
Chapter 12 

nfinite Series 

Infinite sums can be used to represent numbers and functions. 

The decimal expansion f = 0.3333 . . . is a representation of f as an infinite 
sum & + & + + & + - . . In this chapter, we will see how to repre- 
sent numbers as infinite sums and to represent functions of x by infinite sums 
whose terms are monomials in x. For example, we will see that 

and 

x3 + sinx = x - ---- x - . . .  
1 . 2 . 3  1 . 2 . 3 - 4 . 5  

Later in the chapter we shall use our knowledge of infinite series to study 
complex numbers and some differential equations. There are other important 
uses of series that are encountered in later courses. One of these is the topic of 
Fourier series; this enables one, for example, to decompose a complex sound 
into an infinite series of pure tones. 

"1.1 The Sum of an 
Infinite Serles 
The sum of infinitely many numbers may be finite. 

An infinite series is a sequence of numbers whose terms are to be added up. If 
the resulting sum is finite, the series is said to be convergent. In this section, we 
define convergence in terms of limits, give the simplest examples, and present 
some basic tests. Along the way we discuss some further properties of the 
limits of sequences, but the reader should also review the basic facts about 
sequences from Section 1 1.4. 

Our first example of the limit of a sequence was an expression for the 
number f : 

This expression suggests that we may consider 4 as the sum 
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562 Chapter 12 Infinite Series 

of infinitely many terms. Of course, not every sum of infinitely many terms 
gives rise to a number (consider I + 1 + 1 + - . - ), so we must be precise 
about what we mean by adding together infinitely many numbers. Following 
the idea used in the theory of improper integrals (in Section 11.3), we will 
define the sum of an infinite series by taking finite sums and then passing to 
the limit as the sum includes more and more terms. 

= a ,  + a, + - . . + a, is called the nth partial sum of the aiYs. If the 
sequence S , ,  S,, . . . of partial sums approaches a limit S as n + oo, we 
say that the series a ,  + a, + . = CF= ,ai converges, and we write 

and is called the sum of the series. 

If the series C?= ,ai does not converge, we say that it diverges. In this 
case, the series has no sum. 

Example 1 Write down the first four partial sums for each of the following series: 

1 1 1 1  (a) I + -  + -  + -  + -  + - 0 . ;  

2 4 8 1 6  
1 1 1 1 1  (b) I - - + - - - + - - - +  . . . .  
2 3 4 5 6  
1 1 1 1  (c) I + -  + -  + -  + -  + . . a ;  

5 5, 53 54 

1 1 7  Solution (a) S, = 1, S2 = 1 + 1/2 = 3/2, S, = 1 + - + - = -, 
2 4 4  

1 1 1 1 5  a n d S 4 = 1 + -  + -  + -  =-. 
2 4 8 8  

1 1  1 1 5  ( b ) S  - 1  S - I - - = -  S - I - - + - = -  
1 -  , 2 -  2 2 '  3 -  2 3 6 '  

1 1 1 7  a n d S  - I - - + - - - = - .  
4 -  2 3 4 12 

1 6  1 1 31 (c) S , = l , S , = l + -  = - , S 3 = I + -  + - = - ,  
5 5 5 52 25 

1 1  1 156 a n d S 4 = 1 + - + - + - = - .  
5 25 125 125 
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1 9 9 1 I 

0 s ,s ,  s2s4 

Figure 12.1.1. The term ai 
of a series represents the 
"move" from the partial 
sum Si-, to Si. Sn is the 
cumulative result of the 
first n moves. 

Do not confuse a sequence with a series. A sequence is simply an infinite list of 
numbers (separated by commas): a,,a,,a,, . . . . A series is an infinite list of 
numbers (separated by plus signs) which are meant to be added together: 
a ,  + a, + a, + . - . Of course, the terms in an infinite series may themselves 
be considered as a sequence, but the most important sequence associated with 
the series a ,  + a, + . - is its sequence of partial sums: S , ,  S,, S,, . . . -that 
is, the sequence 

a , , a ,  + a,,a, + a,+ a,, . . . . 
We may illustrate the difference between the ai's and the Sn's pictorially. 

Think of a , ,  a,, a,, . . . as describing a sequence of "moves" on the real 
number line, starting at 0. Then Sn = a ,  + . . + an is the position reached 
after the nth move. (See Fig. 12.1.1 .) Note that the term ai can be recovered as 
the difference Si - Sip,. 

To study the limits of partial sums, we will need to use some general 
properties of limits of sequences. The definition of convergence of a sequence 
was given in Section 11.4. The basic properties we need are proved and used 
in a manner similar to those for limits of functions (Section 11.1) and are 
summarized in the following display. 

and that c is a constant. Then: 

1. limn,,(an + bn) = limn,,an + limn,, bn . 
2. limn, ,(can) = c limn,,an . 
3. limn+,(anbn) = (limn+,an) . (limn +,bn). 
4. If limn+,bn f: 0 and bn f 0 for all n, then 

5. If f is continuous at limn,,an, then 

7. limn+w(l/n) = 0. 

Here are a couple of examples of how the limit properties are used. We will 
see many more examples as we work with series. 

Example 2 Find (a) lim 3+n and (b) lim sin -.2!E- 
n+m 2n + 1 n+m ( 2 n  + I 

3 + n - lim 3/n + 1 n / n  + l i m n  - 3 . 0  + 1 - - - 1 Solution (a) lim ---.---- - - - - 
n+, 2n + 1 n - m  2 + l /n  1 m n 2  + 1 i m n l / n  2 + 0 2 ' 
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564 Chapter 12 Infinite Series 

This solution used properties 1, 2, and 4 above, together with the facts that 
lim,,,l/n = 0 (property 7) and lim,,,c = c (property 6). 
(b) Since sinx is a continuous function, we can use property 5 to get 

= sin lim ---- 
[ n + W  ( 2 +Tl/n I ]  

=sin(;) = 1. A 

We return now to infinite series. A simple but basic example is the geometric 
series 

a + a r + a r 2 +  - 0 -  

in which the ratio between each two successive terms is the same. To write a 
geometric series in summation notation, it is convenient to allow the index i to 
start at  zero, so that a, = a, a ,  = ar, a, = ar2, and so on. The general term is 
then ai = ari, and the series is compactly expressed as CT=,ari. In our 
notation CT= 'ai for a general series, the index i will start at 1, but in special 
examples we may start it wherever we wish. Also, we may replace the index i 
by any other letter; CT= *=,ai = Xi", ,aj = Zy= '=,an, and so forth. 

To find the sum of a geometric series, we must first evaluate the partial 
sums Sn = CC=,ari. We write 

Subtracting the second equation from the first and solving for Sn, we find 

a ( l  - rn+l)  
Sn = (if r # 1). 

1 - r  

The sum of the entire series is the limit 

ar '= lim Sn 
i = O  n-+w 

a ( l  - rn+ ' )  
= lim - -- 

n+co 1 - r  a lim (I - rn+ ' )  1 - r n-+w 

=L( 1 - lim rn+ ' ) .  
1 - r  n-+w 

(We used limit properties 1, 2, and 6.) If Irl < 1, then limn,,rn+ ' = 0 
(property 9), so in this case, CT= 'ar' is convergent, and its sum is a/( l  - r). If 
Irl > 1 or r = - 1, limn,,rn+ ' does not exist (property 9), so if a # 0, the 
series diverges. Finally, if r = 1, then Sn = a + ar + . - . + arn  = a(n + I), so 
if a # 0, the series diverges. 

If Irl < 1 and a is any number, then a + ar + ar2 + . = C?=oari 
converges and the sum is a/( l  - r). 

If I rl > I and a # 0, then C?=,ari diverges. 
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1 " 1 Example 3 Sum the series: (a) 1 + 4 + 4 + + h + - . . , (b) x 7 ;71. and (c) 2 ; . 
n = o  6 i = 1  5 

Solution (a) This is a geometric series with r = 4 and a = 1. (Note that a is the first 
term and r is the ratio of any term to the preceding one.) Thus 

(b) ~,"=,[1/(6"/~)] = 1 + ( I /  J6)  + ( I /  J6 )2 + . . = a / ( l  - r), where 
a = 1 and r = I/$, so the sum is 1/(1 - I/$) = (6 + $)/5. (Note that the 
index here is n instead of i.) 

(c) CF=11/5i = 1/5 + 1/52 + . . . = (1/5)/(1 - 1/5) = 1/4. (We may also 
think of this as the series CF=,l/5' with the first term removed. The sum is 
thus 1/[1 - (1/5)] - 1 = 1/4.) A 

The following example shows how a geometric series may arise in a'physical 
problem. 

Exarnple 4 A bouncing ball loses half of its energy on each bounce. The height reached 
on each bounce is proportional to the energy. Suppose that the ball is dropped 
vertically from a height of one meter. How far does it travel? (Fig. 12.1.2.) 

Figure 12.1.2. Find the 
total distance travelled by 
the bouncing ball. 

Solution Each bounce is 112 as high as the previous one. After the ball falls from a height 
of 1 meter, it rises to 112 meter on the first bounce, (1/2)2 = 114 meter on the 
second, and so forth. The total distance travelled, in meters, is 1 + 2(1/2) + 
2(1/2)2 + 2(1/2)3 + - . . , which is 

Two useful general rules for summing series are presented in the box on the 
following page. To prove the validity of these rules, one simply notes that the 
identities 

x ( a i + b i ) = ~ a i + ~ b i  and x c a i = c x a i  
i=  1 i = l  i = l  i=  1 i =  1 

are satisfied by the partial sums. Taking limits as n -+ co and applying the sum 
and constant multiple rules for limits of sequences results in the rules in the 
box. 
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566 Chapter 12 Infinite Series 

Sum rule 
If C?= lai and C?= bi converge, then C?= ,(ai + bi) converges and 

Constant multiple rule 

0 0 .  3' - 2' 
Example 5 Sum the series x - . 

i=o 6' 
Solution We may write the ith term as 

Since the series C?=*=,(1/2)' and C?=*=,((1/3)' are convergent, with sums 2 and 4 
respectively, the algebraic rules imply that 

Example 6 Show that the series 1 f + 3 f + 7 H + 15 + . diverges. [Hint: Write it as 
the difference of a divergent and a convergent series.] 

Solution The series is C?=*=,[[2' - (f)']. If it were convergent, we could add to it the 
convergent series C?=*=,(f)', and the result would have to converge by the sum 
rule; but the resulting series is C?=*=,[2' - (4)' + (f)'] = C?=02i, which diverges 
because 2 > 1, so the original series must itself be divergent. a 
The sum rule implies that we may change (or remove-that is, change to zero) 
finitely many terms of a series without affecting its convergence. In fact, 
changing finitely many terms of the series CT= ,ai is equivalent to adding to it 
a series whose terms are all zero beyond a certain point. Such a finite series is 
always convergent, so adding it to the convergent series produces a convergent 
result. Of course, the sum of the new series is not the same as that of the old 
one, but rather is the sum of the finite number of added terms plus the sum of 
the original series. 

Example 7 Show that 

is convergent and find its sum. 

Solution The series 1/4 + 1 /42 + 1/43 + 1/44 + . . . is a geometric series with sum 
(1/4)/(1 - 1/4) = 1/3; thus the given series is convergent with sum 1 + 2 + 
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12.1 The Sum of an Infinite Series 567 

3 + 4 + 1/3 = 10 j. To use the sum rule as stated, one can write 

We can obtain a simple necessary condition for convergence by recalling that 
a, = Si - Sip, .  If limi,,Si exists, then limi,,Si- has the same value. Hence, 
using properties 1 and 2 of limits of sequences, we find limi+,ai = 

limi+,Si - limi,,Si-, = 0. In other words, if the series Cy= ,ai converges, 
then, the "move" from one partial sum to the next must approach zero (see 
Fig. 12.1.1). 

If Cy= ,ai converges, then limi,,ai = 0. 
If limi+,ai # 0, then C?= ,ai diverges. 
If limi,,ai = 0, the test is inconclusive: the series could converge or 
diverge, and further analysis is necessary. 

The ith-term test can be used to show that a series diverges, such as the one in 
Example 6, but it cannot be used to establish convergence. 

m .  00 

Example 8 Test for convergence: (a) 2 - 1 
i =  1 l + i Y  i = l  

i ,1 as i +  ca. Since ai does not tend to zero, Solution (a) Here ai = - - ------ 
l + i  l / i + 1  

the series must diverge. 

(b) Here lai/ = i / m  =fi//m -+ ca as i+ oo. Thus ai does not tend 
to zero, so the series diverges. 
(c) Here ai = l / i ,  which tends to zero as i + oo, so our test is inconclusive. 8, 

As an example of the "further analysis" necessary when limi+,ai = 0, we 
consider the series 

from part (c) of Example 8, called the harmonic series. We show that the series 
diverges by noticing a pattern: 

and so on. Thus the partial sum S, is greater than 1 + 4 + 4 = 1 + 5, 
S, > 1 + 5 + 4 + 4 = 1 + t and, in general S," > 1 + n/2, which becomes 
arbitrarily large as n becomes large. Therefore, the harmonic series diverges. 
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568 Chapter 12 Infinite Series 

Example 9 Show that the series (a) 3 + f + + $ + . . - and (b) CF= "=,/(I + i) diverge. 

Solution (a) This series is CF="=,l/2i). If it converged, so would twice the series 
CF=12 . (1/2i), by the constant multiple rule; but Cy= ,(2 . 1/2i) = ZF= l/ i ,  
which we have shown to diverge. 
(b) This series is 3 + f + f + - - . , which is the harmonic series with the first 
term missing; therefore this series diverges too. A 

Supplement to Section 12.1 : 
Zeno's Paradox 

Figure 12.1.3. Will the. 
runner overtake the 
tortoise? 

Zeno's paradox concerns a race between Achilles and a tortoise. The tortoise 
begins with a head start of 10 meters, and Achilles ought to overtake it. After 
a certain elapsed time from the start, Achilles reaches the point A where the 
tortoise started, but the tortoise has moved ahead to point B (Fig. 12.1.3). 

After a certain further interval of time, Achilles reaches point B, but the 
tortoise has moved ahead to a point C,  and so on forever. Zeno concludes 
from this argument that Achilles can never pass the tortoise. Where is the 
fallacy? 

The resolution of the paradox is that although the number of time 
intervals being considered is infinite, the sum of their lengths is finite, so 
Achilles can overtake the tortoise in a finite time. The word forever in the 
sense of infinitely many terms is confused with "forever" in the sense of the 
time in the problem, resulting in the apparent paradox. 

Exercises for Section 12.1 
Write down the first four partial sums for the series in Sum the series in Exercises 5-8. 
Exercises 1-4. 

1. + + + + $ + f  + . . .  5 . l + - + - + - + . . .  1 1 1  
8 + & -  . . .  2. 1 - 3  +' -' 7 72 73 

2 2 2  
3. 5 (;y 6. 2 + - + - + - + . . .  

r = l  
9 92 93 
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9. You wish to draw $10,000 out of a Swiss bank 
account at age 65, and thereafter you want to 
draw as much each year as the preceding one. 
Assuming that the account earns no interest, how 
much money must you start with to be prepared 
for an arbitrarily large life span? 

10. A decaying radioactive source emits & as much 
radiation each year as the previous one. Assum- 
ing that 2000 roentgens are given off in the first 
year, what is the total emission over all time? 

Sum the series (if they converge) in Exercises 11-20. 

nth term a, can be expressed as a, = b,, , - b, 
for some sequence b,. 
(a) Verify that a ,  + a, + a, + . . . + a, = 

b, + , - b, ; therefore the series converges ex- 
actly when lim,,,b,+, exists, and Cr= 
= lim,+,b,,+, - b l .  

(b) Use partial fraction methods to write a, 
= I/[n(n + I)] as b,, , - b, for some se- 
quence b,. Then evaluate the sum of the 
series C r =  1 /[n(n + I)]. 

36. An experiment is performed, during which time 
successive excursions of a deflected plate are 
recorded. Initially, the plate has amplitude bo. 
The plate then deflects downward to form a 
"dish" of depth b,, then a "dome" of height b2, 
and so on. (See Fig. 12.1.4.) The a's and b's are 
related by a ,  = bo - b,,a2 = b, - b2,a3 = b, - 
b3 . . . . The value an measures the amplitude 
"lost" at the nth oscillation (due to friction, say). 

Figure 11.1.4. The 
b2 deflecting plate in Exercise 36. 

21. Show that C z  *=,(I + 1 /2') diverges. 

22. Show that CzO(3 '  + 1/3') diverges. 

23. S u m 2 + 4 + + + $ + $ +  . . . .  
24. Sum I + 1/2 + 1/3 + 1/3'+ 1/33 + . - . . 

Test the series in Exercises 25-30 for convergence. 
(a) Find Cr' ,a,. Explain why bo - C r =  '=,a, is 

the "average height" of the oscillating plate 
after a large number of oscillations. 

(b) Suppose the "dishes" and "domes" decay to 
zero, that is, lim,,,b,+, = 0. Show that 
Cr= ,a, = bo, and explain why this is physi- 
cally obvious. 

37. The joining of the transcontinental railroads oc- 
curred as follows. The East and West crews were 
setting track 12 miles apart, the East crew work- 
ing at 5 miles per hour, the West crew working at 
7 miles per hour. The official with the Golden 
Spike travelled feverishly by carriage back and 
forth between the crews until the rails joined. His 
speed was 20 miles per hour, and he started from 
the East. 
(a) Assume the carriage reversed direction with 

no waiting time at each encounter with an 
East or West crew. Let tk be the carriage 
transit time for trip k. Verify that t,,,, 
- - , . n + i .  (12/13), and t2,+ = r n  - (12/27), 

where r = (13/27) . (15/25), n = 0, 1,2, 
3, . . .  . 

(b) Since the crews met in one hour, the total 

31. Show that the series C G ( 1  - 2-j)/j diverges. 
32. Show that the series f + f + $ + $ + . . . di- 

verges. 
33. Give an example to show that CT= ,(ai + bi) may 

converge while both C z  ,ai and 22 lbi diverge. 
34. Comment on the formula 1 + 2 + 4 + 8 + . . . 

= l / ( l  - 2 ) =  -1. 
35. A telescoping series, like a geometric series, can 

be summed. A series C r =  ,a, is telescoping if its 

time for the carriage travel was one hour, 
i.e., lim,,,(tl + t2 + t3 + t4 + . . - + t,) 
= 1. Verify this formula using a geometric 
series. 
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12.2 The Comparison Test 
and Alternating Series 
A series with positive terms converges if its terms approach zero quickly enough. 

Most series, unlike the geometric series, cannot be summed explicitly. If we 
can prove that a given series converges, we can approximate its sum to any 
desired accuracy by adding up enough terms. 

One way to tell whether a series converges or diverges is to compare it 
with a series which we already know to converge or diverge. As a fringe 
benefit of such a "comparison test," we sometimes get an estimate of the 
difference between the nth partial sum and the exact sum. Thus if we want to 
find the sum with a given accuracy, we know how many terms to take. 

The comparison test for series is similar to that for integrals (Section 
11.3). The test is simplest to understand for series with non-negative terms. 
Suppose that we are given series ET= lai and C?= ,bi such that 0 < a, < bi for 
all i: 

00 00 

if x b, converges, then so does 2 a, . 
i =  1 i =  l 

The reason for this is easy to see on an intuitive level. The partial sums 
Sn = CY,,a, are moving to the right on the real number line since ai > 0. 
They must either march off to co or approach a limit. (The proof of this 
sentence requires a careful study of the real numbers, but we will take it for 
granted here. Consult the Supplement to this section and the theoretical 
references listed in the Preface.) However, lai < CC= lbi < CT= lbi, since 
a, < b, and the partial sums ,bi are marching to the right toward their 
limit. Hence all the Sn7s are bounded by the fixed number CT= ,bi, and so they 
cannot go to co. 

Example I Show that x & converges. 
, = I  2'+4 

Solution We know that ET=*=,(3/2') is convergent since it is a geometric series with 
a = 3 a n d r = $  < 1; but 

so the given series converges by the comparison test. A 

For series CT= lai with terms that can be either positive or negative, we replace 
the condition 0 < ai < bi by la,J < b,. Then if CT=lbi converges, so must 
CT= "=,ail, by the test above. The following fact is true for any series: 

A careful proof of this fact is given at the end of this section; for now we 
simply observe that the convergence of ~F=",,a,l  implies that the absolute 
values la,l approach zero quickly, and the possibility of varying signs in the 
aiYs can only help in convergence. Therefore, if 0 < la,/ < b, and Cb, con- 
verges, then Cla,l converges, and therefore so does Cai. (We sometimes drop 
the "i = 1" and "co" from C if there is no danger of confusion.) This leads to 
the following test. 
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Let C?= ,ai and CT= ,bi be series such that la,/ < b,. If C?' ,bi is conver- 
gent, then so is CT= "=,,. 

" (- 11, 
Example 2 Show that 2 converges. 

; = I  13 

Solution We can compare the series with C?=11/3i. Let a, = (- l)'/(i3'+') and bi 
= 1/3'. Since i3'+ ' = (3i) .3' > 3', we have 

Therefore, since C?=*=,bi converges (it is a geometric series), so does C?= ,ai. .& 

If the terms of two series Ca i  and Cb, "resemble" one another, we may expect 
that one of the series converges if the other does. This is the case when the 
ratio ai/bi approaches a limit, as can be deduced from the comparison test. 
For instance, suppose that lim, +,(la,//b,) = M < oo, with all bi > 0. Then for 
large enough i, we have lai[/ b, < M + I, or /a,/ < (M + l)b,. Now if C bi 
converges, so does C ( M  + l)bi, by the constant multiple rule for series, and 
hence Ca, converges by the comparison test.' 

" 1 Example 3 Test for convergence: 2 - . 
i =  1 2' - i 

Solution We cannot compare directly with C?= 1/2', since 1/(2' - i) is greater than 
1/2'. Instead, we look at the ratios ai/bi with a, = 1/(2' - i) and bi = 1/2'. 
We have 

(lim, +,(i/2') = 0 by l'H6pital's rule). Since CT="=,1/2') converges, so does 
X?=l[1/(2i - 91. A 
The following tests can both be similarly justified using the original compari- 
son test. 

If (1) la,/ < bi for all i, or if limi+m(lail/bi) < ao and 
(2) C?= ,bi is convergent, then C?=*=,ai is convergent. 

If (I) a, >/ bi for all i, or if limi,,(ai/bi) > 0 and 
(2) C?= ,bi is divergent, then C?= pi is divergent. 

To choose bi in applying the ratio comparison test, you should look for the 
"dominant terms" in the expression for a,. 

' Strictly speaking, to apply the comparison test we should have lai/ < (M + l)bi for all i ,  not just 
sufficiently large i; but, as we saw earlier, the convergence or divergence of a series Ca,  is not 
affected by the values of its "early" terms, but only the behavior of ai for large i. Of course, the 
sum of the series depends on all the terms. 
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CO 

Example 4 Show that C - diverges 
i=  I 4 + i  

Solution As i -+ co, the dominant term in the denominator 4 + i is i, that is, if i is very 
large (like lo6), 4 is very small by comparison. Hence we are led to let 
a; = 2/(4 + i), bi = l/i .  Then 

a. 2/(4 + i) 
lim 1 = lim = lim - 2i - - lim 2 =-- -2.  

i j o o  bi i+m l / i  i + ~ 4 + i  ( i ) +  o + l  

Since 2 > 0, and C?="=,/i is divergent, it follows that CT="=,2/(4 + i)] is 
divergent as well. 

