
Chapter 11 

Limits, CH6pita 

Numerica Methods 
Limits are used in both the theory and applications of calculus. 

Our treatment of limits up to this point has been rather casual. Now, having 
learned some differential and integral calculus, you should be prepared to 
appreciate a more detailed study of limits. 

The chapter begins with formal definitions for limits and a review of 
computational techniques for limits of functions, including infinite and one- 
sided limits. The next topic is l'H6pital's rule, which employs differentiat~on to 
compute limits. Infinite limits are used to study improper integrals. The 
chapter ends with some numerical methods involving limits of sequences. 

1 I ."8Llmits of Functions 
There are many kinds of limits, but they all obey similar laws. 

In Section 1.2, we discussed on an intuitive basis what lim,,,o f ( x )  means and 
why the limit notion is important in understanding the derivative. Now we are 
ready to take a more careful look at limits. 

Recall that the statement lim,,,o f ( x )  = I means, roughly speaking, that 
f ( x )  comes close to and remains arbitrarily close to 1 as x comes close to x,. 
Thus we start with a positive "tolerance" E and try to make f (x )  - I \  less than 
E by requiring x to be close to x,. The closeness of x to x, is to be measured 
by another positive number-mathematical tradition dictates the use of the 
Greek letter S for this number. Here; then, is the famous E-S definition of a 
limit-it was first stated in this form by Karl Weierstrass around 1850. 

Let f be a function defined at all points near x,, except perhaps at x, 
itself, and let I be a real number. We say that I is the limit of f ( x )  as x 
approaches xo if, for every positive number E, there is a positive number S 
such that I f ( x )  - 11 < E whenever Ix - x,l < S and x f x,. We write 

The purpose of giving the 8-6 definition is to enable us to be more precise in 
dealing with limits. Proofs of some of the basic theorems in this chapter and 
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510 Chapter 11 Limits, ~ ' ~ 6 p i t a l ' s  Rule, and Numerical Methods 

the next require this definition; however, practical computations can often be 
done without a full mastery of the theory. Your instructor should tell you how 
much theory you are expected to know. 

The e-6 definition of limit is illustrated in Figure 11.1.1. We shade the 
region consisting of those (x, y) for which: 

1. I X  - xol > 6 (region I in Fig. 1 l.l.l(b)); 
2. x = x, (the vertical line I1 in Fig. 1 1. 1. l(b)); 
3. x # x,, Ix - xol < 6, and 1 y - I I < e (region I11 in Fig. 1 1. l.l(b)). 

Figure 11.1.1. When 
lim,,,o f(x) = 1, we can, 
for any E > 0, catch the 
graph off in the shaded 
region by making 8 small 
enough. The value off a t  x0 
is irrelevant, since the line (a) 

x = xo is always "shaded." 6 no t  small enough 

(b)  
6 small enough 

If lim,,xo f(x) = I, then we can catch the graph off in the shaded region 
by making 6 small enough-that is, by making the unshaded strips sufficiently 
narrow. 

Notice the statement x # x, in the definition. This means that the limit 
depends only upon the values of f(x) for x near xo, and not onf(x,) itself. (In 
fact, f(xo) might not even be defined.) 

Here are two examples of how the E-8 condition is verified. 

Exarnple 1 (a) Prove that limX,,(x2 + 3x) = 10 using the e-6 definition. (b) Prove that 

limx.+,& = 6, where a > 0, using the E-6 definition. 

Solution (a) Here f(x) = x2 + 3x, xo = 2, and I = 10. Given e > 0 we must find 6 > 0 
such that I f(x) - 11 < E if I X  - x,,I < 6. 

A useful general rule is to write down f(x) - I and then to express it in 
terms of x - x, as much as possible, by writing x = (x - x,) + x,. In our case 
we replace x by (x - 2) + 2: 

Now we use the properties la + bl < (a1 + I bl and (a2[ = laI2 of the absolute 
value to note that 

I f(x) - 11 < ( X  - 212 + 71x - 21. 

If this is to be less than E, we should choose 6 so that a2  + 76 < e. We may 
require at the outset that 6 < 1 .  Then S2 < 6, so S2 + 76 < 86. Hence we pick 
6 so that 6 < 1 and 6 < e/8. 

With this choice of 6, we shall now verify that I,f(x) - 11 < E whenever 
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11.1 Limits of Functions 511 

I X  - xol < 6. In our case ( x  - xol < 6 means Ix - 21 < 6, so for such an x, 

I f(x) - lI < I X  - 212 + 71x - 21 

< a 2  + 76 
< 6 + 7 6  
= 86 
< E, 

and so I f(x) - I /  < E. 

( b ) ~ e r e  f ( x ) = & , x o = a ,  and l = 6 .  Given E > O  wemust f inda6 > O  
such that 16 -61 < E when Ix - a1 < 6. To do this we write 6 -6 
= (X - a)/(& + 6 ) .  Since f is only defined for x > 0, we confine our 
attention to these x's. Then 

16-61 = 
I X  - al <- I X  - a[ (decreasing the denominator increases the fraction). 
64-6 6 

Thus, given E > 0 we can choose 6 = 6 E; then Ix - a1 < 6 implies 16 - 6 I 
< E, as required. A 

In practice, it is usually more efficient to use the laws of limits ,than the 8-8 
definition, to evaluate limits. These laws were presented in Section 1.3 and are 
recalled here for reference. 

Basic Properties ab Limits I 
Assume that limxjxo f(x) and limxjxog(x) exist: 

Sum rule: 

lim [ f(x) + g(x)] = ) i % o f ( ~ )  + Ji%o g(x). 
x+xo 

Product rule: 

~ i m  [ f (x)g(x)] = J ~ T ~  f (XI );yo g(x)- 
x+xo 

Reciprocal rule: 

Iim [ I / f (x) ] = I / Jilo f (x) if lim f (x) + 0. 
X+X0 x-fxo 

Constant functiorz rule: 

lim c =  c. 
X+XO 

Identity function rule: 

lim x = xo . 
x+xo 

Replacement rule: If the functions f and g agree for all x near xo 
(not necessarily including x = x,), then 

Rational functional rule: If P and Q are polynomials and Q(x,) + 0, 
then P / Q  is continuous at x,; i.e., 

lim [P(x)/ Q(x)] = P(xo)/ Q(xo)- x+xo 

Composite function rule: If h is continuous at limx,xo f(x), then 

lim h (f (x)) = h ( lim f (x)). x+xo x+xo 
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512 Chapter 11 Limits, ~ ' ~ 6 ~ i t a l ' s  Rule, and Numerical Methods 

The properties of limits can all be proved using the E-6 definition. The 
theoretically inclined student is urged to do so by studying Exercises 75-77 at 
the end of this section. 

Let us recall how to use the properties of limits in specific computations. 

Example 2 Using the fact that lim 
e+o 

( '-7') = 0, find limcos 
8+0 

Solution The composite function rule says that lirnx,,)( f(x)) = h(limx,xo f(x)) if h is 
continuous at limXjxo f(x). We let f(8) = (I - cosO)/B, and h(8) = cosB so 
that h(f(8)) = cos[(l - cos 8)/8]. Hence the required limit is 

since cos is continuous at 8 = 0. A 

Example 3 Find (a) lim 
i+2 ( X' ; y: ) and (b) lim 

Solution (a) Since the denominator vanishes at x = 2, we cannot plug in this value. The 
numerator may be factored, however, and for any x f 2 our function is 

Thus, by the replacement rule, 

(b) Again we cannot plug in x = 1. However, we can rationalize the denom- 
inator by multiplying numerator and denominator by & + 1. Thus (if x f 1): 

As x approaches 1, this approaches 2, so limx,,[(x - 1 ) / ( 6  - l)] = 2. A 

Limits .of the form lirn,,,, f(x), called limits at infinity, are dealt with by a 
modified version of the ideas above. Let us motivate the ideas by a physical 
example. 

Let y  = f(t) be the length, at time t, of a spring with a bobbing mass on 
the end. If no frictional forces act, the motion is sinusoidal, given by an 
equation of the form f(t) = y o  + a cos ot.' In reality, a spring does not go on 
bobbing forever; frictional forces cause damping, and the actual motion has 
the form 

where b is positive. A graph of this function is sketched in Fig. 11.1.2. 
As time passes, we observe that the length becomes and remains arbitrar- 

ily near to the equilibrium length yo. (Even though y  = y o  already for t 
= 7~/2o, this is not the same thing because the length does not yet remain 
near yo.) We express this mathematical property of the function f by writing 
lim,,, f(t) =yo .  The limiting behavior appears graphically as the fact that the 

' This is derived in Section 8.1., but if you have not studied that section, you should simply take 
for granted the formulas given here. 
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11 .1 Limits of Functions 513 

Y O  + a  

Y  0  -- 
Figure 11.1.2. The motion 
of a damped spring has I 
the form I 4 I I I 

I I I 
I C 

y = f ( t )=  y o + ~ e - b ' ~ ~ ~ ~ t .  - - - - -  Zn 4n 6 n  8n Ion  r 
W W W W W 

Figure 11.1.3. When 
lim,,, f(x) = I, we can 
catch the graph in the 
shaded region by sliding the 
region sufficiently far to the 
right. This is true no matter 
how small E may be. 

Figure 11.1.4. When it is 
not true that lirn,,, f(x) 
= 1, then for some E, we 
can never catch the graph 
off in the shaded region, 
no matter how far to the 
right we slide the region. 

graph off remains closer and closer to the line y = y o  as we look farther to the 
right. 

The precise definition is analogous to that for limx,,o f (x) .  As is usual in 
our general definitions, we denote the independent variable by x rather th~ .n  t .  

Let f be a function whose domain contains an interval of the form 
(a ,  co). We say that a real number I is the limit of f ( x )  as x approaches co 
if, for every positive number E ,  there is a number A > a such that 
I f ( x )  - 11 < E whenever x > A .  We write lirn,,, f ( x )  = I. 

A similar definition is used for lim,,-, f ( x )  = I. 
When lirn,,, f ( x )  = 1 or lim,,-, f ( x )  = I ,  the line y = I is called a 

horizontal asymptote of the graph y = f (x) .  

We illustrate this definition in Figs. 1 1.1.3 and 1 1.1.4 by shading the region 
consisting of those points ( x ,  y )  for which x < A or for which x > A and 
ly - 11 < E .  If lirn,,, f ( x )  = I ,  we should be able to "catch" the graph off in 
this region by choosing A large enough-that is, by sliding the point A 
sufficiently far to the right. 

Copyright 1985 Springer-Verlag.  All rights reserved.



514 Chapter 11 Limits, ~ ' ~ 6 p i t a l ' s  Rule, and Numerical Methods 

There is an analogous definition for limx,-, f(x) in which we require a 
number A (usually large and negative) such that I f(x) - I1 < E if x < A. 

Example 4 Prove that lim - = 1 by using the &-A definition. 
x-)* 1 + x2 

Solution Given E > 0, we must choose A such that Ix2/(1 + x2) - 11 < e for x > A. We 
have 

To make this less than E, we observe that 1/x2 < e whenever x > I /&, so we 
may choose A = 1 /& . (See Fig. 1 1.1.5.) 8. 

At the beginning of Section 6.4. we stated several limit properties for ex and 
lnx. Some simple cases can be verified by the &-A definition; others are best 
handled by l'H6pital's rule, which is introduced in the next section. 

Example 5 Use the &-A definition to show that for k < 0, limx,,ekx = 0. 

Solution First of all, we note that f(x) = ekx is a decreasing positive function. Given 
E > 0, we wish to find A such that x > A implies ekx < e. Taking logarithms of 
the last inequality gives kx < lne, or x > (lne)/k. So we may let A = (lne)/k. 
(If e is small, lne is a large negative number.) A 

The examples above illustrate the &-A method, but limit computations are 
usually done using laws analogous to those for limits as x -+ x,, which are 
stated in the box on the facing page. 

8x + 2 Example 6 Find (a) and (b) lim - 
x-)* 3x - 1 

Solution (a) w e  have 

(b) We cannot simply apply the quotient rule, since the limits of the numera- 
tor and denominator do not exist. Instead we use a trick: if x # 0, we can 
multiply the numerator and denominator by l / x  to obtain 

8x + 2 - + (2/x) -- for x #O.  
3 x - 1  3 - ( l / x )  

By the replacement rule (with A = 0), we have 

8x + 2 lim -------- = lim 8 + ( 2 / x )  - 8 + 0  8 - -=-  
~ - ) a  3 ~ -  1 X-)* 3 - ( ~ / X I  3 - 0  3 ' 

(The values of (8x + 2)/(3x - 1) for x = lo2, lo4, lo6, 10' are 2.682 . . . , 
2.66682 . . . ,2.6666682 . . . ,2.666666682 . . . .) A 
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11.1 Limits of Functions 515 

Example 7 

Solution 

Constant function rule: 

Assuming that lirn,,, f(x) and limx,,g(x) exist, we have these addi- 

Quotient rule: If lim,,,g(x) # 0, then 

Replacement rule: If for some real number A, the functions f(x) and g(x) 
agree for all x > A, then 

Composite function rule: If h is continuous at lim,,, f(x), then 

All these rules remain true if we replace co by - co (and " > A" by 
"< A" in the replacement rule). 

I I 

The method used in Example 6 also shows that 

a,xn + a,-,xn-I + . . . + a,x + a, a, lim - - - 
X-*w bnxn + b , - l ~ n - l  + . . + bIx + bo bn 

as long as b, # 0. 

Find lim,,,(Jx2 + 1 - x). Interpret the result geometrically in terms of right 
triangles. 

Multiplying the numerator and denominator by + x gives 

X 2 
Figure 11.1.6. As the length - - x 2 + 1 - X  = 1 
x goes to co, the difference J ~ + x  J=+x 

- x between the 
lengths of the hypotenuse 
and the long leg goes to 

As x -+ co, the denominator becomes arbitrarily large, so we find that 

zero. l i m x , , ( / x  - x) = 0. For a geometric interpretation, see Fig. 11.1.6. A 
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516 Chapter 11 Limits, ~ ' ~ 6 p i t a l ' s  Rule, and Numerical Methods 

Example 8 Find the horizontal asymptotes of f(x) = . Sketch. 
J z T  

Solution We find 

lim = lim 1 = 1 
x + *  J x++-  ,/- 

and 
- 

- 
lim = lim Jx2 = lim - 1  

x---- JX~ x+-" JX 
x+-w Jl+l/x' 

(in the second limit we may take x < 0, so x = - p). Hence the horizontal 
asymptotes are the lines y = + 1. See Fig. 1 1.1.7. A 

Figure 11.1.7. The curve 
y = x / d m  has the 
lines y = - 1 and y = 1 as 
horizontal asymptotes. 

Consider the limits limX,,sin(l/x) and limX,,(l/x2). Neither limit exists, but 
the functions sin(l/x) and 1/x2 behave quite differently as x-0. (See Fig. 
11.1.8.) In the first case, for x in the interval (-6,6), the quantity l / x  ranges 

these functions. I I 
over all numbers with absolute value greater than 1/6, and sin(l/x) oscillates 
back and forth infinitely often. The function sin(l/x) takes each value 
between - 1 and 1 infinitely often but remains close to no particular number. 
In the case of 1/x2, the value of the function is again near no particular 
number, but there is a definite "trend" to be seen; as x comes nearer to zero, 
1/x2 becomes a larger positive number; we may say that limX,,(l/x2) = co. 

