Chapter 14

Curves and
Surfaces

Some three-dimensional geometry is needed for understanding functions of two
variables.

The main subject of this chapter is surfaces in three-dimensional space. In
preparation for this, we begin with a study of some special curves in the plane
—the conic sections. In the last two sections, we will do some calculus with
curves in space. Applications of calculus to surfaces are given in Chapters 15
and 16.

14.1 The Conic Sections

All the curves described by quadratic equations in two variables can be obtained
by cutting a cone with planes.

The ellipse, hyperbola, parabola, and circle are called conic sections because
they can all be obtained by slicing a cone with a plane (see Fig. 14.1.1). The

Figure 14.1.1. Conic
sections are obtained by
slicing a cone with a plane;
which conic section is
obtained depends on the
direction of the slicing
plane. Hyperbola Parabola Circle Eltipse
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696 Chapter 14 Curves and Surfaces

theory of these curves, developed by Apollonius of Perga (262-200 B.C.), is a
masterwork of Greek geometry. We will return to the three-dimensional origin
of the conics in Section 14.4, after we have studied some analytic geometry in
space. For now, we will treat these curves, beginning with the ellipse, purely as
objects in the plane.

Definition of Ellipse

An ellipse is the set of points in the plane for which the sum of the
distances from two fixed points is constant. These two points are called
the foci (plural of focus).

An ellipse can be drawn with the aid of a string tacked at the foci, as shown in
Fig. 14.1.2.

To find an equation for the ellipse, we locate the foci on the x axis at the
points F' = (—¢,0) and F =(c,0). Let 2a > 0 be the sum of the distances
from a point on the ellipse to the foci. Since the distance between the foci is
2¢, and the length of a side of a triangle is less than the sum of the lengths of
the other sides, we must have 2¢ < 2q; i.e., ¢ < a. Referring to Fig. 14.1.3, we

¥y

F'=(—c,0) F=(0)

X

Figure 14.1.3. P is on
Figure 14.1.2. Mechanical the ellipse when
construction of an ellipse. |FP| + |F'P| = 2a.

see that a point P = (x, y) is on the ellipse precisely when
|FP|+ |F'P| = 2a.
That is,

\/(x + c)2 + y? +\/(x - 0)2 +y* =2a.
Transposing /(x — c)2 + »?, squaring, simplifying, and squaring again yields

(a2 - cz)x2 + 06}2 = a2(a2 - 6‘2).

Let a* — ¢* = b? (remember that @ > ¢ >0 and so @? — ¢*> > 0). Then, after
division by a%?, the equation becomes
2

2
2ty
This is the equation of an ellipse in standard form.

Since b* = a® — ¢* < a’, we have b < a. If we had put the foci on the y
axis, we would have obtained an equation of the same form with 5 > a; the
length of the “string” would now be 24 rather than 2a. (See Fig. 14.1.4) In
either case, the length of the long axis of the ellipse is called the major axis,
and the length of the short axis is the minor axis.

= 1.
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14.1 The Conic Sections 697

Figure 14.1.4. The
appearance of an ellipse in
the two cases b < a and
b>a. @ b<a (b) b>a

0
Y

Example 1  Sketch the graph of 4x? + 9y? = 36. Where are the foci? What are the major
and minor axes?

Solution Dividing both sides of the equation by 36, we obtain the standard form
EA
5 + v 1.

Hence a=3, b=2, and ¢ =ya® — b2 =y5. The foci are (£y5,0), the y
intercepts are (0, £2), and the x intercepts are (% 3,0). The major axis is 6 and
the minor axis is 4. The graph is shown in Fig. 14.1.5.

Figure 14.1.5. The graph of
4x? + 9y? = 36.

Example 2 Sketch the graph of 9x? + y? = 81. Where are the foci?
Solution Dividing by 81, we obtain the standard form x?/3* + y*/9* = 1. The graph is

v
ﬁ sketched in Fig. 14.1.6. The foci are at (0, £6v2 ). A
0,9
*0\6VD)
Ellipse
2 2
3.0 G0 Equation: x_2 +2L =1 (standard form).
x a b2

Foci: (* ¢,0) where ¢ =a*> — b* if a>b.
(0, + ¢) where ¢ = yb* — a* if a<b.

$0./-6v) If a = b, the ellipse is a circle.
x intercepts: (a,0) and (—a,0).

.= y intercepts: (0,b) and (0, — b).
If P is any point on the ellipse, the sum of its distances from the foci is
Figure 14.1.6. The ellipse 2aif b<aor2bifb>a.
9x? + yz = 81. .
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698 Chapter 14 Curves and Surfaces

The second type of conic section, to which we now turn, is the hyperbola.

Definition of Hyperbola

A hyperbola is the set of points in the plane for which the difference of
. the distances from two fixed points is constant. These two points are
called the foci.

To draw a hyperbola requires a mechanical device more elaborate than the
one for the ellipse (see Fig. 14.1.7); however, we can obtain the equation in the
same way as we did for the ellipse. Again let the foci be placed at F' = (— ¢, 0)

Figure 14.1.7. Mechanical
construction of a
hyperbola.

and F={(c,0), and let the difference in question be 24, a > 0. Since the
difference of the distances from the two foci is 2a and we must have
|F'"P| <|FP|+ |F'F|, it follows that |F'P| — |FP| < |F'F|, and so 2a < 2c.
Thus we must have a < ¢ (see Fig. 14.1.8). The point P = (x, y) lies on the

Asymptote
V.
V.

Figure 14.1.8. P is on the
hyperbola when
|F'P| - |FP|= +2a.

hyperbola exactly when

\/(x +c)+y? —\/(x — )+ y* = *2a
After some calculations (squaring, simplifying and squaring again), we get
(@ = A+ a¥? = a¥(a® - ).
If we let ¢ — a* = b? (since a < ¢), we get
2 _ Y _
2

a b?

which is the equation of a hyperbola in standard form.

For x large in magnitude, the hyperbola approaches the two lines y =
*(b/a)x, which are called the asymptotes of the hyperbola. To see this, for
x and y positive, we first solve for y in the equation of the hyperbola, ob-
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Figure 14.1.9. The vertical
distance d from the
hyperbola to its asymptote

y=(b/a)x is
g(x—\/xz— a2)
ab

x+\/x2—a2 '

Example 3

Solution

Figure 14.1.10. The
hyperbola
25x% — 16y? = 400.
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taining y = (b/a)yx* — a® . Subtracting this from the linear function (b/a)x,
we find that the vertical distance from the hyperbola to the line y = (5 /a)x is
given by

=b(x = 2).

To study the behavior of this expression as x becomes large, we multiply by

(x +vyx* — a®)/(x +x* — a®) and simplify to obtain ab/(x + Vx> — a®). As
x becomes larger and larger, the denominator increases as well, so the
quantity d approaches zero, Thus the hyperbola comes closer and closer to the

line. The other quadrants are treated similarly. (See Fig. 14.1.9.)

Sketch the curve 25x% — 16y = 400.

Dividing by 400, we get the standard form x?/16 — »?/25=1, so a = 4 and
b =5. The asymptotes are y = * 2x, and the curve intersects the x axis at
(=4,0) (see Fig. 14.1.10). A

y
\\ 0,0)
,C
N ///\ b
; / y=;x
2 Y
y2 ,%:1 \\(O,b) /
b a N | ,
2
/0,
W .
7,
y

Figure 14.1.11. A
hyperbola with foci
on the y axis.

If the foci are located on the y axis, the equation of the hyperbola takes the
second standard form y*/b* — x*/a* = 1 (see Fig. 14.1.11).

Notice that if we draw the rectangle with (= «,0) and (0, = b) at the
midpoints of its sides, then the asymptotes are the lines through opposite
corners, as shown in Figs. 14.1.10 and 14.1.11.
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Example 4 Sketch the graph of 4y% — x2 =4.

Solution Dividing by 4, we get y> — x?/2? = 1, which is in the second standard form
with 2 =2 and b = 1. The hyperbola and its asymptotes are sketched in Fig.

14.1.12. A
y‘t/Focus= 0,V5)
~
R (0.1) —
y=-x/27>2 — T y=x]2

Figure 14.1.12. The =" S

4
hyperbola 4y? — x? = 4. ™ Focus = (0,—/3)

Hyperbola
Case 1: Foci on x axis Case 2: Foci on y axis
on: X2 _ Y0 _ X
Equation: ?_—b?— ?_?“1
Foci: (% ¢,0), c =ya* + b* 0, *¢), c =ya*+ b*
x intercepts: (% a,0) none
y intercepts: none 0, £b)
Asymprotes: y = £ %x y== gx
If P is any point on the hyperbola, the difference between its distances
from the two foci is 2a in case 1 and 25 in case 2.

We are already familiar with the circle and parabola from Section R.5. The
circle is a special case of an ellipse in which a = b; that is, the foci coincide.
The parabola can be thought of as a limiting case of the ellipse or hyperbola,
in which one of the foci has moved to infinity. It can also be described as
follows:

Definition of Parabola

A parabola is the set of points in the plane for which the distances from
a fixed point, the focus, and a fixed line, the directrix, are equal.

Placing the focus at (0,c) and the directrix at the line y = — ¢ leads, as above,
to an equation relating x and y. Here we have (see Fig. 14.1.13) | PF| = | PG]|.

l= (x.»)

Figure 14.1.13. P is on the -
parabola when y=c
|PF| =|PG|.

Directrix G=(x,—c)

That is, x>+ (y —¢)> =|p+c|, so x2+(y — c)* = (y + c)’, which gives
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Example 5

Solution

Axis

Focus ¢

Figure 14.1.14. The angles
a and B are equal.

Example 6

Solution

Figure 14.1.15. Find the
focus of the searchlight.
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14.1 The Conic Sections 701

x?—dcy =0,

x2

" 4c
which is the form of a parabola as given in Section R.5.
If we place the focus at (¢, 0) on the axis and use x = — ¢ as the directrix,
we get the “horizontal” parabola x = y?/4c.

Parabola

Case 1: Focus on y axis Case 2: Focus on x axis

] M = 2 = ——1— = 2 = L
Equation: y = ax (a Ac ) x = by (b e )
Focus: (0,c) (c,0)

Directrix: y = —c¢ x=-c

If P is any point on the parabola, its distances from the focus and
directrix are equal.