The next example illustrates how one may estimate the difference between a 
partial sum and the full series. We sometimes refer to this difference as a tail 
of the series; it is equal to the sum of all the terms not included in the partial 
sum. 

3 ( -  1); 
Example 5 Find the partial sum C _i+l (see Example 2) and estimate the difference 

i=1 13 
between this partial sum and the sum of the entire series. 

Solution The sum of the first three terms is 

The difference between the full sum of a series and the nth partial sum is given 
by CT= *=,ai - Z:= ,ai = CT="=,+ lai. To estimate this tail in our example, we 
write 

( s i n c e I C a i l < ~ l a i l )  " C  ,, 
i = 4  3 r 

(since i > 1) 

Thus the error is no more than 0.0062. We may therefore conclude that 
CT= ,[(- l)i/(3i+1i)] lies in the interval [-0.0967 - 0.0062, - 0.0967 + 0.00621 
= [ - 0.103, - 0.0901. A 

The second kind of series which we will treat in this section is called an 
alternating series. To illustrate, recall that we saw in Section 12.1 that the 
harmonic series 

l + + + + + $ + .  . - 
is divergent even though lim,,,(l/i) = 0. If we put a minus sign in front of 
every other term to obtain the series 

l - + + + - L +  . . .  
4 

we might hope that the alternating positive and negative terms "neutralize" 
one another and cause the series to converge. The alternating series test will 
indeed guarantee convergence. First we need the following definition. 
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A series Cy= ,ai is called alternating if the terms ai are alternately positive 
and negative and if the absolute values lai[ are decreasing to zero; that 

1. a I > 0 , a 2 < 0 , a 3 > 0 , a 4 < 0 , a n d s o o n ( o r a , < 0 , a 2 > 0  , . . .  ); 
2. (all > la21 > la31 > - . ; 

Conditions 1, 2, and 3 are often easy to verify. 

Example 6 Is the series 1 - 4 + 3 - + . . - alternating? 

Solution The terms alternate in sign, + - + - a . . , so condition 1 holds. Since the ith 
term ai = (- I)'+ '(l/i) has absolute value 1 /i, and l / i  > l/(i  + I), the terms 
are decreasing in absolute value, so condition 2 holds. Finally, since limi+mlail 
= limi,,(l /i) = 0, condition 3 holds. Thus the series is alternating. A 

- \ 
S = C ai is somewhere in here 

i=l 

Later in this section, we will prove that every alternating series converges. The 
proof is based on the idea that the partial sums Sn = C?= ,ai oscillate back and 
forth and get closer and closer together, so that they must close in on a 
limiting value S. This argument also shows that the sum S lies between any 
two successive partial sums, so that the tail corresponding to the partial sum 
Sn is less than lan+ 11, the size of the first omitted term. (See Fig. 12.2.1.) 

Figure 12.2.1. An alternat- 
ing series converges, no 
matter how slowly the 
terms approach zero. The 
sum lies between each two 
successive partial sums. 

1. If Cy= is a series such that the ai alternate in sign, are decreasing in 
absolute value, and tend to zero, then it converges. 

2. The error made in approximating the sum by S, = C',',,ai is not 
greater than 1 a, + 1. 

Example 7 Show that the series 1 - 4 + 5 - + + - . - converges, and find its sum 
with an error of no more than 0.04. 

Solution By Example 6, the series is alternating; therefore, by the alternating series test, 
it converges. To make the error at most 0.04 = A, we must add up all the 
terms through A. Using a calculator, we find 

(Since the sum lies between S2, and S,, = 0.7127, an even better estimate is 
the midpoint $(S2, + S,,) = 0.6927, which can differ from the sum by at most 
0.02.) A 
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Example 8 Test for convergence: 

(b) + -1 + 2  -1 + 2  -1 + 2  -1 + 2  -1 + . . . . 
2 3 3 4 4 5 5 6 6  

Solution (a) The terms alternate in sign since (-  1)' = 1 if i is even and (- 1)' = - 1 if i 
is odd. The absolute values, 1/(1 + i)2, are decreasing and converge to zero. 
Thus the series is alternating, so it converges. 
(b) The terms alternate in sign and tend to zero, but the absolute values are 
not monotonically decreasing. Thus the series is not an alternating one and 
the alternating series test does not apply. If we group the terms by twos, we 
find that the series becomes 

which diverges. (Notice that the nth partial sum of the "grouped" series is the 
2nth partial sum of the original series.) A 

We noted early in this section that a series C?=*=,a, always converges if its 
terms go to zero quickly enough so that the series C?="=,ail of absolute values 
is convergent. Such a series C?=*=,ai is said to be absolutely convergent. On the 
other hand, a series like 1 - $ + f - t + . . . , is convergent only due to the 
alternating signs of its terms; the series of absolute values, 1 + + f + , . . , is 
divergent (it is the harmonic series). When Cy=lai converges but C?=,/ail 
diverges, the series 2; *=,ai is said to be conditionally convergent. 

(-I),& 
Example 9 Discuss the convergence of the series 2 

i =  I ~ + 4  ' 

Solution Let a, = (- l)'fi/(i + 4). We notice that for i large, la,/ appears to behave like 
b, = 1 /&. The series C?= b, diverges by comparison with the harmonic series. 
To make the comparison between la,l and b, precise, look at the ratios: 
limi+,(lail/bi) = lim,+,[i/(i + 4)] = 1, so C?=*=,1ail diverges as well; hence 
our series is not absolutely convergent. 

The series does lo& like it could be alternating: the terms alternate in 
sign and lim,,,a, = 0. To see whether the absolute values lafl form a decreas- 
ing sequence, it is convenient to look at the function f(x) = &/(x + 4). The 
derivative is 

which is negative for x > 4, so f(x) is decreasing for x > 4. Since la,/ = f(i), 
we have la,l > la,] > la61 > . . . which implies that our series Ca,, with its 
first three terms omitted, is alternating. It follows that the series is convergent; 
since it is not absolutely convergent, it is conditionally convergent. g, 

A series C?= *=,ai is called absolutely convergent if C?= *=, 1 ail is convergent. 
Every absolutely convergent series converges. 
A series may converge without being absolutely convergent; such a 
series is called conditionally convergent. 

Copyright 1985 Springer-Verlag.  All rights reserved.



12.2 The Comparison Test and Alternating Series 575 

Supplement to Section 12.2: 
A Discussion of the Proofs of the Comparison and 

a,  a2 a3 a4 as . . . Alternating Series Tests 
The key convergence property we need involves increasing sequences. It is 

(a) similar to the existence of lim,,, f(x) iff is increasing and bounded above, 
which we used in Section 11.3 to establish the comparison test for integrals. 

M A sequence a,,a2, . . . of real numbers is called increasing in case 
a,  < a, < . . . . The sequence is said to be bounded above if there is a number 
M such that an < M for all n. (See Fig. 12.2.2.) 

For example, let an = n/(n + 1). Let us show that an is increasing and is 
bounded above by M if M is any number > 1. To prove that it is increasing, 
we must show that an < an+ ,-that is, that 

No an's - 
above M < + l or n(n + 2) < (n + 1)2 

(b) n + 1  ( n + 1 ) + 1  
Figure 12.2.2. (a) An or 
increasing sequence; 
(b) a sequence bounded n 2 + 2 n <  n 2 + 2 n +  1 or O <  1. 
above by M. Reversing the steps gives a proof that an < an+,  ; i.e., the sequence is increas- 

ing. Since n < n + 1, we have an = n/(n + 1) < 1, so an < M if M > 1. 
We will accept without proof the following property of the real numbers 

(see the references listed in the Preface). 

If an is an increasing sequence which is bounded above, then an con- 
verges to some number a as n -+ m. (Similarly, a decreasing sequence 

The increasing sequence property expresses a simple idea: if the sequence is 
increasing, the numbers an increase, but they can never exceed M. What else 
could they do but converge? Of course, the limit a satisfies an < a for all n. 

For example, consider 

a ,  = 0.3, a, = 0.33, a, = 0.333 

and so forth. These an's are increasing (in fact, strictly increasing) and are 
bounded above by 0.4, so we know that they must converge. In fact, the 
increasing sequence property shows that any infinite decimal expansion con- 
verges and so represents a real number. 

To prove the comparison test for series with positive terms, we apply the 
increasing sequence property to the sequence of partial sums. If C?= ,ai is a 
series with ai >/ 0 for each i, then since the partial sums Sn satisfy Sn - Sn-, 
= an > 0, they must be an increasing sequence (see Fig. 12.2.3). If the partial 
sums are bounded above, the sequence must have a limit, and so the series 
must converge. 

Figure 12.23. The partial .-' T 

sums of the series CF= ]ai 
are increasing and bounded 
above by T. 
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Now we may simply repeat the argument presented earlier in this section. 
If 0 < a, < bi for all i, and T, = Cr= ,b,, then S, < T, . If the partial sums T, 
approach a limit T, then they are bounded above by T, and so S, < T for all 
n. Thus lim,,,S, exists and is less than or equal to T, i.e., C?= ,an < C?= 4,. 

To complete the proof of the general comparison test, we must show that 
whenever C ?= , 1 ail converges, so does C ?= ,a, ; in other words, every absolutely 
convergent series converges. Suppose, then, that Elail converges. 

We define two new series, C?= ,bi and C?= ,ci, by the formulas 

These are the "positive and negative parts" of the series Cy= ,ai. It is easy to 
check that ai = b, - c,. The series C?= ,bi and C?= ,ci are both convergent; in 
fact, since bi < la,l, we have C','=,b, < C?=,lail < CF=,lail, which is finite 
since we assumed the series C?=,ai to be absolutely convergent. Since b, > 0 
for all i, C??"=,, is convergent. The same argument proves that C?="=,i is 
convergent. The sum and constant multiple rules now apply to give the 
convergence of 2 ?= ,a, = C ?= , bi - C ?= , ci . 

Finally, we note that, by the triangle inequality, 

Since this is true for all n, and 

ai = Jim, ,x ai = lim C a, 1' i=  1 I I 1 n+Wli:l 1 
(the absolute value function is continuous), it follows that (C?= "=,,I < C?= ,lai[. 
(Here we again used the fact that if b, < M for all n and b, converges to b, 
then b < M). 

We conclude this section with a proof that every alternating series converges. 

Let C?= "=,, be an alternating series. If we let bi = (- l)'+'ai, then all the bi 
are positive, and our series is b, - b, + b, - b, + b, . . . In addition, we have 
b, > b, > b, > - . , and lim,,,b, = 0. Each even partial sum S,, can be 
grouped as (b, - b,) + (b, - b,) + . - + (b,-, - b,), which is a series of 
positive terms, so we have S, < S, < S, < . - . . On the other hand, the odd 
partial sums S,,, , can be grouped as b, - (b, - b,) - (b, - b,) - . . . - 
(b,, - b,,,,), which is a sum of negative terms (except for the first), so we 
have S, > S3 > S5 > . - . . Next, we note that S,,, , = S,, + b2,+ , > S,, . 
Thus the even partial sums S,, form an increasing sequence which is bounded 
above by any member of the decreasing sequence of odd partial sums. (See 
Fig. 12.2.1 .) By the increasing sequence property, the sequence S,, approaches 
a limit, Seven. Similarly, the decreasing sequence S,,, , approaches a limit, 
Sodd  . 

Thus we have S, < S, < S, < . . . S,, < - . < Seven < Sod, . - . < 
S,,, , < . . . < S3 < S, . Now S2,+ , - S,, is a2,+ , , which approaches zero as 
n + co ; the difference Sod, - Seven is less than S,, + , - S,, , so it must be zero; 
i.e., Sod, = Seven. Call this common value S. Thus IS,, - SI < IS,, - S,,, ,I 
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= b2n+l = Ia2n+1I and I S Z ~ + I  - SI Is2n+1 - S2n+2I = b2n+2 = Ia2n+217 
each difference I Sn - S I is less than lan+ 1. Since a n +  + 0, we must have 
Sn+S as n + m .  

This argument also shows that each tail of an alternating series is no 
greater than the first term omitted from the partial sum. 

Exercises for Section 12.2 
Show that the series in Exercises 1-8 converge, using 

1 1 1 1  1 1 33. - + - + - + - + - + - + . - .  
3 5 9 17 33 65 

+ 
the comparison test for series with positive terms. 1 

1 1 1  1 34. I + -  + -  + -  + . . .  +- + . . .  
3 7 15 2" - 1 

8 Find the sum of the series in Exercises 35-38 with an 
error of no more than 0.01. 

- - 

" k  co 
36. C [Hint: Compare with C 

k=O 2 k=O 
(f )*.I M sin i cos(ai) 

7. C7 8. - 
i=1 2 - 1 i=1 3 '-1 

Show that the series in Exercises 9-12 diverge, by using 
the comparison test. 

Test the series in Exercises 39-50 for convergence and 
absolute convergence. 

Test the series in Exercises 13-34 for convergence. 

w cos ai " (-1)" 43. - 44. C - 
i = ~  2' 8n + 2 

47. (- 1y -.!..- 
i= I i 2 +  1 

48. C z l a i ,  where a, = 1/(2') if i is even and ai 
= I / i  if i is odd. 

49. C:='=,(- I)"ln[(n + l)/n]. [Hint: First prove that 
In(1 + a) > a /2  for small a > 0.1 

50. C:='=,(- l)"+'ln[(n + 3)/n]. (See the hint in 49.) 

Estimate the sum of the series in Exercises 51-54 with 
an error of no more than that specified. 

" sin j 
29. C - 30. 

j=1 2' " 1 31. C - 32. 
i=2  Ini 
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55. Test for convergence: 4 + t - $ - h + 2 + 
- $  -' + . . . 

56. Does the series t + + - - f + + f - . - 
converge? 

Exercises 57 and 58 deal with an application of the 
increasing sequence test to inductively defined se- 
quences. For example, let a, be defined as follows: 

and, in general, a, = J3 + a,-, . If we attempt to write 
out a, "explicitly," we quickly find ourselves in a nota- 
tional nightmare. However, numerical computation sug- 
gests that the sequence may be convergent: 

a, = 2.3027 1 a, = 2.30276 a, = 2.30277 

a lo  = 2.30278 a , ,  = 2.30278 a,, = 2.30278 . . . 

The sequence appears to be converging to a number 
lm2.30278 . . . , but the numerical evidence only sug- 
gests that the sequence converges. The increasing se- 
quence test enables us to prove this. 
- 57. Let the sequence anebe defined inductively by the 

rules a. = 0, a, = JG. 
(a) Write out a , ,  a,, and a, in terms of square 

roots. 
(b) Calculate a ,  through a,, and guess the value 

of lim,,,a, to four significant figures. 
*58. (a) Prove by induction on n that for the se- 

quence in Exercise 57, we have a, > a,-, 
and a, < 5. 

(b) Conclude that the limit I = lim,,,a, exists. 
(c) Show that I must satisfy the equation 

1 = m .  
(d) Solve the equation in (c) for I and evaluate I 

to four significant figures. Compare the re- 
sult with Exercise 57(b). 

Show that the sequences in Exercises 59-62 are increas- 
ing (or decreasing) and bounded above (or below). 

*63. Let B > 0 and a. = 1; a,+, = $(a, + B/a,). 
Show that a, +@. 

*64. Let a,,, = 3 - (l/a,); a. = 1. Prove that the se- 
quence is increasing and bounded above. What is 
lim,,,a,? 

*65. Let a , + , = f a , + & ;  a o =  1. Prove that a, is in- 
creasing and bounded above. What is lim,,,a,? 

*66. Let a,, , = $ (1 + a,), and a. = 1. Show that 
limn+,an = 1. 

*67. Give an alternative proof that limn,,rn = 0 if 
0 < r < 1 as follows. Show that r n  decreases and 
is bounded below by zero. If the limit is I, show 
that rl = I and conclude that I = 0. Why does the 
limit exist? 

*68. Suppose that a. = 1, a,+, = 1 + 1/(1 + a,). Show 
that a, converges and find the limit. 

*69. The celebrated example due to Karl Weierstrass 
of a nowhere differentiable continuous function f(x) 
in - oo < x < oo is given by 

where +(x + 2) = +(x), and +(x) on 0 < x < 2 is 
the "triangle" through (0, O), (1, I), (2,O). By con- 
struction, 0 < +(4"x) < 1. Verify by means of the 
comparison test that the series converges for any 
value of x. [See Counterexamples in AnaIysis by 
B. R. Gelbaum and J. M. H. Olmsted, Holden- 
Day, San Francisco (1964), p. 38 for the proof 
that f is nowhere differentiable.] 

*70. Prove that a, = (1 + l/n)" is increasing and 
bounded above as follows: 
(a) If 0 < a < b, prove that 

bfl+ 1 - 1 
<(n + l )bn.  

b - a  

That is, prove bn[(n + 1)a - nb] < a n + ' .  
(b) Let a = 1 + [l/(n + l)] and b = 1 + ( l /n)  

and deduce that a, is increasing. 
(c) Let a = 1 and b = 1 + (1/2n) and deduce 

that (1 + 1/2n)2" < 4. 
(d) Use parts (b) and (c) to show that a, < 4. 
Conclude that a, converges to some number (the 
number is e-see Section 6.3). 
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Figure 12.3.1. The area 
under the graph o f f  is less 
than the shaded area, so 
0 G J;+'f(x)dx G C:=,a,. 

The Integral and 
Ratio Tests 
The integral test establishes a connection between infinite series and improper 
integrals. 

The sum of any infinite series may be thought of as an improper integral. 
Namely, given a series C?= ,a,, we define a step function g(x) on [I, co) by the 
formulas: 

g(x) = a ,  (1 < x < 2) 

g ( x ) = a ,  ( 2 < x < 3 )  

Since fif 'g(x) dx = a,, the partial sum z;=, ai is equal to fi+ lg(x) dx, and the 
sum C?=*=,a, = lirn,+,C?=,ai exists if and only if the integral J;"g(x)dx 
= lim,,,J: g(x) dx does. 

By itself, this relation between series and integrals is not very useful. 
However, suppose now, as is often the case, that the formula which defines the 
term a; as a function of i makes sense when i is a real number, not just an 
integer. In other words, suppose that there is a function f(x), defined for all x 
satisfying 1 < x < co, such that f(i) = a; when i = 1,2,3, . . . . Suppose fur- 
ther that f satisfies these conditions: 

1. f(x) > 0 for all x in [l, co); 
2. f(x) is decreasing on [l,  co). 

For example, if ai = l / i ,  the harmonic series, we may take f(x) = l /x .  
We may now compare f(x) with the step function g(x). When x satisfies 

i < x < i + 1, we have 

0 < f(x) < f ( i )=  a, = g(x). 

Hence 0 < f(x) < g(x). (See Fig. 12.3.1 .) 

It follows that, for any n, 

o < I ; n + l f ( x ) d x < I ; n + ' g ( x ) d x =  5 a,. 
i =  1 

We conclude that if the series C?= "=,i converges, then the integrals 'f(x) dx 
are bounded above by the sum z?=fli, so that the improper integral 
J;"f (x) dx converges (see Section 1 1.3). 

In other words, if the integral J;"f(x)dx diverges, then so does the series 
C?=,a,. 

Copyright 1985 Springer-Verlag.  All rights reserved.



580 Chapter 12 Infinite Series 

Example 1 Show that 

and so obtain a new proof that the harmonic series diverges. 

Solution We take our function f(x) to be l /x.  Then, from formula (1) above, we get 

Since lim,,,ln(n + 1) = m, the integral l;"(l/x)dx diverges; hence the series 
C ?= ,(l / i) diverges, too. g, 

We would like to turn around the preceding argument to show that if 
l;"f(x)dx converges, then C?=,a, converges as well. To do so, we draw the 
rectangles with height a; to the left of x = i rather than the right; see Fig. 
12.3.2. This procedure defines a step function h(x) on [I, m) defined by 

h(x)=a,+,  ( i < x < i + l ) .  

Now we have Jj+'h(x)dx = a,+,, so C:=2a, = J;h(x)dx. If x satisfies i < x 
< i + 1, we have 

f(x) > f ( i +  1 )=  a,+, = h(x) > 0. 

Hence f(x) > h(x) > 0. (See Fig. 12.3.2.) Thus 

Figure 123.2. The area 
under the graph of 
f is greater than the 
shaded area, so 
0 < C;=,a; < J; f ( x )  dx. X 

If the integral J;"f(x)dx converges, then the partial sums C',',,a, = a ,  + 
C:,,a, are bounded above by a ,  + l;"f(x)dx, and therefore the series C?= ,a, 
is convergent (see the Supplement to Section 12.2). 

m 

To test the convergence of a series x a; of positive decreasing terms, 
i= 1 

find a positive, decreasing function f(x) on [I, co) such that f(i) = a;. 
m 

lf,Jmf(x) dx converges, so does 2 a,. 
i =  l 

m 

If J m  f (x) dx diverges, so does x a;. 
i =  I 

Example 2 Show that 1 + $ + $ + & + . - - converges. 

Solution This series is C?= ,(l/i2). We let f(x) = 1/x2; then 

The indefinite integral converges, so the series does, too. A 
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00 00 

diverges, but C Example 3 Show that --- I converges. 
m=2 m&Gi m=2 m(1nm) 

Solution Note that the series start at m = 2 rather than m = 1. We consider the integral 

= lim 
b+cc - p +  1 

The limit is finite if p = 2 and infinite if p = 4, so the integral converges if 
p = 2 and diverges if p = f. It follows that ~ ; = ~ [ l / ( m f i ) ]  diverges and 
2 = 2[1 / m (ln m)2] converges. A 

Examples 1 and 2 are special cases of a result called the p-series test, which 
arises from the integral test with f(x) = l/xP. We recall that J;"xndx con- 
verges if n < - 1 and diverges if n > - 1 (see Example 2, Section 11.3). Thus 
we arrive at the test in the following box. 

The p-series are often useful in conjunction with the comparison test. 

Example 4 Test for convergence: 

Solution (a) We compare the given series with the convergent p series C?=*=,l/i2. Let 
a, = 1 /(1 + i2) and bi = 1 / i2. Then 0 < a, < b, and Cy= b, converges, so 
C?=, ai does, too. 
(b) Let aj = ( j2  + 2j)/(j4 - 3j2 + lo) and bj = j2/j4 = l/j2. Then 

Since C > b  converges, so does CT=,a,, by the ratio comparison test. 

(c) Take a,, = (3n +6) / (2n3l2  + 2) and b,, = = 1 / 6 .  Then 

lim 
3 + ( l / C )  3 - - - 

n + w 2 + ( 2 / n 3 / 2 )  2 '  

Since 2 := b,, diverges, so does := '=,an. 
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What is the error in approximating ap-series by a partial sum? Let us show 
that c:= ,(l/  np) approximates C:= ,(l/  nP) with error which does not exceed 
I/[(p - 1)Np-'I. 

Indeed, just as in the proof of formula (2), we have 

The left-hand side is the error: 

Thus, error < 1 
(P - I)NP-I ' 

1 Example 5 It is known that Cr= l ( l /n2 )  = 7r2/6. Use this equation2 to calculate n2/6 
with error less than 0.05. 

Solution By equation (3), the error in stopping at N terms is at most 1/N. To have 
error < 0.05 = $, we must take 20 terms (note that 100 terms are needed to 
get two decimal places!). We find: 

1 = 1, 
1 + 4 = 1.25, 

1 + a + + =  1.36, 

1 + a + $ + & =  1.42, 

1 + a + $ + & + & =  1.46, 

and so forth, obtaining 1.49, 1.51, 1.53, 1.54, 1.55, 1.56, . . . . Finally, 
1 + + . . + & = 1.596 . . . . (Notice the "slowness" of the convergence.) 
We may compare this with the exact value n2/6 = 1.6449 . . . . A 
The idea used in the preceding example can be used to estimate the tail of a 
series whenever convergence is proven by the integral test. (See Exercise 11.) 