Here is a precise definition. 

The 23-6 Definition of lim,,, f(x) = co 
Let f be a function defined in an interval about x,, except possibly at x, 
itself. We say that f(x) approaches co as x approaches xo if, given any real 
number B, there is a positive number 6 such that for all x satisfying 
I X  - xol < 6 and x # x,, we have f(x) > B. We write lim,,xo f(x) = co. 

The definition of limx,xo f(x) = - co is similar: replace f(x) > B in 
the B-6 definition by f(x) < B. 
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11.1 Limits of Functions 517 

Remarks 1. In the preceding definition, we usually think of 6 as being small, while B is 
large positive if the limit is co and large negative if the limit is - co. 

2. If limx,xo f(x) is equal to + co, we still may say that 'climx,xo f(x) does not 
exist," since it does not approach any particular number. 

3. One can define the statements lirn,,, f(x) = +- co in an analogous way. 
The following test provides a useful technique for detecting "infinite limits." 

Then limx,xo f(x) = co if: 

The complete proof of the reciprocal test is left to the reader in Exercise 79. 
However, the basic idea is very simple: f(x) is very large if and only if 1 / f(x) 
is very small. 

A similar result is true for limits of the form lirn,,, f(x); namely, if f(x) 
is positive for large x and lim,,,[l/f(x)] = 0, then lirn,,, f(x) = co. 

Example 9 Find the following limits: (a) lirn 1 - x 2  ; (b) lim - 
x+l (x - 112 x+w x3/2 

Solution (a) We note that l/(x - 1)2 is positive fo; all x Z 1. We look at the reciprocal: 
lim,,,(x - = 0; thus, by the reciprocal test, lim,,,[l/(x - I ) ~ ]  = co. 
(b) For x > 1, (1 - x2)/x3l2 is negative. Now we have 

x3/2 
lim - - - lim 1 1 = lirn - 1 

x+w 1 - x2 x+oo x-3/2  - x1/2 x+w x l / 2  1 x2 / - 1  

= lim -!.- lim = o . ( - 1 ) = 0 ,  
x+oo x1/2 x+w 1/x2 - 1 

so lim,,,[(l - x2)/x3l2] = - co, by the reciprocal test. A 
If we look at the function f(x) = l / (x - 1) near x, = 1 we find that 
lim,,,[l/f(x)] = 0, but f(x) has different signs on opposite sides of 1, so 
lim,,,[l/(x - I)] is neither co nor - co. This example suggests the introduc- 
tion of the notion of a "one-sided limit." Here is the definition. 

In the definition of a one-sided limit, only the values of f(x) for x on one side 
of x, are taken into account. Precise definitions of statements like 
limx,xo+ f(x) = co are left to you. We remark that the reciprocal test extends 
to one-sided limits. 
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Example 10 
1 , (b) lim - Find (a) lirn --- 

, + I +  ( I - X )  x-I- ( I - x ) '  

(c) lim + 2)lxl , and (d) lirn 
(x2 + 2)IxI 

x+O+ X x-0- X 

Solution (a) For x > .I, we find that 1/(1 - x) is negative, and we have limx,,(l - x) 
= 0, so lirn,,, + [ l /( l  - x)] = - co. Similarly, lirn ,,,- [I/(] - x)] = + oo, so 
we get + co for (b). 
(c) For x positive, Ixl/x = 1, so (x2 + 2)IxI/x = x2 + 2 for x > 0. Thus the 
limit is O2 + 2 = 2. 
(d) For x < 0, (xl/x = - 1, so 

(.x2 + 211x1 
lim = - lim [ x 2 + 2 ]  = -2. r 

x.30 - X x-0- 

If a one-sided limit of f(x) at x, is equal to oo or - oo, then the grdph off lies 
closer and closer to the line x = x,; we call this line a vertical asymptote of the 
graph.. 

Example 11 Find the vertical asymptotes and sketch the graph of 

Solution Vertical asymptotes occur where lim,,,o,~l/f(x)] = 0; in this case, they 
occur at xo = 1 and x, = 2. We observe that f(x) is negative on (- w, I), 
positive on (1,2), and positive on (2, co). Thus we have lim,,, - f(x) = - co, 
lirn,, + f(x) = 30, limX,,- f(x) = oo, and lim,,,, fcx) = co . The graph off 
is sketched in Fig. 1 1.1.9. A 

Figure 11.1.9. The graph 
y = l/(x - l)(x - 2)2 has 
the lines x = 1 and x = 2 as 
vertical asymptotes. 

We conclude this section with an additional law of limits. In the next sections 
we shall consider various additional techniques and principles for evaluating 
limits. 

Comparison Test 
1. If limx,xof(x) = 0 and I g(x)l < (f(x)( for all x near x, with x # xo, 

then lim,,,o g(x) = 0. 
2. If lirn,,, f(x) = 0 and Ig(x)l < 1 f(x)I for a11 large x,  then 

lirn,,, g(x) = 0. 

Some like to call this the "sandwich principle" since g(x) is sandwiched 
between - I f(x)I and I f(x)I which are squeezing down on zero as x -+ x, (or 
x + co in case 2). 
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Example 12 (a) Establish comparison test 1 using the E-8 definition of limit. 

(b) Show that limX+, 

Solution (a) Given E > 0, there is a 8 > 0 such that I f(x)I < E if I X  - xol < 8, by the 
assumption that limx+xo f(x) = 0. Given that E > 0, this same 8 also gives 
I g(x)l < E if I X  - xOI < 8 since I g(x)l < I f(x)I. Hence g has limit zero as 
x + x, as well. 
(b) Let g(x) = x sin(l/x) and f(x) = x. Then I g(x)l < 1x1 for all x + 0, since 
Isin(l/x)l < 1, so the comparison test applies. Since x approaches 0 as x+O, 
so does g(x), A 

Exercises for Section "s .'I 
Verify the limit statements in Exercises 1-4 using the 
E-8 definition. 

1. ~ i m ~ + , x ~  = a 2  
2. limx,3(x2 - 2x + 4) = 7 
3. limX,,(x3 + 2x2 + 2) = 47 
4. limX,,(x3 + 2x) = 33 
5. Using the fact that limo+o[(tan8)/8] = 1, find 

lime,,exp[(3 tan 8)/8]. 
6. Using the fact that lime+o[(sin8)/8] = I, find 

lime,o~~s[(7r sin 8)/(48)]. 

Find the limits in Exercises 7-12. 
(x2 - 4) 

7. lim(x2 - 2x + 2) 8. lim - 
x+3 x+-2 x 2 + 4  

(x2 - 4) 
9. lirn 

f i - 3  
10. lirn - 

x+2 (x2 - 5x + 6) X-27 x - 27 
(3 + x ) ~  - 9 

11. lim 
X 

12. lim X - 2  
x-+o x+2 x2 - 3x + 2 

Verify the limit statements in Exercises 13-16 using the 
&-A definition. 

I + X ~  13. lim - - 14, lim ---&!L- = 0 
x+m X3 x-+m x2 + 2 

1 15. Jl%(l + e-3x) = 1 16. lim - = 0 
x+m lnx 

Find the limits in Exercises 17-24. 
5 1 1 .  ( - 2  18. l i m ( 5 - - 4 - 5 )  
x2 x+m x2 x3 

10x2 - 2 19. lim - -4x + 3 20. lim - 
X"m 15x2 - 3 x+m x + 2  

21. lim 3x2 + 2x + 22. ?I& 
x2 + ~ b - ~  

x-'m 5x2+  x + 7 6x2 + 2 
x + 2 +  1/x x - 3  - 1/x2 

23. lim 24. lim 
x+m 2x + 3 + 2/x x+m 2x + 5 + 1/x2 

Find the limits in Exercises 29-32 using the reciprocal 
test. 

1 29. lirn - x2 30. lirn - 
~ - + 2  (X - 212 (X - 214 

x2 + 2 31. lim - 
x+m 6 

X ~ + S  32. lim - 
x+m X5/2 

Find the one-sided limits in Exercises 33-40. 

x2 - 4 33. lirn - 
x+2+ (X - 212 

x2 - 4 34. lim - 
x+2- (x - 212 

(x - 1)(x - 2) 
35. lim 

x-0- x(x  + 1)(x + 2) 

x(x + 3) 
36. lirn 

,-+I + (x - 1)(x - 2) 

37. lim 
(x3 - 1)IxI 

x+o+ X 

40. lirn 
x x -  1/2 

Find the vertical and horizontal asymptotes of the 
functions in Exercises 41-44 and sketch their graphs. 

25. Find ~ i r n , + , [ J ~  - x] and interpret your 45. (a) Establish the comparison test 2 using the &-A 

answer geometrically. definition of limit. (b) Use (a) to find 

26. Find l i r n , , , [ d ~  - cx] and interpret your 
lim [:sin(+ I]. answer ,geometrically. X+OO 

27. Find the horizontal asymptotes of the graph of 46. (a) Use the B-8 definition of limit to show that if 
d m  - (x + 1). Sketch. limx,xo f(x) = co and g(x) > f(x) for x close to 

28. Find the horizontal asymptotes of the graph y = x0, x # x0, then limx+xog(x) = co. (b) Use (a) to 
(x + ])/I/=. Sketch. show that lim,,,[(l + cos2x)/(l - x ) ~ ]  = co. 
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Find the limits in Exercises 47-60. 
3 + 4x 47. lim - x3 - 1 48. lirn - 

.+I 4 + 5x x-1 X - 1 
x3-  1 49. lim - 50. lim - 

x - t ~  x2 - 1 x-+2 x 2 + 3 x + 2  

51. lirn x n -  1 x2 + 2x - 52. lim - 
x+-3 x 2 +  x - 6  X+I x - 1 

x2n + l 
53. lim x - 2 

+ 54. lim - 
x-t-l x +  1 x+2 &-,IT 

55. lim 1 ' 56.;&sin(-) 
x-t2 9x - 1 X 

- 1 57. lirn - 77x2 + 4 58. lirn sin - 
,+I+ X -  1 x+m ( 6 x 2 + 9 )  

In 2x 59. lim - 
x+l -  x -  1 

60. lirn ln(x2) 
x+-m 

Find the horizontal and vertical asymptotes of the 
functions in Exercises 6 1-64. 

X (x + 1)(x - 1) 
61. y = - 62. y = 

x 2 -  1 (x - 2)x(x +2)  
ex + 2x lnx - 1 63. y = --- 64. y = ------ 
ex - 2x lnx + 1 

65. Let f(x) and g(x) be polynomials such that 
limx,,[ f(x)/g(x)] = I. Prove that the limit 
limx,-, f(x)/g(x) is equal to I as well. What 
happens if I = w or - w? 

66. How close to 3 does x have to be to ensure that 
l x 3  - 2~ - 21 1 <A? 

67. Let f(x) = 1x1. 
(a) ~ i n d  f tx )  and sketch its graph. 
(b) Find limxjo- f(x) and limXjo+ f (x). 
(c) Does limXjo f (x)  exist? 

68. (a) Give a precise definition of this statement: 
lirn,,, f(x) = - w. (b) Draw figures like Figs. 
11.1.1, 11.1.3, and 11.1.4 to illustrate your defini- 
tion. - 

69. Draw figures like Figs. 11.1.1, 1 1.1.3, and 1 1.1.4 
to illustrate the definition of these statements: 
(a) lim, ,,o+ f(x) = 1; (b) lim, ,,,+ f(x) = w. 
[Hint: The shaded region should include all 
points with x < xo.] 

70. (a) Graph y = f(x), where 

Does limXjo f(x) exist? 
(b) Graph y = g(x), where 

Does lim,,,g(x) exist? 
(c) Let f(x) be as in part (a) and g(x) as in part 

(b ) .  G r a p h  y = f ( x )  + g ( x ) .  Does  
limxj0[ f(x) + g(x)] exist? Conclude that the 
limit of a sum can exist even though the 
limits of the summands do not. 

71. The number N(t) of individuals in a population 
at time t is given by 

Find the value of lim,,,N(t) and discuss its 
biological meaning. 

72. The current in a certain RLC circuit is given by 
I(t) = {[(1/3)sin t + cos t ~ e - ' / ~  + 4) amperes. 
The value of lim,,,I(t) is called the steadyTstate 
current; it respresents the current present after a 
long period of time. Find it. 

73. The temperature T(x, t) at time t at position x 
of a rod located along 0 < x < I on the x axis 
is given by the rule T(x, t) = Ble-pl'sin A,x 
+ B,e-p2'sin A,x + B3eep3' sin A3x, where p,, 
p2, p3, A,, A,, A, are all positive. Show that 
lirn,,, T(x, t) = 0 for each fixed location x 
along the rod. The model applies to a rod with- 
out heat sources, with the heat allowed to radi- 
ate from the right end of the rod; zero limit 
means all heat eventually radiates out the right 
end. 

74. A psychologist doing some manipulations with 
testing theory wishes to replace the reliability 
factor 

nr R =  (Spearman- Brown formula) 
1 + (n - 1)r 

by unity, because someone told her that she 
could do this for large extension factors n. She 
formally replaces n by l /x ,  simplifies, and then 
sets x = 0, to obtain 1. What has she done, in the 
language of limits? 

*75. Study this 8-6 proof of the sum rule: Let 
limXjxo f(x) = L and limxjxog(x) = M. Given 
E > 0, choose 8, > 0 such that Ix - xol < 6, and 
x #= xo implies I f(x) - LI < ~ / 2 ;  choose 6, > 0 
such that / x  - x,l < 6,, x # xo, implies that 
Ig(x)- MI < ~ / 2 .  Let 6 be the smaller of 6, 
and 6,. Then Ix - xol < 6, and x # x0 implies 
I(f(x) + g(x) )  - ( L  + M)I < I f (x)  - LI + 
I g(x) - MI (by the triangle inequality Ix + yI < 
1x1 + 1 yl). This is less than e/2 + ~ / 2  = E, and 
therefore limx,xo[f(x) + g(x)] = L + M. 

Now prove that limxjxo[af(x) + bg(x)] = 

a lim,-+,,f(x) + b limx,xog(x). 
*76. Study this E-6 proof of the product rule: If 

limx,,o f (x) = L and limx,xo g(x) = M, then 
lim, jxof(x)g(x) = LM. 

Proof: Let E > 0 be given. We must find a 
number 6 > 0 such that I f(x)g(x) - LMI < E 

whenever Ix - xol < 6, x # xO. Adding and sub- 
tracting f(x)M, we have 

The closeness of g(x) to M and f(x) to L must 
depend upod the size of f(x) and IMI. Choose 
6, such that I f(x) - LI < 
I X  - xol < 6,. x =+ xo. Also, ch 
I X  - xol < 6,, x + xo, implie 
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< 1, which in turn implies that I f(x)I < I LI + 1 
(since I f(x)I = I f ( x )  - L + LI < I f ( x )  - LI + 
I LI < 1 + I LI). Finally, choose 6,  > 0 such that 
I g ( x )  - MI < &/[2(ILI + l)] whenever Ix - xol 
< S 3 ,  x # X O .  Let E be the smallest of 6 , ,  6, ,  and 
6, .  If Ix - xol < 6 ,  x # xo, then Ix - xol < S l ,  
I X  - xol < 8 2 ,  and Ix - xol < S 3 ,  SO by the 
choice of 6 , ,  S , ,  S3, we have 

and so I f ( x ) g ( x )  - LMI < E .  

