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5. Turbulence and Chorin's Formula.

This lecture is concerned with some aspects of the Navier
Stokes equations which are connected with turbulence. We shall be
beginning with a representation theorem for the solution of the Navier-
Stokes equations which was discovered by A. Chorin in an attempt to
find a good numerical scheme to calculate solutions. This scheme is
important in that it allows good calculations at interesting Reynolds

numbers. One writes the Navier-Stokes equations as

ov _ 1 . - -
St TR Av + (veV)v = -grad p

div v =20

v=0 on oM

and calls R = 1/(viscosity) the Reynolds number; if one rescales v
to Vv , distances by a factor d and time by d/V we get a new
solution with R = Vd/v . Most numerical schemes break down with R
a few hundred, but Chorin's scheme is valid far beyond that possibly
up to R = 50,000 . Our goal is to present the formula and to discuss
where it comes from and its plausibility. The second part of the
lecture will discuss some aspects of turbulence theory. This subject
is basically concerned with qualitative features of the solutions as

R —»® , The approach here follows that of Ruelle-Takens [1].

Statement of Chorin's Formula.

Let us write the Navier-Stokes equations as follows:
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~

where A = %P'A and Z(v) =—P((v-5§v) . Here P 1is the projection
onto the divergence free part discussed in the last lecture (Av 1is
divergence free, but need not be parallel to 3M , so one still requires

a P in front of Av)

Let Ht denote the evolution operator or semi-group defined
by ’Z . It exists because it is an elementary exercise to show that
A is self adjoint and < 0 on the Hilbert space LZ(M) with domain
Hé(M) . (See the parabolic form of the Hille-Yosida theorem discussed

in lecture 1). Thus Ho is defined for t > 0 , and solves 3dv/3t = Av

(This is called the 'Stokes'" equation.)

Let Et denote the evolution operator for the Euler equations

which was obtained in the last lecture.

Let Ft denote the full solution to the Navier-Stokes

equations.

Let o(v) be a potential for v ; e.g.: o(v) = dA_l(v) ,
so v = 8(p(v)) . Here & 1is the divergence operator discussed in
lecture 3. (More concretely in three dimensions, v = 7 x o(v) V)
Let d(£) be a function of £ €R , £ >0 with d(£) = IV where
v = 1/R is the viscosity of the fluid. It will turn out that

d(£) will be a measure of the thickness of the boundary layer.

[oe]

Let be a C function equal to one a distance > d(£)

gy

from JM and = 0 on a neighborhood of aM .

&y

Define the operator
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5,(v) = 8(g, 0(v) ,

we call @2 the vorticity creation operator. The reason for this is

that @z(v) equals v away from aM , but if v 1is only HBM s
®Z(V) will be zero on oM so has the effect of ''chopping off" v
within the boundary layer (we do not use By v since that is not
divergence free), Such a chopping off effectively creates vorticity.

(See the figure following.)

The formula now reads as follows:

Ft(v) = golution of Navier-Stokes equation

. n
limit (H 0d oF Y v
0 s o t/n t/n t/n

In this formula the power means iteration. For example:

) °F oH

t/3 "t/3 /3By 3oH

t/3 " t/3 R RN L

3
(Ht/3°@t/3°Et/3) v =Hi3 t/3 £/3°%¢/3°"t/3

Thus one divides the time scale into n parts and then iterates the
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the procedure: solve Euler's equations then create vorticity, then

solve the Stokes equation then the Euler equation, etc,

This is the basic method underlying Chorin's technique.
However part of the beauty of the method is the way in which he solves
numerically for Et and Ht . He uses vorticity methods for E and

probabilistic methods for Ht . See Chorin [2] for details.

In the following figurevwe reproduce one of Chorin's outputs.
The O0's mark negative vorticity and *'s mark positive vorticity.
This representation is for flow past a cylinder with R and t as
marked and initial v corresponding to parallel flow. It is a remark-
able achievement to obtain on the computer something resembling the
famous "Karmen vortex street'". (For a spectacular photqgraph, see
Scientific American, January 1970, p. 40; this is reproduced on the
cover of "Basic Complex Analysis™, W. H. Freeman Co. (1973).) Below
we shall discuss further the qualitative features of why and how such

periodic phenomena can get generated.

As is well known (Nelson [3]) product formulas are
closely related to Wiener integrals; Chorin has recently
used this idea to improve the scheme still further, as far
as computer efficiency goes, so the method 1s valid into

the fully turbulent region.