(a) Find the equation of the parabola with focus (0,2) and directrix y = —2.
(b) Find the focus and directrix of the parabola x = 10y2.

(a) Here ¢ =2, s0 a=1/4c = 1/8, and so the parabola is y = x*/8.
(b) Here b=10=1/4c, so ¢ = 1/40. Thus the focus is (1/40,0) and the
directrix is the line x = —1/40. A

The conic sections appear in a number of physical problems, two of which will
be mentioned here; we will see additional ones in later sections. The first
application we discuss is to parabolic mirrors. The parabola has the property
that the angles « and 8 shown in Fig. 14.1.14 are equal. This fact, called the
reflecting property of the parabola, was demonstrated in Review Exercise 86 of
Chapter 1. Since the angles of incidence and reflection are equal for a beam of
light, this implies that a parallel beam of light impinging on a parabolic mirror
will converge at the focus. This is the basis of parabolic telescopes (visual and
radio) as well as solar-energy collectors. Similarly, a searchlight will produce a
parallel beam of light if a light source is placed at the focus of a parabolic
mirror.

A parabolic mirror for a searchlight is to be constructed with width 1 meter
and depth 0.2 meter. Where should the light source be placed?

We set up the parabola on the coordinate axes as shown in Fig. 14.1.15. The
equation of the parabola is y = ax’. Since y =02 when x =0.5, we get

Vi

|
—1 m—

ot N | A

=

a=02/025=0.8. The focus is at (0,c), where a=1/4c, so c=1/4a=
0.3125. Thus the light source should be placed on the axis, 0.3125 meters from
the mirror. &
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In courses in mechanics, it is shown that bodies revolving about the sun
(planets, asteroids, and comets) do so in elliptic, parabolic, or hyperbolic
orbits with the sun at one focus. We shall see part of the derivation of this fact
in Section 14.7. Most planetary orbits are nearly circular. To measure the
departure from circularity, the eccentricity is introduced. It is defined by

c

e= =,

a
where a, b, and ¢ are defined as on p. 697, with @ > b. Thus a and b are the
semi-major and semi-minor axes and ¢ is the distance of a focus from the

center; ¢ =vya* — b%. An ellipse is circular when e = 0, and as e approaches 1,
the ellipse grows longer and narrower.

Example 7 The eccentricity of Mercury’s orbit is 0.21. How wide is its orbit compared to
its length?
Solution Since e =021, ¢ =02la, so ¢*>=a?— b? and therefore b?>=a®— c*=

a*(1 — (0.21)%) = 0.95594> Hence b =~ 0.9777a, so the orbit is 0.9777 times as
wide as it is long. A

Exercises for Section 14.1

1. Sketch the graph of x2+9y2= 36. Where are 17. A parabola with vertex at (0,0) and passing

the foci? through (2, 1).

2. Sketch the graph of x + y2 = 1. Where are the 18. The circle centered at (0, 0) and passing through
foci? (1,1).

3. Sketch the graphs of x2 + 4y2 =4, x*+ y2 =4, 19. The hyperbola with foci at (0,2) and (0, —2) and

and 4x? + 4% = 4 on the same set of axes. passing though (0, I).

4. Sketch the graphs of x? + 9y? =9, 9x2 + p2 =9,
and 9x2 + 9y? = 9 on the same set of axes.
5. Sketch the graph of y?— x?=2, showing its

20. The ellipse with x intercept (1,0)’and foci (0, —2)

and (0, 2).

) 21. A parabolic mirror to be used in a searchlight
asymptotes and foci. 5 5 . has width 0.8 meters and depth 0.3 meters.
6. :sker:l(;)}:ottetea ngciafr(;ili of 3x%=2+y% showing Where should the light source be placed?
Y : 22. A parabolic disk 10 meters in diameter and 5
7. Sketch the graphs x* + 4y® = 4 and x* — 4y* = 4 meters deep is to be used as a radio telescope.
on the same set of axezs. 5 , Where should the receiver be placed?
8. Sketch the graphs of x* — y* =4 and x*+ y* =4 23. The eccentricity of Pluto’s orbit is 0.25. What is
~ on the same set of axes. ) . the ratio of the length to width of this orbit?
Find the equation of the parabolas in Exercises 9 and 24. A comet has an orbit 20 times as long as it is
10 with the given focps an.d directrix. wide. What is the eccentricity of the orbit?
9. Focus (0,4), dTrectr%xy =-4 *235. Prove the reflecting property of the ellipse: light
) 10. Focus (0,3), dl}'eCtrlf‘)’ =-3 i originating at one focus converges at the other
Elnd the focus and directrix of the parabolas in Exer- (Hint: Use implicit differentiation.)
cises 11_14-2 5 *26. A planet travels around its sun on the polar path
1.y = xz 12. y= 5x2 r=1/(2 + cos$), the sun at the origin.
13. x=y 14. x =4y (a) Verify that the path is an ellipse by chang-

Find the equations of the curves described in Exercises
15-20.
15. The circle with center (0, 0) and radius 5.
16. The ellipse consisting of those points whose dis-
tances from (—2,0) and (2,0) sum to 8.

ing to (x, y) coordinates.
(b) Compute the perihelion distance (minimum
distance from the sun to the planet).
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14.2

Example 1

Solution

Figure 14.2.1. The graph
(x=52/9+(y—42/4=1
is an ellipse centered at
(5,4).

Copyright 1985 Springer-Verlag. All rights reserved.
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Translation and Rotation of Axes

Whatever their position or orientation, conics are still described by quadratic
equations.

In Section R.5 we studied the shifted parabola: if we move the drigin to (p,9),
y = ax* becomes (y — q) = a(x — p)>. We can do the same for the other
conic sections:

Shifted Conic Sections
% — p)? N2
Shifted ellipse: af LU bzq) =1 (shifted circle if a = b).
x — ) _ 82
Shifted hyperbola: ( 2]?) - & bzq) =1 (horizontal);
a
N2 ¥ — p)?
&4 bzq) — ( azp) =1 (vertical).
Shifted parabola: y — q = a(x — ]g)2 (vertical);
x—p=b(y—gq) (horizontal).
2 2 x —5)? — 4y’
Graph the ellipse % + 2 =1 and shifted ellipse ( ) + =9 =1

9 4 9 4

on the same xy axes.

The graph of x?/9 + »?/4 =1 may be found in Fig. 14.1.5. If (x, y) is any
point on this graph, then the point (x + 5, y + 4) satisfies the equation
(x = 5)*/9+ (y — 4?/4 = 1; thus the graph of (x — 52/9 + (y —4)*/4=1is
obtained by shifting the original ellipse 5 units to the right and 4 units upward.
(See Fig. 14.2.1.) A

2 2
CRITRO

@ 9
/ shift ellipse to (5,4)

—/ *
ch
9

+L =

a5

Although we referred to the second graph in Example 1 as a “shifted ellipse,”
it is really just an ellipse, since it satisfies the geometric definition given in
Section 14.1. (Can you locate the foci?) To emphasize this, we may introduce
new “shifted variables,” X =x —5 and Y = y — 4, for which the equation
becomes X2/9 + Y?/4 = 1. If we superimpose X and Y axes on our graph as
in Fig, 14.2.2, the “shifted” ellipse is now centered at the origin of our new
coordinate system. We refer to this process as translation of axes.
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v Ya
I
|
I
I
I

=Y

Figure 14.2.2. The ellipse /_ \
(x =529+ (y—4?/4=1 N

is centered at the origin
in a shifted coordinate
system.

The importance of translation of axes is that it is possible to bring any
equation of the form

Ax*+ C*+ Dx+ Ey+ F=0 (1)
into the simpler form

AX*+ CY*+G=0 2)
of a conic by letting X =x —a and Y=y — b for suitable choices of
constants @ and b. Thus, (1) always describes a shifted conic. The way to find
the quantities a and b by which the axes are to be shifted is by completing the
square, as was done for circles and parabolas in Chapter R. (Notice that in
equation (1) there is no xy term. We shall deal with such terms by means of
rotation of axes in the second half of this section.)

Example 2  Sketch the graph of x* — 4y — 2x + 16y = 19.
Solution We complete the square twice:
x2—2x=(x— 1)2— 1,

—4y” + 16y = —4(y* —4y) = —4[(y -2’ - 4].
Thus

0=x>—4y>—2x+ 16y — 19=(x — 1)°~ 1 —4[()}—2)2—4] —19

=(x— 1y’ —4(y -2y’ —4.

Hence our equation is

x — 1)?
(_4)-—(y—2)2=1

which is the hyperbola x?/4 — y* = 1 shifted over to (1,2). (See Fig. 14.2.3.)

Figure 14.2.3. The
hyperbola
x2— 4y —2x + 16y = 19.

An alternative procedure is to write
x*—4y? —2x + 16y — 19 = (x — a)’— 4(y — b)’+ G.
Expanding and simplifying, we get
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—2x+ 16y — 19= —2ax + o’ + 8by — 4b + G.
We find a, b, and G by comparing both sides, which gives a = 1, b = 2, and
—19=0a>-4b>+ G, or G=—19—1+ 16 = —4. This gives the same an-
swer as above. A

Example 3  Sketch the curve y* + x + 3y — 8 = 0.

Solution  Completing the square, we get y* + 3y = (y + 2)* — 2, so that y> + x + 3y — 8
=0 becomes (y+3)’+ x —4 =0; that is, x —4 = —(y + )% This is a
shifted parabola opening to the left, as in Fig. 14.2.4. A

¥
We next turn our attention to rotation of axes. The geometric definitions of

% the ellipse, hyperbola, and parabola given in Section 14.1 do not depend on

/j/%l , —j—) how these figures are shifted or oriented with respect to the coordinate axes.
In the preceding examples we saw how the equations are changed when the

Figure 14.2.4. The parabola coordinate axes are shifted; now we examine how they are changed when the

Y+ x+3y—8=0. axes are rotated.
In Figure 14.2.5 we have drawn a new set of XY axes which have been

Yi

Figure 14.2.5. The XY
coordinate system is
obtained by rotating the xy
system through an angle a.

rotated by an angle « relative to the old xy axes. The corresponding unit
vectors along the axes are denoted i, j and L, J, as shown in the figure.
To understand how to change coordinates from the xy to XY systems, we
will use vector methods. Note that as vectors in the plane,
I=icosa + jsina

)

Observe that either a direct examination of Fig. 14.2.5 or the fact that
J =k XI can be used to derive the formula for J.