Another important test for convergence is called the ratio test. This test 
provides a general way to compare a series with a geometric series, but it 
formulates the hypotheses in a way which is particularly convenient, since no 
explicit comparison is needed. Here is the test. 

For a proof using only elementary calculus, see Y. Matsuoka, "An Elementary Proof of the 
Formula C;P=, l / k2  = a2/6," American Mathematical Monthly 68(1961): 485-487 (reprinted in 
T. M. Apostol (ed.), Selected Papers on Calculus, Math. Assn. of America (1969), p. 372). The 
formula may also be proved using Fourier series; see for instance J. Marsden, Elementary 
Classical Analysis, Freeman (1974), Ch. 10. 
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Do not confuse this test, in which ratios of successive terms in the same series 
are considered, with the ratio comparison test in Section 12.2, where we took 
the ratios of terms in two different series. 

Proof of By definition of the limit, lai/ai-,l will be close to its limit 1 for i large. To 
the ratio prove part 1, let I < 1 and let r = (I + 1)/2 be the midpoint between I and 1, 

test so that 1 < r < 1. Thus there is an N such that 

We will show this implies that the given series converges. 
We have laN+l /aNl  < l aN+ l l  < laNlr, 1aN+2/aN+11 < r; hence laN,+21 

< laN+,lr < laNlr2 and, in general, JaN+,l < laNlrJ; but CT=llaNJrJ = 
laNIZT= is a convergent geometric series since r < 1. Hence, by the compar- 
ison test, CiM=,laN+jl converges. Since we have omitted only l a l [ ,  
la21, . . . , laN/, the series Ci",,lajl converges as well and part 1 is proved. 

For part 2 we find, as in part 1, that laN+,l > laNlrj, where r = (1 + 1)/2 
is now greater than 1. As j -+ co, r j  -+ co, so laN+jl + co . Thus the series 
cannot converge, since its terms do not converge to zero. 

To prove part 3, we consider the p-series with ai = iP. The ratio is 
lai/ai-ll = [i/(i - l)]P, and limi,,[i/(i - 1)]P = [limi+,(i/(i - l))]P = 1P 
= 1 for all p > 0; but the p-series is convergent if p > 1 and divergent if p < 1, 
so the ratio test does not give any useful information for these series. II 

22 23 24 1 8 1 Example 6 Test for convergence: 2 + - + - + - + . - . = 2 + - + - + - 
28 38 48 64 6561 4096 

Solution We have ai = 2'/i8. The ratio ai/ai-, is 

ai 8 i - 1  lim - = 2  llm - = 2 . 1 8 = 2  
i+w ai- [ i  i ) ]  

which is greater than 1, and so the series diverges. A 

Example 7 Test for convergence: 

1 (a) C:=l--i., wheren!= n(n- 1 ) . . . 3 . 2 .  1 
n. 
bJ (b) 2% T, b any constant 
J -  

Solution (a) Here a, = l/n!, so 
l / n ( n -  1 ) - a . 3 - 2 . 1  

an - -- - 1 - - 
an- I l / ( n - l ) ( n - 2 ) . . - 3 . 2 - 1  n '  

Thus lan/an - , I  = 1 /n -+ 0 < 1, so we have convergence. 
(b) Here aj = bj/j!, so 

aj - -- bJ/j! - b - - 
aj-I b - 1 )  j ' 

Thus /aj/aj-,/ = b/j+O, so we have convergence. In this example, note that 
the numerator bJ and the denominator j! tend to infinity, but the denominator 
does so much faster. In fact, since the series converges, bJ/j!-+O as j+ co. A 
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Let us show that if (an/an-,( < r < 1 for n > N, then the error made in 
approximating C:=,an by C:= ,an is no greater than laNlr/(l - r). In short, 

laNlr error < - . 
I - r  

Indeed, C:= ,an - C:, ,a,, = C;=N+ ,a,,. As in the proof of the ratio test, 
laN+,/ < laN(r, and, in general, < laNlrj, so C%1aN+ < laNlr/(l - r) 
by the formula for the sum of a geometric series and the comparison test. 
Hence the error is no greater than laNlr/(l - r). 

" 1 
4 

1 Example 8 What is the error made in approximating 2 --i- by 2 ? 
f l = l  n. , ,=I n. 

Solution Here (an/an- , (  = l/n, which is < f if n > 4 = N. By inequality (4), the error 
is no more than a,/5(1 - 1 /5) = 1 /4 - 4! = 1 /96 < 0.0105. The error becomes 
small very quickly if N is increased. A 

Our final test is similar in spirit to the ratio test, in that it is also proved by 
comparison with a geometric series. 

To prove 1, let I = lirnn,,(lanl1/") and let r = (1 + 1)/2 be the midpoint of 1 
and I, so I < r < 1. From the definition of the limit, there is an N such that 
lanll/" < r < 1 if n > N. Hence lan[ < r n  if n > N. Thus, by direct comparison 
of C?= 1 an 1 with the geometric series 2 r ", which converges since 
r < 1, C;='=,+ ,lanl converges. Since we have neglected only finitely many 
terms, the given series converges. 

Cases 2 and 3 are left as exercises (see Exercises 37 and 38). 

" 1 " 3" Example 9 Test for convergence: (a) 2 2 and (b) 2 7 . 
n= 1 , ,= I  n 

Solution (a) Here an = I /nn,  so lanl'/n = l/n. Thus lirnn,,lanl'/" = 0 < 1. Thus, by 
the root test (with i replaced by n), the series converges (absolutely). [This 
example can also be done by the comparison test: l/nn < l/n2 for n 2 2.1 
(b) Here an = 3"/n2, so lanll/" = 3/n2/"; but limn,,n2/" = 1, since ln(n2/") 
= 2(ln n)/n + 0 as n -+ oo (by l'H6pital's rule). Thus limn,, lan] I/" = 3 > 1, so 
the series diverges. d, 

The tests we have covered enable us to deal with a wide variety of series. Of 
course, if the series is geometric, it may be summed. Otherwise, either the ratio 
test, the root test, comparison with a p-series, the integral test, or the alternat- 
ing series test will usually work. 
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m 
* 1 Example l O  Test for convergence: (a) x 5 and  (b) x 

n=l  n -  n=t n 2 - I n n '  
Solullon (a) W e  use the ratio test. Here, an = nn/n!, so 

The numerator approaches 1 while the denominator approaches e- '  (see 
Section 6.4), so limn,,lan/an- , I  = e > 1, and  the series diverges. 
(b) W e  expect the series to behave like C:='=,(l/n2), so we use the ratio 
comparison test, with a, = l /( i2 - lni)  and  b, = l/i2. The ratio between the 
terms in the two series is 

Since lim, +,[(lni)/i2] = 0 (by l'H6pital's rule), limi+,ai/bi = 1. The p-series 
2 ?= bi = 2 ?= 1(1 / i2) converges, so the series 

00 00 

converges, too. A C a,= C - 
i=1 i=1 i2 - l n i  

Exercises for Section 12.3 
Use the integral test to determine the convergence or 
divergence of the series in Exercises 1-4. 

Estimate the sums in Exercises 17 and 18 to within 0.05. 

4. 1 
i = 2 i (ln i)2/3 

a19. Estimate C;='=,(l/n!): (a) To within 0.05. 
(b) To within 0.005. (c) How many terms would 
you need to calculate to get an accuracy of five 
decimal places? 

Use the p-series test and a comparison test to test the 
series in Exercises 5-8 for convergence or divergence. 

sin(m/2) 
120. (a) Show that C converges. 

n = l  n! 

w sin n 6. C - 
n= 1 n312 

(b) Estimate the sum to within 0.01. 
Use the root test to determine the convergence or 
divergence of the series in Exercises 2 1-24. 

Estimate the sums in Exercises 9 and 10 to within 0.05. 

11. Let f(x) be a positive decreasing function on 
[I, oo) such that jpDf(x)dx converges. Show that 

Test for convergence in Exercises 25-36. 

12. Estimate CF=l[(l + n2)/(1 + n8)] to within 0.02. 
(Use the comparison test and the integral test.) 

Use the ratio test to determine the convergence or 
divergence of the series in Exercises 13-16. 

m cos k~ 29. C - 
,=, Ink 
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m 
s - lns 34. 2 --- 

s= l  s2 + Ins 
(-1)I 

36. 2 - 
t=I t1/4 

In Exercises 37 and 38, complete the proof of the root 
test by showing the following. 
*37. If limn,,lanll/" > 1, then Cr= '=,an diverges. 
*38. If limn,,lanll/" = 1, the test is inconclusive. (You 

may use the fact that limn,,ni/" = 1.) 

*39. For which values of p does C z  "=,[sn(l/i)]P con- 
verge? 

*40. For which vaiues of p does CF=2[l/n(lnn)P] con- 
verge? 

*41. For which p does C2=2(l /npln n) converge? 
*42. For which values of p and q is the series 

2 ?= 2l  /[nP(ln n)q] convergent? 
*43. (a) Let f(x) be positive and decreasing on [l ,  m), 

and suppose that f(i) = ai for i = 1,2,3, . . . . 
Show that 

where 

[Hint: Look at the proof of the integral test; show 
that J,",I f(x)dx < C E n + l a i  < J:f(x)dx.] 

a (b) Estimate Zr= 1 / n4 to within 0.0001. How 
many terms did you use? How much work do you 
save by using the method of part (a) instead of the 
formula: error < 1 / ( p  - 1)NPp1? 

*44. Using Fourier analysis, it is possible to show that 

(a) Show directly that the series on the right is 
convergent, by means of the integral test. 

(b) Determine how many terms are needed to 
compute a4/96 accurate to 20 digits. 

*45. A bar of length L is loaded by a weight W at its 
midpoint. At t = 0 the load is removed. The de- 
flection y(t) at the midpoint, measured from the 
straight profile y = 0, is given by 

where r = ( $ \is ) The numbers E, I, g, 

y, 9, L are positive constants. 
(a) Show by substitution that the bracketed 

terms are the first three terms of the infinite 
series 

(b) Make accurate graphs of the first three par- 
tial sums 

Sl(r)  = cos(r), 

Up to a magnification factor, these graphs 
approximate the motion of the midpoint of 
the bar. 

(c) Using the integral test and the comparison 
test, show that the series converges. 

12.4 Power Serles 
Many functions can be expressed as bbpolynomials with infinitely many terms." 

A series of the form C7=,ai(x - x,)', where the ai's and x, are constants and x 
is a variable, is called a power series (since we are summing the powers of 
(x - x,)). In this section, we show how a power series may be considered as a 
function of x, defined on a certain interval. In the next section, we begin with 
an arbitrary function and show how to find the power series which represents 
it (if there is such a series). 

We first consider power series in which x, = 0; that is, those of the form 
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serles converges ~f 
x IS In t h ~ s  ~nterval Se"es *lverges 

Figure 12.4.1. R is the 
radius of convergence of 
CZoa,x1. 

where the ai are given constants. The domain off can be taken to consist of 
those x for which the series converges. 

If there is an integer N such that ai = 0 for all i > N, then the power 
series is equal to a finite sum, Cy'oaixi, which is just a polynomial of degree 
N. In general, we may think of a power series as a polynomial of "infinite 
degree"; we will see that as long as they converge, power series may be 
manipulated (added, subtracted, multiplied, divided, differentiated) just like 
ordinary polynomials. 

The simplest power series, after a polynomial, is the geometric series 

which converges when 1x1 < 1 ; the sum is the function 1/(1 - x). Thus we 
have written 1/(1 - x) as a power series: 

Convergence of general power series may often be determined by a test 
similar to the ratio test. 

exists. Let R = 1/1; if I = 0, let R = co, and if 1 = co, let R = 0. Then: 

1. If 1x1 < R, the power series converges absolutely. 

To prove part 1, we use the ratio test for series of numbers; the ratio of 
m 

successive terms for 2 aixi is 
i=O 

By hypothesis, this converges to I 1x1 < I - R = 1. Hence, by the ratio test, the 
series converges absolutely when 1x1 < R. The proof of part 2 is similar, and 
the examples below will show that at x = + R, either convergence or diver- 
gence can occur. 

The number R in this test is called the radius of convergence of the series 
(see Fig. 12.4.1). One can show that a number R (possibly infinity) with the 
three properties in the preceding box exists for any power series, even if 
limi,,(ai/ai- , (  does not exist. 
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m .  
Example 1 For which x does x -L x ' converge? 

i=, i + 1 

Solution Here ai = i/(i + 1). Then 

Hence I  = 1. Thus the series converges if 1x1 < 1 and diverges if 1x1 > 1. If 
x = 1, then limi+m[i/(i + l)]xl = 1, so the series diverges at x = 1 since the 
terms do not go to zero. If x = - 1, lim,,,l[i/(i + l)]xil = limijm[i/(i + l)] 
= 1, so again the series diverges. a 

m 
Example 2 Determine the radius of convergence of 2 k5 X k  

k=O (k + I)! 
Solution To use the ratio test, we look at 

Here ak = k5/(k + l)!, so 

1  = lim 
k - + ~  (k + l)! (k - 115 I k5 . 

Thus 1 = 0, so R = co and the radius of convergence is infinite (that is, the 
series converges for all x). A 

Example 3 For which x do the following series converge? (a) 2 5 (b) 3 i = l  1 i = l  I 
0 0 :  

(c) x 5 (By convention, we define O! = 1 .) 
i = O  1 .  

Solution (a) We have ai = l/i ,  so 

the series therefore converges for 1x1 < 1 and diverges for 1x1 > 1. When 
x = 1, Cy? ,x i / i  is the divergent harmonic series; for x = - 1, the series is 
alternating, so it converges. 
(b) We have ai = 1 /i2, SO 

(i - I ) ~  
I =  lim - = 

i+w i2 
1 

and the radius of convergence is again 1. This time, when x = 1, we get the 
p-series Cy=l(l/i2), which converges since p = 2 > 1. The series for x = - 1, 

l)r/i2], converges absolutely, so is also convergent. 
(c) Here ai = l/i!, so lai/ai-,l = (i - l)!/i! = l/i+O as i+  co. Thus I  = 0, 
so the series converges for all x. A 
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Series of the form C?=,ai(x - x,)' are also called power series; their theory is 
essentially the same as for the case xo = 0 already studied, because 
C?=,ai(x - x,)' may be written as C?=,aiwl, where w = x - x,. 

00 

Example 4 For which x does the series 4n (x + 5)" converge? 
n=o J2n+5 

Solution This series is of the form C?=,a,(x - x,)', with a, = &/dm and x, = - 5. 
We have 

ai 4' &i - 1) + 5 
- lim - . I =  lim - - 

i+m a;-l i+m 4i- I 

so the radius of convergence is a. Thus the series converges for I x + 5 1 < a 
and diverges for 1x + 51 > a. When x = - 5 a, the series becomes 
C?=,[(- I)'/ J2i + 5 1, which converges because it is alternating. When 
x = - 4!, the series is C?=,[l / d m ] ,  which diverges by the ratio compari- 

son test with ~ ? = * = , ( l / f i )  (or by the integral test). Thus our power series 
converges when -5; < x < - 4 t .  A 

In place of the ratio test, one can sometimes use the root test in the same way. 

Then the radius of convergence is R = lip. 

Indeed, if 1x1 < R, limi+m(aixi('/i = limi+,laill/'lxl = plxl < pR = 1 ,  so the 
power series converges by the root test. 

00 

Example 5 Find the radius of convergence of the series s x i  
i=l (2 + l/i)j ' 

Solution p = limi+,la,ll/' = lim,+,(l/(2 + l/i>')'/' = limi+,{1/[2 + (l/i)]) = t , SO 

the radius of convergence is R = 2. A 

Let f (x) = C ?= ,six ', defined where the series converges. By analogy with 
ordinary polynomials, we might guess that 

and that 

In fact, this is true. The proof is contained in (the moderately difficult) 
Exercises 41-45 at the end of the section. 

00 

Example 6 If f(x) = 2 < , show that f ' (x)  = f(x). Conclude that f(x) = ex .  
n -0  n. 

Solution By Example 3(c), the series for f(x) converges for all x. Then f'(x) 
= C7=,(ixi-'/i!) = C7="=,xi-'/(i - I)!] = C?=,(xi/i!) = f(x). By the 
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uniqueness of the solution of the differential equation f'(x) = f(x) (see Section 
8.2), f(x) must be cex for some c. Since f(0) = 1, c must be 1, and so 
f(x) = ex. A 

To differentiate or integrate a power series within its radius of conver- 
gence R, differentiate or integrate it term by term: if Ix - xol < R, 

00 

Example 7 Let f(x) = x - xi. Find a series expression for f'(x). Where is it valid? 
i = O  i +  1 

Solution By Example l,f(x) converges for 1x1 < 1. Thusf'(x) also converges if 1x1 < 1, 
and we may differentiate term by term: 

CC 
i2 

f'(x) = iTo ;TT , 1x1 < I (this series diverges at x = i 1) 

(Notice that f'(x) is again a power series, so it too can be differentiated. 
Since this can be repeated, we conclude that f can be differentiated as many 
times as we please. We say that f is infinitely differentiable.) A 

Example 8 Write down power series for x/(l + x2) and ln(1 + x2). Where do they 
converge? 

Solution First, we expand 1/(1 + x2) as a geometric series using the general formula 
1/(1 - r) = 1 + r + r2 + , with r replaced by - x2, obtaining 1 - x2 + 
x4 - . . - . Multiplying by x gives x/(l + x2) = x - x3 + x5 - - - , which 
converges for 1x1 < 1. (It diverges for x = + 1 .) 

Now we observe that (d/dx)ln(l + x2) = 2x/(1 + x2), so 

(The integration constant was dropped because ln(1 + 02) = 0.) This series 
converges for 1x1 < 1, and also for x = + 1, because there it is alternating. A 

The operations of addition and multiplication by a constant may be per- 
formed term by term on power series, just as on polynomials. This may be 
proved using the limit theorems. The operations of multiplication and division 
proceed by the same methods one uses for polynomials, but are more subtle to 
justify. We state the results in the following box. 
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If T is the smaller of R and S,  then 

f(x) + g(x) = t: (ai + bi)xi for 1x1 < T; 

Example 9 Write down power series of the form C?=*=,aixi for 2/(3 - x), 5/(4 - x), and 
(23 - 7x)/[(3 - x)(4 - x)]. What are their radii of convergence? 

Solution We may write 

The ratio of successive coefficients is (1/3'+')/(1/3') = 1/3, so the radius of 
convergence is 3. 

Similarly, 

with radius of convergence 4. Finally, we may use partial fractions (Section 
10.2) to write (23 - 7x)/[(3 - x)(4 - x)] = 2/(3 - x) + 5/(4 - x), so we have 

By the preceding box, the radius of convergence of .this series is at least 3. In 
fact, a limit computation shows that the ratio of successive coefficients 
approaches 3, so the radius of convergence is exactly 3. A 

In practice, we do not use the formula for f(x)g(x) in the box above, but 
merely multiply the series for f and g term by term; in the product, we collect 
the terms involving each power of x. 

Example 10 Write down the terms through x4 in the series for eX/(l - x). 

Solution We have e x  = 1 + x + x2/2 + x3/6 + x4/24 + . - . (from Example 6) and 
1/(1 - x) = 1 + x + x2 + x3 + x4 + - . - . We multiply terms in the first se- 
ries by terms in the second series, in all possible ways. 
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(Since we want the product series only through x4, we may neglect the terms 
in higher powers of x.) Reading along diagonals from lower left to upper right, 
we collect the powers of x to get 

Exercises for Seetian 12.4 
For which x do the series in Exercises 1-10 converge? Use the root test to determine the radius of convergence 

Find the radius of convergence of the series in Exercises 
11-14. 

Find the radius of convergence R of the series 
C~=,,anxn in Exercises 15-18 for the given choices of 
a,, . Discuss convergence at + R. 

15. a,, = I/(n + 1)" 16. an = (- l)"/(n + 1) 
17. an = (n2 + n3)/(1 + n)5 18. an = n 

of the series in Exercises 19-22. 

23. Let f(x) = x - x3/3! + x5/5! - - . . . Show that 
f is defined and is differentiable for all x. Show 
that f"(x) + f(x) = 0. Use the uniqueness of so- 
lutions of this equation (Section 8.1) to show that 
f(x) = sin x. 

24. By differentiating the result of Exercise 23, find a 
series representation for cosx. 

25. Let f(x) = C?=*=,(i + l)xi. 
(a) Find the radius of convergence of this series. 
(b) Find the series for JG f(t) dt. 
(c) Use the result of part (b) to sum the series 

f ( 4 .  
(d) Sum the series g + $ + + + +, + . - . 

26. (a) Write a power series representing the integral 
of 1/(1 - x) for 1x1 < 1. (b) Write a power series 
for lnx = J(dx/x) in powers of 1 - x. Where is 
it valid? 

Write power series representations for the functions in 
Exercises 27-30. 

27. ePx2. (Use Example 6.) 
28. (d/dx)e-"* 
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29. tan-lx and its derivative. [Hint: Do the deriva- 
tive first.] 

30. The second derivative o f  1 / ( 1  - x). 

31. Find the series for 1 / [ ( 1  - x)(2 - x)] by writing 

and adding the resulting geometric series. 
32. Find the series for x / ( x 2  - 4x  + 3). (See Exer- 

cise 31). 
33. Using the result o f  Exercise 23, write the terms 

through x6 in a power series expansion o f  sin2x. 
34. Find the terms through x6 in the series for 

sin3x/x. 
35. Find series f ( x )  and g (x )  such that the series 

f ( x )  + g(x)  is not identically zero but has a 
larger radius o f  convergence than either f ( x )  or 
g(x>. 

36. Find series f ( x )  and g(x), each o f  them having 
radius o f  convergence 2, such that f ( x )  + g(x )  
has radius of  convergence 3. 

37. (a) By dividing the series for sinx by that for 
cosx, find the terms through xS  in the series 
for tanx. 

(b)  Find the terms through x4 in the series for 
sec2x = ( d / d x )  tan x. 

(c) Using the result o f  part (b), find the terms 
through x4 in the series for l/sec2x. 

38. Find the terms through x5 in the series for 
- e - X  

tanh x = ---- 
e x  + e -X  

39. Find a power series which converges just when 
- l < x < l .  

40. Why  can't x 'I3 be represented in the form o f  a 
series Cy=oaixi, convergent near x = O? 

Exercises 41-45 contain the proof o f  the results on the 
differentiation and integration of  power series. For sim- 
plicity, we consider only the case xo = 0. Refer to the 
following theorem. 

Theorem Suppose that Cy=oaixi converges for some par- 
ticular value of x ,  say x = xo. Then: 

1. There is an integer N such that 'm < 1 /lxol for all 
i > N .  

2. If 1 yl < Ixol, then Cym0aaLvi converges absolutely. 

Proof For part 1 ,  suppose that 'm > l/lxol for arbi- 
trarily large values o f  i. Then for these values o f  i we 
have lail > 1 /lxoli, and laixil > 1 ;  but then we could 
not have a,x;+O, as is required for convergence. 