* The computer has distorted the cylinder somewhat into an ellipse.
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The interesting feature of the above formula is that the

error for lafge n is 0(1l/n) 1independent of R . Furthermore using

the formula as an existence theorem we find that smooth solutions to

the Navier-Stokes equations exist for a time interval T > 0 independent

of R as R -« and converge in Lp to solutions of the Euler eguations.

This is an important result, for it guarantees as positive
time of existence for given initial data, no matter how small the
viscosity. This is strong evidence for the existence of smooth

turbulent solutions. (See below.)

In case M = P (for example using periodic boundary

conditions) the formula reads
F.v = limit (H °F )nv
t t/n “t/n
n - ®

This formula was proven in Ebin-Marsden [1] and Marsden [5]. It
enabled us to show that as v -0 (or R — o) the solutions converge in il
to solutions of the Euler equations. (See also Swann [1], Kato [2].)
Basically this means that turbulence cannot occur if no boundaries are

present. Such convergence will not occur if M # § in topologies

stronger than Lp because the boundary conditions and the vorticity

carried into the mainstream flow will not allow 1it.

The complete proofs of these results are too technical for us
to go into here. Rather we shall confine ourselves, in the next
section, to an elementary exposition of where these formulas come from.

We shall also include some additional intuition below.
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The Lie-Trotter Formula.

et X and Y be vector fields with flows Ht and Et

Then the flow Ft of X+Y 1is given by

n

Ft = limit (Ht/naE )

0 s o t/n

Theorem. This is valid if X , Y are Cr vector fields for those t

for

which Ft is defined.

Let us give the idea (for details, see e.g., Nelson [11).

We first show Ft defined by the limit is a flow. One shows

F = FtOFS first if s , t are ratiomally related and takes limits.

t+s

Consider, e.g.: t = s

n

)

]
[}

= limit (H
n — o

2t/n°E2t/n

)2n

limit (H
n — o

2t/2n°E2t/2n

limit 2n
n oo (Ht/noEt/n)

n n

)

limit (Ht/noE
n -

t/n’ ° (Ht/noEt/n)
Next o ho dp { =X + Y Indeed, f 11
X ne shows = t(x)nt=0 = X(x) (x) . ndeed, formally,

d . .. d n
tht(x)ltso = Llimit dt(Ht/HOEt/n) X’t =0
n — o
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oHt/nD"°°oH

, .. d
limit dt<Ht/n E

n —o® t/n

limit [%(X(x)+¥(x))+,=n+ %(X(X)+Y(X))]
n - ®

X(x) + Y(x)

It follows now that Ft is the flow of X4Y since

d d
a. _ 4 f
tht(X) dst+t(X) Ys=0 .

d
= EEFS<Ft(X))[s=O

= X(F () + Y(F (x))

The above formula arose historically in Lie group theory.
It tells us how to exponentiate the sum of two elements in the Lie

algebra. In the case of matrix groups it is the classical formula:

et(A+B) -1 tA/netB/n n

)

imit (e
n -—®

Of course if [X, Y] = 0 the formula reads F, = HtoEt , but

it really is the case in which X , Y do not commute that is of interest.

The above formula has been generalized to linear evolution
equations, as in the Hille-Yosida theorem by Trotter [l], and to certain
non-linear semi-groups by Brezis-Pazy [l] and Marsden [5]. These

results can be used to establish the claims made about the Navier Stokes
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equation if 2aM = § . Indeed one takes X = Zl and Y = Z

For M # @ the composition B oE_ doesn't even make
sense (except perhaps in LZ(M) , but that is not too useful) because
Et(v) ,even if v =0 on ?M , will not be 0O on M , but will
only be parallel to 3M . The purpose of the vorticity creation

operator is to correct for this failure of the boundary conditions.

Some additional intuition on Chorin's Formula.

Consider again the formula

n
F (v) = limit (H od oE , ) v
t n t/n t/n t/n

The term Et v gives the main overall features of the flow past the

/n

boundary. Let us call it the downstream drift. Consider the effect:

drifts us downstream, then & creates vorticity near aM ,

“t/n

has the effect of diffusing this vorticity away from M

E
t/n
then H
t/n
then Et/n tends to sweep this vorticity downstream etc, The net

effect is a lot of vorticity swept downstream. This is exactly what

happens in examples such as the von Karmen vortex street.

The proof of Chorin's formula is based on a generalization of
the Lie Trotter product formula due to Chernoff [1] in the linear case
and Brezis-Pazy [1] and Marsden [5] in the non-linear case. We discuss

this formula next.