Now consider a point P in the plane and the vector v from O to P. The
coordinates of P relative to the two systems are denoted (x, y) and (X, 7Y),
respectively, and satisfy

v=xi+yj=XI+YJ ©)
Substituting (3) into (4), we get
xi+ yj= X(icosa + jsina) + Y(—isina + jcosa).

J= —isina + jcosa.

Comparing coefficients of i and j on both sides gives

x = Xcosa — Ysina 5
y= Xsina + Ycosa. ()

To solve these equations for X, Y in terms of x, y, we notice that the roles
of (X, Y) and (x, y) are reversed if we change & to — a. In other words, the Xy
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axes are obtained from the XY axes by a rotation through an angle — . Thus
we can interchange (x, y) and (X, Y) in (5) if we switch the sign of a:

X =xcosa + ysina
(6)

Y= —xsina + ycosa.

This conclusion can be verified by substituting (6) into (5) or.(5) into (6).

Example 4 Write down the change of coordinates corresponding to a rotation of 30°.

Solution We have cos30° =y3 /2 and sin30° = 1/2, so (5) and (6) become

x=gX-%Y,

y=%X+gY
andX=gx+%y,

Y %x+§y.‘

Now suppose we have a rotated conic, such as the ellipse shown in Fig.
14.2.6. In the XY coordinate system, such a conic has the form given by (1):

y
Y
E X
[44
Figure 14.2.6. The conic is %
aligned with the rotated
coordinate system (X, Y)
but is rotated relative to the
(x, y) coordinate system.
AX*+ CY?*+ DX+ EY+ F=0. (7)

Substituting (6) into (7) gives

A (xcosa + ysina)’+ C(—xsina + ycosa)’

+D(xcosa + ysina) + E(—xsina + ycosa) + F =0.

Expanding, we find

Ax2+Bxy+Cy2+Dx+Ey+F=0, 8)
where

A = 4 cos’a + C sin‘a,

B= (I— E) -2cosasina = (Z— f)sinZa,

C

A sin’e + C cos’a,

®

= Dcosa — Esina, (

D
E = Dsina + E cosa,
F=F.
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Notice the introduction of the xy term in (8). If we are given an equation
of the form (8), we may determine the type of conic it is and the rotation angle
a by finding the rotated form (7). To accomplish this, we notice from (9) that

A — C= A4 (cos’a — sin’a) — C (cos’a — sin’a)

= (A — C)cos2a.
Therefore,
B=(4—C)sin2a = (4 - C)tan2a.
Thus,
tan2a = AfC (10)
(a=45° if A= C). Equation (10) enables one to solve for « given equa-
tion (8).

_ Equation (8) will describe an ellipse only when (7) does, i.e., when 4 and
C have the same sign, or AC > 0. To recognize this condition directly from
(8), we use (9) to obtain

AC = (Acos’a+ C sin’e)(4 sin’a + C cos’a)
= (A% + CHcos’asin’a + AC (cos’a + sina).

However, B =(4 —C)2cosasina, so 1B*=(4%+ C*— 24C)(cosx sin%a),
and thus

AC — {B? = AC (cos*a + sin‘a + 2 cos’a sin’a)
= AC (cos’a + sinza)2= AC.

Thus (8) is an ellipse if AC — 1 B*>0; ie,, B2~ 44C < 0. The other conics
are identified in a similar way, as described in the following box.

Rotation of Axes
The equation
Ax*+ Bxy+ Cy*+ Dx + Ey+ F=0
(with 4, B, and C not all zero) is a conic; it is

an ellipse if B2 —44C < 0;
a hyperbola if B> —44C > 0;
a parabola if B2 —44C = 0.

To graph this conic, proceed as follows:

. _ B
1. Find a from a = }tan ’[ - }

2. Let x=Xcosa — Ysina, y = Xsina + Ycosa, and substitute into
the given equation. You will get an equation of the form

AX?+ CY*+ DX+ EY+ F=0.

3. This is a shifted conic in XY coordinates which may be plotted by
completing the square (as in Examples 2 and 3).

4. Place your conic in the XY coordinates in the xy plane by rotating
the axes through an angle o, as in Figure 14.2.6.

Copyright 1985 Springer-Verlag. All rights reserved.



708 Chapter 14 Curves and Surfaces

Example 5 What type of conic is given by x* + 3y% — 23 xy + 23 x + 2y = 0?
Solution This is a rotated conic because it has an xy term. Here 4 =1, B = -2/3,
C=3, D=2y3, and E=2. To find the type, we compute the quantity
—44C=4-3—-4-3=0, so this is a parabola. A
Example 6 Sketch the graph of the conic in Example 5.

Solution We follow the four steps in the preceding box:

la=4tan”'[B/(4~ C)] =4tan"'[ =23 /(1 -3)]

=ltan~ 13 = 7/6.
Thus a = 7 /6 or 30°.
2. As in Example 4, we have
x = gx—%Y and y= 1X+%Y

Substituting into x? + 3y® — 2/3 xy + 2y3 x + 2y = 0, we get

Y)H(% +_g3_y)2

x-1 )(%X+ 3 Y)

2 2

Y)+2(1X+gy)=0.

1
2
_2[(

& wlﬁ

X —

+2J_(

Expanding, we get

3,2, 1,2 3 3.2, 92, 33
(4X +4Y TXY)+(4X +4Y+ > XY

~|
l\)lt—‘
[\®]

—2\/—( By Ixy- ‘/j_ 2)+3X—J3_Y+X+\/§Y=0
which simplifies to 4Y2 +4X =0or X = — Y2

3. The conic X = — Y? is a parabola opening to the left in XY coordi-
nates.

4. We plot the graph in Fig. 14.2.7. A

30°

Figure 14.2.7. The graph of
x*+3y2— 23 xp +
2y3 x + 2y =0.
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14.2 Translation and Rotation of Axes 709

Example 7 Sketch the graph of 3x” + 3y? — 10xy + 18y2 x — 14/2 y + 38 = 0.

Solution Let us first determine the type of conic. Here B2 —4A4C=100—4-3-3
=100 — 36 = 64 > 0, so it is a hyperbola.

la=Jtan"'[B/(4 — C)]=Ltan"'o0 = 7 /4 or 45°.
2. x=(1/2)X - Y), »=(/¥2)X + Y); substituting and simplifying, one
arrives at
X?—4Y?-2X +16Y — 19 =0.
3. This is the hyperbola in Fig. 14.2.3.
4. See Fig. 14.2.8. A

y
Y/ /
= S
N Y:_/f \ 4 /X
\ // O ///
y )\ N -7
/ */ 7/
& // |7
/// \ VAR
//7‘\}; N
! -
Figure 14.2.8. The graph of | x
3x243y*— 10xy + s /
182 x — 14\/7y+38=0.

Exercises for Section 14.2

Sketch the graphs of the conics in Exercises 19-22.
In Exercises 1-4, graph the conics and shifted conics on 19. The conic in Exercise 15.
the same xy axes. 20. The conic in Exercise 16.
I y= ——xz,y —2=—(x+ 12 21. The conic in Exercise 17.
2 xr— =1, (x =22 — (y+372=1. 22. The conic in Exercise 18.

3. x2 +y2 =4, (x + 37+ (y— 8): = 4. Find the equations of the curves described in Exercises

4. x2/9+y2/16=1, (x = 1)’/9+(y —2)*/16=1. 23-28.

Identify the equations in Exercises 5—10 as shifted conic 23. The cirFle with center (2,3) and re.ldius > .
sections and sketch their graphs, 24. The ellipse consisting of those points whose dis-

5 %2 +y2 —2x =0 tances from (0, 0) and (2,0) sum to 8.
6. x?+4y? - 8y =0 25. The parabola with vertex at (1,0) and passing
7. 952 + 4y2 —6y =8 through o, 1 a.nd 2, 1.
8 x4+ 2x+ 22y =2 26. The circle passing through (0,0), (1,1), and (2, 0).
9. x242x—p2—2y=1 27. The Ihyperbola with foci at (0, — 1) and (0, 3) and
10. 3x% - 6x + y=7=0 passing through (0, 2).

In Exercises 11-14, write down the transformation of 28. The ellipse with x intercept (1,0) and foci (0,0) and

coordinates corresponding to a rotation through the ©,2).
given angole. 29. Find the equation of the conic in Exercise 8
IL. 600 12. /4 rotated through 7 /3 radians.
13. 15 14. 27/3 30. Find the equation of the conic in Exercise 9
In Exercises 15-18, determine the type of conic. rotated through 45°.
15. xy =2. 31. Show that 4 + C is unchanged under a rotation
16. x>+ xy + y2 =4, or translation of axes.
3 32. Show that D?+ E? is unchanged under a rota-
17 252 43 2y - 48 : : -
i x E)’ 5 Xy = 4o. tion of axis, but not under translation.
R ; 6 6 *33. Show that if B> —4A4C < 0, the area of the el-
18. 3x*+3y" —2xp — —x— — y=8. i
V2 V2 ‘ lipse Ax*>+ Bxy + Cy*=11is 2m/\J4AC — BZ.
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14.3 Functions, Graphs, and
Level Surfaces

The graph of a function of two variables is a surface in space.

The daily weather map of North America shows the temperatures of various
locations at a fixed time. If we let x be the longitude and y the latitude of a
point, the temperature 7T at that point may be thought of as a function of the
pair (x, y). Weather maps often contain curves through points with the same
temperature. These curves, called isotherms, help us to visualize the tempera-
ture function; for instance, in Fig. 14.3.1 they help us to locate a hot spot in
the southwestern U.S. and a cold spot in Canada.

Figure 14.3.1. Isotherms
are lines of constant
temperature (in degrees
Celsius).

Functions of two variables arise in many other contexts as well. For
instance, in topography the height 4 of the land depends on the two coordi-
nates that give the location. The reaction rate ¢ of two chemicals 4 and B
depends on their concentrations @ and b. The altitude « of the sun in the sky
on June 21 depends on the latitude / and the number of hours ¢ after
midnight.

Many quantities depend on more than two variables. For instance, the
temperature can be regarded as a function of the time ¢ as well as of x and y
to give a function of three variables. (Try to imagine visualizing this function
by watching the isotherms move and wiggle as the day progresses.) The rate of
a reaction involving 10 chemicals is a function of 10 variables.