For part 2, let r = Iyl/lxol, SO that Irl < 1. By part 
1, laiy ' 1  = lai/ Ixoliri < ri for all i > N. By the compari- 
son test, the series C?="=,ayi converges absolutely; it 
follows that the entire series converges absolutely as 
well. 

*41. Prove that the series f ( x )  = Cy=oaixi, g ( x )  
= Cy= ,iaixi-I, and h ( x )  = C z o [ a i / ( i  + l ) ] x i f  ' 
all have the same radius of  convergence. [Hint: 
Use the theorem above and the definition o f  radius 
o f  convergence on p. 587.1 

*42. Prove that i f  0 < R ,  < R, where R is the radius o f  
convergence of  f ( x )  = C z o a i x i ,  then given any 
e > 0, there is a positive number M such that, for 
every number N greater than M ,  the difference 
I f ( x )  - Cy=oai~iI is less than E for all x in the 
interval [ -  R I ,  R,]. [Hint: Compare ~ ~ " = , + , a i x i  
with a geometric series, using the theorem above.] 

*43. Prove that i f  lxol < R, where R is the radius of  
convergence of  f ( x )  = Cy=oaixi, then f is continu- 
ous at x,. [Hint: Use Exercise 42, together with 
the fact that the polynomial Cy=oaixi is continu- 
ous. Given e > 0, write f ( x )  - f(xo) as a sum of  
terms, each of  which is less than e/3, by choosing 
N large enough and Ix - xol less than some 8.1 

*44. Prove that i f  1x1 < R, where R is the radius o f  
convergence o f  f ( x )  = Cy=oaixi, then the integral 
Jg f( t)dt  (which exists by Exercise 43) is equal to 
C z o [ a i / ( i  + l )]x i+' .  [Hint: Use the result o f  Ex- 
ercise 42 to show that the difference 112; f(t)dt - 
Cy=o[aixi/(i + 1)]I is less than any positive num- 
ber e.] 

*45. Prove that i f  f ( x )  = C7=oaixi and g ( x )  = 

Cy= "=,aixi-' have radius of  convergence R,  then 
f ( x )  = g(x)  on (- R,  R). [Hint: Apply the result 
o f  Exercise 44 to j$g(t)dt; then use the alterna- 
tive version o f  the fundamental theorem of  calcu- 
lus.] 
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12.5 Taylor's Formula 
The power series which represents a function is determined by the derivatives of 
the function at a single point. 

Up until now, we have used various makeshift methods to find power series 
expansions for specific functions. In this section, we shall see how to do this 
systematically. The idea is to assume the existence of a power series and to 
identify the coefficients one by one. 

If f ( x )  = C?=,ai(x - x,)' is convergent for x - x, small enough, we can 
find the coefficient a, simply by setting x = x,: f(xo) = C?=,ai(xO - x,)' = a,. 
Differentiating and then substituting x = x,, we can find a,. Writing out the 
series explicitly will clarify the procedure: 

f ( x )  = a,+ a,(x - x0) + a2(x - xo12+ a3(x - xO), + . . . , S O  f (xO) = a,; 

f ( x )  = a,  + 2a2(x - x,,) + 3a3(x - x ~ ) ~  + 4a4(x - xO), + - . , 

Similarly, by taking more and more derivatives before we substitute, we find 

f " ( x )  = 2a2 + 3 - 2a3(x - x,) 

+ 4 .  3a4(x - x,), + . . - SO f"(xo) = 2a2 ; 

f" ' (x)  = 3 . 2a3 + 4 . 3  . 2a4(x - x,) + - . SO f f f ( x O )  = 3 . 2a3 ; 

f '"(x) = 4 3 .  2a4 + SO f f f ' ( x 0 )  = 4 .  3 - 2a4 ; 

etc. 
Solving for the a,'s, we have a, = f(x,), a ,  = f'(x,), a, = f"(x0)/2, a, 

= f f f ( x 0 ) / 2 .  3, and, in general, ai = f(')(x,)/i!. Here f( ')  denotes the ith 
derivative off, and we recall that i! = i , ( i  - 1 )  . . 3 . 2 . 1 ,  read " i  factorial." 
(We use the conventions that f(O)  = f and O! = 1.) 

This argument shows that if a function f ( x )  can be written as a power 
series in ( x  - x,), then this series must be 

For any f, this series is called the Taylor series off about the point x = x,. 
(This formula is responsible for the factorials which appear in so many 
important power series.) 

The point x, is often chosen to be zero, in which case the series becomes 

and is called the ~ a c l a u r i n ~  series off. 

' Brook Taylor (1685-1731) and Colin Maclaurin (1698-1746) participated in the development of 
calculus following Newton and Leibniz. According to the Guinness Book of World Records, 
Maclaurin has the distinction of being the youngest full professor of all time at age 19 in 1717. He 
was recommended by Newton. Another mathematician-physicist, Lord Kelvin, holds the record 
for the youngest and fastest graduation from college-between October 1834 and November 
1834, at age 10. 
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Iff is infinitely differentiable on some interval containing x,, the series 

is called the Taylor series off at xo. 
When x, = 0, the series has the simpler form 

Example 1 Write down the Maclaurin series for sinx. 

Solution We have 

f(x) = sinx, f (0) = 0; 
f'(x) = cosx, f'(0) = 1 ; 
f"(x)=-sinx, fU(O)=0; 

f ( 3 ) ( ~ )  = - COS X, f(3)(0) = - 1 ; 

f ( 4 ) ( ~ )  = sinx, f("(0) = 0; 

and the pattern repeats from here on. Hence the Maclaurin series is 

Example 2 Find the terms through cubic order in the Taylor series for 1/(1 + x2) at xo = 1. 

Solution Method 1. We differentiate f(x) three times: 

so the Taylor series begins 

1 - -----  1 ( ~ - l ) + - ( x - l ) ~ + o ~ ( x - l ) ~ +  - .  . 
1 + x 2  2 2 4 

Method 2.  Write 
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( x - I ) + -  
2 

) +..-  (geometric series) 

Notice that we can write the Taylor series for any function which can be 
differentiated infinitely often, but we do not yet know whether the series 
converges to the given function. To understand when this convergence takes 
place, we proceed as follows. Using the fundamental theorem of calculus, 
write 

We now use integration by parts with u = f'(t) and v = x - t .  The result 
is 

= f' (xo) (x  - x0) + l ( x  - t ) f"( t )  dt. 

Thus we have proved the identity 

Note that the first two terms on the right-hand side of formula (2) equal the 
first two terms in the Taylor series off. If we integrate by parts again with 

( x  - t)' 
U =  f"( t )  and v =  - 

2 ' 
we get 

S,: ( X  - t ) f"( t )dt= - J X ~ d v =  xo -U~lh  + l ? d ~  

2 

- f " ( ~ 0 )  ( x  - X0)2  + S,: . q L  -- f"'( t )  dt; 
2 

so, substituting into formula (2), 
2 

f l (x0)  ( x  - ..)2+ S,: ( x  ; f ( x )  = f (xo) + f'(xo)(x - xo) + - 2 
f' " ( t )  dt. 

(3) 
Repeating the procedure n times, we obtain the formula 
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which is called Taylor's formula with remainder in integral form. The expres- 
sion 

RJX) = 11 q f (" ' "(t) dt 

is called the remainder, and formula (4) may be written in the form 

" f"'(xo) 
f (XI = C -----. (X - x,)~ + R, (x). 

i=o  i !  

By the second mean value theorem of integral calculus (Review Exercise 40, 
Chapter 9), we can write 

for some point c between x, and x. Substituting formula (7) into formula (6), 
we have 

Formula (8)' which is called Taylor's formula with remainder in derivative form, 
reduces to the usual mean value theorem when we take n = 0; that is, 

f (x)  = f(x0) + f'(c)(x - xo) 

for some c between x, and x. 
If R,(x) + 0 as n + co, then formula (6) tells us that the Taylor series off 

will converge to f. 
The following box summarizes our discussion of Taylor series. 

1. If f(x) = C?=,ai(x - x,)' is a convergent power series on an open 
interval I centered at x,, then f is infinitely differentiable and ai 

2. I f f  is infinitely differentiable on an open interval I centered at x,, 
and if Rn(x)+O as n+ co for x in I, where R,(x) is defined by 
formula (5), then the Taylor series off converges on I and equals f: 

Example 3 (a) Expand the function f(x) = 1/(1 + x2) in a Maclaurin series. 
(b) Use part (a) to find f""'(0) and f"""(0) without calculating derivatives off 
directly. 
(c) Integrate the series in part (a) to prove that 

x3 x5 x7 t a n - I x = x - - + - - - +  . . .  
3 5 7 

for 1x1 < 1. 
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+(d) Justify the formula of Euler: 

Solution (a) We expand 1/(1 + x2) as a geometric series: 

which is valid if I - x21 < 1; that is, if 1x1 < 1. By the box above this is the 
Maclaurin series of f(x) = 1/(1 + x2). 
(b) We find that f""'(0)/5! is the coefficient of x5. Hence, as this coefficient is 
zero, f""'(0) = 0. Likewise, f"""(0)/6! is the coefficient of x6; thus f"""(0) 
= - 6 ! .  This is much easier than calculating the sixth derivative of f(x). 
(c) Integrating from zero to x (justified in Section 12.4) gives 

but we know that the integral of 1/(1 + t2) is tan-It, so 

x3 x5 x7 t a n - ' x = x - - + - - - +  . . .  
3 5 7  

for 1x1 < 1. 

(d) If we set x = 1 and use tan-'1 = n/4, we get Euler's formula: 

but this is not quite justified, since the series for tan-'x is valid only for 
1x1 < 1. (It is plausible, though, since 1 - 4 + + - $ + - . , being an alternat- 
ing series, converges.) To justify Euler's formula, we may use the finite form of 
the geometric series expansion: 

Integrating from 0 to 1, we have 

( - 
4 

dt. 
2n + 1 

We will be finished if we can show that the last term goes to zero as n -+ m. 
We have 

Since limn,,[l/(2n + 3)] = 0, the limit of 

is zero as well (by the comparison test on p. 543). A 
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There is a simple test which guarantees that the remainder of a Taylor series 
tends to zero. 

To prove that a function f(x) equals its Taylor series 

it is sufficient to show: 

1. f is infinitely differentiable on I; 
2. the derivatives off grow no faster than a constant C times the powers 

of a constant M; that is, for x in I, 

I fcn)(x)J < CMn, n = 0,1,2,3, . . . . 

To justify this, we must show that R,(x) + 0. By formula (7), 

For any number b, however, bn/n!+O, since ~ y = ~ ( b ' / i ! )  converges by 
Example 7, Section 12.3. Choosing b = M lx - xol, we can conclude that 
Rn(x) -+ 0, so the Taylor series converges to f. 

Example 4 Prove that: 

x2 x3 (a) e x =  1 + x +  - + - + - .  . for allx. 
2 3! 

x3 x5 x7 (b) s i n x = x - -  + -  - -  + - - .  forxin(-m,co) .  
3! 5! 7! 

Solution (a) Let f(x) = ex. since f(")(x) = ex, f is infinitely differentiable. Since all the 
deriva.tives at xo = 0 are 1, the Maclaurin series of ex is C;=:,,(x "/ n!). To 
establish equality, it suffices to show I f(")(x)I < CMn on any finite interval I; 
but f(")(x) = ex, independent of n, so in fact we can choose M = 1 and C the 
maximum of ex on I. 
(b) Since f'(x) = cos x, f"(x) = -sin x, . . . , we see that f is infinitely differ- 
entiable. Notice that f(")(x) is + cosx or + sinx, so I f(")(x)I < 1. Thus we can 
choose C = 1, M = 1. Hence sinx equals its Maclaurin series, which was 
shown in Example 1 to be x - x3/3! +x5/5! - . . . . 
(c) Let x = ?r/2 in part (b). A 

Some discussion of the limitations of Taylor series is in order. Consider, 
for example, the function f(x) = 1/(1 + x2), whose Maclaurin series is 1 - 
x2 + x4 - x6 + - . . . Even though the function f is infinitely differentiable on 
the whole real line, its Maclaurin series converges only for 1x1 < 1. If we wish 
to represent f(x) for x near 1 by a series, we may use a Taylor series with 
xo = 1 (see Example 2). 
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Another instructive example is the function g(x) = e- ' / " * ,  where g(0) 
= 0. This function is infinitely differentiable, but all of its derivatives at x = 0 
are equal to zero (see Review Exercise 123). Thus the Maclaurin series of g is 
C?=,O - x', which converges (it is zero) for all x, but not to the function g. 
There also exist infinitely differentiable functions with Taylor series having 
radius of convergence zero.4 In each of these examples, the hypothesis that 
R,(x) + 0 as n + oo fails, so the assertion in the box above is not contradicted. 
It simply does not apply. (Functions which satisfy R,(x)+O, and so equal 
their Taylor series for x close to x,, are important objects of study; these 
functions are called analytic). 

The following box contains the most basic series expansions. They are 
worth memorizing. 

Binomial: (1 + x)"= 1 + ax + 

(X - 112 (X - 113 
Logarithm: Inx = (x - 1) - + ------ -. . . . 

The only formula in the box which has not yet been justified is the binomial 
series. It may be proved by evaluating the derivatives of f(x) = (1 + x)" at 
x = 0 and verifying convergence by the method of the test in the box entitled 
Taylor series test. (See Review Exercise 124.) If a = n is a positive integer, the 
series terminates and we get the binomial formula 

where 

is the number of ways of choosing k objects from a collection of n objects. 

See B. R. Gelbaum and J. M. H. Olmsted, Coun~erexamples in Analysis, Holden-Day, San 
Francisco (1964), p. 68. 
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Example 5 Expand Js about x, = 0. 

Solutlon The binomial series, with a = + and x2 in place of x, gives 

Taylor's formula with remainder, 

can be used to obtain approximations to f(x); we can estimate the accuracy of 
these approximations using the formula 

(for some c between x and x,) and estimating fen+') on the interval between x 
and x,. The partial sum of the Taylor series, 

is a polynomial of degree n in x called the nth Taylor (or Maclaurin if x, = 0) 
polynomial for f at x,, or the nth-order approximation to f at x,. The first 
Taylor polynomial, 

f(x0) + f'(xo)(x - xo) 

is just the linear approximation to f(x) at x,; the formula for the remainder 
R,(x) = [ f"(c)/2](x - x,)~ shows that we can estimate the error in the-first- 
order approximation in terms of the size of the second derivative f" on the 
interval between x and x,. 

A useful consequence of Taylor's theorem is that for many functions we 
can improve upon the linear approximation by using Taylor polynomials of 
higher order. 

B l  Example 6 Sketch the graph of sinx along with the graphs of its Maclaurin polynomials 
of degree 1, 2, and 3. Evaluate the polynomials at x = 0.02, 0.2, and 2, and 
compare with the exact value of sinx. 

Solution The Maclaurin polynomials of order 1, 2, and 3 are x, x + ox2, and x - x3/6. 
They are sketched in Fig. 12.5.1. Evaluating at x = 0.02, 0.2, 2, and 20 gives 
the results shown in the table below. 

Figure 12.5.1. The first- 

I ,I= , - , 3 /6  and third-order approxima- 
tions to sin x .  

sin x 
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The Maclaurin polynomials through degree 71 for sinx are shown in Fig. 
12.5.2.~ Notice that as n increases, the interval on which the nth Taylor 
polynomial is a good approximation to sinx becomes larger and larger; if we 
go beyond this interval, however, the polynomials of higher degree "blow up" 
more quickly than the lower ones. 

Figure 12.5.2. The 
Maclaurin polynomials for 
sin x through order 7 1. (The 
graphs to the left of they 
axis are obtained by 
rotating the figure through 
180°.) 

The following example shows how errors may be estimated. 

@Example 7 Write down the Taylor polynomials of degrees 1 and 2 for i3& at x, = 27. Use 
these polynomials to approximate 3J28, and estimate the error in the second- 
order approximation by using the formula for R2(x). 

Solution Let f(x) = x ' / ~ ,  x,, = 27, x = 28. Then f'(x) = f x-2/3, f "(x) = - $ x - ~ / ~ ,  and 
yff (x)  = 3 x-''~. Thus f(27) = 3, f'(27) = &, and f"(27) = - (2/37), so the 
Taylor polynomials of degree 1 and 2 are, respectively, 

1 1 I 3 + - (x - 27) and 3 + - (x - 27) - - (x - 27)2. 
27 27 37 

Evaluating these at x = 28 gives 3.0370 . . . and 3.0365798 . . . for the first- 
and second-order approximations. The error in the second-order approxima- 
tion is at most 1/3! times the largest value of (10/27)x-~/~ on [27, 281, which 
is 

- - -  I lo  I = 5 9 0.00001. (Actually, 3JZ8 = 3.0365889 . . . .) 11 
6 27 38 312 

We thank H. Ferguson for providing us with this computer-generated figure. 
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Example 8 By integrating a series for ePx2, calculate ~Ae-"~dx to within 0.001. 

Solution Substituting - x2 for x in the series for ex gives 

Integrating term by term gives 

and so 

This is an alternating series, so the error is no greater than the first omitted 
term. To have accuracy 0.001, we should include &. Thus, within 0.001, 

This method has an advantage over the methods in Section 11.5: to increase 
accuracy, we need only add on another term. Rules like Simpson's, on the 
other hand, require us to start over. (See Review Exercise 84 for Chapter 11.) 
Of course, if we have numerical data, or a function with an unknown or 
complicated series, using Simpson's rule may be necessary. A 

Example 9 Calculate sin(n/4 + 0.06) to within 0.0001 by using the Taylor series about 
xo = n/4. How many terms would have been necessary if you had used the 
Maclaurin series? 

Solution With f(x) = sinx, and xo = n/4, we have 

f (x) = sinx, 

f'(x) = cosx, 1 f'(x0) = - ; 
Jz 

and so on. We have 

f'" + "(c)(x - x0)" + 

% (x) = (n + I)! 
for c between n/4 and n/4 + 0.06. Since f("+')(c) has absolute value less than 
1, we have I Rn(x)l < (0.06)"+'/(n + I)!. To make I R,(x)l less than 0.0001, it 
suffices to choose n = 2. The second-order approximation to sinx is 
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Evaluating at x = ~ / 4  + 0.06 gives 0.7483. 
If we had used the Maclaurin polynomial of degree n, the error estimate 

would have been I Rn(x)l < (n/4 + 0.06)"+'/(n + I)!. To make I Rn(x)l less 
than 0.0001 would have required n = 6. A 

Finally, we show how Taylor series can be used to evaluate limits in indetermi- 
nate form. The method illustrated below is sometimes more efficient than 
l'H6pital's rule when that rule must be applied several times. 

Example 10 Evaluate lim Sin - using a Maclaurin series. 
x+o x3 

Solution Since sinx = x - x3/3! + x5/5! - . - , sinx - x = - x3/3! + x5/5! - . . . , 
and so (sinx - x)/x3 = - 1/6 + x2/5! - - . - . Since this power series con- 
verges, it is continuous at x = 0, and so 

Example 11 Use Taylor series to evaluate 

lim sinx - x 
(a) ~ + o  tanx - x 

(compare Example 4, Section 1 1.2) and 

In x (b) lirn - 
X+I ex - e 

Sin - = (sinx)(cosx) - x cos x 
Solution (a) 

tanx - x sin x - x cos x 

- -x3/6 + . .-  - -116 + ... 
- - (dividing by x3). 

(1/3)x3 + . . . 113 + ... 
Since the terms denoted "+ . . . " tend to zero as x -+ 0, we get 

1/6 1 l i m ~ i n x - x = -  - - -  
X+O t a n ~  - x 1/3 2 '  

lnx -. lim (b) lim - - In x 
x+1 ex - e x+l e(ex-l - 1) 

1 (x - 1) - (1/2)(x - 112 + . . 
= - lim 

e x-1 1 + (x - 1) + (1/2)(x - 1l2+ . - .  - 1 

1 1 -(1/2)(x - 1) + . .  
= - lim 

e X+I 1 + (1/2)(x - 1) + . - . 

For the last example, l'H6pital's rule would have been a little easier to use. 
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Exercises for Section 12.5 
Write down the Maclaurin series for the functions in 
Exercises 1-4. 

1. sin3x 2. cos4x 
3. cosx + e-2x 4. sin2x - e-4X 

Find the terms through x3 in the Taylor series at xo = 1 
for the functions in Exercises 5-8. 

5. 1/(1 + x2 + x4) 6. l / d m  

7. ex  8. tan(.irx/4) 

9. (a) Expand f ( x ) =  1/(1 + x 2 +  x4) in a 
Maclaurin series through the terms in x6, using a 
geometric series. 3) Use (a) to calculate f"""(0). 

10. Expand g(x) = ex' in a Maclaurin series as far as 
necessary to calculate g(*)(0) and g(9)(0). 

Establish the equalities in Exercises 11-14 for a suitable 
domain in x. 

11. l n ( l + x ) = x - x 2 / 2 + x 3 / 3 -  . . . .  
ex2 ex3 12. e l + " = e + e x + -  +-  + . . . .  
2! 3! 

(x - ./412 
14. sinx = [ I  + (x - ) - 2! 

Jz 

- (x - .ir/413 +...I. 
3! 

15. (a) Write out the Maclaurin series for the 

function 1 /\I= .(Use the binomial series.) 
(b) What is ( d 2 0 / d ~ 2 0 ) ( 1 / d ~ ) ~ x = o ?  

16. (a) Using the binomial series, write out the Mac- 
laurin series for g(x)  = JE + \/= . 
(b) Find g(20)(0) and g(2001)(0). 

17. Sketch the graphs of the Maclaurin polynomials 
through degree 4 for cos x. 

18. Sketch the graphs of the Maclaurin polynomials 
through degree 4 for tanx. 

819. Calculate ln(1,l) to within 0.001 by using a 
power series. 

820. Calculate el" 2+0.02 to within 0.0001 using a Tay- 
lor series about xo = ln2. How many terms 
would have been necessary if you had used the 
Maclaurin series? 

P21. Use the power series for ln(1 + x) to calculate 
ln 2 +, correct to within 0.1. [Hint: 2 f = 4 - $ .] 

822. Continue the work of Example 7 by finding the 
third-, fourth-, fifth- (and so on) order approxi- 
mations to 3J28. Stop when the round-off errors 
on your calculator become greater than the re- 
mainder of the series. 

B23. Using the Maclaurin expansion for 1/(1 + x), 
approximate 1A/2[dx/(l + x)] to within 0.01. 

24. Use a binomial expansion to approximate 
JA/~~- dx to within 0.01. 

25. (a) Use the second-order approximation at x0 to 
derive the approximation 

Find an estimate for the error. 
@ (b) Using the formula given in part (a), find an 

approximate value for J1/:,, (dx/ I/=). 
Compare the answer with that obtained from 
Simpson's rule with n = 4. 

26. (a) Can we use the binomial expansion of 
to obtain a convergent series for 0. 

Why or why not? 
(b) W r i t i n g 2 = $ . t , w e h a v e Q  = + m . ~ s e  

this equation, together with the binomial 
expansion, to obtain an approximation to 
\/Z correct to two decimal places. 

(c) Use the method of part (b) to obtain an 
approximation to 0 correct to two decimal 
places. 

Evaluate the limits in Exercises 27-30 using Maclaurin 
series. 

sin 2x - 2x 27. limx,o 
x3 

(use a common de- 

nominator). 
1 + cosx 30. 1imx+ - 
(x  - .12 

Expand each of the functions in Exercises 31-36 as a 
Maclaurin series and determine for what x it is valid. 