Chernoff's Formula.

Suppose K(t) 1is a family of operators, t > 0 (satisfying
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suitable hypotheses). Let X = K'(0) . Then the flow of X 1is

F(x) = limit K(e/n) 1" (%) .
n oo
This is Chernoff's generalization of the Lie-Trotter formula. We

obtain the previous formula for X+Y wusing K(t) = HtoEt

For details on the hypotheses, see the aformentioned references

and Chernoff-Marsden [1] and Nelson [1].

In applications to hydrodynamics it is important to use
Lagrangian coordinates, for as we have stressed in the previous lecture,
the Euler equations then become a ¢” vector field. This is a great
advantage in dealing with these product formulas (in the linear case it
corresponds to adding a bounded operator to an unbounded one -- a

relatively easy procedure).

For example one can give an almost trivial proof of the

formula

. o n
Et = limit (PEt/n)
n ‘

where Et is the evolution operator for %% + (ueP)u =0

whose
solution is known explicitly. A similar theorem proved using Euler

coordinates and with more effort was done by Chorin [1].

To obtain Chorin's formula as previously described, one

choos t = od o
es K(t) Ht &, Et
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calculation of the Generator.

Probably the most crucial thing in Chorin's formula is the
formal reason why K'(0) =’K + Z . TIndeed we claim that & contributes
nothing to K'(0) . This is, of course, crucial if our resulting flow

is to be associated with the Navier-Stokes equations. In the following

we attempt to show why K'(0) = A + Z with K(t) as above.

In order to see this, write

Il L

1
= 5 - - -
t(Ht”tEtv v) {[Ht@tEtv Ht@tv]

+ [Ht@ v - Htv] + [Htv - v]}

t

The first and last terms converge, respectively to Z(v) and z&
(one needs to know Ht@t is t-continuous for this). Thus the validity
is assured by the following key lemma: if v 1is suitably smooth,

v=0 on M, then in Lp s

P | _
limit - [Ht@tv - Htv] =0
t -0

Indeed, if K(t, x, y) 1is a Green's function for 7 on M

then
l(H d v - Hv)(x) = 1r R(t, x [(& 7y - 1d
G N T S » IRV - v(y)ldy
ro1
= 1 K(t, x, Y)go(M(y) - o(v)(y)ldy
M
= e, %, NIeeMY - o) () ]dy
B
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where Bt = {x € M’d(x, oM) < d(t)} . Taking into account the nature
of the singularity of K and the choice of d(t) it is easy to see

that in LP norm, the above is majorized by

C, X Sl\T [g.0(v) - w(v)]

where Ct , the Lp norm of % r dK(t, x, yydy goes to zero as
t

t -0 on account of the rapidity with which the volume of Bt goes

to zero as t -0 . This gives the formula.

The Hopf Bifurcation.

We now turn our attention to the qualitative nature of
turbulence. Actually the literature is very confusing -- a few
representative works are listed in the bibliography. However we wish
to describe a theory due to Ruelle-Takens [1] which has several very

attractive features.

Basically we want to study the Navier-Stokes equations and
let R 5= . Thus we are interested in studying dynamical systems
depending on a parameter. One of the most basic results in this regard

is a theorem of Hopf from 1942 (Hopf [1]).

In order to understand Hopf's theorem, let us review some
standard material in ordinary differential equations. For a complete
discussion of this material, see Coddington-Levinson [1] and Abraham-

n n

Robbin [1]. TLet X : R R be a linear map. Then regarding X as

a vector field on R , its flow is given by Ft(a) = etX(a) , where
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(o]
t
a € R" and e X _ by (tan/n!) ; in this expression XO =1 and

" n=0
multiplication is as matrices. Let 11, ceo Ak be the (possibly

complex) eigenvalues of X ., Since X has only real entries when

considered as a matrix, the Ki appear in conjugate pairs. Clearly

t}\l txk
e s cess € are the eigenvalues of Ft
Now suppose that for all 1 , we have Re(Ki) < 0 . Then as
At
t 1increases ’e * l is decreasing and hence the orbit of a point

a € R" i.e., the curve t i Ft(a) , is approaching zero. (This is
clear if X is diagonalizable; for the general case one uses the Jordan
canonical form.) Since Ft is linear, for each t we have Ft(O) =0

In this situation, we say O 1is an attracting or stable fixed point.

th
Now if all Re(Ki) > 0 , it is clear that each Ie ll is
increasing with t , and so the orbit of a point under the flow is

away from O . Here, we say O 1is a repelling or unstable fixed point.