Now prove the quotient rule for limits. 
*77. Study the following proof of the one-sided com- 

posite function rule: If lim,,,,,+ f ( x )  = L and g 
is continuous at L,  then g ( f ( x ) )  is defined for all 
x in some interval of the form ( x o , b ) ,  and 
lim, ,,,+ g ( f ( x ) )  = g ( L ) .  

Proof: Let E > 0. We must find a positive 

number 6 such that whenever xo < x < x,  + 6 ,  
g ( f ( x ) )  is defined and I g ( f ( x ) )  - g(L)I < E .  

Since g is continuous at L,  there is a positive 
number p such that whenever 1 y - LI < p, g ( y )  
is defined and I g ( y )  - g ( L ) (  < E .  Now since 
lim,,xo+ f ( x )  = L, we can find a positive num- 
ber 6 such that whenever x ,  < x < x ,  + 6 ,  
I f ( x )  - LI < p. For such x ,  we apply the previ- 
ously obtained property of p, with y = f (x ) ,  to 
conclude that g ( f ( x ) )  is defined and that 
I g ( f ( x ) )  - g(L)I < E .  

Now prove the composite function rule. 
*78. Use the E-A definition to prove the sum rule for 

limits at infinity. 
*79. Use the B-6 definition to prove the reciprocal 

test for infinite limits. 
*80. Suppose that a function f is defined on an open 

interval I containing x,, and that there are num- 
bers m and K such that we have the inequality 
I f ( x )  - f (xo)  - m ( x  - xo)l < K I X  - x0I2 for all 
x in I. Prove that f is differentiable at xo with 
derivative f'(xo) = m.  

*81. Show that lim,,, f ( x )  = 1 if and only if 
limyjo+ f ( l  / y )  = I .  (This reduces the computa- 
tion of limits at infinity to one-sided limits at 
zero.) 

LyH6pital's Rule 
Differentiation can b e  used t o  evaluate limits. 

L'HGpital's rule2 is a very efficient way of using differential calculus to 
evaluate limits. It is not necessary to have mastered the theoretical portions of 
the previous sections to use YHGpital's rule, but you should review some of the 
computational aspects of limits from either Section 1 1.1 or Section 1.3. 

L'HGpital's rule deals with limits of the form lim,,,. f ( x ) / g ( x ) ] ,  where 
lim,,,o f ( x )  and lim,,,og(x) are both equal to zero or infinity, so that the 
quotient rule cannot be applied. Such limits are called indeterminate forms. 
(One can also replace x ,  by CQ, x ,  + , or x ,  - .) 

Our first objective is to calculate lirn,,,o[ f ( x ) / g ( x ) ]  if f ( x , )  = 0 and 
g(x , )  = 0. Substituting x = x ,  gives us 8, so we say that we are dealing with 
an indeterminate form of type 8. Such forms occurred when we considered the 
derivative as a limit of difference quotients; in Section 1.3 we used the limit 
rules to evaluate some simple derivatives. Now we can work the other way 
around, using our ability to calculate derivatives in order to evaluate quite 
complicated limits: l'H6pitaYs rule provides the means for doing this. 

The following box gives the simplest version of YHGpital's rule. 

In 1696, Guillaume F. A. l'H6pital published in Paris the first calculus textbook: Analyse des 
Infiniment Petits (Analysis of the infinitely small). Included was a proof of what is now referred to 
as SHSpital's rule; the idea, however, probably came from J. Bernoulli. This rule was the subject 
of some work by A. Cauchy, who clarified its proof in his Cours d'Analyse (Course in analysis) in 
1823. The foundations were in debate until almost 1900. See, for instance, the very readable 
article, "The Law of the Mean and the Limits $, z," by W. F. Osgood, Annals of Mathematics, 
Volume 12 (1898-1899), pp. 65-78. 
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L'HGpital's Rule: Preliminary Version 

I Let f and g be differentiable in an open interval containing x,; assume 
that f(x,) = g(x,) = 0. If g'(x,) # 0, then 

f (x )  - f'(x0) lim - - - . 
X+Xo g(x) gf(xo) 

To prove this, we use the fact that f(x,) = 0 and g(x,) = 0 to write 

As x tends to x,, the numerator tends to f'(x,), and the denominator tends to 
gf(xo) Z 0, so the result follows from the quotient rule for limits. 

Let us verify this rule on a simple example. 

Example 1 Find lim [ a 1. 
x+l X-1 

Solution Here we take x, = 1, f(x) = x3 - 1, and g(x) = x - 1. Since g'(1) = 1, the 
preliminary version of l'H6pital's rule applies to give 

We know two other ways (from Chapter 1) to calculate this limit. First, we can 
factor the numerator: 

Letting x + 1, we again recover the limit 3. Second, we can recognize the 
function (x3 - l)/(x - 1) as the different quotient [h(x) - h(l)]/(x - 1) for 
h(x) = x3. As x + 1, this different quotient approaches the derivative of h at 
x = 1, namely 3. A 

The next example begins to show the power of l'H6pital's rule in a more 
difficult limit. 

Example 2 Find 1im 'OSX - . 
X+O sinx 

Solution We apply l'Hdpital's rule with f(x) = cosx - 1 and g(x) = sinx. We have 
f(0) = 0, g(0) = 0, and gf(0) = 1 # 0, so 

f'(0) -sin(O) - lim COSX - 1 = - - - = 0. g 
X+O sinx gf(0) cos(0) 

This method does not solve all 8 problems. For example, suppose we wish to 
find 

lim sinx - x 
x+o x3 

If we differentiate the numerator and denominator, we get (cosx - 1)/3x2, 
which becomes g when we set x = 0. T h ~ s  suggests that we use I'H6pital's rule 
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again, but to do so, we need to know that lim,,,, [f(x)/g(x)] is equal to 
limx+xo[f'(x)/gf(x)], even when f'(xo)/gf(xo) is again indeterminate. The 
following strengthened version of l'H6pital's rule is the result we need. Its 
proof is given later in the section. 

Let f and g be differentiable on an open interval containing x,, except 
perhaps at x, itself. Assume: 

Example 3 Calculate lim 'OSX - . 
x+o x2 

Solution This is in i form, so by l'H6pital's rule, 

lim cos x - 1 = lim - sinx 
x+o x2 x-to 2x 

if the latter limit can be shown to exist. However, we can use l'H6pital's rule 
again to write 

- sinx = - cosx lim - 
x+o 2x x+o 2 

Now we may use the continuity of cos x to substitute x = 0 and find the last 
limit to be - f ; thus 

To keep track of what is going on, some students like to make a table: 

form type limit 

- cosx determinate 

f - 
g 

f' - 
g ' 

Each time the numerator and denominator are differentiated, we must check 
the type of limit; if it is $, we proceed and are sure to stop when the limit 
becomes determinate, that is, when it can be evaluated by substitution of the 
limiting value. 

cosx - 1 0 - indeterminate 
0 

? 
x2 

- sin x - 0 indeterminate 
0 

? 
2x 
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Warning If l'H6pital's rule is used when the limit is determinate, incorrect answers can 
result. For example, limX,,[(x2 + l)/x] = oo but l'H6pital's rule would lead 
to limX,,(2x/l) which is zero (and is incorrect). 

Exarnple 4 Find lirn sinx - . 
X-+O tanx - x 

Solution This is in $ form, so we use l'H6pital's rule: 

form type limit 

sinx - x 
g l tanx - x 

cosx - I 
sec2x - 1 

- sinx 
2 sec x (sec x tan x) 

- COSX determinate 
4 sec2x tan2.-c + 2 sec4x 

~h~~ lim ~ i n x  - x = - - 
X+O tanx - x :.A 

L'HGpital's rule also holds for one-sided limits, limits as x + co, or if we have 
indeterminates of the form g. To prove the rule for the form $ in case 
x + m ,  weusea trick: s e t t =  l /x ,  s o t h a t x =  l / t  a n d t - + O +  asx++co .  
Then 

f'(x> f ' ( l / t> lirn - = lim - x++w gf(x) t+o+ gf(l / t )  

- t"f'l/t) 
= lirn 

"0' - t2g'(l/t) 

= lirn (d/dt)f ( l / t )  
(by the chain rule) 

t+o+ (d/dt)g(l/t) 

f ( l / t )  
= lirn - 

t+o+ g ( l / t )  

f (XI = lirn - 
x++m g(x> ' 

(by l'Hbpital's rule) 

It is tempting to use a similar trick for the g form as x + x,, but it does 
not work. If we write 

which is in the $ form, we get 

f(.) - ,im lirn - - -gf(x>/E g(x)12 
"+" g(x) -f'(x)/[f(x)I2 

which is no easier to handle. For the correct proof, see Exercise 42. 
The use of l'H6pital's rule is summarized in the following display. 
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and take the limit of the new fraction; repeat the process as many times 
as necessary, checking each time that l'H6pital's rule applies. 

If limx,xo f(x) = limx+xo g(x) = 0 (or each is + co), then 

(x, may be replaced by + co or xo +- ). 

The result of the next example was stated at the beginning of Section 6.4. The 
solution by l'H6pital's rule is much easier than the one given in Review 
Exercise 90 of Chapter 6. 

Example 5 Find lim h, where p > 0. 
x+m XP 

Solution This is in the form g. Differentiating the numerator and denominator, we 
find 

since p > 0. A 

Certain expressions which do not appear to be in the form f(x)/g(x) can be 
put in that form with some manipulation. For example, the indeterminate 
form co . 0 appears when we wish to evaluate limx,xo f(x)g(x) where 
limx,xo f(x) = co and limx,xog(x) = 0. This can be converted to 8 or g form 
by writing 

Example 6 Find limxjo+ x ln x. 

Solution We write x lnx as (lnx)/(l/x), which is now in g form. Thus 

- lim (- x) = O. A lim x lnx=  lim -!!E = lim - - 
x+o+ x+o+ 1/x x+o+ - 1/x2 x+o+ 

Indeterminate forms of the type 0' and 1" can be handled by using loga- 
rithms: 

Example 7 Find (a) limxjo+ x x  and (b) lim,,,x'/(' -") 

Solution (a) This is of the form 0°, which is indeterminate because zero to any power is 
zero, while any number to the zeroth power is 1. To obtain a form to which 
l'H6pital's rule is applicable, we write x x  as exp(x ln x). By Example 6, we 
have lirn,,, + x ln x = 0. Since g(x) = exp(x) is continuous, the composite 
function rule applies, giving lim,,, + exp(x ln x) = e ~ p ( l i r n ~ , ~  + x ln x) = e0 
= 1, so lim,,,, xx = 1. (Numerically, O.lO.' = 0.79, O.OO1°.OO1 = 0.993, and 
O.OOOO1°~OOOO1 = 0.99988.) 
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1 1 co-co ? 
xsinx X2 

(b) This has the indeterminate form 1 ". We have xi/("- ') = e('" ")/("-I); 
applying l'H6pital's rule gives 

limx'/(x-l) = lim e ( l n ~ ) / ( ~ -  1) = elim.T-t[(lnx)/(x- ' ) I  = e l  = e. 
x+ 1 x-+ 1 

If we set x =  1 +(l /n) ,  then x + 1  when n+co; we have l / (x -  I ) =  n, so 
the limit we just calculated is lim,,,(l + I/n)". Thus l'H6pital's rule gives 
another proof of the limit formula lim,,,(l + l/n)" = e. A 

The next example is a limit of the form co - co. 

Example 8 Find 

Solbtron We can convert this limit to $ form by bringing the expression to a common 
denominator: 

form type limit 

x - sinx 
x 2sin x 

I - cosx 
2x sinx + x2cosx 

sin x - 0 
0 

? 
2sinx + 4xcosx - x2sinx 

cos x determinate 
6 cos x - 6x sin x - x2cos x 

1 ~ h u s  X+O l i m ( - - - l ) = l . A  x sinx x2 6 

Finally, we shall prove l'H6pital's rule. The proof relies on a generalization of 
the mean value theorem. 

Gauchy's mean Suppose that f and g are continuous on [a, b] and differentiable on (a, b) and that 
value theorem g(a) # g(b in (a, b) such that 

f(b) - f(a) 
= f '@). g'(c) 

g(b) - g(a) 

Proof First note that if g(x) = x, we recover the mean value theorem in its usual 
form. The proof of the mean value theorem in Section 3.6 used the function 

l(x) = f(a) + (x - a) f (b) - f (a) 
b - a .  

For the Cauchy mean value theorem, we replace x - a by g(x) - g(a) and 
look at 
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Notice that f(a) = h(a) and f(b) = h(b). By the horserace theorem (see 
Section 3.6), there is a point c such that f'(c) = hf(c); that is, 

which is what we wanted to prove. H 
We now prove the final version of l'H6pital's rule. Since f(xo) = g(xo) 

= 0, we have 

where cx (which depends on x)  lies between x and x,. Note that cx -+ xo as 
x -+ x,. Since, by hypothesis, limx,xn[ f'(x)/gf(x)] = I, it follows that we also 
have limX,,D[ f'(cx)/gf(cx)] = I, andVso by equation (I),  limx+xo[ f(x)/g(x)] 
= 1. II 

Exercises for Section "1 
Use the preliminary version of l'H6pital's rule to evalu- 
ate the limits in Exercises 1-4. 

X 25. lim - 
x-m x2 + 1 

3x2 - 12 x4 - 8' 2. lim - 1. lirn - 
x+3 x - 3 x+2 x - 2 

x 2 + 2 X  4. lim x 3 + 3 x - 4  
3. lim - 

x + ~  sinx X - ~ I  sin(x - 1) 27. lim 28. lim 
\I7'YE 

x+5+ x - 5  x+5+ x + 5 

Use the final version of l'H6pital's rule to evaluate the 
limits in Exercises 5-8. 

5. lim COS 3x - 1 6. lim COS lox - 1 
x+O 5x2 x+O 8x2 

7. lim sin 2x - 2x 8. lirn sin 3x - 3x 
x-0 x3 x-0 x3 

29. lim x 2 + 2 x + 1  30. l i m x ~ / ( ~ - ~ 2 )  
X I  x 2 - 1  x+l - 

cosx - 1 + x2/2 
31. lim 

x-0 x4 
In x 32. lim - 

X+I ex  - 1 
Evaluate the 8 forms in Exercises 9-12. 1 + cosx 33. lirn - 

X + T  x -  v 
e 9. lirn - 

x-00 x375 
10. lim x4+1nx  

X-'OO 3x4 + 2x2 + 1 34. lim (x - E)tanx 
x-?r/2 2 

sinx - x + (1/6)x3 
35. lim 

x+o x 

In x e i / ~  11. lim - 12. lim - 
x+o+x -2 x+O+ 1/x 

36. lirn x3 + l n x  + 5 
X+m 5x3 + ePX + sinx 

Evaluate the 0 . oo forms in Exercises 13-16. 

