (B) are increasing, but only (A) is defined for all x, so 
(A) matches (b) and (B) matches (d). Qf (C) and (D), only (D) is defined for 
all x, so (C) matches (a) and (D) matches (6). A 

From the laws of exponents given in Section 6.1, we can read off the 
corresponding laws for log,x. 

1 .  log,(xy) = log,x + logby and log,(x/y) = log,x - loghy. 
2. log,(x") = y log,x. 

To prove Law 1, for instance, we remember that log,(xy) is that number u 
such that exp,u = xy. So we must check that 

exp,(log,x + logby) = xy. 

By the rule exp,(v + w) = exp,v . exp,w, the left hand side is given by 
exp,(log,x)exp,(log,y) = xy, as is the right side. The other laws are proved in 
the same way (see Exercises 3 1 and 32.) 

Example 4 Simplify 1 0 ~ , , [ ( 1 0 0 ~ ~ ~ ) ~ ]  without using a calculator. 

Solution l o g l o ( 1 ~ ~ 3 ~ 2 ~ ) = l o g l o 1 0 ~ 3 ~ 2 + l o g l o ~   awl) 

=3.210glo100+~logl,10 (Law2) 

= 3.2 + t 
= 6.4 + 4 = 6.9. A 
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Example 5 What is the relationship between log,c and logrb? 

Solullow Substituting b for x in Law 3, we get 

But log,b = 1, so logbc = l/log,b. A 

Example 6 Solve for x :  (a) log,5 = 0, (b) log2(x2) = 4, (c) 2 logjx + 10g34 = 2. 

Solution (a) log,5 = 0 means x0 = 5. Since any number to the zero power is 1, there is 
no solution for x. 
(b) log,(x2) = 4 means Z4 = x2. This is the same as 16 = x2. Hence, x = +4. 
(c) Solving for log3x, we get 

log3x = 1 - log34 = 1 - log32. 

Thus, 

We conclude this section with a word problem involving exponentials and 
logarithms. 

Example 7 The number N of people who contract influenza t days after a group of 1000 
people are put in contact with a single person with influenza can be modeled 
by N = i ooo / (~  + 999 . 10-o.'~'). 

(a) How many people contract influenza after 20 days? 
(b) Will everyone eventually contract the disease? 
(c) In how many days will 600 people contract the disease? 

Solution (a) According to the given model, we substitute t = 20 into the fomrula for N 
to give 

Thus 715 people will contract the disease after 20 days. (The calculation was 
done on a calculator.) 
(b) "Eventually" is interpreted to mean "for t very large." For t large, -0.171 
will be a large negative number and so l ~ - ~ - ' ~ '  will be nearly zero (equiva- 
lently 1 0 - ~ - ' ~ '  = 1/10°.'7' and will be very large if t is very large). Thus 
the denominator in N will be nearly 1 and so N itself is nearly 1000. For 
instance, i t  is eventually larger than 999.9999. Thus, according to the model, 
all of the 1000 will eventually contract the disease. 
(c) We must find the t for which N = 600: 

Thus 1 + 999. = 9 = $. Solving for 1 0 - ~ . ' ~ ' ,  10-0.'7' = (2/3)/999. 
Therefore, - 0.17t = loglo((2/3)/999) = - 3.176 (from our calculator) and so 
t = 3.176/0.17 = 18.68 days. A 
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Exercises for Section 6.2 
Compute the logarithms in Exercises 1 - 10. 

1. log24 2. 10g381 
3. log,,0.0l 4. 1 0 g , ~ ( l o - ~ )  
5. l0g~~(0.001) 6. l0g~~(1000) 
7. Iog33 8. 10g5125 
9. log,/,2 10. 10g,/~9 

Sketch the graphs of the functions in Exercises 11-14. 
11. y = log,,x 12. y = log,,,,x 
13. y = 8 log2x 14. y = logLi2(x + 1) 

15. Match the graphs and functions in Fig. 6.2.4. 

(c)  (d) 

Figure 6.2.4. Match the graphs and functions: 
(A) y = 1 ~ 2 ~ ;  (B) y = 2 log2x; 
(C) y = log2(x + 2); (D) ,v = log2(2x). 

16. Match the graphs and functions in Fig. 6.2.5. 

Simplify the expressions in Exercises 17-24 without 
using a calculator. 

17. 10g,(2~/8*) 18. l0g,(3~ . 4-6 . 9-5.2) 
19. 2 1 ~ 4  20. 2lo9lh 

21. l0g,(2~) 22. logh[b2 . (2b13 . ( ~ b ) - ~ / ~ ]  
23. logh(b2'/2b) 24. (loghc2)(log,b2) 

Given that log72 = 0.356, log73 w 0.565, and log75 z 
0.827, calculate the quantities in Exericises 25-28 with- 
out using a calculator. 

25. log7(7.5) 26. log76 
27. log7(3.333 . . . ) 28. 10g7(1.5) 

@29. Suppose that log,lO = 2.5. Use a log,, table or a 
calculator to find an approximate value for b. 

30. Which is larger, log,,2 or loglo2?. How about 
logI,,2 or log,/,2? Do not use a calculator. 

Use the definition of loghx to prove the identities in 
Exercises 31 and 32. 

31. log,(xY) = ylog,x. 
32. log,x = (loghc)(log,x). 

33. Verify the formula log,.x = (I/n)log,x. What 
restrictions must you make on a? 

34. Prove that l~g , ,~(x")  = (m/n)log,x. 
Write the expressions in Exercises 35-38 as sums of 
(rational) multiples of loghA, log, B, and log, C. 

35. I O ~ , ( A ~ B / C ) .  

36. l o g , ( ~ / ~ ~ B ~ ) .  

37. 2 l o g , ( ~ J l ' i t B / ~ ' / ~ ~ )  - logh[(B + l)/AC]. 
38. log,z(A -'B3) - log, - t(C -'B2). [Hint: Use Exer- 

cise 34.1 
Solve for x in Exercises 39-46. 

