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2. Hamiltonian Systems.

This lecture contains some of the basic facts about
Hamiltonian systems. Some additional material will be brought in

later as it is needed.

Motivation.

To motivate the development, let us briefly consider
Hamilton's equations. The starting point is Newton's second law
which states that a particle of mass m > 0 moving in a potential
v(x) , x € R3 moves along a curve x(t) such that mx = -grad V(x)

1f we introduce the momentum p = mx and the energy H(x, p) =

%ﬁ Hsz + V(x) then Newton's law becomes Hamilton's Equations

ke
il

aH/api

-3H/3q" i=1, 2,3,

o
W

One now is interested in studying this system of first order equations
. . . . (0 T\
for given H . To do this, we introduce the matrix J = \-T 0) where

I is the n X n identity and note that the equations become

3

J grad H(E) where E = (x, p) . (In complex notation, setting

z = x + ip , they may be written as % = 2idH/3z).

Suppose we make a change of coordinates w = f(E) where
2n 2n . s . .
f: R =R is smooth. If E£(t) satisfies Hamilton's equatiomns,

the equations satisfied by w(t) are w = Aé = AJ gradaH(E) =

AJAWgrade(g(w)) where A = (awl/aEJ) is the Jaccbian of f . The
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equations for w will be Hamiltonian with energy K(w) = H(E(w)) if

o
W

AJA =J . A transformation satisfying this condition is called

canonical or symplectic.

The space R3 X R3 of the E's 1is called the phase space,

For a system of N particles we would use R3N X R3N

We wish to point out that for many fundamental physical
systems, the phase space is a manifold rather than Euclidean space.
These arize when constraints are present. For example the phase
space for the motion of the rigid body is the tangent bundle of the

group S0(3) of 3 x 3 orthogonal matrices with determinant +1

To generalize the notion of a Hamiltonian system, we first
need to geometrize the symplectic matrix J above. In infinite
dimensions there is a technical point however which is important. We

give a discussion of this in the following.

Strong and Weak Nondegenerate Bilinear Forms.

Let E be a Banach space and B : E x E 5 R a continuous

b
bilinear mapping. Then B induces a continuous map B : E - E ,

e L>Bb(e) defined through Bb(e)f = B(e, f) . We call B weakly

b
nondegenerate if B is injective; i.,e., B(e, f) = 0 for all f € E
implies e =0 . We call B nondegenerate or strongly nondegenerate

b
if B is an isomorphism. By the open mapping theorem it follows
b .
that B 1is nondegenerate iff B 1is weakly nondegenerate and B is

onto.
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If E 1is finite dimensional there is no difference between
strong and weak nondegeneracy. However in infinite dimensions the

distinction is important to bear in mind.

Let M be a Banach manifold. By a weak Riemannian structure

we mean a smooth assignment x5 <, > of a weakly nondegenerate

inner product (not necessarily complete) to each tangent space TxM
Here smooth means that in local charts x € UCE§s <, >x S LZ(E x E, R)
is smooth where L2<E X E, R) denotes the Banach space of bilinear
maps of E x E to R . Equivalently <, >X is a smooth section of

the vector bundle whose fiber at x € M is LZ(TXM X TxM’ R)

By a Riemannian manifold we mean a weak Riemannian manifold

in which <, >x is nondegenerate. Equivalently, the topology of
<, >X is complete on TXM , so that the model space E must be

igsomorphic to a Hilbert space.

For example the 1L inner product <f, g> = Ié f(x)g(x)dx

2
on E =C([0,1], R) 1is a weak Riemannian metric on E but not a

Riemannian metric.

Symplectic Forms.

Let P be a manifold modelled on a Banach space E

By a symplectic form we mean a two form «w on P such that

(a) w 1is clogsed; dw =0

(b) for each x € P , w, ot TXP X TxP - R is nondegenerate,
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If W in (b) is weakly nondegenerate, we speak of a weak

symplectic form.