13. lirn [x41n x] 14. lirn [tan ln XI 
x-0 x-tl 2 

15. lim [ ~ " e - ~ ~ ]  16. liliT[(x2 - 2vx + v2)csc2x] 
x-to 

37. Find lim,+o+ xplnx, wherep is positive. 

38. Use l'H6pital's rule to show that as x-+oo, 
x n / e x  + 0 for any integer n; that is, ex goes to Evaluate the limits in Exercises 17-36. 
infinity faster than any power of x. (This was 
proved by another method in Section 6.4.) 17. lim [(tanxr] 18. lim [(1 + 

x-to x+m +39. Give a geometric interpretation of the Cauchy 
mean value theorem. [Hint: Consider the curve 
given in parametric form by y = f(t), x = g(t).] 

+40. Suppose that f is continuous at x = x,, thatf'(x) 
19. lim (csc x - cot x) 20. Jimw [In x - In(x - I)] 

x-0 

exists for x in an interval about xo, x + xo, and 
that lirn,,,,, f'(x) = m. Prove that f'(x,) exists 
and equals m. [Hint>.Use the mean value theo- 

1 - x 2  24. lim x + sin2x 23. lirn - 
x-tl 1 + x2 X+O 2x + sin 3x 

rem.] 
+41. Graph the function f(x) = xx, x > 0. 
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*42. Prove l'H6pital's rule for x, = co as follows: to conclude that 
(i) Let f and g be differentiable on (a, co) with 

g(x) # 0 and gl(x) # 0 for all x > a. Use If0 - 11 < E.  
Cauchy's mean value theorem to prove that for g(x) 
every E > 0, there is an M > a such that for 
y > x > M ,  (iii) Complete the proof using (ii). 

(ii) Write 

f (x>'- 
- - lim f ( 4  - f (Y)  

g(x) ,-+a Ax) - g(y) 

and choosey sufficiently large, 

(c) Are your results consistent with the compu- 
tations of Exercise 30, Section 9.4? 

The area of an unbounded region is defned by a limiting process. 

The definite integral J?(x)dx of a function f which is non-negative on the 
interval [a, b] equals the area of the region under the graph off between a and 
b. If we let b go to infinity, the region becomes unbounded, as in Fig. 1 1.3.1. 
One's first inclination upon seeing such unbounded regions may be to assert 
that their areas are infinite; however, examples suggest otherwise. 

Figure 113.1. The region 
under the graph off on 
[a, oo) is unbounded. 

Example 1 Find Jb 4 dx. What happens as b goes to infinity? 
1 X 

Solution We have 

As b becomes larger and larger, this integral always remains less than 4 ;  
furthermore, we have 

lim Jb = lim 
I - i / b 3  

=-.A 
b+oo 1 X4 b+oo 3 3 

Example 1 suggests that f is the area of the unbounded region consisting of 
I those points (x, y)  such that 1 9 x and 0 < y < 1/x4. (See Fig. 1 1.3.2.) In 

Figure 113.2. The region accordance with our notation for finite intervals, we denote this area by 
under thegraphof 1/x40n lr(dx/x4). Guided by this example, we define integrals over unbounded 

Cf~)has finite area. It is intervals as limits of integrals over finite intervals. The general definition 
JT(dx/x4) = ). follows. 
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limb,,J~(x)dx exists, we say that the improper integral J,"f(x)dx is 
convergent, and we define its value by 

Similarly, if, for fixed b, f is integrable on [a, b] for all a < b, we 

if the limit exists. 
Finally, iff is integrable on [a, b] for all a < b, we define 

Example 2 For which values of the exponent r is x r  dx convergent? 1" 
Solution We have 

X r + ~  b br+' - 1 
lim I b x  dx = lim - 1 = lim 

b+00 r + 1 b-f, r + l ( r  + - 1). 
b+m 1 

If r + 1 > 0 (that is, r > - I), the limit limb,,br+l does not exist and the 
integral is divergent. If r + 1 < 0 (that is, r < - I), we have limb,,br+ ' = 0 
and the integral is convergent-its value is - l / (r  + 1). Finally, if r = - 1 we 
have Jix-'dx = lnb, which does not converge as b + oo. We conclude that 
J;*x ' dx is convergent just for r < - 1. A 

Example 3 Find 

Solution We write J> (dx/(l + x2)) = Jy, (dx/(l + x2)) + J: (dx/(l + x2)). To 
evaluate these integrals, we use the formula J(dx/(l + x2)) = tanP'x. Then 

I-' --,&L. = lim (tan-'O - tan-'a) 
m 1 + x 2  

(See Fig. 5.4.5 for the horizontal asymptotes of y = tan-'x.) Similarly, we 
have 

dx - lim (tan-'b - tan-'0) = I( 
2 '  

Sometimes we wish to know that an improper integral converges, even though 
we cannot find its value explicitly. The following test is quite effective for this 
situation. 
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Suppose that f and g are functions such that 

Similar statements hold for integrals of the type 

Here we shall explain the idea behind the comparison test. A detailed proof is 
given at the end of this section. 

If f(x) and g(x) are both positive functions (Fig. 11.3.3(a)), then the 
region under the graph off is contained in the region under the graph of g, so 

'I x = a  'I x = a  

Figure 11.3.3. Illustrating 
the comparison test. I (a) 

the integral J?(x)dx increases and remains bounded as b -+ MI. We expect, 
therefore, that it should converge to some limit. In the general case (Fig. 
11.3.3(b)), the sums of the plus areas and the minus areas are both bounded 
by J,"g(x) dx, and the cancellations can only help the integral to converge. 

Note that in the event of convergence, the comparison test only gives the 
inequality - (,"g(x) dx < (,"f(x) dx < (,"g(x) dx, but it does not give us the 
value of J,"f(x) dx. 

Example 4 Show thai L* dX is convergent, by comparison with l/x4. 
J3 

Solution We have 1 / J X 8  < 1/@ = 1/x4, so it is tempting to compare with 
J,"(dx/x4). Unfortunately, the latter integral is not defined because l /x4  is 
unbounded near zero. However, we can break the original integral in two 
parts: 

dx 1 dx * dx 

The first integral on the nght-hand side exists because 1 / J K 8  is continu- 
ous on [0, 11. The second integral is convergent by the comparison test, taking 
g(x) = 1 /x4 and f(x) = l / J m .  Thus J," ( d x / J m )  is convergent. A 
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Example 5 Show that 6- sinx dx converges (without attempting to evaluate). 
(1 + x ) ~  

Solution We may apply the comparison test by choosing g(x) = 1/(1 + x ) ~  and f(x) = 
(sinx)/(l + x ) ~ ,  since lsinxl < 1. To show that J,"(dx/(l + x ) ~ )  is convergent, 
we can compare 1/(1 + x ) ~  with 1/x2 on [l,  co), as in Example 4, or we can 
evaluate the integral explicitly: 

Example 6 Show that iw dx is divergent. 
JG-2 

Solution We use the comparison test in the reverse direction, comparing 1/J=. 
with l /x.  In fact, for x > 1, we have 1 / J s  > I/{= = l/\IZx. 
But J?(dx/\IZx) = (l/\IZ)lnb, and this diverges as b+  co. Therefore, by 
statement (2) in the comparison test, the given integral diverges. A 

We shall now discuss the second type of improper integral. If the graph of a 
function f has a vertical asymptote at one endpoint of the interval [a, b], then 
the integral J?(x)dx is not defined in the usual sense, since the function f is 
not bounded on the interval [a, b]. As with integrals of the form J,"f(x)dx, we 
are dealing with areas of unbounded regions in the plane-this time the 
unboundedness is in the vertical rather than the horizontal direction. Follow- 
ing our earlier procedure, we can define the integrals of unbounded functions 
as limits, which are again called improper integrals. 

Suppose that the graph off has xo = b as a vertical asymptote and that 
for a fixed, f is integrable on [a,q] for all q in [a,b). If the limit 
lim,,,- Jy(x) dx exists, we shall say that the improper integral J ~ ( x ) ~ x  
is convergent, and we define 

Similarly, if x = a is a vertical asymptote, we define 

if the limit exists. (See Fig. 11.3.4.) 

If both x = a and x = b are vertical asymptotes, or if there are vertical 
asymptotes in the interior (a, b), we may break up [a,, b] into subintervals such 
that the integral of f on each subinterval is of the type considered in the 
preceding definition. If each part is convergent, we may add the results to get 
J ~ ( x )  dx. The comparison test may be used to test each for convergence. (See 
Example 9 below.) 
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." t 

Figure 11.3.4. Improper 
integrals defined by 
(a) the limit 
limq,, - Jzf(x) dx and 
(b) the limit 

Example 7 For which values of r is x r  dx convergent? I' 
Solution If r > 0, x r  is continuous on [O,1] and the integral exists in the ordinary sense. 

If r < 0, we have lim,,,, x r  = co, so we must take a limit. We have 

I X r + ~  1 
p i y + i x r d x =  lim - I - lim p r + l  , 

,+o+ r + 1 I,= ;TT ( ,+o+ 1 
provided r # - 1. If r + 1 > 0 (that is, r > - I), we have limp,,+ pr+l = 0, SO 

the integral is convergent and equals l /(r  + I). If r + 1 < 0 (that is, r < - I), 
r + l  = "mp+o+ PI co, so the integral is divergent. Finally, if r + 1 = 0, we have 

limpjot JPx dx = limp,o+ (0 - In p) = co . Thus the integral JAxrdx con- 
verges just for r > - 1. (Compare with Example 2.) A 

Example 8 Find I' In x dx. 

Solution We know that J In x dx = x In x - x + C, so 

I 1 l n x d x =  lim (11n1 - 1 - p l n p + p )  
p+o+ 

= o - 1 - o + o =  -1 

(limp,,+ p ln p = 0 by Example 6, Section 1 1.2). A 

Example 9 Show that the improper integral - dx is convergent. I" :" 
Solution This integral is improper at both ends; we may write it as I, + I,, where 

I, =I1(e- ' /&)dx and I, =I;w(e-x/&)dx 

and then we apply the comparison test to each term. On [O, 11, we have 

e-" < 1, so e-x/& < I/&. Since JA(dx/&) is convergent (Example 7), so 
is I , .  On [ l , ~ ) ,  we have I /& < 1, so e T X / &  < e-"; but J;*ePxdx is 
convergent because 

I;" e-"dx= lim ePxdx= lim (e-'  - e-b) = e-' 
b+m Ib 1 b+m 

Thus I, is also convergent and so J,"(e-"/&)dx is convergent. A 
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Improper integrals arise in arc length problems for graphs with vertical 
tangents. 

Example 10 Find the length of the curve y = Js for x in [ -  1,1]. Interpret your result 
geometrically. 

Solution By formula (I), Section 10.3, the arc length is 

The integral is improper at both ends, since 

lim = lim =m. 
x + l +  J1_- x+l- J3 

We break it up as 

= lim dx 

= lim (sin- '0 - sin- 'p) + lim (sin-Iq - sinP'O) 
p+-I+ q p l -  

= o -  -II. + I - o = . r r .  ( 2 )  2 
Geometrically, the curve whose arc length we have just found is a 

semicircle of radius 1, so we recover the fact that the circumference of a circle 
of radius 1 is 2m. A 

Example 11 Luke Skyrunner has just been knocked out in his spaceship by his archenemy, 
Captain Tralfamadore. The evil captain has set the controls to send the 
spaceship into the sun! His perverted mind insists on a slow death, so he sets 
the controls so that the ship makes a constant angle of 30" with the sun (Fig. 
11.3.5). What path will Luke's ship follow? How long does Luke have to wake 
up if he is 10 million miles from the sun and his ship travels at a constant 
velocity of a million miles per hour? 

Figure 113.5. Luke 
Skyrunner's ill-fated ship. 

Solution We use polar coordinates to describe a curve (r(t),O(t)) such that the radius 
makes a constant angle a with the tangent (a = 30" in the problem). To find 
dr/d9, we observe, from Fig. 11.3.6(a), that 

rA9 so & -  r Arm- 
tan a dB tana ' 

Copyright 1985 Springer-Verlag.  All rights reserved.



534 Chapter 11 Limits, ~ ' ~ 6 p i t a l ' s  Rule, and Numerical Methods 

Figure 113.6. The 
gebmetry of Luke's path. 

We can derive formula (1) rigorously, but also more laboriously, by 
calculating the slope of the tangent line in polar coordinates and setting it 
equal to tan(8 + a) as in Fig. 11.3.6(b). This approach gives 

tane(dr/d0) + r 
= tan(8 + a)  = tan8 + tana 

dr/d0 - rtan8 1 -tanBtana ' 

so that again 

dr - r 
dB tana ' 

The solution of equation (1) is3 

For this solution to be valid, we must regard 0 as a continuous variable 
ranging from - oo to m, not as being between zero and 2m. As 0+ m, 
r(8) + oo and as 0 + - m, r(8) + 0, so the curve spirals outward as 8 
increases and inward as 8 decreases (if 0 < a < 77/2). This answers the first 
question: Luke follows the logarithmic spiral given by equation (2), where 
0 = 0 is chosen as the starting point. 

From Section 10.6, the distance Luke has to travel is the arc length of 
equation (2) from 8 = 0 to 0 = - oo, namely, the improper integral 

0 e/tan a 1 do 
= l wr(o)e sin a 

0 )  - =- 
COS a 

-m 
COS a 

With velocity = lo6, r(0) = lo7, and cos a = cos 30" = 0 /2, the time needed 
to travel the distance is 

Thus Luke has less than 11.547 hours to wake up. A 

See Section 8.2. If you have not read Chapter 8, you may simply check directly that equation (2) 
is a solution of (1). 
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The logarithmic spiral turns up in another interesting situation. Place four love 
bugs at the corners of a square (Fig. 11.3.7). Each bug, being in love, walks 
directly toward the bug in front of it, at constant top bug speed. The result is 
that the bugs all spiral in to the center of the square following logarithmic 
spirals. The time required for the bugs to reach the center can be calculated as 
in Example 1 1 (see Exercise 46). 

We conclude this section with a proof of the comparison test. The proof is 
based on the following principle: 

Let F be a function defined on [a, co) such that 
Figure 11.3.7. These love (i) F is nondecreasing; i.e., F(x,) < F(x2) whenever x,  < x2; 
bugs follow logarithmic (ii) F is bounded above: there is a number M such that F(x) < M for all x. 
spirals. Then lim,,,F(x) exists and is at most M. 

The principle is quite plausible, since the graph of F never descends and 
never crosses the line y = M, so that we expect it to have a horizontal 
asymptote as x -+ co. (See Fig. 11.3.8). 

Figure 11.3.8. The graph of 
a nondecreasing function 
lying below the liney = M 
has a horizontal asymptote. 1 

A rigorous proof of the principle requires a careful study of the real 
numbers," so we shall simply take the principle for granted, just as we did for 
some basic facts in Chapter 3. A similar principle holds for nonincreasing 
functions which are bounded below. 

Now we are ready to prove statement (1) in the comparison test as stated 
in the box on p. 530. (Statement (2) follows from (I), for if J,"g(x)dx 
converged, so would J,"f(x) dx.) 

y t  and 

I 
be the positive and negative parts off, respectively. (See Fig. 11.3.9.) 

Notice that f = f, + f,. Let F,(x) = FJ,(t) dt and F,(x) = YJ2(t) dt. Since 
f, is always non-negative, F,(x) is increasing. Moreover, by the assumptions of 
the comparison test, 

I 
F,(x) <Ixlf( t) l  dl < i x g ( t ) d f < l w  g(t)dt, Figure 11.3.9. f, and f2 are a 

the positive and negative 
parts off. so F, is bounded above by J,"g(t) dt. Thus, F, has a limit as x -+ co. Likewise, 

See the theoretical references listed in the preface. 
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F2 has a limit since F2 is decreasing and bounded below. Since 

it, too, has a limit as x + m. 