39. log,9 = 2 
40. logx27 = 3 
41. 10g3x = 2 
42. log3x = 3 
43. log2x = log25 + 3 log23 
44. 10g2,(x + 1) = 10g5x 
45. logx(] - x) = 2 
46. log,(2x - 1) = 2 

Figure 6.2.5. Match the 
graphs with: 
(A) y = log2(x + 1); 
(B) y = logl/2(x + 1); 
( C ) y = ( f ) "  - 1; 

(d l  ( D ) y = 2 " -  1. 
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@47. A biologist measures culture growth and gets the 
following data: After 1 day of growth the count 
is 1750 cells. After 2 days it is 3065 cells. After 4 
days it is 9380 cells. Finish filling out the follow- 
ing table by using a table or calculator: 

n = number of cells 

(a) Verify that the data fit a curve of the form 
n = MbX by examining the linear equation 
y = (log,,b)x + logloM (with respect to the 
y and x values in the table). Using the slope 
and y intercept to evaluate M and b. If the 
biologist counts the culture on the fifth day, 
predict how many cells will be found. 

(b) Suppose that you had originally known that 
the data would satisfy a relation of the form 
n = MbX. Solve for M and b without using 
logarithms. 

48. Color analyzers are constructed from photomul- 
tipliers and various electronic parts to give a 
scale reading of light intensities falling on a light 
probe. These scales read relative densities di- 
rectly, and the scale reading S can be given by 
S = k loglo(I/I ')  where I is a reference intensity, 
I' is the new intensity, and k is a positive con- 
stant. 
(a) Show that the scale reads zero when I = I f .  
(b) Assume the needle is vertical on the scale 

when I = I'. Find the sign of S when 
I' = 21 and I' = 1/2. 

(c) In most photographic applications, the 
range of usable values of I' is given by 
I / 8  s I' s 81. What is the scale range? 

@ 49. The opacity of a photographic negative is the 
ratio I,/[, where I, is the reference light inten- 
sity and I the intensity transmitted through the 
negative. The density of a negative is the quantity 
D = loglo(Io/ I ) .  Find the density for opacities of 
2, 4, 8, 10, 100, 1000. 

50. The loudness, in decibels (dB), of a sound of 
intensity I is L = IOloglo(I/Io), where I. is the 
threshold intensity for human hearing. 
(a) Conversations have intensity (1,000,000) 1,. 

Find the dB level. 
(b) An increase of 10 dB doubles the loudness 

of a particular sound. What is the effect of 
this increase on the intensity I ?  

(c) A jet airliner on takeoff has sound intensity 
1012~o.  Levels above 90 dB are considered 
dangerous to the ears. Is this level danger- 
ous? 

51. The Richter scale for earthquake magnitude uses 
the formula R = log,,(I/I0), where I. is a mini- 
mum reference intensity and I is the earthquake 
intensity. 
(a) Compare the Richter scale magnitudes of 

the 1906 earthquake in San Francisco, I 
= 108.25~0, and the 1971 earthquake in Los 
Angeles, I = 1O6.'I0. 

(b) Show that the difference between the 
Richter scale magnitude of the earthquakes 
depends only on the ratio of the intensities. 

52. The pH value of a substance is determined by 
the concentration of [H+ ] of the hydrogen ions 
in the substance in moles per liter, via the for- 
mula pH = - loglo[H+ ]. The pH of distilled wa- 
ter is 7; acids have pH < 7; bases have pH > 7. 
(a) Tomatoes have [H+ ] = (6.3) . lo-'. Are to- 

matoes acidic? 
(b) Milk has [ H +  ] = 4 .  lo-'. Is milk acidic? 
(c) Find the hydrogen ion concentration of a 

skin cleanser of rated pH value 5.5. 
53. T i e  graph of y = log,x contains the point (3,f). 

What is b? 
54. Graph and compare the following functions: f (x)  

= 2 log2x; g ( x )  = log2(x2); h ( x )  = 2 log21x). 
Which (if any) are the same? 

*55. Give the domain of the following functions. 
Which (if any) are the same? 

( 1  - x2) 
(a) f (x)  = log,, 

(b) g (x)  = 41ogIo(l - x)  + 41oglO(\ + x) + 
f loglo(x2 + 1) - flogl,,(x + 5) 

(c) h(x) = 41ogIoll - xl + 410gloll + xl + 
f log1,(x2 + I) - f loglo(x + 5) 

*56. Give the domain and range of the following 
functions: 
(a) f (x)  = loglo(x2 - 2x - 3), 
(b) g(x)  = log2[(2x + 1)/21, 
(c) h(x) = loglo(l - x2). 

*57. Let f (x)  = log2(x - 1). Find a formula for the 
inverse function g off .  What is its domain and 
range? 

k58. Is the logarithm to base 2 of an irrational num- 
ber ever rational? If so, find an example. 
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6.3 Differentiation of the 
Exponential and Logarithm Functions 
When a special number e is used as the base, the differentiation rules for the 
exponential and logarithm functions become particularly simple. 

Since we have now defined b X  for all real x, we can attempt to differentiate 
with respect to x. The result is that exp, reproduces itself up to a constant 
multiple when differentiated. Choosing b properly, we can make the constant 
equal to 1. The derivative of the corresponding logarithm function turns out to 
be simply I /x .  

Consider the function f(x) = exp,(x) = b x  defined in Section 6.1. If we 
assume that f is differentiable at zero, we can calculate f'(x) for all x as 
follows: 

thus, 

f'(x) = lim 
f ( x  + Ax) - f t x >  

ax+o Ax 

= b ' iim 
ax+o Ax 

One can show that f'(0) really does exist,' so it follows by the preceding 
argument that f is differentiable everywhere. 

If b > 0, then exp,(x) = bx is differentiable and 

expb(x) = expb(0)expb(x). 

where k = expb(0) is a number depending on b. 

Notice that when we differentiate an exponential function, we reproduce it, 
multiplied by a constant k. If b #= 1, then k # 0, for otherwise expb(x) would 
be zero for all x, and exp, would be constant. 

Example 1 Let f(x) = 3". How much faster is f increasing at x = 5 than at x = O? 

Solution By the preceding display, 

f'(5) = f'(0) f(5) = f'(0) . 35. 
Thus at x = 5, f is increasing 35 = 243 times as fast as at x = 0. A 

To differentiate effectively, we still need to find expb(0) and see how it 
depends upon b. It would be nice to be able to adjust b so that expb(0) = 1, 
for then we would have simply expb(x) = exp,(x). To find such a b, we 

' For the proof of this fact, see Chapter 10 of Calculus Unlimited by the authors. 
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numerically compute the derivative of bx  for b = 1,2,3,4,5 at x = 0. These 
derivatives are obtained by computing (bAx - bo)/Ax = (bAx - 1)/Ax for 
various small values of Ax. The results are as follows: 

Derivative at 
0 Equals 

Approximately 

0 
0.69 
1.10 
1.39 
1.61 

Figure 6.3.1. y = b x  for The graphs of b x  for these values of b are shown in Fig. 6.3.1. The slopes 
b = 1,2,3,4,5. of the graphs at x = 0 are given by the corresponding derivatives computed in 

the above table. We see that b = 2 gives a slope less than 1, while b = 3 gives a 
slope larger than 1. Since it is plausible that the slopes increase steadily with b, 
it is also plausible that there is a unique number somewhere between 2 and 3 
that will give a slope exactly equal to 1. The number is called e, and further 
numerical experimentation shows that the value of e is approximately 2.718. 
(Exercise 92 shows another way to find e, and a formula for e in terms of 
limits is given on gage 330.) 