For the nonlinear case, we linearize and apply the above
results as follows. Let X be a vector field on some manifold M
Suppose there is a point my € M such that X(mo) =0 . Then Ft s

the flow of X leaves m fixed; Ft(m It makes sense to

0 T M

consider Dx(m TmOM —;TmOM . If Yis +e+5 ¥y, is a coordinate
system for M at L the coordinate matrix expression for DX(m

is just DX(mO) = (axl/ayj)(mo) . Now, DX(mO) can be treated as a

0’

O)

linear map on R" and the same analysis as above applies. Hence my
is an attracting or repelling fixed point (or neither) for the flow of

X depending on the sign of the real part of the eigenvalues of
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(aXl/BYJ)(mO) . However if m_  1is attracting (when the real parts

0
of the eigenvalues are < 0) , it is only nearby points which - mg  as

t 5=

To begin our study of the Hopf theorem, let us consider a
physical example of the general phenomenon of bifurcation. The idea
in each case is that the system depends on some real parameter, and
the system undergoes a sudden qualitative change as the parameter
crosses some critical point. (For research in a slightly different
direction and for more examples, consult the papers in Antman-Keller

[1] and Zarantonello [1].)

Example . (Couette Flow). Suppose we have a viscous fluid between

two concentric cylinders (see the following figure). Suppose further

we forcibly rotate the cylinders in opposite directions at some constant
angular velocity p which is our parameter, For p near 0 , we get

a steady horizontal laminar flow in the fluid. However as p reaches
some critical point, the fluid breaks up into what are called Taylor
cells and the fluid moves radially in cells from the inner cylinder to
the outer one and vice versa. Note, that the’directions of flow are

such that flow is continuous.
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In the above example, we have a situation described by
differentiél equations and at some critical point of the parameter,
the given solution becomes unstable and the system shifts to a "stable"
solution. This sharp division of solutions is the sort of bifurcation

we shall encounter in Hopf's theorem.
P

For simplicity, let us consider the case where the underlying
space is simply R2 . Let XM be a vector field on R2 depending
smoothly on some real parameter |, . Actually it is convenient to
put Xu in R3 by considering the map §,: (x, v, u) &9(XM(X, ¥), 0)
This way we can graph the flow Fi of XLL and keep track of the

parameter " . The flow Gt of X is Gt(x, Y, W) = (ﬁt(x, y), W)

Similarly, we consider Xu acting on the plane |4 = const.

Now suppose XM(O’ 0) = (0, 0) for each ypy ; more generally
one could consider a curve (XM’ yu) of critical points of X . We
can apply the analysis we developed for vector fields, i.e., for each
u » we look at the eigenvalues of DXM(O’ 0) say A(u) and X?Ej
(They are complex conjugate.) Note that the eigenvalues depend on
and by our earlier analysis of flows, we know the qualitative behaviour
of the flow depends on the sign of Re(A(u)) and Re(A(y)) (which are
equal in case A(u) itself is not real). So if we know how A(u)
depends on p then we can hope to extract some information about the
flow near (0, 0) as |, 1increases. We make these hypotheses:

Suppose Re(A(u)) <0 for p <0 and Re(A(0)) = 0 and Re(A(u))

is increasing as y increases across O . Also assume that
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A(u) 1is not real and that for gy =0 , (0, 0) 1is an attracting

fixed point for X

(perhaps with a weaker or slower attraction than when Re(A{(y)) <O ).

Now for p < 0 , we know from the above that the flow is
"stable," i.e., points near (0, 0) are carried towards (0O, 0) by
the flow, as is the case for j = 0 (only slower) by assumption,

The surprising case is the behavior for p >0

Theorem. (E. Hopf). In the situation described above, there is a

stable periodic orbit for X when 0 <y <eg for some ¢ >0
L — Lot SUmE

(Stable here means points near the periodic orbit will remain near

and eventually be carried closer to the orbit by the flow.)

So as in the example we get a qualitative change in the
stable solutions as | crosses O , from an attracting fixed point

at (0, 0) to a periodic solution away from (0, 0)

. . n .
This theorem does generalize to R where we can get tori
forming as the stable solutions (instead of closed orbits) as further

bifurcations take place; see Ruelle-Takens [1] for details.

The proof of the theorem occurs in many places besides

Hopf [1]. See, for instance Andronov and Chaikin [1], or Bruslinskaya

* See Ruelle [4] for a version suitable for systems with symmetry,

such as Couette flow.