Exercises for Section 4 1.3 
Evaluate the improper integrals in Exercises 1-8. 

Show, using the comparison test, that the integrals in 
Exercises 9- 12 are convergent. dt. 

35. J; 3 
9.1"" m sinx dx 

3 + x3 cos(x2 + 1) 
36. J-: x2 

dx. [Hint: Use the comparison 

test on a small interval.] 

Show, using the comparison test, that the integrals in 
Exercises 13- 16 are divergent. 

J;, (2 + sinx) dx 
15. dx 

l + x  

Evaluate the improper integrals in Exercises 17-20. 
41. Consider the spirals defined in polar coordinates 

by the parametric equations 8 = t, r = t-k. For 
which values of k does the spiral have finite arc 
length for s / 2  < t < co? (Use the comparison 
test.) 

42. Does the spiral 8 = t, r = eCJ; have finite arc 
length for s < t < co? 

43. Find the area under the graph of the function 
f(x) = (3x + 5)/(x3 - 1) from x = 2 to x = co. 

44. Find the area between the graphs y = x-4/3 and 
y = X-5/3 on [I, co). 

45. In Example 11, suppose that Luke's airhoses 
melt down when he is lo6 miles form the sun. 
Now how long does he have to wake up? 

46. Let a in Fig. 11.3.7 be 60" (a is defined in 
Example 11). Find the time required for the bugs 
to reach the center in terms of their speed and 
their initial distance from the center. 

47. The region under curvey = e-" is rotated about 
the x axis to form a solid of revolution. Find the 
volume obtained by discarding the portion on 
- co < x < 10 (after slicing the solid at x = 10). 

Using the comparison test, determine the convergence 
of the improper integrals in Exercises 21-24. 

Determine the convergence or divergence of the inte- 
grals in Exercises 25-40. 

25. J-" dx m sinx dx 

1 (2 + x13 
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48. Determine the lateral surface area of the surface for the probability P that a mother's height is not 
of revolution obtained by revolving y = e-" ,  greater than r inches. The estimated values of y 
0 < x < co, about the x axis. and u are y = 62.484 inches, u2 = 5.7140 square 

49. Show that lim,,,+ [ J~$(dx /x )  + J: (dxlx)] ex- inches. 
ists and determine its value. (a) Determine the value of P by appeal to inte- 

50. Discuss the following "calculations": gral tables for 

( 2  cosx dx 
~ / 2  (1 + sin x13 

5 1. You can simulate the logarithmic spiral yourself 
as follows: Stand in an open field containing a 
lone tree and lock your neck muscles so that 
your head is pointed at a fixed angle a to your 
body. Walk forward in such a way that you are 
always looking at the tree. Prove that you will 
walk along a logarithmic spiral. 

52. The probability P that a phonograph needle 
will last in excess of 150 hours is given by 
the formula P = e -'/loo dt. Find the value 
of P. J;: 

53. The probability p that the score on a reading 
comprehension test is no greater than the value a 
is 

a, y are constants. 
(a) Let x = (T - y)/u and x ,  = (a - p)/o. 

Show that 

(b) Show that ~ > e - " ~ / ~ d x  < co. 
*54. Pearson and Lee studied the inheritance of physi- 

cal characteristics in families in 1903. One law 
that resulted from these studies is 

using r = 63 inches. Look in a mathematical 
table under probability functions or normal 
distribution. 

(b) According to the study, how many mothers 
out of 100 are likely to have height not 
exceeding 63 inches? 

*55. (a) Evaluate m du 

(b) For what p and q is 

convergent? 
*56. Consider the surface of revolution obtained by 

revolving the graph of f(x) = l / x  on the interval 
[I, co) about the x axis. 
(a) Show that the area of this surface is infinite. 
(b) Show that the volume of the solid of revolu- 

tion bounded by this surface is finite. 
(c) The results of parts (a) and (b) suggest that 

one could fill the solid with a finite amount 
of paint, but it would take an infinite 
amount of paint to paint the surface. Ex- 
plain this paradox. 

Next consider the surface of revolution obtained 
by revolving the curve y = l / x r  for x in [I, co) 
about the x axis. 
(d) For which values of r does this surface have 

finite area? 
(e) For which values of r does the solid sur- 

rounded by this surface have finite volume? 
Compute the volume for these values of r. 

*57. Show that if 0 < f'(x) < 1/x2 for all x in [0, a), 
then lim,,, f(x) exists. 

11.4 Limits of Sequences 
and Newton's Method 
Solutions of equations can often be found as the limits of sequences. 

This section begins with a discussion of sequences and their limits. The topic 
will be taken up again in Section 12.1 when we study infinite series. A 
sequence is just an "infinite list" of numbers: a,,a2,a,, . . . , with one a, for 
each natural number n. A number I is called the limit of this sequence if, 
roughly speaking, a, comes and remains arbitrarily close to I as n increases. 
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Perhaps the most familiar example of a sequence with a limit is that of an 
infinite decimal expansion. Consider, for instance, the equation 

f = 0.333 . . . ( I,) 
in which the dots on the right-hand side are taken to stand for "infinitely 
many 3's." We can interpret equation (I) without recourse to any metaphysi- 
cal notion of infinity: the finite decimals 0.3'0.33'0.333, and so on are 
approximations to f ,  and we can make the approximation as good as we wish 
by taking enough 3's. Our sequence a,,a,, . . . is defined in this case by 
a, = 0.33 . . . 3, with n 3's (here the three dots stand for only finitely many 
3's). In other words, 

We can estimate the difference between a, and f by using some algebra. 
Multiplying equation (2) by 10 gives 

and subtracting equation (2) from equation (3) gives 

Finally, 

As n is taken larger and larger, the denominator 10" becomes larger and 
larger, and so the difference f -an becomes smaller and smaller. In fact, if n 
is chosen large enough, we can make f -an as small as we please. (See Fig. 
11.4.1.) 

Figure 11.4.1. The decimal 
approximations to f form a 
sequence converging to f . 

Example 1 How large must n be for the error $ -an to be less than 1 part in 1 million? 

Solution By equation (4)' we must have 

or lo-" < 3 lop6. It suffices to have n 2- 6, so the finite decimal 0.333333 
approximates f to within 1 part in a million. So do the longer decimals 
0.3333333, 0.33333333, and so on. A 

There is nothing special about the number in Example 1. Given any 
positive number E, we will always be able to make f - a, = f (1/ 10") less than 
E by letting n be sufficiently large. We express this fact by saying that f is the 

Copyright 1985 Springer-Verlag.  All rights reserved.



11.4 Limits of Sequences and Newton's Method 539 

limit of the numbers 

as n becomes arbitrarily large, or 

We may think of a sequence a,,a,,a,, . . . as a function whose domain 
consists of the natural numbers 1,2,3, . . . (Occasionally, we allow the do- 
main to start at zero or some other integer.) Thus we may represent a 
sequence graphically in two ways-either by plotting the points a,,a,, . . . on 
a number line or by plotting the pairs (n, a,) in the-plane. 

Example 2 (a) Write the first six terms of the sequence a, = n/(n + I), n = 1,2,3, . . . . 
Represent the sequence graphically in two ways. Find the value of 
lim,,,[n/(n + I)]. (b) Repeat for an = (- I)"/n. (c) Repeat for a, = 
(- l>"n/(n + 1). 

Solution (a) We obtain the terms a ,  through a, by substituting n = 1,2,3, . . . , 6 into 
the formula for a, , giving 4, f , f , f ,2 ,  q :  These values are plotted in Fig. 11.4.2. 
As n gets larger, the fraction n/(n + 1) gets larger and larger but never 
exceeds 1 ; we may guess that the limit is equal to 1. 

To verify this guess, we look at the difference 1 - n/(n + 1). We have 

which does indeed become arbitrarily small as n increases, so 

lim = 1. 
n+oo (n + 1) 

(b) The terms a ,  through a, are - I,+, - f , f ,  - +, i .  They are plotted in Fig. 
11.4.3. As n gets larger, the number (- l)"/n seems to get closer to zero. 
Therefore we guess that limn,,[(- l)"/n] = 0. 

0 - 
1 2 3 4 5 6 7  

Figure 11.4.2. The 
sequence a, = n/(n + 1) 
represented graphically in 
two different ways. 

Figure 11.4.3. The 
sequence a, = ( - I)"/ n 
plotted in two ways. 
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(c) We have, for a ,  through a,, - +,3, - a ,$, - 2 , $ .  They are plotted in Fig. 
11.4.4. In this case, the numbers a, do not approach any particular number. 
(Some of them are approaching 1, others - I.) We guess that the sequence 
does not have a limit. A 

Figure 11.4.4. The e 

sequence a, = (-  l)"n/(n + 1)  - 1  
e 

plotted in two ways. I 
Just as with the e-8 definition for limits of functions, there is an e-h 

definition for limits of sequences which makes the preceding ideas precise. 

The sequence a,,a,, a,, . . . , a,, . . . approaches I as a limit if a, gets 
close to and remains arbitrarily close to I as n becomes large. In this 

In precise terms, lim,,,a, = I if, for every e > 0, there is an N such 
that la, - I (  < e for all n > N. 

1 - E  I I +  E 
It is useful to think of the number E in this definition as a tolerance, or 

p------------~ " , ex -iwj*i - r --> allowable error. The definition specifies that if I is to be the limit of the 
( ~ - L V - ~ ~ ~ & Z & ~ % Z  *-%"st#} 

an sequence a,, then, given any tolerance, all the terms of the sequence beyond a 
-E-E- certain point should be within that tolerance of I. Of course, as the tolerance is 

Figure 11.4.5. The made smaller, it will usually be necessary to go farther out in the sequence to 
relationship between a,, I, bring the terms within tolerance of the limit. (See Fig. 11.4.5.) 
and E in the definition of The purpose of the E-N definition is to lay a framework for a precise 
the limit of a sequence. discussion of limits of sequences and their properties-just as the definitions 

in Section 11.1. 
Let us check the limit of a simple sequence using the e-N definition. 

Example 3 Prove that lim,,,(l/n) = 0, using the E-N definition. 

Solution To show that the definition is satisfied, we must show that for any E > 0 there 
is a number N such that Il/n - 01 < E if n > N. If we choose N > 1 / ~ ,  we 
get, for n > N, 

Thus the assertion is proved. A 
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Calculator Discussion 

Figure 11.4.6. For a 
recursively defined 
sequence a, + , = f (a,), the 
next member in the 
sequence is obtained by 
depressing the "f" key. 

Here f =r. 

Limits of seauences can sometimes be visualized on a calculator. Consider the 
sequence obtained by taking successive square roots of a given positive 
number a:  

a, = a, . ,=c,  .,=,IF, a 3 = J F 7  

and so forth. (See Fig. 11.4.6.) 

For instance, if we start by entering a = 5.2, we get 

a, = 5.2, 

and so on. After pressing the $ repeatedly you will see the numbers getting 
closer and closer to 1 until roundoff error causes the number 1 to appear and 
then stay forever. This sequence has 1 as a limit. (Of course, the calculation 
does not prove this fact, but does suggest it.) Observe that the sequence is 
defined recursively-that is, each member of the sequence is obtained from the 
previous one by some specific process. The sequence 1,2,4,8,16,32, . . . is 
another example; each term is twice the previous one: a,, , = 2a,. A 

Limits of sequences are closely related to limits of functions. For exam- 
ple, if f(x) is defined for x > 0, then a, = f(n) is a sequence. If lim,,, f(x) 
exists, then lim,,,a, exists as well and these limits are equal. This fact can 
sometimes be used to evaluate some limits. For instance, 

lim = lim 1 = 1 - I -1, 
X + W  x + 1 X+W 1 + l / x  1 + lim 1 + 0 

X+ w 

and so limn,,[n/(n + l)] = 1, confirming our calculations in Example 2(a). 
Limits of sequences also obey rules similar to those for  function^.^ We 

illustrate: 

n 2 +  I Example 4 Find (a) lirn ( ---- ) 
n+c/3 3n2+ n 

3 and (b) lim 1 - - + - 
n+w ( n n + l  

Solution (a) Write 

1 + l /n2  
lim ( ~ ) = lim ( ) (dividing numerator and denominator by n2) 

n + W  3n2+ n n-m 3 l /n  

These are written out formally in Section 12.1. 
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1 + lirn (l/n2) 
- - n+w (quotient and sum rules) 

3 + lirn ( l /n)  
n+ w 

3 1 (b) )~irn(l-~+~ ) = 1 - 3  ( )  lim - + n + m ( l + l / n )  lim - 

= 1 - 3 . 0 + 1 = 2 . A  

The connection with limits of functions allows us to use I'H6pital's rule to 
find limits of sequences. 

B Example 5 (a) Using numerical calculations, guess the value of limn,, "Jt;. (b) Use 
l'H6pital's rule to verify the result in (a). 

Solution (a) Using a calculator we find: 

Thus it appears that limn,, = 1. 
(b) To verify this, we use l'H6pital's rule to show that ~irn~,,x'/~ = 1. The 
limit is in ooO form, so we use logarithms: 

.I/x = ,(lnx)/x. 

Now limx,,(lnx/x) is in 8 form, and l'H6pital's rule gives 

In x lim - = lim I/X = 0. 
x+w x x+w 1 

Hence 

confirming our numerical calculations. A 

When we introduced limits of sequences in Example 1, we implicitly used 
the fact that lim,,,,(l/lOn) = 0. The following general fact is useful. 
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To see this, first consider the case r > 1. We write r as 1 + s where s > 0. If we 
expand r n  = (1 + s)", we get r n  = 1 + ns + (other positive terms.) Therefore, 
rn  > 1 + ns, which goes to co as n + co. Second, if r = 1, then r n  = 1 for all n, 
so lim,,,rn = 1. Finally, if 0 < r < 1, then excluding the easy case r = 0, 
we let p = l / r  so p > 1, and so lim,,,pn = co. Therefore, lim,,,rn = 
lim,,,(l/pn) = 0 (compare the reciprocal test for limits of functions in 
Section 1 1.1). 

Example 6 Evaluate (a) lim,,,3", (b) lim,,,e -", (c) lim,,,(e + 
Solution (a) Here r = 3 > 1, so lim,,,3" = co. 

(b) e-" = (lie)", and l / e  < 1, so lim,,,e-" = 0. 
(c) lim,,,[e + ($)"14 = [e + limn,,($)"]4 = [e + 014 = e4. A 

Another useful test is the comparison test: it says that if lim,,,,a,, = 0 
and if lbnl < la,l, then lim,,,,b, = 0 as well. This is plausible since b, is 
squeezed between -la,,/ and Jan/  which are tending to zero. We ask the reader 
to supply the proof in Exercise 56. 

If lim,,,a, = 0 and lbnl < lanl then lim,,,b, = 0. 