In this book we limit our attention to functions of two and three
variables. Readers who have mastered this material can construct for them-
selves, or find in a more advanced work,! the generalizations of the concepts
presented here to functions of four and more variables.

! See, for example, J. Marsden and A. Tromba, Vector Calculus, Second Edition, W. H. Freeman
and Co., 1980.
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The mathematical development of functions of several variables begins
with some definitions.

Functions of Two Variables

A function of two variables is a rule which assigns a number f(x, y) to
each point (x, y) of a domain in the xy plane.

Example 1 Describe the domain of f(x, y) = x/(x* + y?). Evaluate f(1,0) and f(1,1).

Solution  As given, this function is defined as long as x% + y?+0, that is, as long as
(x, ) # (0,0). We have

£(1,0) = 12102 =1 and f(1,1)=

1 __1
2+12 27

A

The Graph of a Function

The graph of a function f(x, y) of two variables consists of all points
(x, y,2) in space such that (x, ») is in the domain of the function and

z = f(x, y).

Some particularly simple graphs can be drawn on the basis of our work in
earlier chapters.

Example 2  Sketch the graph of (a) fx,y)=x—p+2and (b) f(x, y) =3x. .

Solution (a) We recognize z = x — Y+ 2 (thatis, x — y — z + 2 = 0) as the equation of
a plane. Its normal is (1, — 1, — 1) and it meets the axes at (—2,0,0),(0,2,0),
(0,0,2). From this information we sketch its graph in Fig. 14.3.2.
(b) The graph of f(x, y) = 3x is the plane z = 3x. It contains the y axis and is
shown in Fig. 14.3.3. &

X

Figure 14.3.3. The graph of
z=3x.

Figure 14.3.2. The graph of
z=x—y+2isaplane.
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Using level curves instead of graphs makes it possible to visualize a function
of two variables by a two-dimensional rather than a three-dimensional picture.

Level Curves

Let f be a function of two variables and let ¢ be a constant. The set of all
" (x, y) in the plane such that f(x, y) = ¢ is called a level curve of f (with
value ¢).

Isotherms are just the level curves of a temperature function, and a contour
plot of a mountain consists of representative level curves of the height
function.

Example 3 Sketch the level curves with values —1,0,1 for f(x, y) = x — y + 2.

Solution The level curve with value —1 is obtained by setting f(x, y) = —1; that is,
x—y+2=-1, thatis, x—y+3=0,

which is a straight line in the plane (see Fig. 14.3.4). The level curve with value
v zero is the line

x—y+2=0,
/ ¥ :‘2’+10:0 and the curve with value 1 is the line
x—y+2=
// Xx—p+3=0 x—y+2=1, thatis, x—y+1=0. A

4 Figure 14.3.4. Three level
=0 curves of the function

c=-1 f ) =x—y+2

Example 4 How is the intersection of the plane z = ¢ with the graph of f(x, y) related to
" the level curves of f? Sketch.

Solution The intersection of the plane z = ¢ and the graph of f consists of the points
(x, y,c) in space such that f(x, y) = c. This set has the same shape as the level
curve with value ¢, but it is moved from the xy plane up to the plane z = c.
(See Fig. 143.5.) A

Graph of f(x,y)

Figure 14.3.5. The level
curve of f(x, y) with value ¢ /_
is obtained by finding the d
intersection of the graph of
f with the plane z = ¢ and
moving it down to the

(x, y) plane. x Y re=e

We turn now to functions of three variables.

Functions of Three Variables

A function of three variables is a rule which assigns a number f(x, y,z) to
each point (x, y,z) of a domain in (x, y,z) space.
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Example 5

Solution

Figure 14.3.6. Three level
surfaces of the function
fx, p,2)=x—y+:z+2.

Figure 14.3.7. The level
surface of x? + y2 + 22~ 8
with value 1 is a sphere of
radius 3.

14.3 Functions, Graphs, and Level Surfaces 713

The graph of a function w = f(x, y,z) of three variables would have to lie in

four-dimensional space, so we cannot visualize it; but the concept of level
curve has a natural extension.

Level Surfaces

Let f be a function of three variables and let ¢ be a constant. The set of
all points (x, y, z) in space such that f(x, y,z) = c is called a level surface
of f (with value c).

(a) Let f(x, y,z) = x — y + z + 2. Sketch the level surfaces with values 1,2,3.
(b) Sketch the level surface of f(x, y,z) = x> + y* + 22 — 8 with value 1.

(a) In each case we set f(x, y,z) = c:
c=1 x—y+z+2=1 (thatis,x—y+z+l=0),
c=2: x—y+z+2=2 (thatis,x—y+z=0),
=3 x—y+z+2=3 (thatis, x —y +z — 1 =0).

These surfaces are parallel planes and are sketched in Fig. 14.3.6.

z

X

(b) The surface x*+ y>+ z2—8=1 (that is, x>+ y?+ z>=9) is the set
of points (x, y,z) whose distance from the origin is Y9 = 3; it is a sphere with
radius 3 and center at the origin. (See Fig. 14.3.7.) A

Plotting surfaces in space is usually more difficult than plotting curves in the
plane. It is rare that plotting a few points on a surface will give us enough
information to sketch the surface. Instead we often plot several curves on the
surface and then interpolate between the curves. This technique, called the
method of sections, is useful for plotting surfaces in space, whether they be
graphs of functions of two variables or level surfaces of functions of three
variables. The idea behind the method of sections is to obtain a picture of the
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714 Chapter 14 Curves and Surfaces

surface in space by looking at its slices by planes parallel to one of the
coordinate planes. For instance, for a graph z = f(x, y) the section z = ¢ is
illustrated in Fig. 14.3.8.

z

/z = constant / z=f(x,y)

f

| y
Figure 14.3.8. The section <
z = ¢ of the graph ™ Level curve in

z= f(x, y). x xy plane

Example 6 Sketch the surfaces in xyz space given by (a) z = —»? and (b) x> + y*> = 25.

Solution (a) Since x is missing, all sections x = constant look the same; they are copies
of the parabola z = — y2. Thus we draw the parabola z = — y* in the yz plane
and extend it parallel to the x axis as shown in Fig. 14.3.9. The surface is
called a parabolic cylinder.

Figure 14.3.9. The graph

z = —y?is a parabolic

cylinder. Figure 14.3.10. The graph
x? + y?=25is a right
circular cylinder.

(b) The variable z does not occur in the equation, so the surface is a cylinder
parallel to the z axis. Its cross section is the plane curve x* + y? = 25, which is
a circle of radius 5, so the surface is a right circular cylinder, as shown in Fig.
14.3.10. A

Example 7 (a) Sketch the graph of f(x, y) = x* + y? (this graph is called a paraboloid of
revolution). (b) Sketch the surface z = x* + y* — 4x — 6y + 13. [Hint: Com-
plete the square.] ’

Solution (a) If we set z = constant, we get x* + y? = ¢, a circle. Taking c = 1%, 2%, 3% 42,
we get circles of radius 1, 2, 3, and 4. These are placed on the planes
z=12=1,2z=22=4,z=3*=09, and z = 4> = 16 to give the graph shown in
Fig. 14.3.11.

If we set x = 0, we obtain the parabola z = y2; if we set y = 0, we obtain
the parabola z = x2. The graph is symmetric about the z axis since z depends

only on r = x>+ y?.
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14.3 Functions, Graphs, and Level Surfaces 715
(b) Completing the square, we write z = x> + y* — 4x — 6y + 13 as

z=x*—4x+ yr—6y +13
=x>—4x+4+ 2 -6y +9+ 13— 13
=(x -2+ (y -3~

The level surface for value ¢ is thus the circle (x —2)* + (y — 3)* = ¢ with
center (2,3) and radius ¢ . Comparing this result with (a) we find that the
surface is again a paraboloid of revolution, with its axis shifted to the line
(x, y)=(2,3). (See Fig. 14.3.12.) A

Z4

z)

,

|

|

l

+

I

)

7/ 7

@ L_{x =2
W=
X

Figure 14.3.11. The Figure 14.3.12. The graph
sections of the graph z=x?+y*—4x — 6y + 13
z=x%+ y*byplanes z = ¢ is a shifted paraboloid of

are circles. revolution.

Plotting Surfaces: Methods of Sections

1. Note any symmetries of the graph.

2. See if any variables x, y, or z are missing from the equation. If so, the
surface is a “cylinder” parallel to the axis of the missing variable, and
its cross section is the curve in the other variables (see Example 6).

3. If the surface is a graph z = f(x, y), find the level curves f(x, y) = c
for various convenient values of ¢ and draw these curves on the
planes z = ¢. Smoothly join these curves with a surface in space.
Draw the curves obtained by setting x = 0 and y = 0 or other conve-
nient values to help clarify the picture.

4. If the surface has the form F(x, y,z) = ¢, then either:

(a) Solve for one of the variables in terms of the other two and use
step 2 if it is convenient to do so.

(b) Set x equal to various constant values to obtain curves in y and z;
draw these curves on the corresponding x = constant planes.
Repeat with y = constant or z = constant or both. Fill in the
curves obtained with a surface.
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Figure 14.3.13. The graph

of z= x*+ y? drawn by
computer in two ways.

W 77 —
NN 7Y
\-’ ~
2 ? -
T ) z
[} 0 1
15 X -
R W’S 1 8! H&JS

In the next section, we will use our knowledge of conic sections to plot the
graphs of more complicated quadratic functions.

The computer can help us graph surfaces that may be tedious or impossi-
ble to plot by hand. The computer draws the graph either by drawing sections
perpendicular to the x and y axes or by sections perpendicular to the z
axis—that is, level curves lifted to the graph. When this is done for the
function z = x% + y2 (Example 7), Figs. 14.3.13(a) and 14.3.13(b) result. (The
pointed tips appear because a rectangular domain has been chosen for the
function.)?

e’
The computer-generated graph in Fig. 14.3.14 shows the function
z=(x"+ 3y2)e1‘(x2+y2).

Fig. 14.3.15 shows the level curves of this function in the xy plane, viewed first
from an angle and then from above. Study these pictures to help develop your
powers of three-dimensional visualization; attempt to reconstruct the graph in
your mind by looking at the level curves.