37. Find the Maclaurin series for f(x) = (1 + x ~ ) ~  in 
two ways: 
(a) by multiplying out the polynomial; 
(b) by taking successive derivatives and evaluat- 

ing them at x = 0 (without multiplying out). 
38. Write down the Taylor series for lnx  at xo = 2. 
39. Find a power series expansion for 1;ln t dt. Com- 

pare this with the expansion for x lnx. What is 
your conclusion? 

40. Using the Taylor series for sin x and cosx, find 
the terms through x6 in the series for   sin^)^ + 
(cos x ) ~ .  
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Let f(x) = a, + a l x  + a2x2 + . . . . Find a,, a , ,  a,, and 
a3 for each of the functions in Exercises 41-44. 

41. secx 42. d- 
43. (d/dx)d- 44. 

Find Maclaurin expansions through the term in x5 for 
each of the functions in Exercises 45-48. 

45. (1 - cosx)/x2 46. x - sin 3x 
x3 

49. Find the Taylor polynomial of degree 4 for lnx 
at: (a) xo = 1; (b) xo = e; (c) xo = 2. 

50. (a) Find a power series expansion for a function 
f (x) such that f (0) = 0 and f '(x) - f (x) = x. 
(Write f(x) = a, + a,x + a2x2 + . . . and solve 
for the ai7s one after another.) (b) Find a fomu1.a 
for the function whose series you found in part (a). 

Find the first four nonvanishing terms in the power 
series expansion for the functions in Exercises 51-54. 

51. ln(1 + ex) 52. 
53. sin(ex) 54. e "cos x 

B 55. An engineer is about to compute sin(36"), when 
the batteries in her hand calculator give out. She 
quickly grabs a backup unit, only to find it is 
made for statistics and does not have a "sin" key. 
Unperturbed, she enters 3.1415926, divides by 5, 
and enters the result into the memory, called "x" 
hereafter. Then she computes x(l - x2/6) and 
uses' it for the value of sin(36"). 
(a) What was her answer? 
(b) How good was it? 
(c) Explain what she did in the language of 

Taylor series expansions. 
(d) Describe a similar method for computing 

tan(lOo). 
56. An automobile travels on a straight highway. At 

noon it is 20 miles from the next town, travelling 
at 50 miles per hour, with its acceleration kept 
between 20 miles per hour per hour and - 10 

miles per hour per hour. Use the formula x(t) 
= x(0) + xl(0)t + jb(t - s)xl'(s) ds to estimate 
the auto's distance from the town 15 minutes 
later. 

*57. (a) Let 

Find f (0), f"(O), and f"'(0). 
(b) Find the Maclaurin expansion for (sinx)/x. 

*58. Using Taylor's formula, prove the following in- 
equalities: 
(a) ex  - 1 > x for x > 0. 
(b) 6x - x3 + x5/20 > 6 sin x > 6x - x3 for 

x > 0. 
(c) x2 - x4/12 < 2 - ~ C O S X  < x2 for x > 0. 

*59. Prove that ln2= 1 - 3  + $ - a  + - . - .  
*60. (a) Write the Maclaurin series for the 

functions l / d E i  and sin-'x. Where do 
they converge? 

(b) Find the terms through x3 in the series for 
sin-'(sinx) by substituting the series for 
sinx in the series for sinP'x; that is, if 
sin-'x = a o +  a lx  + a2x2+ . . . , then 

sin- '(sin x) 

(c) Use the substitution method of part (b) to 
obtain the first five terms of the series for 
sin- 'x by using the relation sin- '(sin x) = x 
and solving for a. through a,. 

(d) Find the terms through x5 of the Maclaurin 
series for the inverse function g(s) of f(x) 
= x3 + X. (Use the relation g(f(x)) = x and 
solve for the coefficients in the series for g.) 
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12.6 Complex Numbers 
Complex numbers provide a square root for - 1. 

This section is a brief introduction to the algebra and geometry of complex 
numbers; i.e., numbers of the form a + b m .  We show the utility of 
complex numbers by comparing the series expansions for sinx, cosx, and ex  
derived in the preceding section. This leads directly to Euler's formula 
relating the numbers 0, 1, e, T, and m: e"= + 1 = 0. Applications of 
complex numbers to second-order differential equations are given in the next 
section. Section 12.8, on series solutions, can, however, be read before this 
one. 

If we compare the three power series 

it looks as if sinx and cosx are almost the "odd and even parts" of ex. If we 
write the series 

subtract equation (4) from equation (3) and divide by 2, we get 

Similarly, adding equations (3) and (4) and dividing by 2, gives 

These are the Maclaurin series of the hyperbolic functions sinhx and coshx; 
they are just missing the alternating signs in the series for sinx and cosx. 

Can we get the right signs by an appropriate substitution other than 
changing x to - x? Let us try changing x to ax, where a is some constant. We 
have, for example, 

cosh ax = 2 x2 4x4 6 x6 eax + ePax = 1 + a - + a  - + a  - + . . . . 
2 2! 4! 6 !  

This would become the series for cosx if we had a2 = a6 = a'' = . - = - 1 
and a4 = as = aI2 = - . . = 1. In fact, all these equations would follow from 
the one relation a2 = - 1. 

We know that the square of any real number is positive, so that the 
equation a2 = - 1 has no real solutions. Nevertheless, let us pretend that there 
is a solution, which we will denote by the letter i, for "imaginary." Then we 
would have cosh ix = cos x. 

Example 1 What is the relation between sinhix and sinx? 

Solution Since i 2 =  -1, we have i 3 =  -i,  i 4 = ( - i ) . i =  1, i 5 = i ,  i 6 =  -1, etc., so 
substituting ix for x in (5) gives 
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eix - e-ix 
sinh ix = - - ix - i d  + i d  + . . . . 

2 3! 5 !  7! 
Comparing this with equation (I), we find that sinhix = isinx. A 

The sum of the two series (5) and (6) is the series (3), i.e., ex = coshx + sinhx. 
Substituting ix for x, we find 

eix = cosh ix + sinh ix 
or 

elx = cosx + isinx. (7) 
Formula (7) is called Euler's formula. Substituting 77 for x, we find that 

el"' = - 1, 
and adding 1 to both sides gives 

a formula composed of seven of the most important symbols in mathematics: 
0, 1, +, = , e , i , a n d v .  

Example 2 Using formula (7), express the sine and cosine functions in terms of exponen- 
tial~. 

Solution Substituting - x  for x in equation (7) and using the symmetry properties of 
cosine and sine, we obtain 

- 
e 'X=cosx-  isinx. 

Adding this equation to (7) and dividing by 2 gives 
eix + e-ix 

COSX = 7 

while subtracting the equations and dividing by 2i gives 
e i ~  - e-ix 

sinx = 
2 i . A  

Example 3 Find ei(n/2) and e2"'. 

Solution Using formula (7), we have 

and 

Since there is no real number having the property i2 = - 1, all of the 
calculations above belong so far to mathematical "science fiction." In the 
following paragraphs, we will see how to construct a number system in which 
- 1 does have a square root; in this new system, all the calculations which we 
have done above will be completely justified. 

When they were first introduced, square roots of negative numbers were 
deemed merely to be symbols on paper with no real existence (whatever that 
means) and therefore "imaginary." These imaginary numbers were not taken 
seriously until the cubic and quartic equations were solved in the sixteenth 
century (in the formula in the Supplement to Section 3.4 for the roots of a 
cubic equation, the symbol J--?; appears and must be contended with, even if 
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real axis i r n a g i n a r y 3 - i '  axis , 
I 

Figure 12.6.1. A complex 
number is just a point (a, b) 
in the plane. 

all the roots of the equation are real.) A proper way to define square roots of 
negative numbers was finally obtained through the work of Girolamo 
Cardano around 1545 and Bombelli in 1572, but it was only with the work of 
L. Euler, around 1747, that their importance was realized. A way to under- 
stand imaginaries in terms of real numbers was discovered by Wallis, Wessel, 
Argand, Gauss, Hamilton, and others in the early nineteenth century. 

To define a number system which contains i = n, we note that such a 
system ought to contain all expressions of the form a + b- = a + bi, 
where a and b are ordinary real numbers. Such expressions should obey the 
laws 

(a + bi) + (c + di) = (a + c) + (b + d)i 

and 

(a + bi)(c + di) = ac + adi + bci + bdi2 = (ac - bd) + (ad + bc)i. 

Thus the sum and product of two of these expressions are expressions of the 
same type. 

All the data in the "number" a + bi is carried by the pair (a, b) of real 
numbers, which may be considered a point in the xy plane. Thus we define 
our new number system, the complex numbers, by imposing the desired 
operations on pairs of real numbers. 

A complex number is a point (a, b) in the xy plane. Complex numbers are 
added and multiplied as follows: 

(a,b) + ( c , d ) =  ( a +  c , b +  d), 

(a, b)(c, d )  = (ac - bd, ad  + bc). 

The point (0,l) is denoted by the symbol i, so that i2 = (- 1,O) (using 
a = 0, c = 0, b = 1, d = 1 in the definition of muliplication). The x axis is 

It is convenient to 
points on the real 
i2 = - 1. Also, 

denote the point (a,O) just by a since we are thinking of 
axis as ordinary real numbers. Thus, in this notation, 

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0,1) 

as is seen from the definition of multiplication. Replacing (a, 0) and (b, 0) by a 
and b, and (0,l) by i, we see that 

(a, b) = a + bi. 

Since two points in the plane are equal if and only if their coordinates are 
equal, we see that 

a + ib = c + id if and only if a = c and b = d. 

Thus, if a + ib = 0, both a and b must be zero. 
We now see that sense can indeed be made of the symbol a + ib, where 

i2 = - 1. The notation a + ib is much easier to work with than ordered pairs, 
so we now revert to the old notation a + ib and dispense with ordered pairs in 
our calculations. However, the geometric picture of plotting a + ib as the 
point (a, b) in the plane is very useful and will be retained. 
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It can be verified, although we shall not do it, that the usual laws of algebra 
hold for complex numbers. For example, if we denote complex numbers by 
single letters such as z = a + ib, w = c + id, and u = e + if, we have 

z(w + u) = zw + zu, 

etc. 

Example 4 (a) Plot the complex number 8 - 6i. (b) Simplify (3 + 4i)(8 + 2i). (c) Factor 

x2  + x + 3. (d) Find 6. 
Solution (a) 8 - 6i corresponds to the point (8, - 6), plotted in Fig. 12.6.2. 

I imaginary axis 
(b) (3 + 4i)(8 + 2i) = 3 8 + 3 - 2i + 4 . 8 i  + 2 .  4i2 

= 24 + 6i + 32i - 8 

[: ; ; ; ; ; ; ; p ~ a ,  
axis 

(c) By the quadratic formula, the roots of x 2  + x + 3 = 0 are given 

-6 i  8-6i by (-  1 IfI J 1 -12 ) /2  = (- 1/2) IfI ( m / 2 ) i .  We may factor using these two 
roots: x2 + x + 3 = [x + (1/2) - (m/2 ) i ] [x  + (1/2) + ( m / 2 ) i ] .  (You may 

Figure 12.6.2. The point check by multiplying out.) 
8-6i plotted in the xy (d) We seek a number z = a + ib such that z2 = i; now z2 = a 2  - b2 + 2abi, 
plane. so we must solve a 2  - b2 = 0 and 2ab = 1. Hence a = IfI b, so b = + ( l / a ) .  

Thus there are two numbers whose square is i, namely, +[ ( l / f i )  + ( i / a ) ] ,  
i.e., 6 = +( l / f i ) ( l  + i) = + ( 6 / 2 ) ( 1  + i). Although for positive real num- 
bers, there is a "preferred" square root (the positive one), this is not the case 
for a general complex number. A 

Example 5 (a) Show that if z = a + ib # 0, then 

1 -  a - i b  - a i 
Z a 2 + b 2  a 2 + b 2  a 2 + b 2  

is a complex number whose product with z equals 1; thus, l / z  is the inverse 
of z, and we can divide by nonzero complex numbers. 
(b) Write 1/(3 + 4i) in the form a + bi. 

Solution (a) (*)(a + ib) = ( l ) ( a  - ib)(a + ib) 
a + b  a 2  + b2 

= ( l ) ( a 2  + aib - iba - b2i2) 
a 2  + b2 

Hence z ( d )  = I, so (a - ib)/(a2 + b2) can be denoted I/z. Note that 
a 2  + b2 

z f 0 means that not both a and b are zero, so a 2  + b2 # 0 and division by the 
real number a 2  + b2 is legitimate. 
(b) 1 /(3 + 4i) = (3 - 4i)/(32 + = (3/25) - (4/25)i by the formula in (a). 

A 
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Figure 12.6.3. Illustrating 
various quantities attached 
to a complex number. 

If z = a + ib is a complex number, then: 

(i) a is called the real part of z; 
(ii) b is called the imaginary part of z (note that the imaginary part is 

itself a real number); 
(iii) a - ib is called the complex conjugate of z and is denoted Z; 

(iv) r =I/- is called the length or absolute value of z and is 

The notions in the box above are illustrated in Fig. 12.6.3. Note that the real 
and imaginary parts are simply the x and y coordinates, the complex conju- 
gate is the reflection in the x axis, and the absolute value is (by Pythagoras' 
theorem) the length of the line joining the origin and z. The argument of z is 
the angle this line makes with the x axis. Thus, (r, 6 )  are simply the polar 
coordinates of the point (a, b). 

"t 
I r = absolute value 

I ; = a - i b  
= complex 

conjugate of i 

The terminology and notation above simplify manipulations with com- 
plex numbers. For example, notice that 

z 5 = (a + ib)(a - ib) = a2  + b2 = (zI2, 

so that l / z  = 2/1zI2 which reproduces the result of Example 5(a). Notice that 
we can remember this by: 

Example 6 (a) Find the absolute value and argument of 1 + i. 
(b) Find the real parts of I/i, 1/(1 + i), and (8 + 2i)/(l - i). 

Solution (a) The real part is 1, and the imaginary part is 1. Thus the absolute value is 

= fi, and the argument is tan- '(1 / 1) = ~ / 4 .  
(b) l / i  = (l/i)(-i/- i) = - i / l  = -i, so the real part of l / i  = - i  is zero. 
1/(1 + i) = (1 - i)/(l + i)(l - i) = (1 - i)/2, so the real part of 1/(1 + i) is 
1 /2. Finally, 

so the real part of (8 + 2i)/(l - i) is 3. A 
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(ii) z is real if and only if z = 2; 
(iii) 1 ~ 1 ~ 2 1  = l ~ l l  1221, 1z1/z21 = 1z11/1z21; and 
(iv) I z ,  + z21 < lzll + 1z21 (triangle inequality). 

The proofs of these properties are left to the examples and exercises. 

Example 7 (a) Prove property (i) of complex numbers. 
(b) Express (1 + i)loo without a bar. 

Solution (a) Let z, = a + ib and z2 = c + id, so 2, = a - ib, f, = c - id. From z1z2 
= (ac - bd) + (ad + bc)i, we get T& = (ac - bd) - (ad + bc)i; we also have 
- - z, -z2 = (a - ib)(c - id) = (ac - bd) - ibc - aid = z-. For the quotient, 
write z2 . z,/z2 = z, so by the rule just proved, - (z,/z,) = 2,. Dividing by F2 
gives the result. 
(b) Since the complex conjugate of a product is the product of the complex 
conjugates (proved in (a)), we similarly have t,z,z, ==F3 = f ,f2f3 and so 

on for any number of factors. Thus z" = f n ,  and hence (1 + i)'OO = 

( W ) l o 0  = (1 - i)loO. 

Example 8 Given z = a + ib, construct iz geometrically and discuss. 

Solution If z = a + ib, iz = ai - b = - b + ia. Thus in the plane, z = (a, b) and iz 
= (-  b, a). This point (- b, a)  is on the line perpendicular to the line Oz since 
the slopes are negative reciprocals. See Fig. 12.6.4. Since iz has the same 
length as z, we can say that iz is obtained from z by a rotation through 90'. A 

i z = - b + i a  

Figure 12.6.4. The number 
iz is obtained from z by a 
90' rotation about the 
origin. 

Using the algebra of complex numbers, we can define f(z) when f is a rational 
function and z is a complex number. 

Example 9 If f(z) = (1 + z)/(l - z) and z = 1 + i, express f(z) in the form a + bi. 

Solution Substituting 1 + i for z, we have 

How can we define more general functions of complex numbers, like ez? One 
way is to use power series, writing 
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To make sense of this, we would have to define the limit of a sequence of 
complex numbers so that the sum of the infinite series could be taken as the 
limit of its sequence of partial sums. Fortunately, this is possible, and in fact 
the whole theory of infinite series carries over to the complex numbers. This 
approach would take us too far afield: though, and we prefer to take the 
approach of defning the particular function eix, for x, real, by Euler's formula 

elx = cosx + isinx. (9) 
Since ex+Y = exeY, we expect a similar law to hold for eix. 

Example 10 (a) Show that 
ei(x+y) = eixeiy 

(b) Give a definition of ez for z = x + iy. 
Solution (a) The right-hand side of equation (10) is 

(cos x + i sin x)(cos y + i sin y ) 

= cosxcos y - sinxsin y + i(sinxcos y + sin ycosx) 

by equation (9) and the addition formulae for sin and cos. 
(b) We would like to have ezl+ "2 = ez'ez2 for any complex numbers, so wf: 
should define = . ell' , i . e - >  - - eX(cos y + isin y). [With this defi- 
nition, the law ez l+ '~  = e"lez> can then be proved for all z, and z2.] A 

Equation (10) contains all the information in the trigonometric addition 
formulas. This is why the use of eix is so convenient: the laws of exponents are 
easier to manipulate than the trigonometric identities. 

- 
Example 11 (a) Calculate eiB and leiBI. (b) Calculate eiT/2 and e". (c) Prove that 

cos n8 - cos(n + 1)8 
1 + cos8 + cos28 + . - - + cosn8 = 

1 - cos8 

by considering 1 + eiB + e2" + . - + eniO 

Solution (a) eiB = cos 8 + i sin 8, so by definition of the complex conjugate we should 
change the sign of the imaginary part: 

since cos(-8)=cos8 and sin(-8)= -sine. Thus lei'/ =/- = 1 

a + b where z = a + ib. using the general definition lzl = dn, 
(b) e iT/2 = cos(n/2) + i sin(n/2) = i and e'" = cos n + i sin m = - 1. 
(c) Since cosn8 is the real part of cine, we are led to consider 1 + e" + . , 
, i*e+ . . . + einB. Recalljng that 1 + r + - . + r n  = (1 - rn+l)/(l - r), we 

get 

See a text on complex variables such as J. Marsden, Basic Complex Analysis, Freeman, New 
York (1972) for a thorough treatment of complex series. 
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Y A Let us push our analysis of eix a little further. Notice that ei8 = cos 8 + i sin8 
i represents a point on the unit circle with argument 8. As 0 ranges from 0 to 

277, this point moves once around the circle (Fig. 12.6.5). (This is the same 
basic geometric picture we used to introduce the trigonometric functions in 

- 1 Section 5.1). 
x Recall that if z = a + ib, and r, 8 are the polar coordinates of (a, b), then 

a = r cos 8 and b = r sin 8. Thus 

-i z = rcos8 + irsin8 = r(cos8 + isin0) = rei8. 
I 

Figure 12.6.5. As 6 goes Hence we arrive at the following. 

from 0 to 277, the point ei" 
goes once around the unit 
circle in the complex plane. 

Taking the real part of both sides gives the result. A 

If z = a + ib and if (r,8) are the polar coordinates of (a,b), i.e., the 
absolute value and argument of z, then 

This representation is very convenient for algebraic manipulations. For exam- 
ple, 

if z1 = rlei"l, z2 = r2ei8z, then z,z2 = r,r2ei(81+83, 

which shows how the absolute value and arguments behave when we take 
products; i.e., it shows that 1z,z21 = lz,l 1z21 and that the argument of zlz2 is the 
sum of the arguments of z, and 2,. 

Let us also note that if z = rei8, then z n  = rnein8. Thus if we wish to solve 
zn  = w where w = pei@, we must have r n  = p, i.e., r = " 6  (remember that r, p 
are non-negative) and ein8 = eiG, i.e., ei(""-*) = 1, i.e., nf3 = + + 21i-k for an 
integer k (this is because ei* = 1 exactly when t is a multiple of 2~-see Fig. 
12.6.5). Thus 0 = cp/n + 21i-k/n. When k = n, 8 = +/n + 21i-, so ei8 = eiG/". 
Thus we get the same value for ei8 when k = 0 and k = n, and we need take 
only k = 0,1,2, . . . , n - 1. Hence we get the following formula for the nth 
roots of a complex number. 

The numbers z such that z n  = w = pei*, i.e., the nth roots of w, are given 

, k=0,1 ,2 ,  . . . ,  n -  1. 

' Abraham DeMoivre (1667-1754), of French descent, worked in England around the time of 
Newton. 
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For example, the ninth roots of 1 are the complex numbers ei2"k/9, for 
k = 0,1, . . . , 8, which are 9 points equally spaced around the unit circle. See 
Fig. 12.6.6. 

It is shown in more advanced books that any nth degree polynomial 

+ 

a, + a,z + . + anzn has at least one complex root8 z, and, as a conse- 
quence, that the polynomial can be completely factored: 

a,+ a , z +  . . - + a n z n =  (z - z,) (z - z,). 

For example, 
I 

Figure 12.6.6. The ninth 
roots of 1. 

although z2 + z + 1 cannot be factored using only real numbers. 

Example 12 (a) Redo Example 8 using the polar representation. (b) Give a geometric 
interpretation of multiplication by (1 + i). 

Solution (a) Since i = ei"l2, iz = rei(e+"/2)if z = reie. Thus iz has the same magnitude 
as z but its argument is increased by m/2. Hence iz is z rotated by 90°, in 
agreement with the solution to Example 8. 

(b) Since (1 + i) = fi ei"/4, multiplication of a complex number z by (1 + i) 
rotates z through an angle n/4 = 45' and multiplies its length by n. A 

Example 13 Find the 4th roots of 1 + i. 
Solution 1 + i = fiei"l4, since 1 + i has r = fi and 0 = n/4. Hence the fourth roots 

are, according to DeMoivre7s formula, 

8JZei(("/16)+("k/2)), k = 0, 1,2,3, 

Exercises for Section 12.6 
Express the quantities in Exercises 1-4 in the form 
a + bi. 

1. e-m/2 2. e"'l4 
3. e(3n/2)1 4. e-'" 

Plot the complex numbers in Exercises 5-12 as points 
in the xy plane. 

5. 4 + 2 i  6. - l + i  
7. 3i 8. -(2+ i) 
9. - 3 i  10. 3 + 7i 

11. 0.1 + 0.2i 12. O +  1.5i 
Simplify the expressions in Exercises 13-20. 

13. (1 + 2i) - 3(5 - 2i) 
14. (4 - 3i)(8 + i) + (5 - i) 

15. (2 + i)2 1 16. - 
(3 + i) 

1 17. - 2 i 18. - 
5 - 3i 1 - i  

Write the solutions of the equations in Exercises 21-26 
in the form a + bi, where a and b are real numbers and 

i = m .  
21. z2 + 3 = 0 
22. z2 - 22 + 5 = 0 
23. z 2 + f z + + = 0  
24. z3 + 2z2 + 22 + 1 = 0 [Hint: factor] 
25. z2  - 72 - 1 = 0 
26. z3 - 3z2 + 32 - 1 = 0 [Hint: factor] 

Using the method of Example 4(d), find the quantities 
in Exercises 27-30. 