-135-

[3], or Ruelle-Takens [1].

Hopf's theorem is closely related to a linear model used in
physics known as the "Turing model.'" As D. Ruelle, S. Smale, N.
Kopell and H. Hartman have remarked, these sort of phenomena may be
basic for understanding a large variety of qualitative changes which
occur in nature, including biclogical and chemical systems. See for
instance Turing [1], Selkov [1]. We have examined here only one of
many types of possible bifurcations. There are many others which
occur in Thom's theory of morphogenesis (see articles in Chillingworth
[1] and Abraham [4] for more details and bibliography). Meyer [1] and

Abraham [5] are representative of the Hamiltonian case.

For applications to fluid mechanics one wishes the vector
field XM to be the Navier-Stokes equations and | to be the Reynolds
number. One is hampered by the fact that XM in this case is not a
Cr vector field (even in Lagrangian coordinates). However this
difficulty can be overcome and indeed the Hopf theorem is valid. For
details see Marsden [3], Joseph-Sattinger [1], Iooss [1l, 2], Judovich

[3, 4], Bruslinskaya [1] etc.

Moreover, an important feature is that one can show that

when a bifurcation does occur one retains global existence of smooth

solutions near the closed orbit, This is in fact good evidence in the

direction of verifying that the Navier-Stokes equations do not break

down when turbulence develops.
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Stability and Turbulence.

Shoftly we shall explain more fully the Ruclle-Takens theory
of turbulence, For now we just wish to stress the point that turbulence
appears to be some complicated Zlow which sets in after successive
bifurcations have occurrec. 1In this process, stable solutions
become unstable, as the Reynolds number is increased, Hence turbulence
is supposed to be a necessary consequence of the equations anc in fact
of the "generic case'" and just represents a complicated solution. For
example in Couette flow as one increases the angular velocity Ql of

the inner cylinder one finds a shift from laminar flow to Taylor cells

~
&

1 Eventually

or rclated patterns at some bifurcation value of ¢
turbulence sets in. Tn this scheme, as has been realized for a long
time, one first looks for a stability theorem and for when stability
fails (Hopf [4], Chandresekar [1], Lin [1] etc.). For example, if one
stayed closed enough to laminar flow, one would expect the flow to

remain approximately laminar. Scrrin [2] has a theorem of this sort

which we »nresent as an illustration:

Stability Theorem, Let D C R3 be z bounded domain and suppose the

Voo . . . .
flow v is prescribed on 2D (this corresponds to having a moving
r P § P g B

boundary, as in Couctte flow). Let V = max”vﬁ(x)“ , d = diameter of
RED
>0

D and v equal the viscosity. Then if the Reynolds number

N - 2
R = (vd/v) < 3.7, Vi is universally T, stable.

- 2 . .
Universally L stable means that ifl VE is any other
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solution to the equations and with the same boundary conditions, then

NV
t

<

the L2 norm (or energy) of - vz goes to zero as t — 0

The proof is really very simple and we recommend reading

Serrin [2] for the argument.

Chandresekar [1], Serrin [2], and Velte [1] have analyzed

criteria of this sort in some detail for Couette flow,

As a special case, we recover something that we expect.
. Y . .
Namely if Ve = 0 on 3 1is any solution for v > 0 then v: -0

. 2 . . . .
as t - in L norm, since the zero solution is universally stable.

Couette flow is not the only situation where this Taylor
cell type of phenomenon occurs and where the above analysis is possible.
For example, in the Bénard Problem one has a vessel of water heated
from below. At a critical value of the temperature gradient, one
observes convection currents, which behave like Taylor cells; cf.

Rabinowitz [1].

This transition from laminar to periodic motion (the Hopf
bifurcétion) occurs in many other physical situations such as flow

behind an obstable.

A Definition of Turbulence.

A traditional definition (as in Hopf [2], Landau-Lifschitz
[1]) says that turbulence develops when the vector field v, can be

described as vt(w . wn) = f(twl, cees twn) where f 1is a

13
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quasi-periodic function, i.e., f 1is periodic in each coordinate,
but the periods are not rationally related. For example, if the orbits
of the v, on the tori given by the Hopf theorem can be described by

spirals with irrationally related angles, then v, would such a flow.