(-  1)" + n 
Example 7 Find (a) lim Si"n and (b) lim 

n+w n n + w  n 

Solution (a) If a, = l /n  and b, = (sinn)/n, then a,+O and Ib,J < la,l, so by the 
comparison test, lim,,,(sin n)/n = 0. 
(b) I(- l)"/nl < l /n  + 0, so (- l)"/n + 0 by the comparison test. Thus 

Many questions in mathematics and its applications lead to the problem 
of solving an equation of the form 

f (x) = 0, (5) 

where f is some function. The solutions of equation (5) are called the roots or 
zeros off. Iff is a polynomial of degree at most 4, one can find the roots off 
by substituting the coefficients of f into a general formula (see pp. 17 and 
173). On the other hand, if f is a polynomial of degree 5 or greater, or a 
function involving the trigonometric or exponential functions, there may be no 
explicit formula for the roots off, and one may have to search for the solution 
numerically. 

Newton's method uses linear approximations to produce a sequence 
x,, x, , x,, . . . which converges to a solution of f(x) = 0. Let x, be a first 
guess. We seek to correct this guess by an amount Ax so that f(x, + Ax) = 0. 
Solving this equation for Ax is no easier than solving the original equation (5 ) ,  
so we manufacture an easier problem, replacing f by its first-order approxima- 
tion at x,; that is, we replace f(xo + Ax) by f(x,) + f'(xo)Ax. If f(x,) is not 
equal to zero, we can solve the equation f(x,) +f'(x,)Ax = 0 to obtain 
Ax = - f(xo)/f'(xo), so that our new guess is 

x ,  = xo + Ax = Xo - f (xo)/ f'(xo). 

Copyright 1985 Springer-Verlag.  All rights reserved.



544 Chapter 11 Liinits, ~ ' ~ 6 ~ i t a l ' s  Rule, and Numerical Methods 

Geometrically, we have found x ,  by following the tangent line to the graph of 
f a t  (x,, f(x,)) until it meets the x axis; the point where it meets is (x,, 0) (see 
Fig. 1 1.4.7). 

Figure 11.4.7. The 
geometry of Newton's 
method. 

Now we find a new guess x2 by repeating the procedure with x ,  in place 
of x,; that is, 

In general, once we have found x,, we define x,, , by 

Let us see how the method works in a case where we know the answer in 
advance. (This iteration procedure is particularly easy to use on a programma- 
ble calculator.) 

fl Example 8 Use Newton's method to find the first few approximations to a solution of the 
equation x2 = 4, taking x, = 1. 

Solution To put the equation x2 = 4 in the form f(x) = 0, we let f(x) = x2 - 4. Then 
f'(x) = 2x, so the iteration rule (6) becomes x,, , = x, - (x: - 4)/2x,, 
which may be simplified to x,, , = $(x, + 4/xn). Applying this formula re- 
peatedly, with x, = 1, we get (to the limits of our calculator's accuracy) 

x,  = 2.5 

x2 = 2.05 

x, = 2.000609756 

x, = 2.000000093 

x, = 2 

x, = 2 

and so on forever. The number 2 is, of course, precisely the positive root of 
our equation x2 = 4. A 

Example 9 Use Newton's method to locate a root of x5 - x4 - x + 2 = 0. Compare what 
happens with various starting values of x, and attempt to explain the phenom- 
enon. 
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Solution The iteration formula is 

Figure 11.4.8. Newton's 
method does not always 
work. 

For the purpose of convenient calculation, we may write this as 

Starting at xo = 1, we find that the denominator is undefined, so we can go no 
further. (Can you interpret this difficulty geometrically?) 

Starting at x, = 2, we get 

x, = 1.659574468, 

x, = 1.372968569, 

x, = 1.068606737, 

X, = - 0.5293374382, 

x5 = 169.5250382. 

The iteration process seems to have sent us out on a wild goose chase. To see 
what has gone wrong, we look at the graph of f(x) = x5 - x4 - x + 2. (See 
Fig. 11.4.8.) There is a "bowl" near x, = 2; Newton's method attempts to take 
us down to a nonexistent root. (Only after many iterations does one converge 
to the root-see Exercise 59 and Example 10.) 

Finally, we start with x, = - 2. The iteration gives 

x0=  -2, f(x0) = -44; 

x,=-1.603603604, f(x,)=-13.61361361; 

x, = - 1.323252501, f(x,) = - 3.799819057; 

x, = - 1.162229582, f (x,) = - 0.782974790; 

x4 = - 1.107866357, f(x4) = - 0.067490713; 
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Since the numbers in the f(x) column appear to be converging to zero 
and those in the x column are converging, we obtain a root to be (approx- 
imately) - 1.10217208. Since f(x) is negative at this value (where f(x) = 
- 0.000000003) and positive at - 1.10217207 (where f(x) = 0.0000001 15), we 
can conclude, by the intermediate value theorem, that the root is between 
these two values. g 

Example 9 illustrates several important features of Newton's method. 
First of all, it is important to start with an initial guess which is reasonably 
close to a root-graphing is a help in making such a guess. Second, we notice 
that once we get near a root, then convergence becomes very rapid-in fact, 
the number of correct decimal places is approximately doubled with each 
iteration. Finally, we notice that the process for passing from x, to x,, , is the 
same for each value of n;  this feature makes Newton's method particularly 
attractive for use with a programmable calculator or a computer. Human 
intelligence still comes into play in the choice of the first guess, however. 

To find a root of the equahon f(x) = 0, where f is a differentiable 
function such that f' is continuous, start with a guess x, which is 
reasonably close to a root. Then produce the sequence x,, x , ,  x,, . . . by 
the iterative formula: 

To justify the last statement in the box above, we suppose that limn,,xn = X. 
Taking limits on both sides of the equation x,+, = xn - f(xn)/f'(xn), we 
obtain X = X - limn,,[ f(xn)/f'(xn)], or limn,,[ f(xn)/f'(xn)] = 0. Now let 
an = f(xn)/f'(xn). Then we have lim,,,an = 0, while f(xn) = aJ"(xn). Taking 
limits as n 3 oo and using the continuity off and f', we find 

lim f(xn) = lim anJi", f'(x,), so 
n+cc n+ w 

f(X) = 0 .  f'(X) = 0. 

Newton's method, applied with care, can also be used to solve equations 
involving trigonometric or exponential functions. 

Example 10 Use Newton's method to find a positive number x such that sinx = x/2. 

Solution With f(x) = sinx - x/2, the iteration formula becomes 

sinx, - xn/2 2(xncosxn - sinx,) - - 
X"+i = xn - COSxn - 1/2 2 cos xn - 1 

Taking x, = 0 as our first guess, we get x,  = 0, x, = 0, and so forth, since zero 
is already a root of our equation. To find a positive root, we try another guess, 
say x, = 6. We get 

x, = 13.12652598 X, = 266.080335 1 

x, = 30.50101246 x, = 143.3754278 

x, = 176.5342378 

x, = 448.4888306 x, = - 759.1194553 

x,, = 3,572.554623 
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Figure 11.4.9. Newton's 
method goes awry. 

We do not seem to be getting anywhere. To see what might be wrong, we 
draw a sketch (Fig. 1 1.4.9). The many places where the graph of sin x - x/2 

I . '  

11 = sin x 

I .v = sin x - 5 2 

has a horizontal or nearly horizontal tangent causes the Newton sequence to 
make wild  excursion^.^ We need to make a better first guess; we try xo = 3. 
This gives 

We conclude that our root is somewhere near 1.89549427. Substituting this 
value for x in sinx - x/2 gives 1.0 x lo-". There may be further doubt 
about the last figure, due to internal roundoff errors in the calculator; we are 
probably safe to announce our result as 1.8954943. A 

You may find it amusing to try other starting values for x, in Example 10. For 
instance, the values 6.99, 7, and 7.01 seem to lead to totally different results. 
(This was on a HP 15C hand calculator. Numerical errors may be crucial in a 
calculation such as this.) Recently, the study of sequences defined by iteration 
has become important as a model for the long-time behavior of dynamical 
systems. For instance, sequences defined by simple rules of the form x,,, 
= ax,(l - x,) display very different behavior according to the value of the 
constant a. (See the supplement to this section and Exercise 59.) 

Supplement to Section 11.4 
Ne-n's Method and Chaos 

The sequences generated by Newton's method may exhibit several types of 
strange behavior if the starting guess is not close to a root: 

(a) the sequence x,, x,, x,, . . . may wander back and forth over the real line 
for some time before converging to a root; 

Try these calculations and those in Example 9 on your calculator and see if you converge to the 
root after many iterations. You will undoubtedly get different numbers from ours, probably due to 
roundoff errors, computer inaccuracies and the extreme sensitivity of the calculations. We got 
four different sets of numbers with four calculators. (The ones here were found on an HP 15C 
which also has a SOLVE algorithm which cleverly avoids many difficulties.) 
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(b) slightly different choices of xo or the use of different calculators may lead 
to very different sequences; 

(c) the sequence xo,x,,x,, . . . may eventually cycle between two or more 
values, none of which is a root of the equation we are trying to solve; 

(d) the sequence x,,xl,x,, . . . may wander "forever" without ever settling 
into a regular pattern. 

Recent research in pure and applied mathematics has shown that the type of 
erratic behavior just described is the rule rather than the exception for many 
mathematical operations and the physical processes which they model (see 
Exercise 59 for a simple example). Indeed, "chaotic" behavior is observed in 
fluid flow, chemical reactions, and biological systems, and is responsible for 
the inherent unpredictability of the weather. 

Some references on this work on "chaos", aimed at the nonexpert reader, 
are: 

M, J. Feigenbaum, "Universal behavior in nonlinear systems," Los Alamos 
Science 1 (Summer 1980), 4-27. 

D. R. Hofstadter, "Metamagical themas," Scientific American 245 (November 
198 l), 22-43. 

L. P. Kadanoff, "Roads to chaos," Physics Today 36 (December 1983), 46-53. 
D. Ruelle, "Strange attractors," Math. Intelligencer 2 (1980), 126-137. 
D. 6. Saari and J. B. Urenko, "Newton's method, circle maps, and chaotic 

motion," American Mathematical Monthly 91 (1984), 3-17; see also 92 (1985) 
157-158. 

Exercises Bar Section 1% .4 
1. If a, = 1/10 + 1/100 + - . . + 1/10", how large n - 3n2 17. lim - 18. lim n3 + 3n2 + 1 

must n be for 4 -an to be less than "jm n2 + 1 "jm n4 + 8n2 + 2 

2. If a, = 7/10 + 7/100 + . . . + 7/10", how large 3n2 - 2n + 1 - n(n+2)  
19. Ji% 

must n be for -a, to be less than lo-'? n(n + 1) (n + l)(n + 3) 1 
Find the limits of the sequences in Exercises 3 and 4. 

3. a, = 1 + 1/2 + 1/4+ . + 1/2". 
4. a,, = sin(na/2). 

Write down the first six terms of the sequences in 
Exercises 5-10. 

20. lirn 
2 + l /n  

"'* (n2 - 2)/(n2 + 1) 

(sin n)2 (1 + n)cos(n + 1) 
21. lirn - 

n-tm n + 2  
22. Jim, 

n 2 +  1 

5. k n = n 2 - 2 f i ; n = 0 , 1 , 2  , . . .  . 23. Jiir (-1)" . 2  24. Jiir cos(afi ) 
6. a, = (- l)"+'[(n - I)/n!]; n = 0,1,2, . . . n + l  n2 

(0!= l ,n !=n(n-  1 ) . - - 3 . 2 .  1.) @ Using numerical calculations, guess the limit as 
7. b,, = nb,-,/(I + n); bo = $. n -+ oo of the sequences in Exercises 25-28. Verify your 

8. c,,, = -cn/[2n(4n + I)]; cl = 2. answers using l'H6pital's rule. 

9. a,+, = [l/(n + l)]C$Eoai; a. = ' 2 -  
25. "m 26. "m 

10. k , = d m ; n = 1 , 2 , 3  , . . .  . 27.d- 28.q- 
Establish the limits in Exercises 1 1 - 14 using the E- N Find the limifs in hxc i ses  29-34. 
definition. 

3 11. lim - = 0  
n-tm n n-tm 

3 = o  13. lim - 14. lim - = O  
n-tm 2n + 1 n-tm 2n + 5 

Evaluate the limits in Exercises 15-24. 

3 n 15. lirn - 
n-tm n + 1 

2n 16. lim - 
8n - 1 

1 29. lirn - 
n+m xn 30. Jim, n" n + (3/4)" 

31. "5% 32. Find Jim, (a + ( 3  )")3 
n 2 + 2  

3b + (1/212" 3 
33. lim [ ] ; b constant 

n-+m n 2 -  1 

34. lim ( + e-2n ),; a constant 
n+m n -  1 
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935. (a) Use Newton's method to find a solution of 
x3 - 8x2 + 2x + 1 = 0. (b) Use division and the 
quadratic formula to find the othei- two roots.' 

136. Use Newton's method to find all real roots of 
x 3 - x + & .  

937. Use Newton's method to locate a root of f(x) 
= x 5  + x 2  - 3 with starting values xo = 0, 
x(, = 2. 

138. Use Newton's method to locate a zero for f(x) 
= x4 - 2x3 - 1. Use xo = 2, 3, and - l as start- 
ing values and compare the results. 

B39. Use Newton's method to locate-a root of tanx 
= x in [n/2,3n/2]. 

B40. Use Newton's method to find the following 
numbers: (a) fl; (b) 3fl 

B41. The equation tanx = ax  appears in heat conduc- 
tion problems to determine values XI, h2, X3, . . . 
that appear in the expression for the temperature 
distribution. The numbers A,, h2, . . . are the 
positive solutions of tanx = ax, listed in increas- 
ing order. Find the numbers hl,X2, h3 for a = 2, 
3,5, by Newton's method. Display your answers 
in a table. 

942. (a) Use Newton's method to solve the equation 
x2 - 2 = 0 to 8 decimal places of accuracy, 
using the initial guess xo = 2. 

* (b) Find a constant C such that Ix, - fl 1 
< Clx,-, - f l I 2 f o r n =  1, 2, 3, and4. (See 
Review Exercise 101 for the theory of the 
rapid convergence of Newton's method.) 

143. Experiment with Newton's method for evalua- 
tion of the root 1 / e  of the equation e-ex = I/ e. 

144. Enter the display value 1.0000000 on your 
calculator and repeatedly press the "sin" key 
using the "radian mode". This process gen- 
erates display . numbers a ,  = 1.0000000, a, = 

0.84147, a, = 0.74562, . . . . 
(a) Write a formula for a,, using function nota- 

tion. 
(b) Conjecture the value of lim,,,a,. Explain 

with a graph. 
145. Display the number 2 on your calculator. Re- 

peatedly press the "x2" key. You should get the 
numbers 2, 4, 16, 256, 65536, . . . . Express the 
display value a, after n repetitions by a formula. 

146. Let f(x) = 1 + l /x .  Equipped with a calculator 
with a reciprocal function, complete the follow- 
ing: 
(a) Write out f (  f (  f (  f( f( f(2)))))) as a division 

problem, and calculate the value. We abbre- 
viate this as f(6)(2), meaning to display the 
value 2, press the "l/x" key and add 1, 
successively six times. 

(b) Experiment to determine lim,,,[l/ f(")(2)] 
to five decimal places. 

47. Suppose that lim,,,a, = a and that a > 0. 
Prove that there is a positive integer N such that 
a, > 0 for all n > N. 

48. Let a, = 1 if n is even and - 1 if n is odd. Does 
lim,,,a, exist? 

49. If a radioactive substance has a talf-life of T, so 
that half of it decays after tim T, write a se- 
quence u,, showing the fraction remaining after 
time nT. What is lim,,,a,? 