The need for weak symplectic forms will be clear from
examples given below. For the moment the reader may wish to assume

P 1is finite dimensional in which case the distinction vanishes,

If (b) is dropped we refer to w as a nresymplectic
form. This case will be referred to later. The first result is

referred to as Darboux's theorem. Our proof follows Weinstein [1].

The method is also useful in Morse theory; see Palais [5].

Theorem, Let w be a symplectic form on the Banach manifold P

For each x € P there is a lggék_qpordinqte chart about x 1in which

w 1is constant.

Proof. We can assume P =E and x =0¢€ E . Let wy be the
constant form equalling Wy = w(0) . Let W= wo-ow and W, = wt £o R
0<t<1l. For each t , mt(O) = w(0) 1is nondegenerate. Hence by

ot

openness of the set of linear isomorphisms of E to E , there is a
neighborhood of 0 on which W, is nondegenerate for all 0 <t <1
We can assume that this neighborhood is a ball. Thus by the Poincaré
lemma (appendix 1) @ = do for some one form o . We can suppose

a(0) =0 .

Define a vector field Xt by iX W = o which is possible
t

since we is nondegenerate, Moreover, Xt will be smooth. Since
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Xt(O) = 0 we can, from the local existence theory restriect to a
sufficiently small ball on which the integral curves will be defined

for a time at least one,

Now let Ft be the flow of Xt . The connection between
Lie derivatives and flows still holds for time dependent vector fields,

so we have

d * Y d

T (Feop) = Ft(Ltht) tFOaE Y
F*d' o
= 1tht +Eo

Fi(d(-a) + W) = 0

e S

Therefore, F{wl = Fawo =w , 80 Fl provides the chart trénsforming

w to the constant form wl . 0

Of course such a result cannot be true for riemannian
structures (otherwise they would be flat). Darboux's theorem is not
true for weak symplectic forms. See Marsden [4]. Recently A. Tromba

has found some useful sufficient conditions to. cover the weak case.

Corollary. If P is finite dimensional and w 1is a symplectic form

then

(a) P 1is even dimensional, say dim P =m = 2n

(b) locally about each point there are coordinates

xl, cees xn, yl, ceey yn such that
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n . .
w =3 dx" A dyl
1

Such coordinates are called canonical.

Proof. By elementary linear algebra, any skew symmetric bilinear form
which is nondegenerate has the canonical form (_g é) where T 1is

the n X n identity. This is the matrix version of (b) pointwise on

M . The result now follows from Darboux's theorem. [

The corollary actually has a generalization to infinite
dimensions. Clearly it is just a result on the canonical form of a
skew symmetric bilinear mapping. First some notation. TLet FE be a
real vector space. By a complex structure on E we mean a linear map

J :+ E 5E such that JZ = -T . By setting ie = J(e) one then gives

E the structure of a complex vector space. We now show that a

symplectic form is the imaginary part of an inner product. (cf. Cook [1]).

Proposition. Eet H be a real Hilbert space and B a skew symmetric

weakly nondegenerate bilinear form on H . Then there exists a complex

structure J on H and a real innmer product s such that
s(x, y) = B(Jx, y) .
Setting
h(x, y) = s(x, y) + iB(x, y) ,

h is a hermetian innmer product., Finally, h or s 1is complete on
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H iff B 1is nondegenerate.

Proof., Let <, > be the given complete inner product on H . By
the Riesz theorem, B(X, y) = <Ax, y> for a bounded linear operator

A :H >H . Since B is skew, we find A" = -A .

Since B is weakly nondegenerate, A 1is injective., Now
kS 2 i .
-A2 >0 , and from A = -A we see that A is injective, Tet P
2 .
be a symmetric non-negative square root of -A~ . Hence P 1is injec-

.

tive. Since P =P | P has dense range. Thus P_1 is a well

s
defined unbounded operator., Set J = AP_l , so that

A=JP . From A=-A" and P? = -a% , we find that J is orthogonal
and J2 = -1 ., Thus we may assume J 1is a bounded operator. Moreover
J is symplectic in the sense that B(Jx, Jy) = B(x, v) . Define

s(x, y) = B(Ux, y) = <Px, y> since A =JP =PJ . Thus s 1is an

inner product on H . Finally, it is a straightforward check to see

that h 1is a hermetian inner product. For example; h(ix, y) = s(Jx, y)
+ iB(Jx, y) = =-B(x, y) + is(x, y) = ih(x, y) . The proposition

follows. [

Canonical Symplectic Forms.