2 The authors are indebted to Jerry Kazdan for preparing most of the computer-generated graphs
in this book.
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(b)

Figure 14.3.14. Computer-
generated graphs of
z=(x2+3pe! 0,

(a)

(b)

Figure 14.3.15. Level
curves for the function
z={(x% 4 3y2)e! )
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Exercises for Section 14.3

In Exercises 1-8, describe the domain of each of the
given functions and evaluate the function at the indi-
cated points.

L fex )= 25.0,0,0,1)

2. f(x, y) = ;i_i; a, -1y, (1,0.9).

x+y

3. flx,y)= ——2—
fx ) x2+y?-1

s (LD, (=11,

2
4. f(x, y) = Tﬁg; 1,1y, (= 1,1).

5. it po2) = T2 T2 (11,1), (0,0,2).
x“+y +zi—1
6. f(x,y,z) = ——2——(1,05,1), (0.1,0.5, 1).
fx,y g ( ) ( )
2x — sin
7. f(x, y) = —1Tosxy ; (0,7/4), (n/4,7).
X _ o)
8. f(x, ) = {3 O, 1 (7/4, = 1).

Sketch the graphs of the functions in Exercises 9-12.
9. f(x,y)=1=—x—y 10. f(x, y)=—-1—-x—y
Il.z=x~y 12. z=x+2

Sketch the level curves for the indicated functions and

values in Exercises 13-18.

13. f in Exercise 9, values 1, —1.

14. f in Exercise 10, values [, — .

15. f in Exercise 3, values —2, —1,1,2 and describe
the level curve for the general value.

16. f in Exercise 4, values —2, —1,1,2 and describe
the level curve for the general value.

17. f in Exercise 2, values —2, —1, 1,2 and describe
the level curve for the general value.

18. f(x, y) = 3=V value 1/ e.

Sketch the level surfaces in Exercises 19-22.

19. x+y—2z=8 20. 3x -2y —z=4
21.x2+y2+22=4 22.x2+y2—z=4

Draw the level curves f(x, y) = c—first in the xy plane

and then lifted to the graph in space—for the functions

and values in Exercises 23-26.

23. f(x, y) = x2 + 2y2; c=0,12.
24. f(x, y)=x*—y% c=—-1,0,1
25. f(x, y)=x —y2; c=-2,02.
26. f(x, )=y — x%ec=-1,0,1.

Sketch the surface in space defined by each of the

equations in Exercises 27—40.
27 z=x2+2
29. 22+ x%2=4
3Lz=(x— 17 +y?

33 z=x*+y?L2x +8.
34, z=3x2+3y2 —6x + 12y + 15.

35. z=yx>+ »?

36. z = max(|x|, | y|). [Note: max(|x|,|y|) is the maxi-
mum of |x| and |y|.]
37. z = sin x (the “washboard”).

28. z =y
30. x2+y=2
3. x=—8z2+z

38.
39.
40.
41.

842

43.

*44.

z=1/(1+ y?.

4x?+ y? + 922 =1.

x2+4y* + 1622 =1.

Let f(x, y) = e~ /439 £(0,0) = 0.

(a) Skeich the level curve f(x, y)=c for ¢ =
0.001, c =0.01, c = 0.5, and ¢ = 0.9.

(b) What happens if ¢ is less than zero or
greater than 1?7

(c) Sketch the cross section of the graph in the
vertical plane y = 0 (that is, the intersection
of the graph with the xz plane).

(d) Argue that this cross section looks the same
in any vertical plane through the origin.

(e) Describe the graph in words and sketch it.

The formula

2x
G-y Y+

appears in the study of steady state motions of a

mechanical system with viscous damping sub-

jected to a harmonic external force. The average
power input by the external force is proportional
to the variable z (with proportionality constant

k > 0). The variable y is the ratio of input fre-

quency to natural frequency. The variable x

measures the viscous damping constant.

(a) Plot z versus y for x =0.2,0.5,2.0 on the
same axes. Use the range: of values 0 <y
< 2.0.

(b) The average power input is a maximum
when y =1, that is, when the input and
natural frequencies are the same. Verify this
both graphically and algebraically.

The potential difference E between electrolyte

solutions separated by a membrane is given by
E= RT X7 ) ..

F x+y

z =

(The symbols R, T, F are the universal gas con-

stant, absolute temperature, and Faraday unit,

respectively—these are constants. The symbols x

and y are the mobilities of Na™* and Cl~ respec-

tively. The symbol z is ¢,/ c,, where ¢ and ¢, are

the mean salt (NaCl) concentrations on each side

of the membrane.) Assume hereafter that RT/F

= 25.

(a) Write the level surface £ = —12 in the form
z = f(x, y).

(b) In practice, y = 3x /2. Plot E versus z in this
case.

Describe the behavior, as ¢ varies, of the level

curve f(x, y) = ¢ for each of these functions:

@ flx,y)= x2+yr+ 1

®) fix, y)=1- x>y

© fx,y)= x2+ xy;

@ flx,y)= x3 - x.
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14.4 Quadric Surfaces

Quadric surfaces are defined by quadratic equations in x, y, and z.

The methods of Section 14.3, together with our knowledge of conics, enable us
to graph a number of interesting surfaces defined by quadratic equations.

Example 1  Sketch the graph of

z=f(x,y)=x*— »? (a hyperbolic paraboloid).

Solution To visualize this surface, we first draw the level curves x> — y2=¢ for
¢=0,x1,+4. For ¢ =0 we have y* = x? (that is, y = =+ x), so this level set
consists of two straight lines through the origin. For ¢ = 1 the level curve is
x? - y*=1, which is a hyperbola that passes vertically through the x axis at
the points (£1,0) (see Fig. 14.4.1). Similarly, for ¢ =4 the level curve is
x2/4 — y*/4=1, the hyperbola passing vertically through the x axis at
(£2,0). For ¢ = —1 we obtain the hyperbola x* — y*= —1 passing horizon-
tally through the y axis at (0, 1), and for ¢ = —4 the hyperbola through
(0, £2) is obtained. These level curves are shown in Fig. 14.4.1. To aid us in
visualizing the graph of f, we will also compute two sections. First, set x = 0 to
obtain z = — 2, a parabola opening downward. Second, setting y = 0 gives
the parabola z = x? opening upward.

Figure 14.4.1. Some level
curves of f(x) = x? — 2, X2 =p X y2= 2

The graph may now be visualized if we lift the level curves to the
appropriate heights and smooth out the resulting surface. The placement of
the lifted curves is aided by the use of the parabolic sections. This procedure
generates the saddle-shaped surface indicated in Fig. 14.4.2. The graph is
unchanged under reflection in the yz plane and in the xz plane. When
accurately plotted by a computer, this graph has the appearance of Fig.
14.4.3; the level curves are shown in Fig. 14.4.4. (The graph has been rotated
by 90° about the z axis.) A
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x2¥y2:22

~y2=1

x? 7),2 =_(12)

Figure 14.4.2. The graph
z = x*— y*is a hyperbolic
paraboloid, or “saddle.”

Figure 14.4.3. Computer-

generated graph of

z=x2—y%

Figure 14.44. Level curves
of z = x? — y* drawn by
computer.

Copyright 1985 Springer-Verlag. All rights reserved.



14.4 Quadric Surfaces 721

Figure 14.4.5. Graph of the
monkey saddle:
z=x>—3xp%

Figure 14.4.6. Level curves
for the monkey saddle.
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The origin is called a saddle point for the function z = x? — y? because of the
appearance of the graph. We will return to the study of saddle points in
Chapter 16, but it is worth noting another kind of saddle here. Figure 14.4.5
on the preceding page shows the graph of z = x* — 3xy?, again plotted by a
computer using sections and level curves. The origin now is called a monkey
saddle, since there are two places for the legs and one for the tail. Figure 14.4.6
shows the contour lines in the plane. Figure 14.4.7 shows the four-legged or
dog saddle: z = 4x% — 4xy’.

ST eSS ST S STy

'o'lll/

7 N
\\\\w"
‘\\\:‘0

\\*M
W

Figure 14.4.7. The dog
saddle: z = 4x’y — 4xp°.
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A quadric surface is a three-dimensional figure defined by a quadratic
equation in three variables:

ax*+ b+l +dxytexz+ fyz+gx+hy+kz+ m=0.

The quadric surfaces are the three-dimensional versions of the conic sections,
studied in Section 14.1, which were defined by quadratic equations in two
variables.

Example 2 Particular conic sections can degenerate to points or lines. Similarly, some
quadric surfaces can degenerate to points, lines, or planes. Match the sample
equations to the appropriate descriptions.

@ x*+3y*+22=0 (1) No points at all
(b) z2=0 (2) A single point
(© x*+y*=0 (3) A line

(d) x>+ y*+z22+1=0 (4) One plane

(e) x*—y*=0 (5) Two planes

Solution Equation (a) matches (2) since only (0,0, 0) satisfies the equation; (b) matches
(4) since this is the plane z = 0; (¢) matches (3) since this is the z axis, where
x =0 and y = 0; (d) matches (1) since a non-negative number added to 1 can
never be zero; (¢) matches (5) since the equation x? — y> = 0 is equivalent to
the two equations x + y = 0 or x — y = 0, which define two planes. A

If one variable is missing from an equation, we only have to find a curve in
one plane and then extend it parallel to the axis of the missing variable. This
procedure produces a generalized cylinder, either elliptic, parabolic, or hyper-
bolic.

“Example 3  Sketch the surface z = y> + 1.

Solution The intersection of this surface with a plane x = constant is a parabola of the
form z = y? + 1. The surface, a parabolic cylinder, is sketched in Fig. 14.4.8.
(See also Example 6, Section 14.3). &

<

Figure 14.4.8. The surface
z = y? + 1 is a parabolic
cylinder.
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Example 4 The surface defined by an equation of the form x*/a” + y*/b* - 22/c?= —1
is called a hyperboloid of two sheets. Sketch the surface x> + 4y? — 22 = —4,

Solution  The section by the plane z = ¢ has the equation x* + 4y = ¢? — 4. This is an
ellipse when |c| > 2, a point when ¢ = =2, and is empty when |c| < 2. The
section with the xz plane is the hyperbola x* — z> = —4, and the section with
the yz plane is the hyperbola 4y* — z? = —4. The surface is symmetric with
respect to each of the coordinate planes. A sketch is given in Fig. 14.4.9. &

Figure 14.4.9. The surface
x?4+4p?~ 2= —4disa
hyperboloid of two sheets
(shown with some of its
sections by planes of the
form z = constant).