50. Evaluate: 

Find the limit or prove that the limit does not exist in 
Exercises 5 1-54. 

( 1  + n)cosn 
54. Jim, 

n 
s55. (a) Give an A-N definition of what lim,,,a, 

= co means. (b) Prove, using your definition in 
part (a), that lim,,,[(l + n2)/(1 + 8n)]= co. 

+56. If a, -+ 0 and Ib,l < la,/, show that b, + 0. 
+57. Suppose that a,, b,, and c,, n = 1,2,3, . . . , are 

sequences of numbers such that for each n, we 
have a,, < b, < c,. 
(a) If lim,,,a, = L and if lim,,,b, exists, 

show that lim,,,h, > L. [Hint: Suppose 
not!] 

(b) If lim,,,a, = L = lim,,,e,, prove that 
lim,,,b, = L. 

+58. A rubber ball is released from a height h. Each 
time it strikes the floor, it rebounds with two- 
thirds of its previous velocity. 
(a) How far does the ball rise on each bounce? 

(Use the fact that the heighty of the ball at 
time t from the beginning of each bounce 
is of the form y = vt - tgt2 during the 
bounce. The constant g is the acceleration of 
gravity .) 

(b) How long does each bounce take? 
(c) Show that the ball stops bouncing after a 

finite time has passed. 
(d) How far has the ball travelled when it stops 

bouncing? 
(e) How would the results differ if this experi- 

ment were done on the moon? 

' For a computer, this method is preferable to using the formula for the roots of a cubic! 
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*59. (Research Problems) (b) Study the bizarre behavior of Newton's 
(a) Experiment with the recursion relation x,,, method in Example 9 for various starting 

= axn(l  - x,) for various values of the pa- values xo. Can you see a pattern? Does x,, 
rameter a where 0 < a 4 and x, is in always converge? 
[O, I]. How does the behavior of the se- (c) Study the bizarre behavior of Newton's 
quences change when a varies? method in Example 10. 

11.5 Numerical Integration 
Integrals can be approximated by sequences which can be computed numerically. 

The fundamental theorem of calculus does not solve all our integration 
problems. The antiderivative of a given integrand may not be easy or even 
possible to find. The integrand might be given, not by a formula, but by a 
table of values; for example, we can imagine being given power readings from 
an energy cell and asked to find the energy stored. In either case, it is 
necessary to use a method of numerical integration to find an approximate 
value for the integral. 

In using a numerical method, it is important to estimate errors so that the 
final answer can be said, with confidence, to be correct to so many significant 
figures. The possible errors include errors in the method, roundoff errors, and 
roundoff errors in arithmetic operations. The task of keeping careful track of 
possible errors is a complicated and fascinating one, of which we can give only 
some simple examples.8 

The simplest method of numerical integration is based upon the fact that 
the integral is a limit of Riemann sums (see Section 4.3). Suppose we are given 
f ( x )  on [a, b], and divide [a ,  b] into subintervals a = xo < x ,  < . . . < xn = b. 
Then J ~ ( X )  dx is approximated by Cr= , f(c,) AX,, where ci lies in [x i -  ,, xi] .  
Usually, the points xi are taken to be equally spaced, so Ax, = (b - a ) / n  and 
xi = a + i(b - a ) / n .  Choosing ci = xi or x i + ,  gives the method in the follow- 
ing box. 

and form the sum 

- [ f ( x , )  + f ( x * )  + . . ' + f ( x n ) ] .  

For a further discussion of error analysis in numerical integration, see, for example, P. J. Davis, 
Interpolation and Approximation, Wiley, New York (1963). 
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B Exarnple 1 Let f(x) = cosx. Evaluate J ~ / ~ c o s x  dx by the method of Riemann sums, 
taking 10 equally spaced points: x, = 0, x,  = n/20, x2 = 277/20, . . . , xlo 
= 10n/20 = n/2, and ci = xi. Compare the answer with the actual value. 

Solution Formula (la) gives 

The actual value is sin(n/2) - sin(0) = 1, so our estimate is about 7.6% off. A 

Unfortunately, this method is inefficient, because many points xi are 
needed to get an accurate estimate of the integral. For this reason we will seek 
alternatives to the method of Riemann sums. 

To get a better method, we estimate the area in each interval [xi-,,xi] 
more accurately by replacing the rectangular approximation by a trapezoidal 
one. (See Fig. 11.5.1.) We join the points (xi, f(x,)) by straight line segments to 
obtain a set of approximating trapezoids. The area of the trapezoid between 
xi-, and xi is 

Ai =+[f(xi-I)  +f(xi)]Axi 

since the area of a trapezoid is its average height times its width. 

(a) Rlemann sums method (b) Trapeze,,:.. c thud 

Figure 11.5.1. Comparing 
two methods of numerical 
integration. 

The approximation to Jif(x)dx given by the trapezoidal rule is 
Cy= I +[ f(xi- ,) + f(xi)] Axi. This becomes simpler if the points xi are equally 
spaced. Then Ax, = (b - a)/n, xi = a + i(b - a)/n, and the sum is 

which can be rewritten as 

b - a  - [ f(xo) + 2f(x,) + . . . + 2f(xn-1) +f(xn)l 
2 n 

since every term occurs twice except those from the endpoints. Although we 
used areas to obtain this.formula, we may apply it even if f(x) takes negative 
values. 
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and form the sum 

Formula (2) turns out to be much more accurate than the method of Riemann 
sums, even though it is just the average of the Riemann sums (la) and (lb). 
Using results of Section 12.5, one can show that the error in the method (apart 
from other roundoff or cumulative errors) is < [(b - a ) / 1 2 ] ~ , ( A x ) ~ ,  
where M, is the maximum of I f"(x)I on [a, b]. Of course, if we are given only 
numerical data, we have no way of estimating M,, but if a formula for f is 
given, M2 can be determined. Note, however, that the error depends on  AX)^, 
so if we divide [a, b] into k times as many divisions, the error goes down by a 
factor of l/k2. The error in the Riemann sums method, on the other hand, is 
< (b - a)M,(Ax), where MI is the maximum of I f'(x)I on [a, b]. Here Ax 
occurs only to the first power. Thus even if we do not know how large M,  and 
M, are, if n is taken large enough, the error in the trapezoidal rule will 
eventually be much smaller than that in the Riemann sums method. 

Example 2 Repeat Example 1 by using the trapezoidal rule. Compare the answer with the 
true value. 

Solution Now formula (2) becomes 

The answer is correct to within about 0.296, much better than the accuracy in 
Example 1. A 

Example 3 Use the trapezoidal rule with n = 10 to estimate numerically the area of the 
surface obtained by revolving the graph of y = x/(l + x2) about the x axis, 
O < x < l .  

Solution The area is given by formula (2) on p. 483: 

= 2.J 
, x d m  dx. 

(1 + X2 j 
There is little hope of carrying out this integration, so a numerical approach 
seems appropriate. We use the trapezoidal rule with the following values: 
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Figure 11.5.2. Illustrating 
Simpson's rule. 

where f(x) = x / (1 + x213. Inserting these data in the 
formula 

b - a  ~bf(x)dxw(r)[ f(xo) + 2f(x1) + . . ' +2f(xn-~)+f(xn)l 

with xi = a + [i(b - a)/n], a = 0 and b = 1, gives 

I X \ / ( l+  x2j' + (1 - x2f 
dxm 0.378 1 1, 

(1 + x2)' 

so the area is A w (21~)(0.37811) = 2.3757. Of course, we cannot be sure how 
many decimal places in this result are correct without an error analysis (see 
Exercise 17): A 

There is a yet more powerful method of numerical integration called 
Simpson's rule," which is based on approximating the graph by parabolas 
rather than straight lines. To determine a parabola we need to specify three 
points through which it passes; we will choose the adjacent points 

( x i - ( x i - ) )  ( i f ( i )  ( x i + I , f ( ~ i + ~ ) ) .  
It is easily proved (see Exercise 11) that the integral from xi-, to xi+, of the 
quadratic function whose graph passes through these three points is 

where Ax = xi - xi-, = xi+, - xi (equally spaced points). See Fig. 11.5.2. 

If we do this for every set of three adjacent points, starting at the left 
endpoint a-that is, for {xo7x,,x2), then {x2,x,,x,), then {x,,x,,x,), and so 
on-we will get an approximate formula for the area. In order for the points 
to fill the interval exactly, n should be even, say n = 2m. 

As in the trapezoidal rule, the contributions from endpoints a and b are 
counted only once, as are those from the center points of triples {x,-,,xi, 
xi+ ,) (that is, xi for i odd), while the others are counted twice. Thus we are led 
to Simpson's rule, stated in the box on the next page. 

This method is very accurate; the error in using formula (3) does not 
exceed [(b - a)/ 1801 M,(AX),, where M, is the maximum of the fourth deriva- 
tive of f(x) on [a, b]. As Ax is taken smaller and smaller, this error decreases 
much faster than in the other two methods. It is remarkable that juggling the 

The HP 15C has a clever integration program that is careful about errors. It gives 2.3832 for this 
integral in a few minutes. 

'' It was discussed by Thomas Simpson in his book, Mathematical Dissertations on Physical and 
Analytical Subjects (1743): 
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coefficients to give formula (3) in place of formula (1) or formula (2) can 
increase the accuracy so much. 

xi = a + i(b - a)/n. Form the sum 

b-Y [ f (XU) + 4f (XI) + Zf(x2) + 4f(x3) + Zf(x4) + . . 

B Example 4 Repeat Example 1 using Simpson's rule. Compare the answer with the true 
value. 

Solution Using a calculator, we can evaluate formula (3) by 

rn 1.0000034. 
The error is less than four parts in a million. A 

Example 5 Suppose that you are given the following table of data: 

Evaluate JA f (x) dx by Simpson's rule. 

Solution By formula (3), 

Inserting the given values off and evaluating on a calculator, we get 

1 bl f (x )dx=  - (49.042) = 1.635. 
30 

This should be quite accurate unless the fourth derivative off is very large. ,A 

Example 6 How small must we take Ax in the trapezoidal rule to evaluate ~ g e - ~ l d x  to 
within For Simpson's rule? 

Solution Let f(x) = e-"l, a = 2, and b = 4. The error in the trapezoidal rule is no more 
than [(b - a ) / 1 2 ] ~ ~ ( A x ) ~ ,  where M2 is the maximum of I f  "(x)I on [a, b]. We 
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find 

f (x) = -2xepx2, and f "(x) = - 2e-x2 + 4x2e-x2 = 2(2x2 - 1)epx2. 

NOW f"'(x) = (12x - 8x3)e-X2 = 4x(3 - 2x2)ebX2 < 0 on [2,4], so f"(x) is 
decreasing. Also, f "(x) > 0 on [2,4], so I f  "(x)/ = f "(x) < f "(2) = 1 4 e - ~  
= M2, so the error is at most 

To make this less than we should choose Ax so that 

 AX)^ < e410-6 . $ = 0.0000234, 

Ax < 0.0048. 
That is, we should take at least n = (b - a)/Ax = 416 divisions. 

For Simpson's rule, the error is at most [(b - a)/180]M~(Ax)~. Here 

f"'(x) = 4(4x4 - 12x2 + 3)eTX2. 

On [2,4], we find that 4x4 - 12x2 + 3 is increasing and e-x2 is decreasing, SO 

If""(x)I < 4(4 - 44 - 12. 42 + 3)eU4 

=61.17 = M4. 

Thus [(b - a)/ 1801 M,(Ax)~ = & - 6 1.17(Ax)~ = 0.68(Ax)~. Hence if we are to 
have error less than lod6, it suffices to have 

0 . 6 8 ( ~ x ) ~  < 
Ax < 0.035. 

Thus we should take at least n = (b - a)/Ax = 57 divisions. ,A 

Exercises for Section 111.5 
Use the indicated numerical method(s) to approximate data: 
the integrals in Exercises 1-4. 

1 1. J'_ ,(x2 + 1) dx. Use Riemann sums with 
f(0) = 1.384 f(0.4) = 0.915 f(0.8) = 0.935 

n = 10 (that is, divide [ -  1,1] into 10 subinter- f (0.1) = 1.179 f (0.5) = 0.768 f (0.9) = 1.262 

vals of equal length). Compare with the actual f(0.2) = 0.973 f(0.6) = 0.51 1 f(1.0) = 1.425 
value. f(0.3) = 1 .OOO f(0.7) = 0.693 

B2. J;l2(x + sinx)dx. Use Riemann sums and the 
trapezoidal rule with n = 8. Compare these two 
approximate values with the actual value. 

B3. J:[(sinvx/2)/(x2 + 2x - l)]dx. Use the trape- 
zoidal rule and Simpson's rule with n = 12. 

14. J : ( l / J m ) d x .  Use the trapezoidal rule and 
Simpson's rule with n = 20. 

85. Use Simpson's rule with n = 10 to find an ap- 
proximate value for J , ! , ( x / \ I n )  dx. 

16. Estimate the value of J:eG dx, using Simpson's 
rule with n = 4. Check your answer using 
x = u2, dx = 2udu. 

Numerically evaluate J,!,(x + f(x)) dx by the 
trapezoidal rule. 

H8. Numerically evaluate J,!,2 f(x) dx by Simpson's 
rule, where f(x) is the function in Exercise 7. 

19. Suppose that you are given the following table 
of data: 

f(O.0) = 2.037 f(1.3) = 0.819 
f(0.2) = 1.980 f(1.4) = 1.026 
f(0.4) = 1.843 f(1.5) = 0.799 
f(0.6) = 1.372 f(1.6) = 0.662 
f(O.8)=1.196 f(1.7)=0.538 

87. Suppose you are given the following table of f(1.0) = 0.977 f(1.8) = 0.555 
f(l.2) = 0.685 
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Numerically evaluate Jb8f(x)dx by using 
Simpson's rule. [Hint: Watch out for the spac- 
ing of the points.] 

B10. Numerically evaluate J,$8f(x)dx by using the 
trapezoidal rule, where f(x) is the function in 
Exercise 9. 

11. Evaluate Ib,(px2 + qx + r) dx. Verify that 
Simpson's rule with n = 2 gives the exact an- 
swer. What happens if you use the trapezoidal 
rule? Discuss. 

12. Evaluate Jb,(px3 + qx2 + rx + s)dx by Simp- 
son's rule with n = 2 and compare the result 
with the exact integral. 

B13. How large must n be taken in the trapezoidal 
rule to guarantee an accuracy of lo-' in the 
evaluation of the integral in Exercise 2? An- 
swer the same question for Simpson's rule. 

14. Gaussian quadrature is an approximation 
method based on interpolation. The formula 
for integration on the interval [ -  1, 11 is 

I! , f(x)dx = f ( l / f i )  + f(- 1 / f i )  + R, where 
the remainder R satisfies IR I < M/135, M be- 
ing the largest value of f(4)(x) on - 1 < x < 1. 
(a) The remainder R is zero for cubic polyno- 

mials. Check it for x3, x3 - 1, x3 + x + 1. 
(b) Find 11 ,[x2/(1 + x4)]dx to two places. 
(c) What is R for J!,x6dx? Why is it so 

large? 
m15. A tank 15 meters by 60 meters is filled to a 

depth of 3.2 meters above the bottom. The time 
T it takes to empty half the tank through an 
orifice 0.5 meters wide by 0.2 meters high 
placed 0.1 meters from the bottom is given by 

Compute T from Simpson's rule with n = 6. 
*16. A metropolitan sports and special events com- 

plex is circular in shape with an irregular roof 
that appears from a distance to be almost 
hemispherical (Fig. 1 1.5.3). 