We recall that a Banach space E is reflexive iff the
canonical injection E — E  is onto. For instance any finite

dimensional or Hilbert space is reflexive, The Lp spaces, 1 <p <=

are reflexive, but C([0, 1}, R) with the sup norm is not.

Let M be a manifold modelled on a Banach space E . TLet
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)
L P

T M be its cotangent bundle, and ¢ T'M »M the projection.

Define the canonical one form 6 on M by

8o W = -amTT"‘(W)

5 a * .
where o € T M and W € Tam(T M) . In a chart UCE this

H

formula is the same as saying

(%, o) = (e, B) = -a(e)

fo

where (x, o) EUXE , (e, B) €EXxE . If M is finite dimensional,
this says
i
- -y p.d
9 = -% p,dq

where ql,...,qn, Pyse+-sP are coordinates for T M .

The canonical two form is defined by w = do . Locally,

using the formula for d from table one, p. 19,
w(X, O[).((el’ Q’l)’ (ezs 0’2)) = {QZ(el) - 011(6‘:2)}
or, in the finite dimensional case,

w =2 dql A dpi .

Lo
w

Proposition (a) The form w 1is a weak symplectic form on p = 7'M

(b) w is symplectic iff E 1is reflexive ,

Proof. (a) Suppose u(x, (e, o;)s(eys @) =0 forall (e, o) .
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Setting e, = 0 we get az(el) =0 for all @, €E . By the

Hahn-Banach theorem, this implies ey = 0 . Setting @y = 0 we get

al(ez) =0 for all e2 €E , so oy = o .

(b) Suppose E is reflexive, We must show that the map

1 AN e aota
W

b PS wow b
w : EXE S (EXE) E X E , W (el, al)~(c2, az) =

i

anl, ate
W <

{az(el) - al(ez)} is onto. Let (B, f) € E* X E ~E XE . We can

take ey = £, oy = -R 3 then (el, al) is mapped to (B, f) wunder

Zmb . Conversely if wb is onto, then for (B, f) € B % B ,
there is (e, ) such that f(az) + B(ez) = Qz(el) - aye,) for

all e Setting e, = 0 we see f(az) = az(el) , SO0 :E - E

2 * % 2

is onto. O

Symplectic Forms induced by Metrics.

If <, >x is a weak Riemannian metric on M , we have a

smooth map ¢ : ™M - T M defined by go(vx)wX =<V, W, X EM .

If <, > 1is a (strong) Riemannian metric it follows from the implicit

function theorem that ¢ is a diffeomorphism of TM onto T™M . In

any case, set () = $“(m) where  1is the canonical form on T M .

Clearly (Q 1is exact since (1 = d(@*(e))

Proposition. (a) If <, >x is a weak metric, then (O 1is a weak

symplectic form. 1In a chart U for M we have

Q(x,e)((el,ez), (e3,e4)) = DX<e,el>Xe3 - D <ese> ey <o e> -

where DX denotes the derivative with respect to x

€937
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(b)) 1If <, >X is a strong metric and M 1is modelled on

a reflexive space, then (1 1is a symplectic form.

(¢) Q = d8 where, locally, 8(x, e)(el, ez) = -<e, er>. -

Note. In the finite dimensional case, the formula for (I becomes

. . 08. . -
. . k
Q=73 gijdql A dql + ——il qlqu A dq

Jake]
where 975 voey @ 5 Q75 oau, én are coordinates for T .