The number e is chosen so that expL(0) = 1, that is, so that 

Logarithms to the base e are called natural logarithms. We denote logex 
by lnx. (The notation logx is generally used in calculus books for the 
common logarithm loglox.) Since e '  = e, we have the formula lne = 1. 

In x means logex (natural logarithm). 
logx means log,+ (common logarithm). 

ln(exp x) = x ; exp(1n x) = x. 
lne = 1, In 1 = 0. 

Most scientific calculators have buttons for evaluating ex  and lnx, but one 
can sometimes get answers faster and more accurately by hand, as the next 
example illustrates. 

Example 2 Simplify ln[e205/(e'00)2]. 

Solution By the laws of logarithms, 
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We can now complete the differentiation formula for the general exponential 
function exphs. Since b = elnh we have b" = ex'"'. Using the chain rule we 
find, since In b is a constant, 

Thus, the unknown factor expb(0) turns out to be just the natural logarithm of 
the base b. 

Example 3 Differentiate: (a) f(x) = e3"; (b) g(x) = 3". 

Solution (a) Let u = 3x so e3" = e u  and use the chain rule: 

d 
(b) - 3" = 3"ln 3, 

dx 

taking b = 3 in the preceding box. This expression cannot be simplified 
further; one can find the value In3 = 1.0986 in a table or with a calculator. 
(Compare the third line of the table on p. 319.) A 

Example 4 Differentiate the following functions: (a) xe3", (b) exp(x2 + 2x), (c) x2, (d) e6, 
(,) esin x, (f)  in x 

Solution (a) d (xe3") = e3" + x d e3" = e3' + x 3e3" = (1 + 3x)e3"; 
dx dx dx 
d d 

(b) - exp(x2 + 2x) = exp(x2 + 2x) - (x2 + 2x) 
dx dx 

d (c) - x 2 = 2 x ;  
dx 

(f) d 2s1n x = - d" (with u = sinx) 
dx du (2u) dx 

= l n2 .2" . cosx  

= In2.2""". cosx. A 

We can differentiate the logarithm function by using the inverse function rule 
of Section 5.3. If y = lnx, then x = eY and 

d~ - 1 - 1 - 1  
dx dx/dy eu x ' 
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Hence 

d 1 - l n x = - .  
dx x 

For other bases, we use the same process; setting y = log,x and x = by: 

That is, 

The last formula may also be proved by using Law 3 of logarithms given in 
Section 6.2: 

lnx = logex = log,x . In b, 

SO 

1 = 1 d l n x  5 - 
lnb dx (In b)x ' 

Our discussion so far can be summarized as follows: 

d I - l n x = - ,  x > 0; 
dx x 
d 1 - log,x = - x > 0. 

dx (In b)x ' 

Example 5 Differentiate: (a) ln(3x), (b) xexlnx, (c) 8 1og38x. 

Solution (a) Setting u = 3x and using the chain rule: 

Alternatively, In 3x = In3 + lnx, so the derivative with respect to x is 1 /x .  
(b) By the product rule: 

(c) From the formula (d/dx)log,x = l/[(ln b)x] with b = 3, 
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Example 6 Differentiate: (a) ln(l0x + 1); (b) sin(1n x3)exp(x4). 

Solution (a) By the chain rule with u = lox2 + 1, we get 

(b) By the product rule and chain rule, 

Previously, we knew the formula (d/dx)xn = nxn- '  for rational n. Now we 
are in a position to prove it for all n, rational or irrational, and x > 0. Indeed, 
write x n  = e ( ' n s ) n  and differentiate using the chain rule and the laws of 
exponents: 

d x n  = d e ( l n x ) . n  = .@(lnx)n = E X n  = n X n - l ,  - 
dx dx x x 

For example, (d/dx)xV = a x  "- '. 
In order to differentiate complex expressions involving powers, it is 

sometimes convenient to begin by taking logarithms. 

Example 7 Differentiate the functions (a) y = x x  and (b) = x" .fi 
Solution (a) We take natural logarithms, 

l ny=1n(xs )  = x lnx .  

Next, we differentiate using the chain rule, remembering that y is a function 
of x: 

Hence 

d~ 
- = y ( l  -4- lnx) = xS( l  + lnx). 
dx 

Alternatively, we could have written x" = ex'"  ". Thus, by the chain rule, 

d - X ~  = e ~ l n ~  ( lnx + 1) = xS(lnx + 1). 
dx 

( b ) y =  x X . &  = xX+' l2 ,  SO I n y = ( x + t ) l n x .  Thus 

and so 

This method of differentiating functions by first taking logarithms and then 
differentiating is called logarithmic differentiation. 
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Example 8 Use logarithmic differentiation to calculate dy/dx, where 

y = ( 2 ~  + 3))12/ J2-X . 
Solution In y = ln[(2x + 3)3 /2 / (~2  + I ) ' / ~ ]  = 3ln(2x + 3) - f ln(x2 + I), so 

and hence 

Since the derivative of In x is 1 /x ,  In x is an antiderivative of 1 /x ;  that is 

/ ; d x = l n x + C  for x > 0 .  

This integration rule fills an important gap in our earlier formula 

from Section 2.5, which was valid only for n + - 1. 

To prove integration formula 3 in the preceding box, consider separately the 
cases x > 0 and x < 0. For x > 0, it is the inverse of our basic formula for 
differentiating the logarithm. For x < 0, (d/dx)(lnjx() = (d/dx)[ln(- x)] 
= [ I / ( -  x)] . [ -  11 = l /x ,  SO lnlxl is an antiderivative for I /x ,  for x # 0. 