Figure 11.5.3. The profile 
of the roof of a sports 
complex. 

A summer storm severely damaged the 
roof, requiring a roof replacement to go out for 
bid. Responding contractors were supplied 
with plans of the complex from which to deter- 
mine an estimate. Estimators had to find the 
roof profile y = f(x), 0 < x < H, which gener- 

ates the roof by revolution about the x axis (x 
and y in feet, x vertical, y horizontal). 
(a) Find the square footage of the roof via a 

surface area formula. This number deter- 
mines the amount of roofing material re- 
quired. 

(b) To check against construction errors, a 
tape measure is tossed over the roof and 
the measurement recorded. Give a for- 
mula for this measurement using the arc 
length formula. 

(c) Suppose the curve f is not given explicitly 
in the plans, but instead f(O), f(4), f(8), 
f(l2), . . . , f (H)  are given (complex cen- 
ter-to-ceiling distances every 4 feet). Dis- 
cuss how to use this information to numer- 
ically evaluate the integrals in (a), (b) 
above, using Example 3 as a guide. 

(d) Find an expression which approximates 
the surface area of the roof by assuming it 
is a conoid produced by a piecewise linear 
function constructed from the numbers 
f(O), f(4h f(8), . . . ,f(H). 

*17. How many digits in the approximate value 
A = 2.3757 in Example 3 can be justified by an 
error analysis? 

* 18. (Another numerical integration method) 
(a) Let (XI,  YI), (XI, YZ), . . . t (xn, yn) be TI 

points in the plane such that all the xi's are 
different. Show that the polynomial of de- 
gree no more than n - 1 whose graph pas- 
ses through the given points is 

+ . . .  + ynLn(x), 
where Li(x) = Ai(x)/A '(xi), 

A ( x ) = ( x - x I ) ( x - x 2 ) .  . . (x-x,), 

Ai(x) = A (x)/(x - xi), 
i =  1,2, .  . . , n .  

( P  is called the Lugrange interpolation poly- 
nomial.) 

(b) Suppose that you are given the following 
data for an unknown function f(x): 

f(0) = 0.01, f(0.3) = 1.18, 

f (0.1) = 0.12, f (0.4) = 0.9 1. 

f (0.2) = 0.82, 

Estimate the value of f(0.16) by using the 
Lagrange interpolation formula. 

(c) Estimate (;4f(x)dx (1) by using the trape- 
zoidal rule, (2) by using Simpson's rule, 
and (3) by integrating the Lagrange inter- 
polation polynomial. 

(d) Estimate 1g/2cos x dx by using a Lagrange 
interpolation polynomial with n = 4. Com- 
pare your result with those obtained by 
the trapezoidal and Simpson's rules in Ex- 
amples 2 and 4. 
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Review Exercises for Chapter 111 
Verify the limits in Exercises 1-4 using the E-S defini- 
tion. 

2. lirn (x3 + 3x + 2) = 2 
x+o 

3. lim(x2 - 8x + 8)- -4 
x+2 

4. lim (x2 - 25) = 0 
x+5 

Calculate the limits in Exercises 5-16. 
5. Iim t a n ( 4 )  

x+O x - 1 .. . 

6. X+ lim I c o s [ ( a )  x + 2  $ ] 

9. lim ( d m  - x) 10. lim (I/= - 2x) 
x+m x+m 

1 11. lim - 12. lim 
sin- 

x + l -  JT--x x+2+ 

x4 + 8x 15. lim - 
x-0 3x4 + 2 

x + 3  16. lim - 
X+O 3~ + 8 

17. Find the horizontal asymptotes of the graph 
y = tan-'(3x + 2). Sketch. 

18. Find the vertical asymptotes for the graph of 
y = 1/(x2 - 3x - 10)'. Sketch. 

Find the horizontal and vertical asymptotes of the 
functions in Exercises 19 and 20. and sketch. 

37. lim x2e-X 
x+m 

38. lim ~ ~ ( l n x ) ~  
x+O + 

39. lim x""" 40. lim (sine-")'/& 
x+o+ X + M  

41. lim (I + sin2x)'/" 42. lirn (cos 2x)'/"' 
x+o+ x+o+ 

(In x ) ~  
43. lim - 44. lim x 2 + x - 6  

x+m x x-2 x 2 + 2 x - 8  

Decide which improper integrals in Exercises 45-54 are 
convergent. Evaluate when possible. 

45. 1" -$ dx. 46. J-m dx. 
m x 2 + 3  

47. La g. [Hint: Prove lnx < x for x > 2.1 

49. dx. dx. 

Evaluate the limits in Exercises 55 and 56. 

5 5  i X  dt 56. lim J1$ 
x+m 0 t 2 + t + 1  x+O+ x 

Find the limits if they exist, using l'H6pital's rule, in 57. The region under the curvey = xe-" on [0, co) 

Exercises 2 1-44. is revolved about the x axis. Find the volume of 

x the resulting solid. 21. lim x3 + 8x + 9 22. lim - 
x+m 4X3 - 9X2 + 10 x+m x + 2 58. The curve y = sin x/x2 on [I, oo) is revolved 

1 - cosx xx  - 1 around the x axis. Determine whether the re- 
23. lim - 24. lim - 

X+O 3X - 2" x + ~  x -  1 sulting surface has finite area. 

( d m  - 3) 7 7 ~ ~ - 3  
Evaluate the limits of the sequences in Exercises 59-72. 

25. lim 26. lim 
x + ~  sinx X+O x 59. ( lim 8 + ($)")I 

sin 5x 27. lirn - tan2x 28. lirn - 
x+o x x+o x2 

sin(x - 2) - x + 2 
29. lirn 

~ - 2  (X - 213 

30. lirn 24cosx - 24 + 12x2 - x4 
x+o x 

tan(x + 3) - tan 3 
31. lim 

-413 X + ,- 

cosJ;; + 1 
32. lim 

x+w2 X - 7r2 
33. lim x cot x cot x 34. lirn - 

X+O X+O+ lnx 

( f ) 62. lim 
-2" 

61. lim 1 + - " 
n+m 

63. )I+% (n2 + 3n + 1)e-" 

2" n 64. lirn - 65. lim - 
n+m n2  "+m n + 2 

n2 + 2n 66. lim - 67. lim tan [ A ] 
3n2 + 1 n+m n + 8  
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sin(m/2) 
69. iim, n cos 4nn 70. lirn - 

nm3 n+m 2 n +  1 

8 - 2n 71. lim - 
n-tm 5n 

72. lim (1 - ") 
n+m 3n + 1 

Using l'H6pital's rule if necessary, evaluate the limits of 
the sequences in Exercises 73-76. 

73. lirn '"fi 
n-tm 

74. dimm m 10g,~(2-'~) 

75. hl - - 2e3~  76. lirn - [ $  TnSiji] j+me3j+j5  

Use Newton's method for Exercises 77-80. 

a77. Locate the roots of x3 - 3x2 + 8 = 0. 
B78. Find the cube root of 21. 
179. Solve the equation ex = 2 + x. 
180. Find two numbers, each of whose square is 

ten times its natural logarithm. 

a81. Evaluate J:(xZ d x / J m )  by the trapezoi- 
dal rule with n = 10. 

182. Evaluate the integral in Exercise 81 by Simp- 
son's rule with n = 10. 

B83. Use Simpson's rule with n = 10 to calculate 
the volume obtained by revolving the curve 
y = f(x) on [l, 31 about the x axis, given the 
data: 

f(1) = 2.03 f(2.2) = 3.16 
f(l.2) = 2.08 f(2.4) = 3.01 
f(l.4) = 2.16 f(2.6) = 2.87 
f(l.6) = 2.34 f(2.8) = 2.15 
f(1.8) = 2.82 f(3) = 1.96 

f(2) = 3.01 

B84. (a) Evaluate (2/fi)J;e-'' dt by using Simp- 
son's rule with 10 subdivisions. 

(b) Given an upper bound for the error in 
part (a). (See Example 6 of Section 1 1.5.) 

(c) What does Simpson's rule with 10 sub- 
divisions give for (2/fi)JA0e -'' dt? 

(d) The function (2/fi)l$e -" dt is denoted 
erf(x) and is called the error function. Its 
values are tabulated. (For example: 
Handbook of Mathematical Functions, Na- 
tional Bureau of Standards, Applied 
Mathematics Series 55, June 1964, pp. 
3 10-3 11 .) Compare your results with the 
tabulated results. Note: lim,,,erf(x) 
= 1, and erf(l0) is so close to 1 that it 
probably won't be listed in the tables. 
Explain your result in part (c). 

85. Let f(x) = cosx for x > 0 and f(x) = 1 for 
x < 0. Decide whether or not f is continuous 
or differentiable or both. 

86. Let f(x) = x ' / ~ ' " ( ~ - ~ ) .  How should f(1) be 
defined in order to make f continuous? 

87. Find a function on [0, I] which is integrable 
(as an improper integral) but whose square is 
not. 

88. Show that J,"[(sinx)/(l + x)]dx is conver- 
gent. [Hint: Integrate by parts.] 

89. (a) Show that 

f"(xo) = lim f(x0 + h) - 2f(xo) +f(xo - h) 
h-tO h2 

i f f "  is continuous at xo. [Hint: Use l'H6pi- 
tal's rule.] 
*(b) Find a similar formula for f"'(xo). 

90. Show that 

f"(xo) = lirn f (xo + 2Ax) + f (xo) - 2f (xo + Ax) 
Ax-0 (Ax)2 

iff" is continuous at xo. 
9 1. Use Riemann sums to evaluate 

lirn x (Inn - lni)/n. 
n+m . r=l 

92. Let 

Prove that limnjmSn = 4 using Riemann 
sums. 

93. Let 

Prove that Sn + as n + co by using Riemann 
sums. 

94. Expressing the following sums as Riemann 
sums, show that: 

3'2 1 - 4 . (a) n-tm lim . ~ [ f i - )  I,-,, 
r = l  

n 
3n - 1 (b) lirn - - - 

(2n+i12 2 '  

95. P dollars is deposited in an account each day 
for a year. The account earns interest at an 
annual rate r (e.g., r = 0.05 means 5%) com- 
pounded continuously. Use Riemann sums to 
show that the amount in the account at the 
end of the year is approximately 

(365P/r) (er - 1). 
*96. Evaluate: 

Iim [ + t a n 6  . 
x+n2 (fi - n)(fi + n) I 

*97. Limits can sometimes be evaluated by geo- 
metric techniques. An important instance oc- 
curs when the curve y = f(x) is trapped be- 
tween the two intersecting lines through (a, L) 
with slopes m and -m, 0 < Ix - a1 < h. 
Then lim,,,f(x) = L, because points ap- 
proaching y = f(x) from the left or right are 
forced into a vertex, and therefore to the point 
(a, L). 
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(a) The equations of the two lines are y 
= L + m(x  - a),  y = L - m(x - a) .  
Draw these on a figure and insert a repre- 
sentative graph for f which stays between 
the lines. 

(b) Show that the algebraic condition that f 
stay between the two straight lines is 

This is called a Lipschitz condition. 
(c) Argue that a Lipschitz condition implies 

lim,,J(x) = L, by appeal to the defini- 
tion of limit. 

*98. Another geometric technique for evaluation of 
limits is obtained by requiring that y = f(x) 
be trapped on 0 < Ix - a1 < h between two 
power curves 

where a > 0, m > 0. The resulting algebraic 
condition is called a Hijlder condition: 

(a) Verify that the described geometry leads 
to the Holder condition. 

(b) Argue geometrically that, in the presence 
of a Holder condition, limX,,f(x) = L. 

(c) Prove the contention in (b) by appeal to 
the definition of limit. 

*99. Prove the chain rule for differentiable func- 
tions, (f 0 g)'(xo) = f'(g(xo)) . g1(x0), as fol- 
lows: 
(a) Let y = g(x) and z = f(y), and write Ay 

= gf(xo) Ax + p(x). Show that 

lim - - 
Ax+O Ax 

Also write Az = f'(yo) Ay + a(y), where 
yo = g(xo) and show that 

"(Y) = 0. lim - 
~ y - o  Ay 

(b) Show that 

Az = f ' ( ~ o )  g'(x0) Ax + f'(yo)p(x) + o(g(x)). 

(c) Note that o(g(x)) = 0 if Ay = 0. Thus 
show that 

as Ax + 0. 
(d) Use parts (a), (b), and (c) above to show 

that limA,.+o[Az/Ax] = f'(yo)gf(x0). (This 
proof avoids the problem of division by 
zero mentioned on p. 113.) 

*loo. An alternative to Newton's method for find- 
ing solutions of the equation f(x) = 0 is the 
iteration scheme 

sometimes known as Picard's method. Notice 
that this method requires evaluating f only at 
the initial guess xo and so requires less compu- 
tation at each step. 
(a) Show that, if the sequence XO, XI ,  x2, . . . 

converges, then limn,,xn is a solution of 
f(x) = 0. 

(b) Compare Picard's method and Newton's 
method on the problem x5 = x + 1, using 
the initial guess xo = 1 in each case and 
iterating until the solution is found to six 
decimal places of accuracy. 

(c) Suppose that f(q) = 0 and in addition 
that 0 < ff'(xo) < f (x)  <4f'(xo) for all x 
in the interval I = (q - a, q + a). Prove 
that if xo is any initial guess in I, then 
Ixn+l - 41 <tIxn - 41, and so limn+mxn 
= q. [Hint: xn+,  = P(x,), where P(x) 
= x - f (x)/ffxo). Differentiate P(x)  
and apply the mean value theorem.] (A 
similar analysis for Newton's method is 
presented in the following Review Exer- 
cise.) 

* 101. Newton's method for solving f(x) = 0 can be 
described by saying that xn+ I = N(xn), where 
the Newton iteration function N is defined by 
N(x) = x - f(x)/f(x) for all x such that 
f (x> # 0. 
(a) Show that N(x) = x if and only if f(x) 

= 0 
(b) Show that N1(x) = f(x)fl'(x)/[ f'(x)I2 
(c) Suppose that X is a root off, that [a, b] is 

an interval containing X, and that there 
are numbersp, q and M such that 

O < p  < f ( x )  < q and If"(x)I < M 

for all x in [a, b]. Show that there is a 
constant C such that 

for all x in [a, b]. Express C in terms of p, 
q and M. 

This establishes the "quadratic con- 
vergence" of xo, x, ,  x2, . . . to X as soon 
as some xi is in [a, b]. [Hint: Apply the 
mean value theorem to N to conclude 
N(x) - x = N1(.$)(x - X) for some .$ be- 
tween x and X. Use the mean value theo- 
rem again to show that IN'(.$)/ < D I.$[ for 
a constant D > 0.1 

(d) How many iterations are needed to solve 
x2 - 2 = 0 to within 20 decimal places, 
assuming an initial guess in the interval 
[ I  .4. I S ] ?  
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