Proof. By definition of pull-back, Q(x, e)((el, e2), (e3, eq)) =
w(x, e)(D@(X’e)(el, e2), D@(X,e)(e3, e4)) . But clearly Dm(x,e>(e1, ez) =

(el, Dx<e, ->Xe + <e2, ->X) , 8o the formula for (Q follows from

1
that for w . To check weak nondegeneracy, suppose Q(x,e)((el’ ez),(e3, eq)) =0

for all (e3, e4) . Setting ey = 0 we find <e4, e1>X = 0 for all

e, , whence e. = 0 . Then we obtain <e2, e

4 1 3
Part (b) follows from the easy fact that the transform of a symplectic

>X =0, so e2 =0 .

form by a diffeomorphism is still symplectic. [

The above result holds equally well for pseudo-Riemannian

manifolds.

Note that if M =H is a Hilbert space with the constant
inner product, then ® is, on H X H which we may identify with ¥ -
the complexified Hilbert space, equal to the imaginary part of the

i r oduct: Let = i = i T
inner produc e e eq + ie, , f fl + 1f2 . Then
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f.> + <e f >

<e, > = (<e1: 1 923 “o ) 1(<e19 £> - <e £.>)

2 27 71

SO

w(e, £y = ~Im<e, £> .

Canonical Transformations.

Let P , w be a weak symplectic manifold; i.,e. w 1is a

weak symplectic form on P . A (smooth) map f : P - P is called

1,

canonical or symplectic when fw=1w . It follows that fx(w AN voe N w)

WA ... ANw (k times). If P is 2n dimensional, p = w0 A ... A
(n times) is nowhere vanishing; by a computation one finds |, to be
a multiple of the Lebesgue measure in canonical coordinates. We call

u the phase volume or the Liouville form. Thus a symplectic map

preserves the phase volume, and is necessarily a local diffeomorphism.

We briefly discuss symplectic maps induced by maps on the

base space of a cotangent bundle.

Theorem. Let M be a manifold and f : M - M a diffeomorphism,

define the lift of £ by

KA 1.

TE: TMoTM ; Txf(ozm)v = (TFv) ,VET M .

Then Tf is symplectic and in fact (wa)xe =06 , where 6 1is the

canonical one form. (We could, equally well consider diffeomorphisms

from one manifold to another.)
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proof. By definition, (T £) 6(W) = 6(TT £*W) =

I

_T“f(@m)-(TT“TT“f-W) -T“f(am)-(T(T“oT“f)-W)

-am-(Tf-T(T*oT“f)-W)

-+ (T(£or o1 £)*W)

1]

-am-(TT*«W) = o(W)

Je e
w

% %
since, by construction, feorT oT £f =171 ., O

One can show conversely that any diffeomorphism of P = T'M

which preserves © 1s the lift of some diffeomorphism of M . But,
on the other hand, there are many other symplectic maps of P which

are not lifts.

Corollary. Let M be a weak Riemannian manifold and () the

corresponding weak symplectic form. Let f : M »M be a diffeomorphism

which is an isometry: <v, W>X = <Tfsv, Tf'w>f Then

(%)
Tf ¢+ TM - TM 1is symplectic.

Proof, The result is immediate from the above and the fact that

T'f o @ o Tf =@ where ¢ : TM > T M is as on p.34., [

Hamiltonian Vector Fields and Poisson Brackets.

Definition. Let P , w be a weak symplectic manifold., A vector
field X : D > TP with manifold domain D 1is called Hamiltonian if

there is a Cl function H : D » R such that
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as l-forms on D . We say X 1is locally Hamiltonian if ixm is

closed.

We write X = XH because usually in examples one is given

H and then one constructs the Hamiltonian vector field XH .

Because w 1is only weak, given H : D - R , XH need not
exist. Also, even if H 1is smooth on all of P , XH will in general
be defined only on a certain subset of P , but where it is defined,

it is unique,

The condition i_, w = dH reads

0 (X (0, v) = A,

x€eD ,ve TXD < TXM . From this .we note that, necessarily, for
each x € D , dH(x) : TXD >R is extendable to a bounded linear

functional‘on TXP

The relation w(XH, v) = dli*v 1is the geometrical formulation
of the same condition XH(i) = Jegrad H(£) with which we motivated

the discussion.