1 Example 9 Find the indefinite integrals: (a) /eux dx; (b) [( -- ) dx. 
3x + 2 

Solution (a) (d/dx)eJx = aeax, by the chain rule, so lea" dx = (1  /a)eax + C. 
(b) Differentiate ln13x + 21 by the chain rule, setting u = 3x + 2. We get 
(d/dx)lnlui = (d/du)lnlul . du/dx = ( l /u)  . 3  = 3/(3x + 2); hence 
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Example 10 Integrate 

Solution (a) Since (d/dx)lnx = l / x ,  for x > 0, the chain rule gives 

(Here x + 1 > 0, so we can omit the absolute value signs.) Thus 

I I Example 11 Verify the formula excosx  d x  = - eX(sin x + cos x )  + C. 
2 

Solullon W e  must check that the right-hand side is a n  antiderivative of the integrand. 
W e  compute, using the product rule: 

A- .I- ex(sin x + cos x) 
dx 2 

(sin x + cos X) + 
I i = - ex ( s inx  + cosx)  + - ex (cosx  - s inx)  = excosx  
2 2 

Thus the formula is verified. A 

Exercises for Section 6.3 
1 .  How much faster is f (x)  = 2' increasing at 

x = 3 than at x = O? 
2. How much faster is f (x)  = 4r increasing at 

x = 2 than at x = O? 
3. How much faster is f(x) = ( f  )" increasing at 

x = 4 than at x = O? 
4. Wow much faster is f(x) = (t)" increasing at 

x =  -3  than a t x = O ?  
Simplify the expressions in Exercises 5-10. 

5. In(e-'+ I )  + ln(e2) 
6. ln(es'" x,  - ln(ecos 
7, .'+I" r2 

1 

8, eln sjn I - In  cosx 

9. e4x[ln(e3x- I) - ln(e'-x)] 
10, e x I n 3 + l n 2 '  

Differentiate the functions in Exercises 11-32. 
1 1 .  ex'+'  12. (e3XJ+x)(~ - ex)  
13. + x3 14. e2" - cos(x + eZX) 
IS. 2 " + x  16. 3" + x-" 
17. 3" - 2"-' 18. tan(3'") 
19. In 10x 20. Inx2 

In x 21. - 22. (In x ) ~  
X 

23. In(sin x) 24. Initan x )  
25. ln(2x + 1 )  26. In(x2 - 3x) 

27. (sin x)ln x 28. (x2 - 2x)ln(2x + 1) 
In(tan 3x) 

29. 30. xh + (In cos x16 
1 + Inx2 

31. log,x 32. log,(2x) 

Use logarithmic differentiation to differentiate the func- 
tions in Exercises 33-40. 

33. y = (sin x)". 
34. y = x"" ". 
35. y = (sin x)"""". 
36. y = (x3 + I ) " ' -~ .  
37. y = (x  - 2)2/3(4x + 3)'17. 
38. y = (x + 2)'/'(8x + 9)I0/l3. 
39. y = x'"". 
40. y = x3". 

Differentiate the functions in Exercises 41-62. 
'$1. 

42. x e  
43. In(x-' + X) 
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44. 61n(x3 - xe') + exlnx 
45. 14x2-8 stn x 

46. log2[s~n(x2)] 
47. In(x + In x) 
48. exsln(lnx + 1)  
49. cos(x"" ') 
50. sin(x"" ') 
51. x ( ' ~ )  
52. x" 
53. ( I  /x)'"" "* 
54. In(xSrL 12) 
55. sln(x4 + I) . log8(14x - sin x) 
56. l~g,~-,(cos 2x) 

57. 3 x 6  

58. 3x"i2 
59. sin(xx) 
60. In(xx+') 
6 1 . (sin x)(COS ") ' 
62. 22' 

Find the indefinite integrals in Exercises 63-76. 
63. fe2"dx 

71. J(5) dx [Hint: Divide.] 

74. x3dx i 
75. J"( X* + 2x + ) dx [Hint: Divide.] 

x - 8  

Find the definite integrals in Exercises 77-84. 

SO. L 7 ( 4 / x )  dx 

84. / I  dx [Hint: differentiate ln(x2 + 2).] 
0 x 2 + 2  

85. (a) Differentiate x In x. (b) Find j In x dx. 
86. (a) By differentiating In(cos x), find ,( tan x dx. 

(b) Find /cot x dx. 
87. (a) Verify the integration formula 

eaX(asinbx - bcosbx) 
leaxs in  bx dx= 4- C. 

a2 + b2 

(b) Find a similar formula for 

J"eaxcos bx dx. 

88. Verify the following: 

(a) J"(x"ex + nxp'ex)dx= xnex + C. 

(b) l x 2 e x d x =  x2ex - 2xex + 2ex + C. 

89. Verify the following integration formulas: 

90. Use Exercises 88 and 89 to evaluate 

and 

(b) J"Ix2exdx. 
0 

91. Express the derivatives of the following in terms 
of f(x), g(x), f'(x), and g'(x): 
(a) f(x) . ex  + g(x); 
(b) ef(x) +x2; 

(c) f(x) . ; 

(4 f(eX + g(x)); 
(e) f(x)gcx). 

s92. This exercise shows how to adjust b to make 
expb(x) = expb(x). We start with the base 10 of 
common logarithms and find another base b for 
which expb(0) = 1 as follows. By the definition 
of the logarithm, b = 10 ' "g l~ .  
(a) Deduce that exp,(x) = e ~ p , ~ ( x  l ~ g , ~ b ) .  
(b) Differentiate (a) to show that expb(0) 

= exp',,(O). loglob. To have expb(0) = 1, 
we should pick b in such a way that 
loglob = I/exp\,(O). 

(c) Deduce that e = e~p~~[ l /exp ' ,~(O)]  satisfies 
the condition expk(0) = 1 and so expL(x) 
= exp,(x). 

(d) Show that for any b, exp,[l/expk(O)] = e. 
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*93. By calculating (bAx - ])/Ax for small Ax and 
various values of b, as at the beginning of this 
section, estimate e to within 0.01. 

*94. Suppose that you defined Inx to be J;dt/t. 
(a) Use the fundamental theorem to show that 

(d/dx)lnx = I /x .  
(b) Define e x  to be the inverse function of lnx  

and show (d/dx)ex = ex. 
*95. (a) Use the definition of Inx in Exercise 94 to 

show that lnxy = Inx + I n y  by showing 
that for a given fixed x,, 

(b) Deduce from (a) that e x  +dv = e "eY. 
(c) Prove ex+Y = exeY by assuming only that 

(d/dx)ex = ex  and e0 = 1. 
*96. (a) Compute fie-'dt for x = 1 ,  10, and 100. 