Example 5 The surface defined by an equation of the form x?/a + y?/b*+ z%/c* =1 is
called an ellipsoid. Sketch the surface x?/9 + y*/16 + z2 = 1.

Solution  First, let z be constant. Then we get x2/9 + »?/16 = 1 — z2. This is an ellipse
centered at the origin if —1 < z < 1. If z = 1, we just get a point x = 0,y=0.
Likewise, (0,0, — 1) is on the surface. If |z| > 1 there are no (x, y) satisfying
the equation.

Setting x = constant or y = constant, we also get ellipses. We must have
|x| < 3 and, likewise, | y| < 4. The surface, shaped like a stepped-on football,
is easiest to draw if the intersections with the three coordinate planes are
drawn first. (See Fig. 14.4.10.) A

Figure 14.4.10. The surface
(x*/9+ (Y?¥/16)+ 22 =1
is an ellipsoid.
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Example 6 The surface defined by an equation of the form x2/a? + y?/b* — z2/c* =1 is
called a hyperboloid of one sheet. Sketch the surface x* + y* — 2% = 4.

Solution If z is a constant, then x% + y* =4+ z%is a circle. Thus, in any plane parallel
to the xy plane, we get a circle. Our job of drawing the surface is simplified if
we note right away that the surface is rotationaily invariant about the z axis
(since' z depends only on r* = x? + »?). Thus we can draw the curve traced by
the surface in the yz plane (or xz plane) and revolve it about the z axis. Setting
x =0, we get y*> — z2 = 4, a hyperbola. Hence we get the surface shown in Fig.
14.4.11, a one-sheeted hyperboloid. Since this surface is symmetric about the z
axis, it is also called a hyperboloid of revolution. A

Figure 14.4.11. The surface
x?+y?—z=4isa
one-sheeted hyperboloid of
revolution.

The hyperboloid of one sheet has the property that it is ruled: that is, the
surface is composed of straight lines (see Review Exercise 76). It is therefore
easy to make with string models and is useful in architecture. (See Fig.
14.4.12)

Figure 14.4.12. One can
make a hyperboloid with a
wire frame and string.

Example 7 Consider the equation x* + y? — z2 = 0.
(a) What are the horizontal cross sections for z = + 1, 2, +37
(b) What are the vertical cross sections for x =0 or y =07 (Sketch and
describe.)
(c) Show that this surface is a cone by showing that any straight line through
the origin making a 45° angle with the z axis lies in the surface.
(d) Sketch this surface.
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Solution (a) Rewriting the equation as x? + y* = z? shows that the horizontal cross
sections are circles centered around the z axis with radius |z|. Therefore,
for z= %1, 2, and =*3, the cross sections are circles of radius 1, 2,
and 3.
(b) When x =0, the equation is y* — z2=0 or y*=z? or y = +z, whose
graph is two straight lines. When y =0, the equation is x*—z?=0or
x = =*z, again giving two straight lines.
(¢) Any point on a straight line through the origin making a 45° angle with

the z axis satisfies |z|/yx?+ y? + z2 = cos45° = 1/12. Squaring gives
1/2=22/(x*+ p* + z%), or x>+ y?+22=22% or x*+ y?—z2=0,
which is the original equation.

(d) Draw a line as described in part (c) and rotate it around the z axis (see
Figure 14.4.13). A

2

z

Forx=0 Fory=0

Z4

~ Figure 14.4.13. The cone
x2+yt—22=0.

We now discuss how the conic sections, as introduced in the first section of
this chapter, can actually be obtained by slicing a cone.

Example 8 Show that the intersection of the cone x* + y* = z* and the plane y =1 is a
‘ hyperbola (see Figure 14.4.14).

Figure 14.4.14. The
intersection of this vertical
plane and the cone is a
hyperbola. Hyperbola

X

U/
/TN
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Solution The intersection of these two surfaces consists of all points (x, y,z) such that
x*+ y*=z? and y = 1. We can use x and z as coordinates to describe points
in the plane. Thus, eliminating y, we get x?+ 1 = z? or z2 — x?=1. From
Section 14.1, we recognize this as a hyperbola with foci at x =0, z = = V2 in
the plane y = 1, with the branches opening vertically as in the figure. A

Example 9 Show that the intersection of the cone x? + y* = z* and the plane z = y — 1 is
a parabola (see Figure 14.4.15).

Solution We introduce rectangular coordinates on the plane as follows. A normal
vector to the plane is n = (0,1, — 1), and so a vector w = (a, b, ¢) is parallel to
the plane if 0 =n-w= b — ¢. Two such vectors that are orthogonal and of
unit length are

. 1 ,.
u=i and v=—=—(j+k)
7 )

Pick a point on the plane, say P, = (0,0, — 1), and write points P = (x, y,z) in
the plane in terms of coordinates (£, 1) by writing

—_—
PP =fu+qv
(see Fig. 14.4.16). In terms of (x, y, z), this reads
x=¢ y=i, and z= -+ —1.
2
zZ 4
Figure 14.4.15. The
intersection of the plane
tilted at 45° and the cone is
a parabola. x
Figure 14.4.16. Coordinates
(¢,m)in the plane z = y — 1.

Substitution into x? + y* = z* gives

7’ 1 > g
€2+—=(———1)=7—\5ﬂ+1,

2\

or
£2=—‘/5TI+1’

or

2 2

This, indeed, is a parabola opening downwards in the &y plane. A

Other sections of the cone can be analyzed in a similar way, and one can
prove that a conic will always result (see Exercise 27).
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Exercises for Section 14.4

Sketch the surfaces in three-dimensional space defined
by each of the equations in Exercises 1-16.

L y*+22=1 2 x7+yr=0

3. 9x% +4z22=36 4. 4x*+y?=2

5. 22— 8yr= 6. x*— 7=

7. 8x?+322=0 8. x*=4z2+9

9. x4yt L =] 1. 2 4y24 2
R S A

11 x =222 — y? 12, y=4x2 - 72

13. x2+9y? — 22 =1 14, x>+ p? + 422 =1

15. 162> =4x*+ 2+ 16 16. 22 +4y> = x>+ 4
17. This problem concerns the Ayperbolic paraboloid.
(A surface of this kind was studied in Example
1. ) A standard form for the equation is z =
ax® — by?, with a and b both positive or both
negative.
(a) Sketch the graph of z = x? — 22
(b) Show that z = xp also determines a hyper-
bolic paraboloid. Sketch some of its level
curves.
18. This exercise concerns the elliptic paraboloid:
(a) Sketch the graph of z = 2x2 + )2,
(b) Sketch the surface given by
x= -3y 272
(c¢) Consider the equation z = ax? + by?, where
a and b are both positive or both negative.
Describe the horizontal cross sections where
z = constant. Describe the sections obtained
in the planes x = 0 and y = 0. What is the
section obtained in the vertical plane x = ¢?
(The special case in whicha = b is a parabo-
loid of revolution as in Example 7(a), Section
14.3.)
19. Sketch the cone z? = 3x? + 3y

14.5 Cylindrical and

20.
21.
22,
23.
24,

25.

*26.

*27.

Sketch the cone (z — 1) = x? + y2

Sketch the cone 22 =x2+2)%

Sketch the cone z% = x2/4 + 2 /9.

Show that the intersection of the cone x2+ 2

= z? and the plane z = 1 is a circle.

Show that the intersection of the cone x? + y?

= z? and the plane 2z = y+ 1is an ellipse.

This problem concerns the elliptic cone. Consider

the equation x2/a?+ y2/b? — z2/¢2 = 0.

(a) Describe the horizontal cross sections z =
constant.

(b) Describe the vertical cross sections x =0
and y = 0.

(c) Show that this surface has the property that
if it contains the point (xgy, yg,z), then it
contains the whole line through (0,0, 0) and
(X0, Yo, 20)-

The quadric surfaces may be shifted and rotated

in space just as the conic sections may be shifted

in the plane. These transformations will produce
more complicated cases of the general quadratic
equation in three variables. Complete squares to
bring the following to one of the standard forms

(shifted) and sketch the resulting surfaces:

(a) 4x? +y + 422 +8x—4y—82+8 0;

() 2x*+3y* -4z +4x+9y — 82+ 10=0.

Show that the intersection of the cone x? + y?

= z? and any plane is a conic section as follows.

Let w and v be two orthonormal vectors and Py a

point. Consider the plane described by points P

such that —P>— £u + nv, which introduces rec-

tangular coordinates (£,9) in the plane. Substi-

tute an expresswn for (x, y,z) in terms of (& 7)

into x? + y?= 72 and show that the result is a

conic section in the £y plane.

Spherical Coordinates

) T r(x,y,Z)

X

Figure 14.5.1. The
cylindrical coordinates of
the point (x, y, z).

x =rcosf, y=rsinb,

There are two ways to generalize polar coordinates to space.

In Sections 5.1, 5.6, and 10.5, we saw the usefulness of polar coordinates in the
z plane. In space there are two different coordinate systems analogous to polar
coordinates, called cylindrical and spherical coordinates.

Y The cylindrical coordinates of a point (x, y,z) in space are the numbers
r (7,0,z), where r and @ are the polar coordinates of (x, y); that is,

and z=z.

See Fig. 14.5.1. As with polar coordinates, we can solve for r and # in terms of
x and y: squaring and adding gives

x*+ y?=rXcos +sinB)=r% 5o r=xyx*+y’.
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Dividing gives

= tané.

J _ siné

x  cosf
As in polar coordinates, it is sometimes convenient to allow negative r; thus
(r,9) and (—r,8 + 7) represent the same point. Also, we recall that (r,8) and
(r,0+ 27) represent the same point. Sometimes we specify r > 0 (with r =0
corresponding to the z-axis) and a definite range for 6. If we choose # between
7 and — 7 and choose tan~'u between — /2 and 7 /2, then the solution of
y/x=tanf is § =tan"'(y/x) if x>0, and § =tan"'(y/x)+ 7 if x <O
(@=w/2if x=0andy >0,and # = —7/2 if x =0 and y <0).