Some Properties of Hamiltonian Systems.

We now give a couple of simple properties of Hamiltonian
systems. The proofs are a bit more technical for densely defined
r. s r
vector fields so for purposes of these theorems we work with C  vector

fields.
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Theorem. Let XH be a Hamiltonian vector field on the symplectic

manifold P , w and let Ft be the flow of XH . Then

(1) F is symplectic, F§w=w

and (ii) energy is conserved; H th =H.

Proof. (i) Since FO = identity, it suffices to show that

d

S FEw =0 . But by lecture 1,
L pru@x) = FA(L, 0) (%)
dt  t tXH

F?[di wl(x) + F?[i dw] (%)

% 1

The first term is zero because it is ddH and the second is zero

because dw = 0

(ii) By the chain rule,

]

S (HF ) () = AH(F () + Xy (F (x))

(X (F (), X (F ()

= (UFt (X)

but this is zero in view of the skew symmetry of w. [

An immediate corollary of (i) is Liouville's theorem: F

preserves the phase volume. It seems likely that a version of

Liouville's theorem holds in infinite dimensions as well. The phase

volume would be a Wiener measure induced by the symplectic form.

More generally than (ii) one can show that for any function
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qf £°F, = (£, H)oF,

where (f, g} = w(Xf, Xg) is the Poisson bracket; in fact it is easy

to see that

{f, g) =1 f
g

(Note that sz = foFt for functions.)

The Wave Equation as a Hamiltonian System.

The wave equation for a function u(x, t) , x € R" , £t €R

is given by

2
e - Au+mu, m>0

with u given at t=0 , We consider
1, n n
P=H(R) X Ly(R)

1 . . , . . .
where H consists of functions in L2 whose first derivatives are

also in L2 . Let

and

XH(u, ) = (ﬁ, Au + mzu)

with symplectic form that associated with the L2 metric
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. - r . P »
w((u, w), (v, v)) = Jovu - uvo
(Recall that there is always an associated complex structure -- in

this case that of LZ(R’ C) ; in fact there is also one making the

flow of XH unitary as in Cook [1], at least if m > 0) . Define

1t is an easy verification (integration by parts) that XH , w and H
are in the proper relation, so in this sense the wave equation is

Hamiltonian.

That this equation has a flow on P follows from the

hyperbolic version of the Hille-Yosida theorem stated in lecture 1.

The Schrodinger Equation.

Let P =Y a complex Hilbert space with w = Im <,> . Let

H be a self adjoint operator with domain D and let

X (0) = iH-0
and
H(p) = <Hyp, ©>/2 , 9 €D

Again it is easy to check that w , XH and H are in the correct

relation.

In this sense XH is Hamiltonian. Note that ¢(t) 1is an

integral curve of XH if
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the abstract Schrodinger equation of quantum mechanics.

That XH has a flow is another case of the Hille-Yosida

theorem called Stone's theorem; i.e. if H is self adjoint, them iH

. itH
generates a one parameter unitary group, denoted e

We know from general principles that the flow eltH will be

symplectic. The additional structure needed for unitarity is exactly

complex linearity.

We shall return to quantum mechanical systems in a later

lecture.

We next turn our attention to geodesics and more generally

to Lagrangian systems.

The Spray of a Metric.

Let M be a weak Riemannian manifold with metric <, >x
on the tangent space TXM . We now wish to define the spray S of
the metric <, >X . This should be a vector field on T™ ; S : ™ —>T2M
whose integral curves project onto geodesics., Tocally, if (x, v) € TXM 5
write S(x, v) = ((x, v), (v, v(x, v)) . If M 1is finite dimensional,

. . . . i i ik
the geodesic spray is given by putting v (x, v) = -Tjk(x)v v . In

the general case, the correct definition for vy is

1
1 — R - o
(L <y(x, v), w> = 2D <V, V> W D <v, w> v



where Dx<v, v>x-w means the derivative of <v, V>x with respect to
x in the direction of w . 1In the finite-dimensional case, the

right hand side of (1) is given by

1955 1 3% %Bij ijk
5T YV VWY,
ox A%
which is the same as -F;kvjvkwi . So with this definition of v |

S 1is taken to be the spray. The verification that § 1is well-defined
independent of the charts is not too difficult. Notice that vy is
quadratic in v . One can also show that S 1s just the Hamiltonian
vector field on TM associated with the kinetic energy X<v, v> .