Considering the above example a bit further, it should be
clear there are many orbits that the v, could follow which are
qualitatively like the quasi-periodic ones but which fail themselves
to be quasi-periodic. 1In fact a small neighborhood of a quasi-periodic
function may fail to contain many other such functions. One might
desire the functions describing turbulence to contain most functions
and not only a sparse subset. More precisely, say a subset U of a
topological space S 1is generic if it is a Baire set (i.e., the
countable intersection of open dense subsets)., It seems reasonable
to expect that the functions describing turbulence should be generic,
since turbulence is a common phenomena and the equations of flow are
never exact. Thus we would want a theory of turbulence that would not

be destroyed by adding on small perturbations to the equations of motion.

The above sort of reasoning lead Ruelle-Takens [1] to point
out that since quasi-periodic functions are not generic, it is unlikely
they '"really'" describe turbulence.* In its place, they propose the use
of "strange attractors.'" (See Smale [2] and Williams [1}.) These
exhibit much of the qualitative behavior one would expect from '"turbulent!

solutions to the Navier-Stokes equations and they are stable under

perturbations.

* See also Joseph-Sattinger [1].
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Here is an example of a strange attractor, Let U C R" be
open and S U - U some flow; suppose further for x € U , there is

an s € R such that ¢ = Gt(x) , i.e., = Dbelongs to a periodic

s+t(x)
orbit of the flow. Let (d/dt)ct(x)]tzo =Y _ and let V be the
affine hypersurface in U orthogonal to YX . For a small neighborhood
S of x in V , there is amap P : S -V called the Poincaré map,
defined as follows: For w & S , it is easy to show there is a smallest
P € R such that Op (w) € V.. Call P(w) = Op (w) . Now of course
one can do this for eZch point of the periodic o:bit. By doing this

one gets a map on a small "tubular" neighborhood of the periodic orbit
in U . (Here one must check that there is a neighborhood N os the
orbit such that if x € N then x belongs to a unique hypersurface
orthogonal to the orbit.) Also one can drop the condition that P be
defined about a closed orbit by requiring that the vector field be
almost parallel and everywhere transversal to a hypersurface 'V . 1In
this case one can define a Poincaré map P over the entire space U

by letting P(x) be the first intersection of the integral curve

through =x with V

In particular consider V to be a solid torus in three
space and suppose we have a flow o, on U such that its Poincare
map wraps the torus around twice. Then the attracting set of the flow
(i.e., (x € U]x = lim ct(y) for some y € U} 1is locally a Cantor

o
set cross a 2-manifold (see Smale [2]). This is certainly a strange

attractor! Ruelle-Takens [1] have shown if we define a strange attractor

to be one which is neither a closed orbit or a point, then there are
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4
stable strange attractors on T in the sense that a whole neighborhood

of vector fields has a strange attractor as well.

1f the attracting set of the flow, in the space of vector
fields, which is generated by Navier-Stokes equations is strange, then
a solution attracted to this set will clearly behave in a complicated,
turbulent manner and since strange attractors are ''geperic'", this sort
of behavior should not be uncommon. Thus we have the following

reasonable definition of turbulence as proposed by Ruelle-Takens:

... the motion of a fluid system is turbulent when this
motion is described by an integral curve of a vector field X  which
B
tends to a set A , and A is neither empty nor a fixed point nor a

closed orbit."

This turbulent motion is supposed to occur on one of the tori
k . . . .
T that occurs in the Hopf bifurcation. This takes place after a
finite number of successive bifurcations have occurred. However as
S. Smale and C. Simon pointed out to us, there may be an infinite number

of other qualitative changes which occur during this onset of turbulence

(such as stable and unstable manifolds intersecting in various ways

ete).

Since this sort of phenomena is supposed to be ''generic,' one
would expect it to occur in other similar phenomena such as the Benard
problem. (As the temperature gradient becomes very large, the flow

becomes '"turbulent.™)
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Recently Ruelle [1] (and unpublished work) has shown how the
usual statistical mechanics of ergodic systems can be used to study

the case of strange attractors, following work of Bowen [l] and Sinai

[1]. Tt remains to connect this up with observed statistical properties

of fluids, like the time average of the pressure in turbulent flow.

For the analytical nature of turbulent solutions, the work

of Bass [1, 2] seems to be important.

In summary then, this view of turbulence may be phrased as
follows. OQur solutions for small | (= Reynolds number in many fluid
problems) are stable and as  increases, these solutions become
unstable at certain critical values of |, and the solution falls to a
more complicated stable solution; eventually, after a certain finite
number of such bifurcations, the solution falls to a strange attractor
(in the space of all time dependent solutions to the problem). Such
a solution, which is wandering close to a strange attractor, is called

turbulent,