Cylindrical Coordinates

If the cartesian coordinates of a point in space are (x, y,z), then the
cylindrical coordinates of the point are (r, 8, z), where
x = rcosé, y = rsiné, z=7z;

or, if we choose r > 0 and —7 < @ < 7,

r=\/x2+y2 ,
) tan~'(y/x) if x>0,
tan"'(y/x)+ 7 if x<O.

Example 1 (a) Find the cylindrical coordinates of (6, 6, 8). Plot.
(b) If a point has cylindrical coordinates (3, — 7 /6, —4), what are its cartesian
coordinates? Plot.

(c) Let a point have cartesian coordinates (2, —3,6). Find its cylindrical
coordinates and plot.

(d) Let a point have cylindrical coordinates (2,37 /4,1). Find its cartesian
coordinates and plot.

Solution (a) Here r=y6*+ 6> =62 and # =tan"'(¢) =tan"'(1) = v /4. Thus the
cylindrical coordinates are 62,7 /4,8). See Fig. 14.5.2(a).
(b) x =rcosf =3cos(—7/6)=3y3 /2, and y=rsinf=23sin(—7/6)=
—3/2. Thus the cartesian coordinates are (3y3 /2, —3/2, —4). See Fig.
14.5.2(b). ‘

© r=+x2+y? =22+ (=3)> =/13; f=tan" (- })~ —0.983 ~
—56.31°; z = 6. See Fig. 14.5.3(a).

z z
(6,6,8)
*
s
4
\ r® 3
g // Y
X 6vV2 )/ .
. : %
Figure 14.5.2. Comparing
the cylindrical and X \e(34/3/2, -3/2, —4)
cartesian coordinates of )
two points. (a) (b)
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z } z
1
6
V13 2
/
r/ y _/ y
31
4
Zs56° 4
Figure 14.5.3. Two points *
in cylindrical coordinates. (@) (b)

(d) x=rcosf=2cos(3w/4)=2- (—\/5/2) =—2;
y=rsind=2sin(37/4)=2-(V2 /2)=2;z=1
See Fig. 14.5.3(b). A

Many surfaces are easier to describe in cylindrical than in cartesian coordi-
nates, just as many curves are easier to work with using polar rather than
cartesian coordinates.

Example 2 Plot the two surfaces described in cylindrical coordinates by (a) r = 3 and
(b) r = cos26.

Solution (a) Note that r is the distance from the given point to the z axis. Therefore the
points with » = 3 lie on a cylinder of radius 3 centered on the z axis. See Fig.
14.5.4.
(b) The curve r = cos26 in the xy plane is a four-petaled rose (see Example 1,
Section 5.6). Thus in cylindrical coordinates we obtain a vertical cylinder with
the four-leafed rose as a base, as shown in Fig. 14.5.5. A

Figure 14.5.5. The surface

Figure 14.5.4. The cylinder r = cos2# is a cylinder with
has a very simple equation a four-petaled rose as its
in cylindrical coordinates. base.

Example 3 Describe the geometric meaning of replacing (r,6,z) by (r,8 + 7, — z).

Solution Increasing 8 by = is a rotation through 180° about the z axis. Switching z to
— z reflects in the xy plane (see Fig. 14.5.6). Combining the two operations
results in reflection through the origin. A
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z Sz z4
R Reflect in
Rotate 180 P’ xy plane P

—_— —l

P P
Figure 14.5.6. The effect of z T - .
replacing (r, 8, z) by S y 7 ¥y )i p y
(r,0 + m, — z) is to replace 9
Pby —P. % @ 6+m d

Example 4 Show that the surface r = f(z) is a surface of revolution.

Solution If we set y = 0 and take x > 0, then r = x and r = f(z) becomes x = f(z); the
remaining points satisfying r = f(z) are then obtained by revolving the graph
x = f(z) about the z axis; note that r = ¢, z = d is a circle centered on the z
axis. Thus we get a surface of revolution with symmetry about the z axis. A

Cylindrical coordinates are best adapted to problems which have cylindrical
symmetry—that is, a symmetry about the z axis. Similarly, for problems with
spherical symmetry—that is, symmetry with respect to all rotations about the
origin in space—the spherical coordinate system is useful.

The spherical coordinates of a point (x, y,z) in space are the numbers

z ( ) (p, 9, ¢) defined as follows (see Fig. 14.5.7).
X, V,zZ
0 p = distance from (x, y,z) to the origin;
# = cylindrical coordinate # (angle from the positive x axis to the point
9 (x, Y));
> ¢ = the angle (in [0, 7]) from the positive z axis to the line from origin to
9 (x, y,2).
% 6.7.0) To express the cartesian coordinates in terms of spherical coordinates,
Figure 14.5.7. Spherical we first observe that the cylindrical coordinate r = yx? + y? is equal to psin¢
coordinates. and that z = pcos¢ (see Fig. 14.5.7). Therefore

x =rcosf = psingcosf, y=rsind=psin¢gsing, z=pcoso.
We may solve these equations for p, #, and ¢. The results are given in the
following box.

Spherical Coordinates
If the cartesian coordinates of a point in space are (x, y,z), then the
spherical coordinates of the point are (p, 8, ¢), where
X = psin¢cosd,
y = psin¢sind,
Z = pCoso,

or, if we choose p >0, — 7 <O <7and 0< ¢ < =,

p=\/x2+y2+zz,

_ jtan”(p/x) if x>0,
tan"(y/x)+a7 if x<0,
¢ =cos™! Z

VX2 + y?+ 22
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Notice that the spherical coordinates § and ¢ are similar to the geographic
coordinates of longitude and latitude if we take the earth’s axis to be the z
axis. There are differences, though: the geographical longitude is |#| and is
called east or west longitude according to whether # is positive or negative; the
geographical latitude is |7 /2 — ¢| and is called north or south latitude accord-
ing to whether 7 /2 — ¢ is positive or negative.

Example 5 (a) Find the spherical coordinates of (1, —1, 1) and plot.
(b) Find the cartesian coordinates of (3,7 /6,7 /4) and plot.
(c) Let a point have cartesian coordinates (2, —3, 6). Find its spherical coordi-
nates and plot.
(d) Let a point have spherical coordinates (1, — /2,7 /4). Find its cartesian
coordinates and plot.

Solution (a) p=\/x2+y2+22= ]2+(_1)2+12 =\/§’

0=tan"(—§-)=tan“(h—1)= -

T
1 4’

¢= cos—l( %) = cos_l( 71: ) ~ 0.955 ~ 54.74°.
3

See Fig. 14.5.8(a).

z z 4
(3
6 =X
A 6=55° 2
(1,-1,1) g p=V3 o3
y y
Figure 14.5.8. Finding the
spherical coordinates of the g=_T
point (1, —1, 1) and the g 4
cartesian coordinates of
(3, 7/6,7/4). (a) (b)

(b) x =psingcosd = 3sin(%)cos(z67-) = 3(%)% = ﬁ

y =psin¢sinf = 3sin(%)sin(%) = 3( 1 )(

z=pc0s¢=3cos(%)=3—2‘/§-.

See Fig. 14.5.8(b).

(C) p=ﬂx2+y2+22 = 22+(—3)2+62 =\/4__=7,

0=tan_1(z)=tan"‘(;§)~—0.983~—56.31°
X 2

—cos (£} =cos! g)%0541~310°

¢ = cos (p) cos (7 ) .0°.

See Fig. 14.5.9(a) (the point is the same as in Example 1(d)).
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z zh
I
I \7
|
| 31° N
| | 4
| |
! L .
{ —~ y n y
L 2
—56°
Figure 14.5.9. Two points * *
in spherical coordinates. (a) (b)

(d) x=psindcosf = lsin(%)cos(—Tﬂ) = (—2—) -0=0,

y=psinpsinf = lsin( —} )sin(

2
e

zZ=pcos¢ = lcos(%) =
See Fig. 14.5.9(b). A
Example 6 Find the equation in spherical coordinates of x2 + y* — 22 = 4 (a hyperboloid
of revolution).
Solution To take advantage of the relationship x? + y? + z% = p?, write
x2+y?— 2= ()c2 +y? + 22) — 222 = p? — 2p%cos’e,
since z-= p cos ¢. Also, we can note that
p? = 2p%cos’p = p*(1 — 2cos’p) = — pZcos 2¢.
Thus the surface is

pZcos2¢+4=0. A

Example 7 (a) Describe the surface given in spherical coordinates by p = 3. (b) Describe
the geometric meaning of replacing (p, 8, ¢) by (p,8 + 7, ¢).

Solution (a) In spherical coordinates, p is the distance from the point (x,.,z) to the
origin. Thus p = 3 consists of all points a distance 3 from the origin—that is, a
sphere of radius 3 centered at the origin. (b) Increasing # by 7 has the effect of
rotating about the z axis through an angle of 180°. &

Example 8 Show that the surface p = f(¢) is a surface of revolution.

Solution The equation p= f(¢) does not involve # and hence is independent of
rotations about the z axis; thus it is a surface of revolution. If we set y=0,

then p =yx?+ 2z and ¢ = cos™'(z/Vx + z?). Thus the surface p = f(¢) is

obtained by revolving the curve in the xz plane given by

Wi+ 22 =f(cos_1( —x—z‘/_{? )),

about the z axis. A
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Exercises for Section 14.5

In Exercises 1-6, convert from cartesian to cylindrical
coordinates and plot:

1. (1,-1,0) 2. (2,11
3. 3,-21) 4. (0,6, -2)
5. (6,0, —2) 6. (-L 11

In Exercises 7-12, convert from cylindrical to cartesian
coordinates and plot.

7. (1,7/2,0) 8. (3,45°,8)
9. (—1,7/6,4) 10. (2,0,1)
11. (0,7/18,6) 12. 2, —7/4,3)

13. Sketch the surface described in cylindrical coor-
dinates by r =1 + 2 cos¥.

14. Sketch the surface given in cylindrical coordi-
nates by r =1 + cos#.

In Exercises 15-18, describe the geometric meaning of
the stated replacement.

15. (r,0,2) by (1,0, — 2)

16. (r,8,2) by (2r,0,2)

17. (r,8,z) by (2r,0, — z)

18. (r,0,2) by 2r,0 + 7,2)

19. Describe the surfaces r = constant, # = constant,
and z = constant in cylindrical coordinates.
20. Describe the surface given in cylindrical coordi-
nates by z = 4.
In Exercises 21-26, convert from cartesian to spherical
coordinates and plot.