27. J8; 28. fi 
29. 30. fi 

See any text in complex variables, such as J. Marsden, op. cir. The theorem referred to is called the "fundamental theorem of 
algebra." It was first proved by Gauss in his doctoral thesis in 1799. 
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Find the imaginary part o f  the complex numbers in 
Exercises 3 1-36. 

Find the complex conjugate o f  the complex numbers in 
Exercises 37-46. 

37. 5 + 2i 38. 1 - bi 

39. 0 + t i  40. l / i  
2 - i  41. - 

31' 
42. i ( l  + i )  

Find the absolute value and argument o f  the complex 
numbers in Exercises 47-58. Plot. 

47. - 1 - i  48. 7 + 2i 
49. 2 50. 4i 
51. t - + i  52. 3 - 2i 
53. - 5 + 7 i  54. -1O+i i  
55. - 8 - 2 i  56. 5 + 5i 
57. 1.2 + 0.7i 58. 50 + 1Oi 

59. Prove property (iii) o f  complex numbers. 
60. Prove property (iv) o f  complex numbers. 
61. Express (8 - 3i14 without a bar. 

62. Express (2  + 3i)2(8 - i13 without a bar. 
In Exercises 63-66, draw an illustration o f  the addition 
o f  the pairs o f  complex numbers, i.e., plot both along 
with their sums. 

63. 1 + + i , 3 - i  64. - 8 - 2 i , 5 -  i 
65. -3 + 4i, 6i 66. 7,4i  

67. Find 1(1 + i)(2 - i)(Q i)l. 
68. I f  z = x + iy, express x and y in terms o f  z 

and Z. 
69. I f  z = x + iy with x and y real, what is lezl and 

the argument o f  e"? 
70. Find the real and imaginary parts o f  ( x  + iy)3 

as polynomials in x and y. 
Write the numbers in Exercises 71-76 in the form 
a + bi. 

71. ei"l3 72. e-ni/3 
73. el-"'/2 74. 
75. +"i/2 76. e( 1 -"/6)' 

77. I f  f ( z )  = 1/z2 ,  express f (2  + i )  in the form 
a + bi. 

78. Express f ( i )  in the form a + bi, i f  f ( z )  = z2 + 
22 + 1 .  

79. (a)  Using a trigonometric identity, show that 
ixe - ix = 1.  ( b )  Show that e V L =  l / e z  for all 

complex numbers z. 
80. Show that e3" = (ez )3  for all complex z. 

81. Prove that ei(8+3"/2) = - jei8. 
82. Prove that 

sine + sin28 + . + sinn8 
sin n8 - sin(n + 1)8 

= ( c o t ; ) ( ; + ; (  sin8 

83. Prove that (cos 8 + i sin 8)" = cos n0 + i sin no, 
i f  n is an integer. 

84. Use Exercise 83 to find the real part o f  

- + - and the imaginary part o f  (h  ; I 3  
Find the polar representation (i.e., z = rei8) o f  the com- 
plex numbers in Exercises 85-94. 

85. 1 + i 1 86. 

87. (2 + i ) - '  88. 

95. Find the fifth roots o f  f - + D i  and 1 + 2i. 
Sketch. 

96. Find the fourth roots o f  i and 6. Sketch. 
97. Find the sixth roots o f  6 + 3i and 3 + 6 i. 

Sketch. 
98. Find the third roots o f  1/7 and i /7 .  Sketch. 
99. Give a geometric interpretation o f  division' by 

1 - i. 
100. (a)  Give a geometric interpretation o f  multipli- 

cation by  an arbitrary complex number z 
= re". 
( b )  What happens i f  we divide? 

101. Prove that i f  z6 = 1 and zI0 = 1 ,  then z = f 1.  
102. Suppose we know that z7 = 1 and z4' = 1.  What 

can we say about z? 
103. Let z = rei8. Prove that Z =  re-". 
104. (a)  Let f ( z )  = az3 + bz2 + cz + d, where a, b, c, 

and d are real numbers. Prove that f(Z) =fo. 
(b )  Does equality still hold i f  a ,  b, c, and d are 
allowed to be arbitrary complex numbers? 

Factor the polynomials in Exercises 105-108, where z is 
complex. [Hint: Find the roots.] 

105. z2 + 22 + i 106. z2 + 2iz - 4 
107. z2 + 2iz - 4 - 4i 108. 3z2 + z - ei"l3 

109. (a)  Write tanie in the form a + bi where a and 
b are real functions o f  8. 
( b )  Write tan i0 in the form rei@. 

110. Let z = f ( t )  be a complex valued function o f  the 
real variable t.  I f  z = x + iy = g ( t )  + ih( t) ,  
where g and h are real valued, we defne dz/dt  
= f ' ( t )  to  be ( d x / d t )  + i ( d y / d t )  = g l ( t )  + 
ih'(t). 
(a)  Show that (d/dt)(Cei"') = iwCei"', i f  C is 
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any complex number and w is any real 
number. 

(b) Show that z = Cei"' satisfies the spring 
equation (see Section 8.1): z" + w2z = 0. 

(c) Show that z = De-'"' also satisfies the 
spring equation. 

(d) Find C and D such that Cei"' + De -'"I 
= f(t) satisfies f(0) = A,  f'(0) = B. Express 
the resulting function f(t)in terms of sines 
and cosines. 

(e) Compare the result of (d) with the results 
in Section 8.1. 

11 1. Let zl  and z2 be nonzero complex numbers. 
Find an algebraic relation between zl and z2 
which is equivalent to the fact that the lines 
from the origin through z, and z2 are perpendic- 
ular. 

112. Let w = f(z) = (1 + (z/2))/(1 - (z/2)). 
(a) Show that if the real part of z is 0, then 

IwI = 1. 
(b) Are all points on the circle Iwl = 1 in the 

range o f f?  [Hint: Solve for z in terms of 
w.1 

113. (a) Show that, if z n  = 1, n a positive integer, 
then either z n - '  + z " - ~  + . . - + z + 1 
= O o r z = l .  

(b) Show that, if zn-I + z " - ~  + . . + z + 1 
= 0, then z n  = 1. 

(c) Find all the roots of the equation z3 + z2 + 
z + l = O .  

114. Describe the motion in the complex plane, as 
the real number t goes from - co to co, of the 
point z = ei"', when 
(a) w = i, (b) w = 1 + i, 
(c) w = -i, (d) w = - 1 - i, 
(e) w = 0, (f) w = l ,  
(g) w = -1. 

115. Describe the motion in the complex plane, as 
the real number t varies. of the point given by 
z = 93,000,000 e2"'(*/3@I+ 1,000,000e2"i~'~29). 
What astronomical phenomenon does this rep- 
resent? 

116. What is the relation between eZ  and e'? 
*117. (a) Find all complex numbers z for which 

ez = -1. (b) How might you define In(-l)? 
What is the difficulty here? 

*118. (a) Find X such that the function x = e" satis- 
fies the equation x u  - 2x' + 2x = 0; x' 
= dx/dt. 

(b) Express the function eA' + e-" in terms of 
sines, cosines, and real exponents. 

(c) Show that the function in (b) satisfies the 
differential equation in (a). 

12.7 Second-Order Linear 
Differential Equations 
The nature of the solutions of ay" + by' + cy = 0 depends on whether the roots 
of ar2 + br + c = 0 are real or complex. 

We shall now use complex numbers to study second-order differential equa- 
tions more general than the spring equation discussed in Section 8. l .  

We begin by studying the equation 

ay" + by' + cy = 0, (1) 
where y is an unknown function of x, y' = dy /dx ,  y" = d$ /dx2 ,  and a,  b, c 
are constants. We assume that a # 0; otherwise equation (1) would be a 
first-order equation, which we have already studied in Sections 8.2 and 8.6. 

We look for solutions of equation (1) in the form 

y = erx, r a constant. P I  
Substituting equation (2) into equation (1) gives 

ar2erx + bre rX + cerx = 0, 
which is equivalent to 

ar2 + br + c = 0, 

since erx # 0. Equation (3) is called the characteristic equation of equation (I). 
By the quadratic formula, it has roots 
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which we shall denote by r, and r,. Thus, y = erl" and y = erZX are solutions 
of equation (1). 

By analogy with the spring equation, we expect the general solution of 
equation (1) to involve two arbitrary constants. In fact, y = c,erlX + c2erzX is a 
solution of equation (1) for constants c, and c,; indeed, note that if y ,  and y, 
solve equation (I), so does c, y ,  + c,y, since 

~ ( ~ I Y I  + ~ 2 ~ 2 ) "  + ~ ( C I Y I  + ~ 2 ~ 2 ) '  + ~ ( C I Y I  + ~ 2 ~ 2 )  
= c,(ay;l + by; + cy,) + c,(ay; + by; + cy,) = 0. 

If r, and r, are distinct, then one can show that y = c,ert" + c2er2" is the 
general solution; i.e., any solution has this form for particular values of c, and 
c,. (See the Supplement to this section for the proof.) 

If ar2 + br + c = 0 has distinct roots r,  and r,, then the general solution 

ay" + by' + cy = 0 

y = clertx + c2er2", c, , c2 constants. 

Example 1 Consider the equation 2y" - 3y' + y = 0. (a) Find the general solution, and 
(b) Find the particular solution satisfying y(0) = 1, y'(0) = 0. 

Solution (a) The characteristic equation is 2r2 - 3r + 1 = 0, which factors: 
(2r - l)(r - 1) = 0. Thus r, = 1 and r, = f are the roots, and so 

is the general solution. 
(b) Substituting y(0) = 1 and y'(0) = 0 in the preceding formula for y gives 

c, + c, = 1, 

c ,  + $c,= 0. 

Subtracting gives $ c, = 1, so c, = 2 and hence c, = - 1. Thus 

is the particular solution sought. A 

If the roots of the characteristic equation are distinct but complex, we can 
convert the solution to sines and cosines using the relation e'" = cosx + 
i sinx, which was established in Section 12.6. Differentiating a complex valued 
function is carried out by differentiating the real and imaginary parts sepa- 
rately. One finds that (d/dt)Cert = Crer' for any complex numbers C and r 
(see Exercise 110 in Section 12.6). Thus, the results in the above box still work 
if r , ,  r,, C, and C, are complex. 

Example 2 Find the general solution of y" + 2y' + 2y = 0. 

Solution The characteristic equation is r2 + 2r + 2 = 0, whose roots are 
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Thus 

= e-x[c,(cosx + isinx) + c2(cosx - isinx)] 

where C ,  = c ,  + c2 and C2 = i(c, - c2). If we desire a real (as opposed to 
complex) solution, C, and C2 should be real. (Although we used complex 
numbers as a helpful tool in our computations, the final answer involves only 
real numbers and can be verified directly.) A 

For the spring equation y" + w? = 0, the characteristic equation is r2 + w2 
= 0, which has roots r = rfr iw, so the general solution is 

y = cl  e juX + C2e -'OX 

= C,cos wx + C2sin wx, 

where C, and C, are as in Example 2. Thus we recover the same general 
solution that we found in Section 8.1. 

If the roots of the characteristic equation are equal (r, = r,), then we have 
so far only the solution y = c,erlx, where c, is an arbitrary constant. We still 
expect another solution, since the general solution of a second-order equation 
should involve two arbitrary constants. To find the second solution, we may 
use either of two methods. 

Method 1. Reduction of Order. We seek another solution of the form 

y = verlx. (4) 
where v is now a function rather than a constant. To see what equation is 
satisfied by v, we substitute equation (4) into equation (1). Noting that 

y f  = vferlx + r,verlx, 

and 

substitution into (1) gives 

a(vN + 2rlvf + r:v)erlx + b(v' + rlv)erlx + cver~" = 0; 

but erix Z 0, ari + br, + c = 0, and 2ar, + b = 0 (since r ,  is a repeated root), 
so this reduces to av" = 0. Hence v = c, + c2x, so equation (4) becomes 

y = (c, + c2x)erlx. ( 5 )  
This argument actually proves that equation (5) is the general solution to 
equation (1) in the case of a repeated root. (The reason for the name 
"reduction of order" is that for more general equations y" + b(x)yl + c(x)y 
= 0, if one solution yl(x) is known, one can find another one of the form 
v(x)y,(x), where vf(x) satisfies a first order equation-see Exercise 48.) 

Method 2. Root Splitting. If ay" + by' + cy = 0 has a repeated root r , ,  the 
characteristic equation is (r - r,)(r - r,) = 0. Now consider the new equation 
(r - r,)(r - (r, + 8)) = 0 which has distinct roots r, and r2 = r + E if 8 st 0. 
The corresponding differential equation has solutions erlx and etrl+'))". Hence 
( l / ~ ) ( e ( ~ l + ~ ) ~  - erlX) is also a solution. Letting E+O, we get the solution 
(d/dr)erXI,,rI = xerlx for the given equation. (If you are suspicious of this 
reasoning, you may verify directly that xerlx satisfies the given equation). 
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If ar2 + br + c = 0 has a repeated root r ,  = r,, then the general solution 

ay" + by' + cy = 0 

y = (c, + c2x)ertx, 

where c, and c2 are constants. 

Example 3 Find the solution of y" - 4y' + 4y = 0 satisfying y'(0) = - 1 and y(0) = 3. 

Solution The characteristic equation is r2 - 4r + 4 = 0, or (r - 2)2 = 0, so r ,  = 2 is a 
repeated root. Thus the general solution is given by equation (5): 

y = (c, + c2x)e2". 

Thus yt(x) = 2cle2" + c2eZX + 2c2xeZX. The data ~ ( 0 )  = 3, ~ ' ( 0 )  = - 1 give 

c, = 3  and 2c, + c 2 =  -1, 

so c, = 3 and c2 = - 7. Thus y = (3 - 7x)e2". A 

Now we shall apply the preceding methods to study damped harmonic 
motion. In Figure 12.7.1 we show a weight hanging from a spring; recall from 

i , spring constant k 

x = 0 is equilibrium air resistance 
proportional to velocity 

Section 8.1 that the equation of motion of the spring is m(d2x/dt2) = F, 
where F is the total force acting on the weight. The force due to the spring is 
- kx, just as in Section 8.1. (The force of gravity determines the equilibrium 
position, which we have called x = 0; see Exercise 5 1.) We also suppose that 
the force of air resistance is proportional to the velocity. Thus F = - kx - 
y(dx/dt), so the equation of motion becomes 

where y > 0 is a constant. (Can you see why there is a minus sign before y?). 
If we rewrite equation (6) as 

where ,8 = y/m and w2 = k/m, it has the form of equation (I) with a = 1, 
b = p, and c = w2. To solve it, we look at the characteristic equation 

-p+,lp '-4w2 
r2 + pr + w2 = 0 which has roots r = 

2 
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Figure 12.7.2. Damped 

If p2  > 4w2 (i.e., /3 > 2w), then there are two real roots and so the solution is 

x = c,eri' + c2er2', where r ,  and r2 are the two roots +(- /3 & d v ) .  
Note that r, and r2 are both negative, so the solution tends to zero as t + co, 
although it will cross the t axis once if c, and c2 have opposite signs; this case 
is called the overdamped case. A possible solution is sketched in Fig. 12.7.2. 

harmonic motion. ' I  
I( damped 

If P2 = 402, there is a repeated root r,  = -P/2, so the solution is 
x = (c, + ~ , t ) e - ~ ' / ~ .  This case is called critically damped. Here the solution 
also tends to zero as t -+ co, although it may cross the t axis once if c, and c2 
have opposite signs (this depends on the initial conditions). A possible 
trajectory is given in Figure 12.7.2. 

Finally, if b2 < 4w2, then the roots are complex. If we let G = 

' 2 I/- = o d m ,  then the solution is 

which represents underdamped oscillations with frequency G. (Air resistance 
slows down the motion so the frequency G is lower than o.) These solutions 
may be graphed by utilizing the techniques of Section 8.1; write x = 
~ e - ~ ' / ~ c o s ( G t  - O), where (A, 6) are the polar coordinates of c, and c,. A 
typical graph is shown in Fig. 12.7.2.At t = 0, 0 = x = c,. 

Example 4 Consider a spring withP = r / 4  and w = v/6. 

(a) Is it over, under, or critically damped? 
rn (b) Find and sketch the solution with x(0) = 0 and x'(0) = 1, for t > 0. 
rn (c) Find and sketch the solution with the same initial conditions but with 

p = r /2.  

Solution (a) Here P2  - 4w2 = r2/16 - 4v2/36 = -7r2/36 < 0, SO the spring is under- 
damped. 

(b) The effective frequency is i3 = w d v  = ( n / 6 ) d m  

= r o / 2 4 ,  so the general solution is 

At t =0,  O =  x = c , .  Thus, 
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Figure 12.7.3. Graph of the 
solution to Example 4. 

Hence 

At t = 0, x' = 1, so 1 = c2[.rrfi /24], and hence c2 = 24/1~fi. Thus the solu- 
tion is 

This is a sine wave multiplied by the decaying factor e-"'I8; it is sketched in 
Fig. 12.7.3. The first maximum occurs when x' = 0; i.e., when tan((.rrfi /24)t) 

= 8fl/24, or t = 2.09, at which point x = 0.84. 

(c) For /3 = ~ / 2 ,  we have P2  - 4a2 = .rr2/4 - 4.rr2/36 = 5.rr2/36 > 0, so the 
spring is overdamped. The roots r, and r2 are 

so the solution is of the form x = ~ , e ( " / ~ ) ( -  '+6/3)' + ~ ~ e ( " / ~ ) ( -  '-6/3)'. At 
t =O,x=O, soc,  + c2=Oor  c, = -c2. Also, at t =0,  

so c, = 6 / ~ 6  and c2 = -6/.rr6. Thus our solution is 

The derivative is x' = c,(r,erl' - r2er2') = c,(r, - r2e('2-'1)')er" which van- 
ishes when 

r l  - e(r2-rr)t 0,. - - - 1 + 6 / 3  =,-(.b/a)t , or t = 1.64; 
'-2 - 1 - 6 / 3  

at this point, x = 0.73 1. See Fig. 12.7.3. A 
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In the preceding discussion we have seen how to solve the equation (1): 
ay" + by' + cy = 0. Let us now study the problem of solving 

ay" + by' + cy = ~ ( x ) ,  (8) 

where F(x) is a given function of x. We call equation (1) the homogeneous 
equation, while equation (8) is called the nonhomogeneous equation. Using what 
we know about equation (I), we can find the general solution to equation (8) 
provided we can find just one particular solution. 

To see that equation (9) is a solution of equation (8), note that 

To see that equation (9) is the general solution of equation (8), note that if y" is 
any solution to equation (9), then y" - yp solves equation (1) by a calculation 
similar to the one just given. Hencey" -yp must equaly, for suitable cl and c2 
since yh is the general solution to equation (I). Thus y" has the form of 
equation (9), so equation (9) is the general solution. 

Sometimes equation (8) can be solved by inspection; for example, if 
F(x) = Fo is a constant and if c + 0, then y = Fo/c is a particular solution. 

Example 5 (a) Solve 2y" - 3y' + y = 10. (b) Solve 2x" - 3x' + x = 8 cos(t/2) (where x is 
a function of t ) .  (c) Solve 2y" - 3y' + y = 2ePx. 

Solution (a) Here a particular solution is y = 10. From Example 1, 

Thus the general solution, given by equation (9), is 

(b) When the right-hand side is a trigonometric function, we can try to find a 
particular solution which is a combination of sines and cosines of the same 
frequency, since they reproduce linear combinations of each other when 
differentiated. In this case, 8 cos(t/2) appears, so we try 

where A and B are constants, called undetermined coefficients. Then 
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= ( + A - ~ B  ) cos ( - + ( - A + - B  2 sm - . ) . ( i )  
For this to equal 8cos(t/2), we choose A and B such that 

I A - 3 B = 8 ,  and $A+;B=O.  2 2 

The second equation gives B = -3A which, upon substitution in the first, 
gives ; A + q A = 8 .  Thus A=!  and B =  -?, so 

and the general solution is 

A good way to check your arithmetic is to substitute this solution into the 
original differential equation. 
(c) Here we try yp = Ae-X since e-" reproduces itself, up to a factor, when 
differentiated. Then 

2y; - 3yi + yp = 2AeCX + 3Ae-" + Ae-". 

For this to match 2ex, we require 6A = 2 or A = f. Thus yp = f e-" is a 
particular solution, and so the general solution is 

The technique used in parts (b) and (c) of this example is called the method of 
undetermined coefficients. This method works whenever the right-hand side of 
equation (8) is a polynomial, an exponential, sums of sines and cosines (of the 
same frequency), or products of these functions. 

There is another method called variation of parameters or variation of 
constants which always enables us to find a particular solution of equation (8) 
in terms of integrals. This method proceeds as follows. We seek a solution of 
the form 

Y = "lY1+'-'2Y2 ( 10) 

where y ,  and y2 are solutions of the homogeneous equation (1) and v, and v2 
are functions of x to be found. Note that equation (10) is obtained by 
replacing the constants (or parameters) c, and c, in the general solution to the 
homogeneous equation by functions. This is the reason for the name "variation 
of parameters." (Note that a similar procedure was used in the method of 
reduction of order-see equation (4).) Differentiating v , y l  using the product 
rule gives 

(VIYI) '  = ~ Y I  + V I Y ;  9 

and 

(v, y,)" = v;y, + 2v; y; + v, y; , 
and similarly for v2y2. Substituting these expressions into equation (8) gives 
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U [ ( V ; ' ~ ,  + 2v; y; + v, y;') + ( 4 y 2  + 2v;y; + v,yi)] 

+ b[(v; yl + VIY;) + ( 4 ~ 2  + v~Y;)]  + C ( V I Y I  + 02~2)  = F. 

Simplifying, using (I) for y ,  and y,, we get 

U [ V ; ' ~ ,  + 2v; y; + viy, + 2 ~ ; ~ ; ) ]  + b[v; Y ,  + v;y2] = F. (I1) 

This is only one condition on the two functions v, and v,, so we are free to 
impose a second condition; we shall do so to make things as simple as 
possible. As our second condition, we require that the coefficient of b vanish 
(identically, as a function of x): 

v; y ,  + v;y2 = 0. ( 12) 

This implies, on differentiation, that v ; ' ~ ,  + v;y; + viy2 + v;y; = 0, so equa- 
tion (1 l)  simplifies to 

Equations (12) and (13) can now be solved algebraically for v; and v; and the 
resulting expressions integrated to give v, and v,. (Even if the resulting 
integrals cannot be evaluated, we have succeeded in expressing our solution in 
terms of integrals; the problem is then generally regarded as "solved"). 

Variation of Parameters 
A particular solution of the nonhomogeneous equation (8) is given by 

Yp = V l Y l  + 02Y2, 

where y ,  and y2 are solutions of the homogeneous equation and where v, 
and v, are found by solving equations (12) and (13) algebraically for v; 
and v; and then integrating. 

Combining the two preceding boxes, one has a recipe for finding the general 
solution to the nonhomogeneous equation. 

Example 6 (a) Find the general solution of 2y" - 3y' + y = e2" + ed2" using variation of 
parameters. (b) Find the general solution of 2y" - 3y' + y = 1/(1 + x2)  (ex- 
press your answer in terms of integrals). 