This will actually be done below; cf. Abraham [2] and Chernoff-

Marsden [1].

The point is that the definition of v 1in (1) makes sense
in the infinite as well as the finite dimensional case, whereas the

s e i . .. . . .
usual definition of rjk makes sense only in finite dimensions. This

then gives us a way to deal with geodesics in infinite dimensional

spaces.

Equations of Motion in a Potential.

Let trs (x(t), v(t)) be an integral curve of S . That is:

(2) x(t) = v(t) 3 v(t) = v(x(t), v(t))

These are the equations of motion in the absence of a potential. Now

let V : M »R (the potential energy) be given. At each x , we have
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N
<

the differential of V , dV(x) € T .M , and we define grad V(x) by:

(3) <grad V(x), w> = dV(x)*w

It is a definite assumption that grad V exists, since the map

8

TXM —;T;M induced by the metric is not necessarily bijective.

The equation of motion in the potential field V is given

by:
(%) x(t) = v(t) 5 v(t) = v(x(t), v(t)) - grad V(x(t))

The total energy, kinetic plus potential, is given by H(VX) =

%HVXHZ + V(x) . It is actually true that the vector field XH
determined by H and the symplectic structure on TM 1induced by the
metric is given by (4). This will be part of a more general derivation

of Lagrange's equations below.

Lagrangian Systems.

We now want to generalize the idea of motion in a potential
to that of a Lagrangian system; these are, however, still special
types of Hamiltonian systems. See Abraham [2] for‘an alternative
exposition of the finite dimensional case, and Marsden [1], and Chernoff-

Marsden [1] for additional results.

We begin with a manifold M and a given function L : ™ >R

called the Lagrangian. 1In case of motion in a potential, one takes
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N

L(Vx) == <v_, v - V(%)

X
which differs from the energy in that we use -V rather than +V .

Now L defines a map, called the fiber derivative,

FL : ™ —>TWM as follows: let v, w € TXM . Then set

FL(v)*w = gEL(v + tw)]t=0

That is, FL(V)*w 1is the derivative of 1 along the fiber in

direction w .

1
In case of L(vx) = §<VX, VX>X - V(x) , we see that

FL(V J)ew =<v , w> so we recover the usual map of TM —;TNM
X X x’ X x

associated with the bilinear form <, >

As we saw above, T M carries a canonical symplectic form

w . Using FL we obtain a closed two form wL on TM by

w. = (F *(D_
L= ()

In fact a straightforward computation yields the following local
formula for Wyt if M 1is modeled on a linear space E , so locally
TM looks like U X E where UCE 1is open, then wL(u, e) for

(u, €) € U X E 1is the skew symmetric bilinear form on E X E given by
UJL(U: e)'((els ez)’ (83, 64)) = Dl(DzL(U., e)'e3)'e1

- Dl(DZL(u’ e)-e3)-e1 + D2D2L(u, e)-ea-e1 - DZDZL(u’ e)'ez-e3
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where D D denote the indicated partial derivatives of L

172
It is easy to see that w is (weakly) nondegenerate if
DZDZL(u, e) 1is (weakly) nondegenerate. But we want to also allow degenerate
cases for later purposes. 1In case of motion in a potential, nondegeneracy
of w amounts to nondegeneracy of the metric <, >k . The action
of 1 1is defined by A : TB - R , A(v) = FL{(v)*v , and the energy of

L is E=A -1 . 1In charts,
E(u, e) = DZL(u, eyee - L(u, e)

and in finite dimensions it is the expression

oL
oL

0q

° ® 1 e
E(qa CI) = q - L(q, @) ,

(summation convention!)