(b) How would you define JFe-'dt? What 
number would this integral be? 

(c) Interpret the integral in (b) as an area. 
*97. (a) Compute J:lnxdx (see Exercise 85) for 

r = 1, 0.1, and 0.01. 
(b) How would you define Jalnxdx? Compute 

it by evaluating limx,o(x In x) numerically. 
(c) Why doesn't this integral exist in the ordi- 

nary sense? 
*98. What do you see if you rotate an exponential 

spiral about the origin at a uniform rate? Com- 
parz with the spiral r = 0. 

*99. Differentiate y = f(x)g(x) by writing the loga- 
rithm of y as a sum of logarithms. Show that you 
recover the product rule. 

*loo. Differentiate y = f(x)/g(x) logarithmically to re- 
cover the quotient rule. 

*IOl.Find a formula for the derivative of 
fi(x)"lf2(x)"2 . . . f , ( xp  using logarithmic differ- 
entiation. 

6.4 Graphing and Word 
Problems 
Money grows exponentially when interest is compounded continuously. 

Now we turn to applications of the exponential and logarithm functions in 
graphing and word problems. Additional applications involving growth and 
decay are given in Chapter 8. 

We begin by studying some useful facts about limits of exponential and 
logarithm functions. 

We shall first show that 

lim Inx = 0. 
x+m x (1) 

Intuitively, this means that for large x, x is much larger than lnx. Indeed this 
is plausible from their graphs (Fig. 6.4.1). 

Figure 6.4.1. x is much 
larger than In x for large x. 

To prove (l), note that for any fixed integer n, 
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Thus 

x-nlnx+or ,  as x - + m  
(since its slope is nearly 1 for large x). In particular, 

x - n l n x > O  forlargex, 

lnx <1 - for large x. 
x n 

This shows that lnx/x becomes arbitrarily small for x large, so (1) holds. 

Now l e t y = x a  fora>O.  Theny+oo a s x + m ,  and so 

as y +  oo by (l), so we get 
x a lim & = O  or lim -I or,. 

X+CC x a  x-*m lnx (2) 

Thus, not only does x become much larger than Inx, but so does any positive 
power of x. For example, with a = 3, 

GaDeuizllor Discoassion 
The validity of (1) and (2) for various a can also be readily checked by 
performing numerical calculations on a calculator. For example, on our 
calculator we got the following data: 

lnx 0 .69 1.09 1.609 3.912 6.214 10.8 13.8 23.02 46.05 69.08 

It takes xO.' a while to overtake lnx, but eventually it does. g, 

by (2). Thus for a > 0, we have the limit 

This means that Inx approaches - oo more slowly than x a  approaches zero as 
x+o.  

Finally, write 

As we have seen in deriving ( l ) ,  x - n In x + oo as x + oo. Thus, 

lim < = oo. 
x-+m x 

This says that the exponential function grows more rapidly than any power 
of x. 

Alternative proofs of (1)-(4) are given in Review Exercises 86-91 at the 
end of this chapter; simple proofs also follow from l'H6pital's rule given in 
Chapter 1 1. 
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ex grows more rapidly as x + ca than any power of x (no matter how 

Inx grows more slowly as x + 00 than any positive power of x (no 
matter how small). 

Example 1 Sketch the graph y = x2e-". 
Solution We begin by noting that y is positive except at x = 0. Thus x = 0 is a 

minimum. There are no obvious symmetries. The positive x axis is an 
asymptote, since x2e-" = x2/ex  = l /(ex/x2), and e"/x2+ oo as x +  oo by 
item 1 in the previous box. For x +  - a, both x2  and e-" become large, so 
limx,-m~2e-x = 00. 

The critical points are obtained by setting dy/dx = 0; here dy/dx 
= 2xe-" - x2e-" = (2x - x2)e-". Thus dy/dx = 0 when x = 0 and x = 2; y 
is decreasing on ( -  ca, 0), increasing on (0,2), and decreasing on (2, 00). The 
second derivative is 

which is positive at x = 0 and negative at x = 2. Thus 0 is a minimum and 2 is 
a maximum. There are inflection points where d$/dx2 = 0; i.e., at  
x = 2 k 6. This information, together with the plot of a few points, enables 
us to sketch the graph in Fig. 6.4.2. A 

Figure 6.4.2. y = x2e-". 

Example 2 Sketch the graph of y = x lnx. 

Solution The function is defined for x > 0. As x + 0, x lnx + 0 by item 3 in the 
preceding box, so the graph approaches the origin. As x + 00, x In x -+ a. The 
function changes sign from negative to positive at x = 1. dy/dx = l nx  + 1, 
which is zero when x = l / e  and changes sign from negative to positive there, 
so x = I /e  is a local minimum point. We also note that dy/dx approaches 
- ca as x+O, so the graph becomes "vertical" as it approaches the origin. 
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Finally, we see that d$/dx2 = 1/x  is positive for all x > 0, so the graph is 
everywhere concave upward. The graph is sketched in Fig. 6.4.3. A 

Next we turn to an application of logarithmic differentiation. The expression 
(d/dx)ln f(x) = f'(x)/f(x) is called the logarithmic derivative off.  The quan- 
tity f'(x)/f(x) is also called the relative rate of change off, since it measures 
the rate of change off per unit off itself. This idea is explored in the following 

Figure 6.4.3. y = x In x. application. 

Example 3 A certain company's profits are given by P = 5000exp(0.3t - 0.001t2) dollars 
where t is the time in years from January 1, 1980. By what percent per year 
were the profits increasing on July 1, 1981? 

Solution We compute the relative rate of change of P by using logarithmic differenti- 
ation. 

Substituting t = 1.5 corresponding to July 1, 1981, we get 

Therefore on July 1, 1981, the company's profits are increasing at a rate of 
29.7% per year. A 

We shall be examining compound interest shortly, but before doing so, we 
shall need some further information about the number e. 