Solution (a) Here y ,  = ex and y2 = ex/2 from Example 1. Thus, equations (12) and (1 3) 
become 

v;eX + v;eX/2 = 0, 

respectively. Subtracting, 

and so 

v; = - - ~ / 2 ( ~ 2 x  + - 2 ~ )  = - e 3 ~ / 2  - -5x/2. 

Similarly, 
-x/2 1 - v; = - e v2 - ex + e-3X, 
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and so integrating, dropping the constants of integration, 

v2 = - 2 e3x/2 + 2e -Sx/2 
3 s 

v1 = ex - f e-3x. 

Hence a particular solution is 

Yp = vlYl  + v2Y2 = e2* - I '  -2x - ze2* + ze-2x = 1 2x 
7 3 5 7e 

and so the general solution is 

y = clex + C2ex/' + le2* + l e - 2 x .  
3 15 

The reader can check that the method of undetermined coefficients gives 
the same answer. 
(b) Here equations (12) and (13) become 

respectively. Solving, 

and 
e-X 

0; =- 
e-X 

so 0, = ji?;i dx. 
1 + x 2 '  

Thus the general solution is 

Let us now apply the above method to the problem of forced oscillations. 
Imagine that our weight on a spring is subject to a periodic external force 
Focos a t ;  the spring equation (6)  then becomes 

A periodic force can be directly applied to our bobbing weight by, for 
example, an oscillating magnetic field. In many engineering situations, equa- 
tion (14) is used to model the phenomenon of resonance; the response of a 
ship to a periodic swell in the ocean and the response of a bridge to the 
periodic steps of a marching army are examples of this phenomenon. When 
the forcing frequency is close to the natural frequency, large .oscillations can 
set in-this is resonance? We shall see this emerge in the subsequent develop- 
ment. 

Let us first study the case in which there is no damping: y = 0, so that 
m(d2x/dt2) + kx,= F,,cos a t .  This is called a forced oscillator equation. A 
particular solution can be found by trying xp = C cos a t  and solving for C. We 
find xp = [f0/m(o2 - 02)]cos8r, where w = is the frequency of the 
unforced oscillator. Thus the general solution is 

For further information on resonance and how it was involved in the Tacoma bridge disaster of 
1940, see M. Braun, Differential Equations and their Applications, Second Edition, 1981, Springer- 
Verlag, New York, Section 2.6.1. 
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x = Acosot + Bsinot + Fo cos Qt, 
m(02 - Q2) 

where A and B are determined by the initial conditions. 

Example 7 Find the solution of d2x/dt2 + 9x = 5 cos2t with ~ ( 0 )  = 0, xf(0) = 0, and 
sketch its graph. 

Solution We try a particular solution of the form x = Ccos2t; substituting into the 
equation gives - 4C cos 2t + 9C cos 2t = 5 cos 2t, so C must be 1 .  On the 
other hand, the solution of the homogeneous equation d2x/dt2 + 9x = 0 is 
A cos 3t + B sin 3t, and therefore the general solution of the given equation is 
x(t) = A cos 3t + B sin 3t + cos 2t. For this solution, x(0) = A + 1 and xf(0) 
= 3B, so if x(0) = 0 and xf(0) = O, we must have A = - 1 and B = 0. Thus, 
our solution is x(t) = - cos 3 t + cos 2t. 

To graph this function, we will use the product formula 

sinRtsinSt = 4 [ c o s ( ~  - S ) t  - cos(R + ~ ) t ] .  

To recover - cos 3 t + cos 2t, we must have R + S = 3 and R - S = 2, so 
R = I  2 and S = $ . T h u s  

x(t) = 2 sin($t)sin($t). 

We may think of this as a rapid oscillation, sin$t, with variable ampli- 
tude 2 sin$ t, as illustrated in Fig. 12.7.4. The function is periodic with period 
277, with a big peak coming at n, 377, 577, etc., when -cos3t and cos2t are 
simultaneously equal to 1. g, 

5 x = sin : t 

x / n =  2 sin + t 

x = -cos 3t + cos 21 

Figure 12.7.4. 
x(t)  = -cos3t + cos2t 

= 2sinf tsin2t. 

If in equation (15), x(0) = 0 and xf(0) = 0, then we find, as in Example 7, that 

~ ( t )  = 
Fo (cos Qt - cos a t )  

m(02 - Q2) 
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Figure 12.7.5. Beats. 

If w - Q is small, then this is the product of a relatively rapidly oscillating 
function [sin((w + Q)t/2)] with a slowly oscillating one [sin((o - Q)t/2)]. The 
slowly oscillating function ''modu1ates" the rapidly oscillating one as shown in 
Fig. 12.7.5. The slow rise and fall in the amplitude of the fast oscillation is the 
phenomenon of beats. It occurs, for example, when two musical instruments 
are played slightly out of tune with one another. 

The function (15) is the solution to equation (14) in the case where y = 0 
(no damping). The general case (y # 0) is solved similarly. The method of 
undetermined coefficients yields a particular solution of the form x, 
= ar cosQt + p sinat, which is then added to the general solution of the 
homogeneous equation found by the method of Example 4. We state the result 
of such a calculation in the following box and ask the reader to verify it in 
Review Exercise 1 10. 

The solution of 

~ ( t )  = c,erl' + c2er2' + 

where c, and c, are constants determined by the initial conditions, 

w = 6, r, and r, are roots of the characteristic equation mr2 + yr + 
k = 0 [if r, is a repeated root, replace c,erl' + c,er2' by (c, + c2t)erl'], 

In equation (16), as t + co, the solution c,erl' + c2er2' tends to zero (if y > 0) 
as we have seen. This is called the transient part; the solution thus approaches 
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the oscillatory part, 

which oscillates with a modified amplitude at the forcing frequency D and 
with thephase shift 6. If we vary w, the amplitude is largest when o = D; this is 
the resonance phenomenon. 

Exarnple 8 Consider the equation 

(a) Write down the solution with x(0) = 0, x'(0) = 0. 
(b) Discuss the behavior of the solution for large t. 

Solution (a) The characteristic equation is 

r2 + 8r + 25 = 0 

which has roots r = (-8 t d m ) / 2  = -4 t 3i. Also, m = 1, o = 5, 
D =  1, Fo=2 ,  and y = 8; so 

and 6 = tanp'(&) = tanp'(+) w 0.322. The general solution is given by equa- 
tion (16); writing sines and cosines in place of the complex exponentials, we 
get 

At t = 0 we get 

3 = A + - ;  
40 

so A = - &. Computing x'(t) and substituting t = 0 gives 

sins O=x'(O)= - 4 A + 3 B +  - 
4 4 5  

1 12 1 = - 4 A + 3 B + - = - - + 3 B + - .  
40 40 40 

Thus B = - 6,  and our solution becomes 

(b) As t + co the transient part disappears and we get the oscillatory part 
0.079 cos(t - 0.322). A 
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Supplement to Section 12.7: 
Wronskians 

In this section we have shown how to find solutions to equation (1): ay" + 
by' + cy = 0; whether the roots of the characteristic equation ar2 + br + c = 0 
are real, complex, or coincident, we found two solutions y ,  and y,. We then 
asserted that the linear combination c, y ,  + c2y2 represents the general solu- 
tion. In this supplement we shall prove this. 

Suppose that y ,  and y, are solutions of equation (1); our goal is to show 
that every solution y of equation (1) can be written as y = c, y ,  + c2y2. To do 
so, we try to find c, and c, by matching initial conditions at x,: 

y(x0) = CIYI(XO) + ~ 2 ~ 2 ( ~ 0 ) 7  

y'(x0) = clY;(xo) + c,Y;(xo). 

We can solve these equations for c, by multiplying the first equation by 
y;(xo), the second by y2(xo), and subtracting: 

Similarly, 

These are valid as long as y,(xo)y;(xo) - y2(xo)y;(xo) # 0. The expression 

W(x) = Y ,(x)Y;(x) - Yz(x)Y;(x). (18) 
is called the Wronskian of y ,  and y2 [named after the Polish mathematician 
Count Hoent Wronski.(1778-1853)l. (The expression (18) is a determinant- 
see Exercise 43, Section 13.6). 

Two solutions y ,  and y2 are said to be a fundamental set if their 
Wronskian does not vanish. It is an important fact that W(x) is either 
everywhere zero or nowhere zero. To see this, we compute the derivative of W: 

W'(x) = [y;(x)y;(x) + Y I(x)Y~(x)] - [y;(x)y;(x) + Y~(x)Y;'(x)] 

= Y ,(x)ul(x) - Y ~ ( X ) Y ; ( ~ ) -  

If y ,  and y, are solutions, we can substitute -(b/a)y; - (c/a)y, for y;' and 
similarly for y i  to get 

Thus 

Therefore, from Section 8.2, W(x) = ~ e - ( ~ / " ) "  for some constant K. We note 
that W is nowhere zero unless K = 0, in which case it is identically zero. 

If y ,  and y2 are a fundamental set, then equation (17) makes sense, and so 
we can find c, and c, such that c, y ,  + c, y, attains any given initial condi- 
tions. Such a specification of initial conditions gives a unique solution and 
determines y uniquely; therefore y = c, y ,  + c2y2. In fact, the proof of unique- 
ness of a solution given its initial conditions also follows fairly easily from 
what we have done; see Exercise 46 for a special case and Exercise 47 for the 
general case. Thus, in summary, we have proved: 
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If y ,  and y2 are a fundamental set of solutions for ay" + by' + cy = 0, then 
y = C, y , + c2 y2 is the general solution. 

To complete the justification of the claims about general solutions made 
earlier in this section, we need only check that in each specific case, the 
solutions form a fundamental set. For example, suppose that r ,  and r, are 
distinct roots of ar2 + br + c = 0. We know that y ,  = erlx and y ,  = erZX are 
solutions. To check that they form a fundamental set, we compute 

This is nonzero since r2 f r , ,  so we have a fundamental set. One can similarly 
check the case of a repeated root (Exercise 45). 

-- 

~xeaclsesfoa Section 12.7 
Find the general solution of the differential equations in 
Exercises 1-4. 

1. y" -4y1+3y = O .  2. 2y" - y = 0. 
3. 3y"-4y '+y=O. 4. y " - y ' - 2 y = o .  

Find the particular solutions of the stated equations in 
Exercises 5-8 satisfying the given conditions. 

5. y" - 4y' + 3y = 0, y(0) = 0, y'(0) = 1. 
6. 2y" - y = 0, y(1) = 0, y'(1) = 1. 
7. 3y" - 4 y 1 + y  =o,  y(O)= 1, y'(O)= 1. 
8. y" - y' - 2y = 0, y(l)  = 0, y'(1) = 2. 

Find the general solution of the differential equations in 
Exercises 9- 12. 

9. y" - 4y' + 5y = 0. 10. y" + 2y' + 5y = 0. 
11. y"  - 6y' + 13y = 0. 12. y" + 2y' + 26y = 0. 

Find the solution of the equations in Exercises 13-16 
satisfying the given conditions. 

13. y" - 6y1+ 9y = 0, y(O)=O,y'(O) = 1. 
14. y" - 8y' + 16y = 0, y(0) = -3, y'(0) = 0. 
15. y" - 2 f l y ' + 2 y = 0 , y ( l ) = 0 , y ' ( l ) =  1. 
16. y "  - 2DYf  + 3y = 0, y(0) = 0,y1(O) = - 1. 

In Exercises 17-20 consider a spring with P, w, x(O), 
and x'(0) as given. (a) Determine if the spring is over, 
under, or critically damped. (b) Find and sketch the 
solution. 

17. P = 8/16, w = a/2, x(0) = 0, xi(0) = 1. 
18. /? = 1, w = n/8, x(0) = 1, x'(0) = 0. 
19. p = ~ / 3 ,  w = n/6, x(0) = 0, xl(0) = 1. 
20. /3 = 0.03, w = a/2, x(0) = 1, x'(0) = 1. 

In Exercises 21-28, find the general solution to the 
given equation (y  is a function of x or x is a function of 

In Exercises 29-32 find the general solution to the given 
equation using the method of variation of parameters. 

29. y" - 4y' + 3y = 6x + 10. 
30. y" - 4y' + 3y = 2ex. 
31. 3 x " - 4 x f + x = 2 s i n t .  
32. 3xN - 4x' + x = e' + e-'. 

In Exercises 33-36 find the general solution to the given 
equation. Express your answer in terms of integrals if 
necessary. 

33. y" - 4y' + 3y = tanx. 

In Exercises 37-40, find the solution of the given forced 
oscillator equation satisfying the given initial conditions. 

37. x" + 4x = 3 cost, x(0) = 0, x'(0) = 0. 
38. x" + 9x = 4sin 41, x(0) = 0, x'(0) = 0. 
39. x" + 25x = cost, x(0) = 0, x'(0) = 1. 
40. x" +25x=cos6t,  x(O)= 1, xf(0)=O. 

In Exercises 41-44, (a) write down the solution of the 
given equation with the stated initial conditions and (b) 
discuss the behavior of the solution for large t .  

dx2 dx 42. - + 2 - + 36x = 4 cos 3t, x(0) = 0, xl(0)= 0. 
dt dt 

t as appropriate). d2x dx 
21. y" -4yf+3y  = 6 x  + 10. 43. - + - + 4x = cost, x(0) = 1, x'(0) = 0. 

22. y" - 4y' + 3y = 2ex. 
dt2 df 

23. 3x" - 4x' + x = 2 sin t. d2x dx 44. - + 2 - + 9x = cos4t, x(0) = 1, x'(0) = 0. 
24. 3x" - 4x' + x = e' + e-'. dt2 dt 

25. y" - 4y' + 5y = x + x2. 45. If r, is a repeated root of the characteristic 

26. y" - 4y' + 5y = 10 + e-". equation, use the Supplement to this section to 

27. y" - 2fly1 + 2y = cosx + sinx. show thaty, = erlx and y2 = xerlx form a funda- 

28. y" - 2Gy'  + 2y = cosx - e-X.  mental set and hence conclude that y = c, y l  + 
c2y2 is the general solution to equation (1). 
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*46. Suppose that in (I), a > 0 and b2 - 4ac < 0. If y 
satisfies equation (I), prove w(x) = e(b/2a)"y(x) 
satisfies w" + [(4ac - b2)/4a2]w = 0, which is a 
spring equation. Use this observation to do the 
following. 
(a) Derive the general form of the solution to 

equation (I) if the roots are complex. 
(b) Use existence and uniqueness results for the 

spring equation proved in Section 8.1 to 
prove corresponding results for equation (1) 
if the roots are complex. 

*47. If we know that equation (1) admits a fundamen- 
tal set y l ,  y2, show uniqueness of solutions to 
equation (I) with given values of y(xo) and yl(xo) 
as follows. 
(a) Demonstrate that it is enough to show that 

if y(xo) = 0 and y1(x0) = 0, then y(x) E 0. 
(b) Use facts above the Wronskian proved in 

the Supplement in order to show that 
y ( ~ ) y ' ~ ( x )  - y f ( x ) y l ( x )  = 0 and that  
y(x)yi(x) - y'(x)y2(x) = 0. 

(c) Solve the equations in (b) to show that y(x) 
= 0. 

*48. (a) Generalize the method of reduction of order 
so it applies to the differential equation 
a(x)y" + b(x)yl + c(x)y = 0, a (x )  =#= 0. 
Thus, given one solution, develop a method 
for finding a second one. 

(b) Show that x r  is a solution of Euler's equa- 
tion x 4 "  + axy' + py = 0 if r2 + (a - I)r + 
p = 0. 

(c) Use (a) to show that if (a - 1)2 = 4/3, then 
( l n ~ ) x ( I - ~ ) / ~  is a second solution. 

*49. (a) Show that the basic facts about Wronskians, 
fundamental sets, and general solutions proved 
in the Supplement also apply to the equation in 
Exercise 48(a). 
(b) Show that the solutions of Euler's equations 
found in Exercises 48(b) and 48(c) form a funda- 
mental set. Write down the general solution in 
each case. 

*50. (a) Generalize the method of variation of param- 
eters to the equation a(x)yM + b(x)yf + c(x)y 
= F(x). 
(b) Find the general solution to the equation 
x?" + 5xy' + 3y = xeX (see Exercise 48; express 
your answer in terms of integrals if necessary). 

*51. In Fig. 12.7.1, consider the motion relative to an 
arbitrarily placed x axis pointing downward. 
(a) Taking all forces, including the constant force 
g of gravity into account, show that the equation 
of motion is 

where ye is the equilibrium position of the spring 
in the absence of the mass. 
(b) Make a change of variables x = y + c to 
reduce this equation to equation (6). 

*52. Show that solutions of equation (15) exhibit 
beats, without assuming that x(0) = 0 and xl(0) 
= 0. 

*53. Find the general solution of y"" + y = 0. 
*54. Find the general solution of y"" - y = 0. 
*55. Find the general solution of y"" + y = ex. 
*56. Find the general solution of y"" - y = cos x. 

12.8 Series Solutions 
of Differential Equations 
Power series solutions of differential equations can often be found by the method 
of undetermined coefficients. 

Many differential equations cannot be solved by means of explicit formulas. 
One way of attacking such equations is by the numerical methods discussed in 
Section 8.5. In this section, we show how to use infinite series in a systematic 
way for solving differential equations. 

Many equations arising in engineering and mathematical physics can be 
treated by this method. We shall concentrate on equations of the form 
a(x)y" + b(x)y' + c(x)y  = f (x) ,  which are similar to equation (1)  in Section 
12.7, except that a ,  b, and c are now functions of x rather than constants. The 
basic idea in the power series method is to consider the aj7s in a sum 
y = CF=oajx' as undetermined coefficients and to solve for them in successive 
order. 
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Example 1 Find a power series solution of y" + xy' + y = 0. 

Solution If a solution has a convergent series of the form y = a, + a , x  + a2x2 + . . . 
= CT?oaix', we may use the results of Section 12.4 to write 

CO 

y' = a ,  + 2a2x + 3a3x2 + . = 2 iaixi-' and 
i =  1 

Therefore 

In performing manipulations with series, it is important to keep careful track 
of the summation index; writing out the first few terms explicitly usually 
helps. Thus, 

y" + xyl + y 

= (2a2 + 6a3x + 12a4x2 + . . . ) + (a lx  + 2a2x2 + . . . ) 
+ (a, + a ,x  + a2x2 + - - . ). 

To write this in summation notation, we shift the summation index so all x's 
appear with the same exponent: 

(Check the first few terms from the explicit expression.) Now we set the 
coefficient of each x i  equal to zero in an effort to determine the ai. The first 
two conditions are 

2a2 + a, = 0 (constant term), 

6a3 + 2a, = 0 (coefficient of x). 

Note that this determines a, and a, in terms of a, and a , :  a, = - +ao, 
a, = - + a , .  For i > 1, equating the coefficient of x i  to zero gives 

(i + 2)(i + l)a,+, + (i + l)ai = 0 

Thus, 

Hence 

(- 1)" 
"" = 2n . (2n - 2) . (2n - 4) . . . 4 - 2 
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and 

( - 1)" (- 1)"2"n! 
= (2n + 1)(2n - 1)(2n - 3) . . . 5 . 3  = (2n + l)! " ' 

Thus, we get (using O! = l), 

What we have shown so far is that any convergent series solution must be of 
the form of equation (1). To show that equation (1) really is a solution, we 
must show that the given series converges; but this convergence follows from 
the ratio test. A 

The constants a, and a ,  found in Example 1 are arbitrary and play the same 
role as the two arbitrary constants we found for the solutions of constant 
coefficient equations in the preceding section. 

Example 2 Find the first four nonzero terms in the power series solution of y" + x 4  = 0 
satisfying y(0) = 0, yt(0) = 1. 

Solution Let y = a, + a l x  + a2x2 + . - . . The initial conditions y(0) = 0 and y'(0) = 1 
can be put in immediately if we set a, = 0 and a ,  = 1, so that y = x + 
a2x2 + . - . Then 

y" = 2a2 + 3 . 2a3x + 4 .  3a4x2 + 5 . 4a5x3 + . - + (i + l)iai+ lx i - l  + . 
and so 

x ? = x 3 +  a2x4+ a3x5+ . . . + a,-,xi-' + . . - . 
Setting y" + x? = 0 gives 

a, = 0 (constant term), 

a, = 0 (coefficient of x), 

a, = 0 (coefficient of x2), 

1 
a5= -- (coefficient of x3), 

5 . 4  

a, = 0 = a, = a, (coefficients of x4, x5, x6), 

1 1 
a , = - p  9 . g a 5 =  9 . 8 . 5 . 4  (coefficient of x7), etc. 

Thus, the first four nonzero terms are 

y = x - l x 5 +  1 ,9 - 1 X ' 3 + .  . . . 
5 . 4  9 . 8 - 5 . 4  1 3 . 1 2 . 9 - 8 . 5 . 4  

[The recursion relation is 

and the general term is 

The ratio test shows that this series converges.] A 
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Example 3 (Legendre's equation)'' Find the recursion relation and the first few terms 
for the solution of ( 1  - x ~ ) ~ "  - 2xy' + hy = 0 as a power series. 

Solution We writey = ~ ? = , a ~ x '  and get 

y = a, + a,x + a2x2 + . . + aixi + - . , 
y '= a ,  +2a2x +3a3x2+ . . - + iaixi-I + . . . , 

-2xy' = -2a,x - 2 .  2a2x2 - 2 3a3x3 - . . - 2iaixi - - . , 
y" = 2a2 + 3 - 2a3x + 4 .  3a4x2 + - . . + i ( i  - l ) a , ~ j - ~  + - . . , 

- x?" = -2a2x2 - 3 . 2a3x3 - . . . - j(i - l )a ix i  - . - . 
Thus, setting ( 1  - x ~ ) ~ "  - 2xy' + Ay = 0 gives 

2a2 + ha, = 0 (constant term), 

3 - 2a3 - 2al + hal = 0 (coefficient of x) ,  

4 3a4 - 2a2 - 4a2 + ha, = 0 (coefficient of x2), 

5 4a5 - 3 2a3 - 2 .  3a3 + ha, = 0 (coefficient of x3),  

Solving, 

Thus, the solution is 

The recursion relation comes from setting the coefficient of x i  equal to zero: 

From the ratio test one sees that the series solution has a radius of conver- 
gence of at least 1. It is exactly 1 unless there is a nonnegative integer n such 
that X = n(n + l ) ,  in which case the series can terminate: if n is even, set 
a,  = 0;  if n is odd, set a, = 0. Then the solution is a polynomial of degree n 
called Legendre's polynomial; it is denoted Pn(x). The constant is fixed by 
demanding Pn(l) = 1. A 

'O This equation occurs in the study of wave phenomena and quantum mechanics using spherical 
coordinates (see Section 14.5). 
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Example 4 (Hermite's equation)" Find the recursion relation and the first few terms for 
the solution of y" - 2xy' + hy = 0 as a power series. 

Solution Again writey= a,+ a,x + a2x2+ . - - + a,xi+ . . a ,  SO 

and 

y" = 2a2 + 3 . 2a3x + 4 .  3a4x2 + . - + i(i - l ) ~ , x ' - ~  + . . . 
Setting the coefficients of powers of x to zero in y" - 2xy' + y = 0, we get 

2a2 + ha, = 0 (constant term), 

3 - 2a3 - 2a, + ha, = 0 (coefficient of x), 

4 3a, - 4a2 + ha2 = 0 (coefficient of x2), 

and in general 

(i + 2)(i + l)a,+, - 2ia, + ha, = 0. 