Now given L , we say that a vector field Z on T™M 1is a

Lagrangian vector field or a Lagrangian system for L 1if the Lagrangian

condition holds:
wL(v)(Z(v), w) = dE(V)ew

for all v ¢ M, and w € TV(TM) . Here, dE denotes the differential

of E

Below we shall see that for motion in a potential, this leads

to the same equations of motion which we found above,
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If w; were a weak symplectic form there would be at most
one such Z . The fact that wL may be degenerate however means
that Z 1s not uniquely determined by L so that there is some
arbitrariness in what we may choose for Z . Also if . is degen-
erate, Z may not even exist. If it does, we say that we can define

consistent equations of motion. These ideas have been discussed in

the finite dimensional case by Dirac [1] and Kunzle [1].

The dynamics is obtained by finding the integral curves of
Z ; that is the curves v(t) such that wv(t) € TM satisfies
(dv/dt)(t) = Z(v(t)) . From the Lagrangian condition it is trivial

to check that energy is conserved even though 1L may be degenerate:

Proposition. Let Z be a Lagrangian vector field for 1 and let

v(t) € ™ be an integral curve of Z . Then E(v(t)) 1is constant

in t

Proof., By the chain rule,

£ E(u(D) = dE(v(£))+v' () = dE(v(£))* Z(v(E))

20 (v(£)) (Z(v(£)) , 2(v(£)) = O

by the skew symmetry of W O

We now want to generalize our previous local expression for
the spray of a metric, and the equations of motion in the presence of
a potential. 1In the general case the equations are called '"Lagrange's

equations'.
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Proposition. Let Z be a Lagrangian system for 1 and suppose Z

is a second order equation (that is, in a chart U X E for TM , ,

Z(u, e) = (e, Zz(u, e)) for some map 22 : Ux E 5E) . Then in the

chart U x E , an integral curve (u(t), v(t)) € U x E of Z satisfies

Lagrange's equations:

Loy = v
(1)

O, , v(©)w = DL(u(E), v(£))+w

for all w &€ E . 1In case 1L 1is nondegenerate we have

(2) %% = (D2D2L(U, V)}-I{DIL(U, v) - DlDZL(u’ v)ev}

In case of motion in a potential, (2) reduces readily to the

equations we found previously defining the spray and gradient.

Proof. From the definition of the energy E we have

dE(u, e)-(el, e = Dl(DZL(u’ e)ee, + D D L(u, e)rece

1 5Dy - DlL(u, e)ee

2) 2 1

Locally we may write Z(u, e) = (e, Y(u, e)) as Z 1is a second order

equation. Using the formula for W the condition on Y may be

written, after a short computation:

DlL(u, e)se, = Dl(DZL(u’ e)~e1)ve + DZ(DZL(u, e)eY(u, e))-e1

1

for all ey € E

This is the formula (2) above. Then, if (u(t), v(t)) is an integral

curve of Z we obtain, using dots to denote time differentiation,
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Dl(DZL(u’ u)~el-u + DZD L{u, u)'u-e1

DlL(u’ e>.e 2

d -
EEDZL(u’ u)-e1

by the chain rule. O

From these calculations one sees that if w, is nondegenerate
7 1is automatically a second order equation (cf. Abraham [2]). Also,
the condition of being second order is intrinsic; Z 1is second order
if TmeZ = identity , where 7 : TM - M 1is the projection. See

Abraham [2], or Lang [1].

Often L 1is obtained in the form

Leu, 0 = | 2w, 2, D
Q 0%

for a Lagrangian density £ and j some volume element on some
manifold Q . Then M 1is a space of functions on Q or more generally
sections of a vector bundle over Q . 1In this case, Lagrange's
equations may be converted to the usual form of Lagrange's equations

for a density £ . We shall see how this is done in a couple of

special cases in later lectures. (See also Marsden [1]).