In our previous discussion, the number e was obtained in an implicit way. 
Using limits, we can derive the more explicit expression 

e = lim (1 + h)'/h. 
h+O 

To prove this, we write 

(1 + h) l lh= exp[ln(l + h) ' /h]  

1 = exp[ - ln(1 + h)] 
h 

(ln(1 + h) - In 1) (since In 1 = 0); I 
but 

ln(l + Ax) - In 1 
(In(l + h) - ln 1) = lim ] h + O (  AX 

Substituting this in our expression for (1 + h)l/h and using continuity of the 
exponential function gives 

1 lim (1 + h) ' /h=  exp lim - (ln(1 + h) - In 1) = exp(1) = e. 
h--to [ h-0 h I 

which proves (5). 
One way to get approximations for e is by letting h = r+_ ( I  /n), where n is 

a large integer. We get 
- n 

e = l i m  1 + -  lim 1 - -  . 
n+ w ( t ) n = n + m (  t )  

Notice that the numbers (1 + I/n)" and (1 - l /n)-" are all rational, so e is 
the limit of a sequence of rational numbers. It is known that e itself is 
i r r a t i~na l .~  

* A proof is given in Review Exercise 12(1, Chapter 12 
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Let us calculate (1 - l /n)-" and (1 + 1 /n)" for various values of n. By (6), 
the numbers should approach e = 2.71828 . . . in both cases, as n becomes 
large. 

One can achieve a fair degree of accuracy before round off errors make 
the operations meaningless. For example, on our calculator we obtained the 
following table. (Powers of 2 were chosen for n to permit computing the nth 
powers by repeated squaring.) 

Calculator 
roundoff 
errors 
significant 
beyond 

, here 

Example 4 Express Inb as a limit by using the formula In b = expi(0). 

Solution By the definition of the derivative as a limit, 

In b = expb(0) = lim 
ex~b(Ax) - ex~b(0) bAx - 1 = lim - 

AX-io AX AX+O AX ' 

b h -  1 lnb = lim(- 
h+O h >. r 
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The limit formula (6 )  for e has the following generalization: for any real 
number a,  

To prove (7), write h = a / n .  Then h -+ 0 as n -+ MI, so 

which tends to e a  by (5). The second half of (7) follows by taking h = - a / n .  

Formula (7) has an interpretation in terms of compound interest. If a bank 
offers r% interest on deposits, compounded n times per year, then any invested 
amount will grow by a factor of 1 + r /  100n during each compounding period 
and hence by a factor of ( I  + r/lQQn)" over a year. For instance, a deposit of 
$1000 at 6% interest will become, at the end of the year, 

1000(l + 6 / 4 0 0 ) ~  = $1061.36 with quarterly compounding, 

1000(1 + 6 / 3 6 5 0 0 ) ~ ~ ~ =  $1061.83 14 with daily compounding, 

and 
24.365 - l000[ 1 + 6 / ( 2 4  .36500)] - $1061 3362 with hourly compounding. 

Two lessons seem to come out of this calculation: the final balance is an 
increasing function of the number of compounding periods, but there may be 
an upper limit to how much interest could be earned at a given rate, even if 
the compounding period were to be decreased to the tiniest fraction of a 
second. 

In fact, applying formula (7) with a = r/100 gives us 

and so $1000 invested at 6% interest can never grow in a year to more than 
1000eO = $106 1.8366, no matter how frequent the compounding. (Strictly 
speaking, this assertion depends on the fact that (1 + r/100n)" is really an 
increasing function of n. This is intuitively clear from the compound interest 
interpretation; a proof is outlined in Exercise 37.) 

In general, if Po dollars are invested at r% interest, compounded n times a 
year, then the account balance after a year will be Po(l + r/100n)", and the 
limit of this as n+ oo is Peer/'*. This limiting case is often referred to as 
continuously compounded interest. The actual fraction by which the funds 
increase during each one year period with continuous compound interest is 
(Peer/'@' - Po)/Po = er/'O" - 1 .  

1. If an initial principal Po is invested at r percent interest compounded 
n times per year, then the balance after one year is Po(l + r /  1QQn)". 

2. If n + oo, so that the limit of continuous compounding is reached, 
then the balance after one year is P0er/'O". 

3. The annual percentage increase on funds invested at r% per year 
compounded continuously is 
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Example 5 What  is the yearly percent increase on  a savings account with 5% interest 
compounded continuously? 

Solution By formula (8), the fraction by which funds increase is er/lm - 1. Substituting 
,. = 5 er/lm - 1 = e0.05 - 1 = 0.0513 = 5.13%. A 

Continuous compounding of interest is a n  example of exponential growth, a 
topic that will be treated in detail in Section 8.1. 

Reasoning as above, we find that if Po dollars is invested a t  r percent 
compounded annually and  is left for t years, the amount accumulated is 
Po(l + r/100)'. If it is compounded n times a year, the amount becomes 
Po(l + r / n  . 100)"', and  if it is compounded continuously, it is ~ , e " / ' ~ ~ .  

Example 6 Manhattan Island was purchased by the Dutch in 1626 for the equivalent of 
$24. Assuming a n  interest rate of 6%, how much would the $24 have grown to 
be by 1984 if (a) compounded annually? (b) Compounded continuously? 

Solution (a) 24 . ( 1 . 0 6 ) ' ~ ~ ~ -  = 24 . ( 1  .06)358 M $27.5 billion. 
(b) 24 . e(0.06)( '984- 1626) = 2de(0.061(358) $5 1.2 billion, A 

Exercises for Section 6.4 
Sketch the graphs of the functions in Exercises 1 - 8. 

1. y = eFXsinx. 
2. y = ( I  + ~ ~ ) e - ~ .  
3. y = ~ e - ~ .  
4. y = ex/(l  + x2). 
5. y  = logx2. [Hint: y = In 2/ln x.] 
6. y = (In x)/x.  
7. y = x"(x > 0). 
8, y = e-'/x2. 

9. By what percentage are the profits of the com- 
pany in Example 3 increasing on January 1 ,  
1982? 

10. A certain company's profits are given by P = 

50,000 exp(0.1 t - 0.002t2 + 0.00001 t3), where t is 
the time in years from July 1 ,  1975. By what 
percentage are the profits growing on January 1, 
1980? 

11. For 0 < t < 1000, the height of a redwood tree in 
feet, t years after being planted, is given by 
h = 300(1 - exp[- t/(1000 - t)]). By what per- 
cent per year is the height increasing when the 
tree is 500 years old? 

12. A company truck and trailer has salvage value 
y = 120,000e-~.'~ dollars after x years of use. (a) 
Find the rate of depreciation in dollars per year 
after five years. (b) By what percentage is the 
value decreasing after three years? 

13. Express 3JZ as a limit. 
14. Express e a +  ' as a limit. 
15. Express 3 In b as a limit. 
16. Express In(+) as a limit. 
17. A bank offers 8% per year compounded continu- 

ously and advertises an actual yield of 8.33%. 
Verify that this is correct. 