Thus 

and in general, 

Thus 

(6 - h)(2 - A) 
' -ha ,  = a5 = 5.4 5 !  a , ,  

etc., and so 

This series converges for all x. If A is an even integer, one of the series, 
depending on whether or not h is a multiple of 4, terminates, and so we get a 
polynomial solution (called a Hermite polynomial). A 

Sometimes the power series method runs into trouble-it may lead to only one 
solution, or the solution may not converge (see below and Exercise 23 for 
examples). To motivate the method that follows, which is due to Georg 
Frobenius (1 849- 19 17), we consider Euler's equation: 

Here we could try y = a, + a ,x  + a2x2 + - . as before, but as we will now 
show, this leads nowhere. To be specific, we choose a = p = 1. Write 

" This equation arises in the quantum mechanics of a harmonic oscillator. 
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y = a, + a l x  + a2x2 + a3x3 + . , 
xy' = a lx  + 2a2x2 + 3a3x3 + . . . , 

and 

x?" = 2a2x2 + 3 . 2a3x3 + . . . . 
Setting x?" + xy' + y = 0, we get 

a, = O\ (constant term), 

2a1 = 0 (coefficient of x), 

10a3 = 0 (coefficient of x3), etc., 

and so all of the ai's are zero and we get only a trivial solution. 
The difficulty can be traced to the fact that the coefficient of y" vanishes 

at the point x = 0 about which we are expanding our solution. One can, 
however, try to find a solution of the form xr.  Letting y = xr,  where r need 
not be an integer, we get 

y' = rXr-l  SO axy' = arx 

and 

y" = r(r  - l)xr-2 SO x?" = r(r  - l)xr. 

Thus, Euler's equation is satisfied if 

r(r  - 1) + ar  + p=O 
which is a quadratic equation for r with, in general, two solutions. (See 
Exercise 48 of Section 12.7 for the case when the roots are coincident.) 

Frobenius' idea is that, by analogy with the Euler equation, we should 
look for solutions of the form y = x r C & a i x i  whenever the coefficient of y" 
in a second-order equation vanishes at x = 0. Of course, r is generally not an 
integer; otherwise we would be dealing with ordinary power series. 

Example 5 Find the first few terms in the general solution of 4xy" - 2y' + y = 0 using 
the Frobenius method. 

Solution We write 

so -2y' = -2raoxr-' - 2(r + l )a lxr  - 2(r + 2)a2xr+' - . . . and 

Thus to make 4xy" - 2y' + y = 0, we set 

ao[4r(r - 1) - 2r] = 0 (coefficient of x r -  I ) .  

If a, is to be allowed to be nonzero (which we desire, to avoid the difficulty 
encountered in our discussion of Euler's equation), we set 4r(r - 1) - 2r = 0. 
Thus r(4r - 6) = 0, so r = 0 or r = 4. First, we take the case r = 0: 
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Then 4x31" - 2y' + y = 0 gives 

a, - 2a, = 0 (constant term), 

4 - 2a2 - 2 . 2a2 + a ,  = 0 (coefficient of x ) ,  

4 .  6a3 - 3 . 2a3 + a2 = 0 (coefficient of x2);  

SO a ,  =+ao,  a 2 -  - -.La 4 I = -1 8ao ,  and a 3 - - - l a  18 2 ='a 144 0 .  

Thus 

For the case r  = 4, we have 

y = a 0 ~ 3 / 2  + a 1 ~ 5 / 2  + a2x7l2 + a;I2 + . . . , 
-2y' = - 3a0x'/2 - 5aIx3/2 - 7a2x5/2 - 9a3X7/2 - . . . 

and 

4xy" = 3 a , ~ ' / ~  + 5 - 3a1x3/2  + 7 .  5a2x5/2 + 9 .  7a3x7/2 + . . - . 
Equating coefficients of 4x" - 2y' + y = 0 to zero gives 

3a0 - 3ao = 0 (coefficient of x ' / ~ ) ,  

5  . 3a1 - 5a1 + a, = 0 (coefficient of x ~ / ~ ) ,  

9  . 7a3 - 9a3 + a, = 0 (coefficient of x ~ / ~ ) ;  

and 

a2 1 
a 3 = - - = - -  54 280.54 

Thus 

The general solution is a linear combination of the two we have found: 

The equation that determines r, obtained by setting the coefficient of the 
lowest power of x in the equation to zero, is called the indicia1 equation. 

The Frobenius method requires modification in two cases. First of all, if 
the indicial equation has a repeated root r , ,  then there is one solution of the 
form y , (x )  = aoxrl + a lx r '+  + . . and there is a second of the form y,(x) 
= y,(x)lnx + boxr' + blxr"+l + . . . This second solution can also be found 
by the method of reduction of order. (See Exercise 48, Section 12.7.) Second, if 
the roots of the indicial equation differ by an integer, the method may again 
lead to problems: one may or may not be able to find a genuinely new 
solution. If r, = rl + N,  then the second series boxr' + b1xr2+' + . . . is of the 
same form, aoxrl + alxrl+'  + . , . , with the first N coefficients set equal to 
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zero. Thus it would require very special circumstances to obtain a second 
solution this way. (If the method fails, one can use reduction of order, but this 
may lead to a complicated computation). 

We conclude with an example where the roots of the indicial equation 
differ by an integer. 

Exarnple 6 Find the general solution of Bessel's equationI2 x?" + xy' + ( x 2  - k2)y = 0  
with k = +. 

Solution We try y = xrC?=,aix'. Then 
m 

and 
03 

x?" = x ( i  + r  - l ) ( i  + r)aixi+' .  
i = O  

Setting the coefficient of x r  in x?" + xy' + ( x 2  - k2)y = 0  equal to zero, we 
get 

0  = ( r  - l)rao + ra, - $a,, 

so the indicial equation is 0  = ( r  - 1)r + r  - $ = r2 - f , the roots of which 
are r ,  = - 3 and r2 = f , which differ by the integer 1 .  

Setting the coefficient of xr+'  equal to zero gives 

0  = r ( r  + l ) a ,  + ( r  + 1)a, - f a ,  = [ ( r  + I ) ~  - f ] a I ,  

and the general recursion relation arising from the coefficient of xi+',  i  > 2, is 

O =  r ( r +  i )a i+  ( r +  i)ai - :a i  + a i - 2 =  ( ( r  + i ) 2 - $ ) a i +  a , - , .  

Let us work first with the root r ,  = - 3. Since - + and + f are both roots of 
the indicial equation, the coefficients a ,  and a ,  are arbitrary. The recursion 
relation is 

for i >, 2. Thus 

l 2  This equation was extensively studied by F. W. Bessel (1784-1846), who inaugurated modern 
practical astronomy at Konigsberg Obsetvatory. 
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Similarly 

Our general solution is then 

which we recognize to be a,(cosx)/\ljlr + a,(sinx)/&. 
Notice that in this case we have found the general solution from just one 

root of the indicia1 equation. A 

Exercises for Section 12.8 
In Exercises 1-4, find solutions of the given equation in 
the form of power series: y = CT=oaixi. 

1. y " - x y ' - y = o .  2. y" - 2xy' - 2y = 0. 
3. y" + 2xy' = 0. 4. y" + xy' = 0. 

In Exercises 5-8, find the first three nonzero terms in 
the power series solution satisfying the given equation 
and initial conditions. 

5. y" + 2xy' = 0, y(0) = 0, y'(0) = 1. 
6. y"  + 2 x 4  = 0, y(0) = 1, y'(0) = 0. 
7. y" + 2xy' + y = 0, y(0) = 0, y'(0) = 2. 
8. y"  - 2xy' + y = 0, y(0) = 0, y'(0) = 1. 

9. Airy's equation is y" = xy. Find the first few 
terms and the recursion relation for a power 
series solution. 

10. TchebycheffS equation is (1 - x2)y" - xy' + cr2y 
= 0. Find the first few terms and the recursion 
relation for a power series solution. What hap- 
pens if a = n is an integer? 

In Exercises 11-14, use the Frobenius method to find 
the first few terms in the general solution of the given 
equation. 

11. 3xy" - y 1 + y = 0 .  

16. Laguerre functions are solutions of the equation 
xy" + (1 - x)y' + hy = 0. 
(a) Find a power series solution by the Fro- 

benius method. 
(b) Show that there is a polynomial solution if h 

is an integer. 
17. Verify that the power series solutions of y" + w? 

= 0 are just y = A cos wx + B sin wx. 
*18. Find the first few terms of the general solution 

for Bessel's equation of order 3. 
*19. (a) Verify that the solution of Legendre's equa- 

tion does not converge for all x unless A = 
n(n + 1) for some nonnegative integer n. 
(b) Compute Pl(x), P2(x), and P,(x). 

*20. Use Wronskians and Exercise 49 of Section 12.7 
to show that the solution found in Example 1 is 
the general solution. 

*21. Use Wronskians and Exercise 49 of Section 12.7 
to show that the solution found in Example 3 is 
the general solution. 

*22. Prove that the Legendre polynomials are given by 
Rodrigues' formula: 

. . 

14. 2x5" - 2xy' + y = 0. 
*23. (a) Solve x?' + (x - 1)y - 1 = 0, y(0) = 1 as a 

15. Consider Bessel's equation of order k, namely, power series to obtain y = En!  xn, which con- 
x?" + xy' + (x2 - k2)y = 0. verges only at x = 0. (b) Show that the solution is 
(a) Find the first few terms of a solution of the 

form J k ( x ) = a o x k +  a i x k + '  + . - .  . e-l/x e l / x  

(b) Find a second solution if k is not an integer. y = , J r d x .  
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Review Exercises For Chapter 12 
In Exercises 1-8, test the given series for convergence. 
If it can be summed using a geometric series, do so. 

" 
1 

; = I  (12)' 10O(i + 1) 
O0 3i+l 

3. c P 
* 8 

4. c - 
5'-'=, ;=I 9' 

1 1 1  5 . 1 + 2 + -  + -  + -  + . . .  
3 32 33 

1 1 1  6. l o o + -  + -  + -  + . - .  
9 92 93 

" 9 

In Exercises 9-24, test the given series for convergence. 

1 0  4n 

n= 1 (2n + I)! 
" k  

a, 2n 
11. C , 12. c - 

k=l 3 n + 3  
(- 1)"n 00 

13. c - 2 n 14. c - 
n= 1 3" ,,=I n 2 + 3  

" ( - I ) ~ "  " (-115 
15. 2 - 16. c - 

n = i  j = o  j2+ 8 
CQ 2n2 C O .  

17. c - 18. c ---.t__ 
n = l  n! [ = I  i 3 + 8  

00 

19. nee"' fi 
n= I n = 1 n2 - sin299n 

" 1 
m 

21. 2 --- 
,, = 2 (ln n)'" " n =  I 
m m n 23. - n 24. c - 

n =  I (n + I)! (n + I)! 

Sum the series in Exercises 25-32 to within 0.05. 

Tell whether each of the statements in Exercise 33-46 is 
true or false. Justify your answer. 

33. If an -+ 0, then Cr= lan converges. 
34. Every geometric series Cy= lr '  converges. 
35. Convergence or divergence of any series may be 

determined by the ratio test. 
36. CyF11/2' = 1. 
37. e2" = 1 + 2x + x2 + x3/3 + . . . . 

38. If a series converges, it must also converge 
absolutely. 

39. The error made in approximating a convergent 
series by a partial sum is no greater than the 
first term omitted. 

40. cos x = CT='=,(- l)kx2k/(2k)!. 
41. If ,aJ and Cr=obk are both convergent, 

then Cjm= '=,aj + Cr=obk = bO + Cy= l(ai + bi). 
42. Cy= 1)'[3/(i + 2)] converges conditionally. 
43. The convergence of C:= '=,a, implies the conver- 

gence of Cr' '=,(an + an+ ,). 
44. The convergence of C ?= l(an + a, + implies 

the convergence of C r= '=,a,. 

45. The convergence of C:= l(lanl + (bnl) implies 
the convergence of C := 1 an 1. 

46. The convergence of C:= la, implies the conver- 
gence of c:= '=,a:. 

47. If 0 < a, < arn,  r < 1, show that the error in 
approximating Cy= lai by C;= lai is less than or 
equal to urn+ '/(l - r). 

48. Determine how many terms are needed to com- 
pute the sum of 1 + r + r2 + a . . with error 
less than 0.01 when (a) r = 0.5 and (b) r = 0.09. 

Find the sums of the series in Exercises 49-52. 
49. Cr='=,1/9" 

1 50. C r =  I - [Hint: Use partial fractions.] 
n(n + 1) 

[Hint: Write the numerator as 51. Zr=l-  
(n + 1): 

52. CF= I+n [Hint: Differentiate a certain 
2" 

power series.] 
Find the radius of convergence of the series in Exercises 
53-58. 

" ( x -  1/2)" 
56. c 

,,=o (n + l)! 

Find the Maclaurin series for the functions in Exercises 
59-66. 

1 
59. f(x) = cos 3x + e2" 60. g(x) = - 

1 - x 3  

61. f(x) = In(1 + x4) 
1 62. g(x) = --- 

J i T F  
d .  d 2  

63. f(x) = - dx (sin x - x) 64. g(k) = -- dk2 (cos k2) 

(el - 1) 
65. f(x) =cT dt 66. g(y) = o  sin t2 dt 
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Find the Taylor expansion of each function in Exercises 
67-70 about the indicated point, and find the radius of 
convergence. 

67. ex about x = 2 68. l / x  about x = 1 
69. x312 about x = 1 70. cos(nx) about x = 1 

Find the limits in Exercises 71-74 using series methods. 
lim 1 - COS ax  
x-0 x2 

sin m - 6a  - a3x2 72. lim [6 - 
x-+o x5 x4 I. 

(1 + xl3I2 - (1 - Xl3 l2  
73. lim 

x-+o x2 
(x - a12 (x - a)4 

74. lim [l + cos x - ------- + ---- 
x-+n 2 24 I' 

In Exercises 75-78 find the real part, the imaginary 
part, the complex conjugate, and the absolute value of 
the given complex number. 

75. 3 + 7i 76. 2 - 1Oi 
77. I/FT 78. (2 + i)/(2 - i) 

In Exercises 79-82, plot the given complex numbers, 
indicating r and 6 on your diagram, and write them in 
polar form z = reie. 

79. 1 - i 1 + i 80. - 
1 - i  

81. ie"'I2 82. (1 + i)eiT14 

83. Solve for z: z2 - 22 + ai  = 0. 

84. Solve for z: z8 = 6 + 3i. 
Find the general solution of the differential equations in 
Exercises 85-96. 

85. y" + 4y = 0 86. y" - 4y = 0 

87. y" + 6y1+ 5y = O  88. y"  -6y'- 2y = 0 

89. y "  + 3y' - 10y = ex + cosx 

90. y" - 2y' - 3y = x2 + sinx 

91. y" -6y'+9y =COS - (3 
92. y" - 1Oy + 25 = cos(2x) 
93. y" + 4y = ---& . (Express your answer in 

Jrn 
terms of integrals.) 

94. y"  - 3y' - 3y = sin x . (Express your an- 
Jrn 

swer in terms of integrals.) 
95. y"' + 2y" + 2y' = 0 
96. y"' - 3y" + 3y' - y = ex 

In Exercises 97-100, identify the equation as a spring 
equation and describe the limiting behavior as t -+ oo. 

97. x" + 9x + x' = cos2t. 
98. x" + 9x + 0.001~' = sin(50t). 
99. x" + 25x + 6x' = cos(at). 

100. x" + 25x + 0.001~' = cos(60at). 
In Exercises 101-104, find the first few terms of the 
general solution as a power series in x. 

101. y" + 2xy = 0 
102. y" - (4 sinx)y = 0 
103. y" - 2x5'  + 2y = 0 
104. y"  + y' + xy = 0 

Find the first few terms in an appropriate series for at 
least one solution of the equations in ~xercises 105- 
108. 

105. 5x5"  + y' + y = 0. 
106. xy" + y' - 4y = 0. 
107. Bessel's equation with k = 1. 
108. Legendre's equation with X = 3. 

B 109. The current I in the electric circuit shown in 
Figure 12.R.1 satisfies 

where E is the applied voltage and L, R, C are 
constants. 

Figure 12.R.1. An electric 
circuit. 

(a) Find the values of m, k, y that make this 
equation a damped spring equation. 

(b) Find I(t) if I(0) = 0, 11(0) = 0 and L = 5, 
C = 0.1, R = 100, and E = 2 cos(60at). 

110. Verify formula (16) in Section 12.7. 
11 1. Verify that C:=,,x2(1 + x2)-" is a convergent 

geometric series for x # 0 with sum 1 + x2. It 
also converges to 0 when x = 0. (This shows 
that the sum of an infinite series of continuous 
terms need not be continuous.) 

112. A beam of length L feet supported at its ends 
carries a concentrated load of P Ibs at its cen- 
ter. The maximum deflection D of the beam 
from equilibrium is 

(a) Use the formula 2:- ,(l/n4) = a4/90 to 
show that 

[Hint: Factor out 2-4.] 
(b) Show that 

hence D = (1 / 4 8 ) ( ~ ~ ~ /  EI). [Hint: A se- 
ries is the sum of its even and odd terms.] 

(c) Use the first two nonzero terms in the 
series for D to obtain a simpler formula for 
D. Show that this result differs at most by 
0.23% from the theoretical value. 
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113. The deflection y(x , t )  of a string from its 
straight profile at time t, measured vertically at 
location x along the string, 0 < x < L, is 

m 

y (x, t) = 2 Ansin 
n= I 

where A,, L and c are constants. 
(a) Explain what this equation means in terms 

of limits of partial sums for x, t fixed. 
(b) Initially (at t = 0), the deflection of the 

string is 

Find the deflection value as an infinite 
series at the midpoint x = L/2. 

114. In the study of saturation of a two-phase motor 
servo, an engineer starts with a transfer function 
equation V(s)/ E(s) = K/(1 + ST), then goes to 
the first-order approximation V(s)/E(s) = 
K(l - ST), from which he obtains an approxi- 
mate equation for the saturation dividing line. 
(a) Show that l / ( l  + ST) = C:=',,(- ST)", by 

appeal to the theory of geometric series. 
Which values of ST are allowed? 

(b) Discuss the replacement of 1/(1 + ST) by 
I - ST; include an error estimate in terms 
of the value of ST. 

115. Find the area bounded by the curves xy = sin x, 
x = 1, x = 2, y = 0. Make use of the Taylor 
expansion of sin x. 

116. A wire of length L inches and weight w 
Ibs/inch, clamped at its lower end at a small 
angle tan-'P, to the vertical, deflects y(x) in- 
ches due to bending. The displacement y(L) at 
the upper end is given by 

2Po lk3'2u (az) dz 
y(L)  = - 

3 ~ ' / ~  u ( a ~ ~ / ~ )  ' 

where a = f and 

The values of the gamma function r may be 
found in a mathematical table or on some cal- 
culators as r(x) = (x - l)! [ r ( f )  = 1.3541, r ( $ )  
= 0.9027, r ($ )  = 1.5046, r (Y)  = 4.01221. The 
function u is the Bessel function of order - f .  
(a) Find the smallest positive root of u(az) = 0 

by using the first four terms of the series. 
(b) Evaluate y(L) approximately by using the 

first four terms of the series. 
a 1  17. (a) Use a power series for to calculate 

correct to 0.01. (b) Use the result of part 
(a) to calculate 6. How accurate is your an- 
swer? 

118. In each of the following, evaluate the indicated 
derivative: 
(a) f(12)(0), where f ( x ) = x / ( l  + x2); 
(b) f(lo), where f(x) = x6eXC'. 

119. Let 

Determine the numbers BI , B2, and B3. (The Bi 
are known as the Bernoulli numbers.) 

120. Show in the following two ways that C:='=,nan 
= a/(l  - a12 for la1 < 1. 
(a) Consider 

S, = a + 2a2 + 3a3 + . . . + nan, 

and subtract. 
(b) Differentiate CT='=,an = 1/(1 - a) with re- 

spect to a, and then subtract your answer 
from C2=oan = 1/(1 - a). 

12 1. In highway engineering, a transitional spiral is 
defined to be a curve whose curvature varies 
directly as the arc length. Assume this curve 
starts at (0,O) as the continuation of a road 
coincident with the negative x axis. Then the 
parametric equations of the spiral are 

(a) By means of infinite series methods, find 
the ratio x/y for cp = n/4. 

(b) Try to graph the transitional spiral for 
k = 1, using accurate graphs of (cos @)/@, 
(sin@)/@ and the area interpretation of 
the integral. 

*122. The free vibrations of an elastic circular mem- 
brane can be described by infinite series, the 
terms of which involve trigonometric functions 
and Bessel functions. The series 

is called the Bessel Function Jn(x); n is an 
integer > 0. 
(a) Establish convergence by the ratio test. 
(b) The frequencies of oscillation of the circu- 

lar membrane are essentially solutions of 
the equation Jn(x) = 0, x > 0. Examine the 
equation Jo(x) = 0, and see if you can ex- 
plain why J0(2.404) = 0 is possible. 

(c) Check that Jn satisfies Bessel's equation 
(Example 6, Section 12.8). 

*123. Show that g defined by g(x) = e-'/x2 if x # 0 
and g(0) = 0 is infinitely differentiable and 
&')(O) = 0 for all i. [Hint: Use the definition of 
the derivative and the following lemma prov- 
able by l'H6pita11s rule: if P(x) is any polyno- 
mial, then limx,oP(x)g(x) = 0.1 
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s124. Let f(x) = (1 + x)", where a is a real number. 
Show by an induction argument that f(')(x) 
= a ( a  - 1) . . . ( a  - i + 1)(1 + x ) ~ - ' ,  and 
hence show that (1 + x)" is analytic for 1x1 < 1. 

* 125. True or false: The convergence of CF= and 
C:=,b: implies absolute convergence of 
CF= ~anbn. 

*126. (a) Show that if the radius of convergence of 
CF=lanxn is R, then the radius of conver- 
gence of CF= ,anxZn is fl. 
(b) Find the radius of convergence of the series 
C:='=o(7T/4)"x2n. 

*127. Let f(x) = C z o a i x i  and g(x) = f(x)/(l - x). 
(a) By multiplying the power series for f(x) 

and 1/(1 - x), show that g(x) = ~ z ~ b , x ~ ,  
where bi = a, + . . . + a, is the ith partial 
sum of the series C z oaai. 

(b) Suppose that the radius of convergence of 
f(x) is greater than 1 and that f(1) + 0. 
Show that lim,,,b, exists and is not equal 
to zero. What does this tell you about the 

radius of convergence of g(x)? 
(c) Let e x / ( l  - x)  = Cy=obixi .  What is 

lim,, , b, ? 
*128. (a) Find the second-order approximation at 

T = 0 to the day-length function S (see the 
supplement to Chapter 5) for latitude 38" 
and your own latitude. 

(b) How many minutes earlier (compared with 
T = 0) does the sun set when T = 1, 2, 10, 
30? 

(c) Compare the results in part (b) with those 
obtained from the exact formula and with 
listings in your local newspaper. 

(d) For how many days before and after June 
2 1 is the second-order approximation cor- 
rect to within 1 minute? Within 5 minutes? 

*129. Prove that e is irrational, as follows: if e = a / b  
for some integers a and b, let k > b and let 
a = kl(e - 2 - L - L - . . . 

Z !  3! - & ). Show that 
a is an integer and that a < l / k  to derive a 
contradiction. 
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