18. (a) What rate of interest compounded annually is 
equivalent to 7% compound continuously? 
(b) How much money would you need to invest 
at 7% to see the difference between continuous 
compounding and compounding by the minute 
over a year? 

19. The amount A for principal P compounded con-- 
tinu,ously for t years at an annual interest rate of 
r is A = Per'. Find the amount after three years 
for $100 principal compounded continuously at 
6%. 

1 20. (a) How long does it take to double your money 
at 6% compounded anually? 
(b) How long does it take to double your money 
at 6% compounded continuously? 

Find the equation of the tangent line to the graph of the 
given functions at the indicated points in Exercises 
2 1-26. 

21. y = x e 2 "  at x =  1 .  
22. y  = x2exI2 at x = 2. 
23. y  = cos(aex/4) at x = 0. 
24. y  = sin(ln x)  at x = 1. 
25. y  = ln(x2 + 1) at x = 1. 
26. y =  x'"' at x = 1. 

a 27. (a) Show that the first-order approximation to 
bx, for x near zero, is 1 + x In b. 

(b) Compare 2O.O' with 1 + 0.01 In 2; compare 
2°.000' with 1 + 0.0001 In 2. (Use a calculator 
or tables.) 

(c) By writing e = (el/")" and using the first- 
order approximation for el/", obtain an ap- 
proximation for e. 

28. Show that ln b = lim,,,n("fi - 1). 
29. Find the minimum value of y  = x '  for x in 

(0900). 
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30. Let f be a function satisfying f'(to) = 0 and f(to) 
# 0. Show that the relative rate of change of 
P = exp[ f(t)] is zero a t  t = to. 

31. One form of the Weber-Fechner law of mathe- 
matical psychology is dS/dR = c /  R, where 
S = perceived sensation, R = stimulus strength. 
The law says, for example, that adding a fixed 
amount to the stimulus is less perceptible as the 
total stimulus is greater. 
(a) Show that S = c . ln(R/Ro) satisfies the 

Weber-Fechner law and that S(Ro) = 0. 
What is the meaning of Ro? 

(b) The loudness L in decibels is given by L 
= IOlog,o(I/lo), where lo is the least audi- 
ble intensity. Find the value of the constant 
c in the Weber-Fechner law of loudness. 

32. The rate of damping of waves in a plasma is 
proportional to r3e-rz/2, where r is the ratio of 
wave velocity to "thermal" velocity of electrons 
in the plasma. Find the value of r for which the 
damping rate is maximized. 

33. The atmospheric pressure p at  x feet above sea 
leve l  is a p p r o x i m a t e l y  g i v e n  by  p = 

21 1 6 e - ~ . ~ ~ ' " .  Compute the decrease in out- 
side pressure expected in one second by a bal- 
loon at  2000 feet which is rising at  10 feet per 
second. [Hint: Use dp/dt = (dp/dx)(dx/dt).] 

34. The pressure P in the aorta during the diastole 
phase-period of relaxation-can be modeled by 
the equation 

The numbers C and W are positive constants. 
(a) Verify that P = ~ ~ e - ~ ' / ~  is a solution. 
(b) Find In(Po/P)  after 1 second. 

35. The pressure P in the aorta during systole can be 
given by 

Review Exercises for Chapter 6 
Simpify the expressions in Exercises 1-8. 

I. (x"  + x - ~ ) ( x " -  x-")  
2. [(x - 3/2)2]1/4 
3. log2(8)) 
4. log3(g2) 
5. ln(e3) + f ln(e-5) 

3e-1n4 
6. - 

In e4 
7. In exp( - 36) 

Show that P(0) = Po and dP/d t  + ( C /  W ) P  
= CA sin Bt. 

36. A rich uncle makes an endowment to his broth- 
er's firstborn son of $10,000, due on the child's 
twenty-first birthday. How much money should 
be put into a 9% continuous interest account to 
secure the endowment? [Hint: Use the formula 
P = P0e k' ,  solving for Po.] 

a37. Let a > 0. Show that [ I  + (a/n)]" is an increas- 
ing function of n by following this outline: 
(a) Suppose that f ( l )  = 0 and f'(x) is positive 

and decreasing on [ I ,  w). Then show that 
g (x)  = xf(1 + ( I /x ) )  is increasing on [1, w). 
[Hint: Compute gf(x) and use the mean 
value theorem to show that it is positive.] 

(b) Apply the result of (a) to f(x)  = In(x). 
(c) Apply the result of (b) to 

a38. Let r = be  be an exponential spiral. 
(a) Show that the angle + between the tangent 

line at  any point of the spiral and the line 
from that point to the origin is the same for 
all points of the spiral. (Use the formula for 
the tangent line in polar coordinates given in 
Section 5.6.) Express + in terms of b. 

(b) The tangent lines to a certain spiral make an 
angle of 45" with the lines to the origin. By 
what factor does the spiral grow after one 
turn about the origin? 

*39. Determine the number of (real) solutions of the 
equation x 3  - 4 x  + = 2x by a graphical 
method. 

+40. (a) For  any positive integer n ,  show by using 
calculus that ( l /n)ex - x 3 0 for large x .  
(b) Use (a) to  show that lim, , , ( ex/x)  = oo . 

Differentiate the functions in Exercises 9-38. 
9. ex' 10. (ex)3 

11. eXcosx  12. cos(ex) 
13, ecos 2x 14. e"'"" 
15. x2eIox 16. xe(x+2)1 
17. e6" 18. xex - e x  

19. 
ecoa x 2  + 2x 20. - 

cos(sin x )  1 + ecosx 

8. exp(ln(exp 3 + exp 4) + ln(8)) 
23. cos J- 24. e " c o ~ ( x ~ / ~ )  

Copyright 1985 Springer-Verlag. All rights reserved.



334 Chapter 8 Exponentials and Logarithms 

Compute the integrals in Exercises 39-48. 

47. i 2 ( x  - cos x - ex )  dx 

48. l 5 e 5 ~ d x  

Use logarithmic differentiation to differentiate the func- 
tions in Exercises 49-52. 

49. (In x ) ~  

52. (3x + 2)'12(8x2 - 61314(sin x - 3)6/'7 
Sketch the graphs of the functions in Exercises 53-56. 

ex  53. y = - 
l + e x '  

54. y = sin(1n x). 

Find dy/dx in Exercises 57-60. 

57. e x " =  x f Y  
58. x Y + y = 3 .  
59. e-" + e-Y = 2. 
60. ex  + eY = 1. 
61. Find the equation of the tangent line to the 

graph of y = (x + l)e(3"2+4X) at  (0, 1). 
62. Find the tangent line at (0, In 3) to the graph of 

the curve defined implicitly by the equation 
eY - 3 + ln(x + 1)cos y = 0. 

Differentiate the functions in Exercises 63-66 and write 
the corresponding integral formulas. 

66. j e2"cos x + 4 e2"sin x 
Find the limits in Exercises 67-70. 

71. The radius of a bacterial colony is growing with 
a percentage rate of 20% per hour. (a) If the 
colony maintains a disk shape, what is the 
growth rate of its area? (b) What if the colony is 
square instead of round, and the lengths of the 
sides are increasing at a percentage rate of 20% 
per hour? 

72. If a quantity f(r) is increasing by 10% a year and 
quantity g(t) is decreasing by 5%, how is the 
product f(t)g(t) changing? 

73. What annual interest rate gives an effective 8% 
rate after continuous compounding? 

B74. Now much difference does continuous versus 
daily compounding make on a one-million dollar 
investment at 10% per year? 

75. The velocity of a particle moving on the line is 
given by u(r) = 37 + 10e-0.07' meters per second. 
(a) If the particle is at x = 0 at t = 0, how far has 
it travelled after 10 seconds? (b) How important 
is the term e-0.07' in the first 10 seconds of 
motion? In the second 10 seconds? 

76. If $1000 is to double in 10 years, at what rate of 
interest must it be invested if interest is com- 
pounded (a) continuously, and (b) quarterly? 

77. If a deposit of A, dollars is made t times and is 
compounded n times during each deposit interval 
at an interest rate of i, then 

is the amount after t intervals of deposit. (Depo- 
sits occur at the end of each deposit interval.) 
(a) Justify the formula. [Hint: 

x'- '  + . . . + x + 1 = (x '  - l ) / (x  - I ) . ]  

(b) A person deposits $400 every three months, 
to be compounded quarterly at  7% per an- 
num. Now much is in the bank after 6 
years? 
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78. The transmission density of a test area in a color 
slide is D = logio(I/Io), where I. is a reference 
intensity and I is the intensity of light transmit- 
ted through the slide. Rewrite this equation in 
terms of the natural logarithm. 

79. The salvage value of a tugboat is given by 
y = 260,000 e dollars after x years of use. 
What is the expected depreciation during the 
fifth year? 

80. Find the marginal revenue of a commodity with 
demand curve p = (1  + e -0.05x)103 dollars per 
unit for x units produced. [Revenue equals 
(number of units)(price per unit) = xp; the mar- 
ginal revenue is the derivative of the revenue 
with respect to x.] 

81. A population model which takes birth and death 
rates into account is the logistic model for the 
population P : d P / d t  = P ( a  - bP). The con- 
stants a ,  b, where a > 0 and b + 0, are the vital 
constants. 
(a) Let P(0) = Po. Check by differentiation that 

P(t)  = a/[b + ([a/ Po] - b)e -"'I is a solu- 
tion of the logistic equation. 

(b) Show that the population size approaches 
a / b  as r tends to co. 

82. We have seen that the exponential function 
exp(x) satisfies exp(x) > 0, exp(0) = 1, and 
expr(x) = exp(x). Let fix) be a func:ion such 
that 0 < f'(x) < f ( r )  and f(0) = 0. Prove that 
f ( s )  = 0 for all x. [Nint: Consider g ( x )  = 

f(x)lexp(x).l  
83. Show that for any x # 0 there is a number c 

between zero and x such that e' = 1 + erx. De- 
duce that e '  > 1 + x .  

84. Fig. 6.R.1 shows population data from each U.S. 
census from 1790 to 1970. 

(a) F I ~  the data  to a n  exponentmi curve y 
= AeY',  where t is the time In years from 
1900; l.e., flnd A and y numer~cally. 

(b) Use (a) to "predlct" the 1980 census. How 
close was your prediction? (The actual 1980 
census frgure was 226,500,000.) 

(c) Use (a) to predlct when the U.S. populat~on 
wlll be 400 mill~on. 

*85. (a) Show that ~f b > 1 and n rs a positive Integer, 
then 

b n  1 + n ( b  - 1) 

and 

b-"  s -  1 
1 + n(b  - 1 )  ' 

[Nint: Wrrte b n  = [ I  + (b - 1)r and expand.] 
( b )  Deduce  from these r n e q u a l ~ t ~ e s  tha t  
Irm,,,bx = oo and llm ,,, b x  = 0. 

Exercises 86-91 form a unrt. 
*86. Show that e x  > x n / n !  for all Integers n > 0 and 

all real x > 1, as follows: (recall that n! = l . 2 . 
3 . . . ( n -  I ) . n a n d 0 ! = 1 ) .  
(a) Let n be f~xed,  let x be varrable, and let 

f n ( x )  = e x  - x n / n !  Show t h a t  fA(x) 
= f n -  I(x). 

(b) Show that f0(x) > 0 for x > I, and conclude 
that f , (x)  1s rncreasrng on [ l ,  oo). 

(c) Conclude that f , (x)  > 0 for x > 1. 
(d) Repeat the argument to show that f,(x) > 0 

for x > 1. 
(e) Finrsh the proof. 

*87 Show that e' > x n  for x > ( n  + 1)' 
*88. Show that lrm,,,(e ' /xn)  = co. 
*89. (a) By takrng logar~thms in the inequalrty derlved 

rn Revrew Exercrse 87, show that x / l n x  > n 
when x > ( n  + I ) !  

- (b) Conclude that Iim,,, I n  = 0 
X 

*90. Use the result of Rev~ew Exerclse 89 to show that 
I~m,,,(lnx/x") = 0 for any a > 0. (Nint: Let 
y = x " . )  

*91. Use the result of Revrew Exercrse 90 to show that 
Iim,,o(lnx/x-a) = 0 for any a > 0. 

+92. Look at Exerc~se 43 In Sect~on 3.1. Explan why 
it takes, on the average, 3.32 brsectrons for every 
declrnal place of accuracy. 

a93.  Prove that 3x-2 > 2 x 2  if x 2 7. Can you im- 
prove this result? 

1800 1900 

Figure 6.R.1. Population o i  
the United States. Total 
number of persons in each 
census: 1790- 1970. 
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