21. (0,1,1) 22. (1,0,1)
23.(=2,1,-3) 24. (1,2,3)
25. (=3, -2, —4) 26. (1,1,1)

In Exercises 27-32, convert from spherical to cartesian
coordinates and plot.

27. (3,7/3,7) 28. 2, —w/6,7/3)

29. (3,27,0) 30. (1,7/6,7/3)

31. 8, —w/3,7) 32. (1,7/2,%/2)

33. Express the surface xz =1 in spherical coordi-
nates.

34. Express the surface z = x* + y? in spherical co-
ordinates.

35. Describe the surface given in spherical coordi-
nates by § = = /4.

36. Describe the surface given in spherical coordi-
nates by p = ¢.

37. Describe the geometric meaning of replacing
(p,0,9) by (20,0, ).

38. Describe the geometric meaning of replacing
(p,8,¢) by (p,0,¢6+ 7/2) in spherical coordi-
nates.

39. Describe the curve given in spherical coordinates
byp=1,¢=a/2.

40. Describe the curve given in spherical coordinates
byp=16=0.

In Exercises 41-46, convert each of the points from
cartesian to cylindrical and spherical coordinates and
plot.

41. (0,3,4) 42. (=2,1,0)
43. (0,0,0) 4. (—1,0,1)
45. (=23, -2,3) 46. (~1,1,0)

In Exercises 47-52, the points are given in cylindrical
coordinates. Convert to cartesian and spherical coordi-
nates:

47. (1,7/4,1) 48. (3,7/6, —4)
49. (0,7/4,1) 50. (2, —7/2,1)
51 (=2, —7/2,1) 52. (1, - 7/6,2)

In Exercises 53-58, the points are given in spherical
coordinates. Convert to cartesian and cylindrical coor-
dinates and plot.

53. (1,7 /2,7) 54, 2, —7w/2,7/6)
55. (0,7 /8,7 /35) 56. 2, —7w/2, — =)
51. (—1,7,7/6) 58. (—1,—7/4,7/2)

59. Express the surface z = x2— y2 (a hyperbolic
paraboloid) in (a) cylindrical and (b) spherical
coordinates.

60. Express the plane z = x in (a) cylindrical and (b)
spherical coordinates.

61. Show that in spherical coordinates:

(a) p is the length of xi + yj + zk;
(b) ¢ =cos™ '(v-k/|v|), wherev = xi + yj + zk;
(¢) 6=rcos '(u-i/|ulf), where u = xi + yj.

62. Two surfaces are described in spherical coor-
dinates by the equations p= f(f,¢) and p=
—2f(8,¢), where f(#,¢) is a function of two
variables. How is the second surface obtained
geometrically from the first?

63. A circular membrane in space lies over the re-
gion x> + y2 < @ The maximum deflection z of
the membrane is 5. Assume that (x, y,z) is a
point on the deflected membrane. Show that the
corresponding point (7,8, z) in cylindrical coordi-
nates satisfies the conditions
0<r<a,0<0<27|z|<b

64. A tank in the shape of a right circular cylinder of
radius 10 feet and height 16 feet is half filled and
lying on its side. Describe the air space inside the
tank by suitably chosen cylindrical coordinates.

65. A vibrometer is to be designed which withstands
the heating effects of its spherical enclosure of
diameter d, which is buried to a depth d/3 in the
earth, the upper portion being heated by the sun.
Heat conduction analysis requires a description
of the buried portion of the enclosure, in spheri-
cal coordinates. Find it.

66. An oil filter cartridge is a porous right circular
cylinder inside which oil diffuses from the axis to
the outer curved surface. Describe the cartridge
in cylindrical coordinates, if the diameter of the
filter is 4.5”, the height is 5.6” and the center of
the cartridge is drilled (all the way through) from
the top to admit a 3” diameter bolt.

x67. Describe the surface given in spherical coordi-
nates by p = cos 2.
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14.6 Curves in Space

y Tangents and velocities of curves in space can be computed by vector methods.

We continue our study of three-dimensional geometry by considering curves
in space. We can consider tangents to these curves by using calculus, since
 only the calculus of functions of one variable and a knowledge of vectors are
x  required. (To determine tangent planes to surfaces, we will need the calculus
of functions of several variables.)

(1), g(1)

Figure 14.6.1. A parametric

curve in the plane. Recall from Section 2.4 that a parametric curve in the plane consists of a
pair of functions (x, y) = (f(¢), g(1)). As ¢ ranges through some interval (on
which f and g are defined), the point (x, y) traces out a curve in the plane; see
Fig. 14.6.1.

Example 1 What curve is traced out by (sin#,2cos?), 0 < ¢ < 27?

Solution Since x =sinz and y/2 = cost, (x, y) satisfies x* + y?/4 =1, so the curve
traced out is an ellipse. As ¢ goes from zero to 2«7, the moving point goes once
around the ellipse, starting and ending at P (Fig. 14.6.2). A

P=(0,2)

(1,00 x

Figure 14.6.2. The ellipse
traced out by (sin ¢, 2 cos ).

The step from two to three dimensions is accomplished by adding one more
function; i.e., we state the following definition: A parametric curve in space
consists of three functions (x, y,z) = (f(¢), g(¢),h(?)) defined for ¢ in some
interval on which f, g, and % are defined.

The curve we “see” is the path traced out by the point (x, y, z) as ¢ varies,
just as for curves in the plane.

Example 2 (a) Sketch the parametric curve (x, y,z) = (3t + 2,81 — 1,1). (b) Describe the
curvex=3t3+2,y=t3—8,z=4t3+3.
Solution (a) If we write P = (x, y,z), then
P=(2,-1,0)+¢(3,8,1)

which is a straight line through (2, —1,0) in the direction (3,8, 1) (see Section
13.3). To sketch it, we pick the points obtained by setting = 0 and ¢ = 1, that
is, (2, —1,0) and (5,7, 1); see Fig. 14.6.3 on the next page.
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Figure 14.6.3. The
parametric curve
@Bt+2,8t—-1,nisa
straight line.

Example 3

Sclution

Figure 14.6.4. The curve
(cost,sint, 1) is a helix.

— ~ e b4
(b) We find

(%, y,2) = (3 + 2, — 8,41 + 3)
= (2, —8,3) + £(3,1,4);

so the curve is a straight line through (2, — 8, 3) in the direction (3,1,4). A

(a) Sketch the curve given by x = cost, y =sint, z = ¢, where — o0 < ¢ < 00.
(b) Sketch the curve (cost,2sint,2¢).

(a) As 1 varies, the point (x, y) traces out a circle in the plane. Thus (x, y,z) is
a path which circles around the z axis, but at value 7, its height above the xy
plane is z = . Thus we get the helix shown in Fig. 14.6.4. (It is called a right
circular helix, since it lies on the right circular cylinder x? + y? = 1.)

@
@

(1,0,0)

NVAVAYTa

In Fig. 14.6.4, the z axis has been drawn with a different scale than the x

and y axes so that more coils of the helix can be shown. It is often useful to do
something like this when displaying sketches of curves or graphs. You should
be careful, however, not to give a false impression—label the axes to show the
scale when necessary.
(b) Since x = cost and y/2 = sint, the point (x, y,0) satisfies x> + y2/4 = 1,
so the curve lies over this ellipse in the xy plane. As ¢ increases from zero
to 27, the projection in the xy plane goes once around the same ellipse as in
Example 1 (Fig. 14.6.2), only now it starts at (1,0,0) at ¢ =0 and proceeds
counterclockwise since x behaves like cost and y like 2sins. Meanwhile, z
increases steadily with ¢ according to the formula z = 27. The net result is a
helix winding around the z axis, much like that of part (a), but no longer
circular. It now lies on a cylinder of elliptical cross section (see Fig. 14.6.5). A
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Figure 14.6.5. The curve
(cost,2sint,2¢t) is an
elliptical helix.

Example 4 Sketch the curve (¢,2¢, cos?).

Solution  If we ignore z temporarily, we note that (#,2r) describes the line y = 2x in the
xy plane. As ¢ varies, (,2f) moves along this line. Thus (z,2¢,cosf) moves
along a curve over this line with the z component oscillating as cos¢. Thus we
get the curve shown in Fig. 14.6.6. A

Figure 14.6.6. The curve
(2,21, cos?) lies in the plane
y=2x. .

In doing calculus with parametric curves, it is useful to identify the point
P =(x,y,z)=(f(1), g(t), (1)) with the vector

r=xi+yj+zk=f(r)i+ g(2)j + h(H)k.

This vector is a function of ¢, according to the following definition.

Vector Functions

A vector function of one variable is a rule ¢ which associates a vector
r = o(¢) in space (or the plane) to each real number ¢ in some domain.
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If o is a vector function and ¢ is in its domain, we can express a(¢) in terms of
the standard basis vectors, i, j, and k. The coefficients will themselves depend
upon ¢, SO we may write
o(t) = f(Oi+ g(i + h(1)k,

where f, g, and h are scalar (real-valued) functions with the same domain as o.
Notice that the functions f(7), g(¢),(¢) define a parametric curve such that
the displacement vector from the origin to (f(¢), g(¢), ~(?)) is just o(z). The
functions f, g, and A are called the component functions of the vector function
o(t). To summarize, we may say that parametric curves, vector functions, and
triples of scalar functions are mathematically equivalent objects; we simply
visualize them differently. For instance, the wind velocity at a fixed place on
earth, or the cardiac vector (see Fig. 13.2.14), may be visualized as a vector
depending on time.

Example 5 Let u, v, and w be three vectors such that v and w are perpendicular and have
the same length r, and let’ 6(¢) = u + vcos¢ + wsin .
(a) Describe the motion of the tip of &(¢) if the tail of 6(r) is fixed at the
origin. (That is, describe the parametric curve corresponding to o(¢).)
(b) Find the component functions of o(¢) if u=2i+j, v=j—k, and w=
itk
Solution (a) We observe first that the vector vcos? + wsinz always lies in the plane
spanned by v and w and that the square of its length is
(veost + wsinf) « (veost + wsin )

v-vcos’ + 2v-wsintcost + w - wsin
r’cos’ + r’sin’t = r’(cos’ + sin’) = r?,

so the tip of the vector vcos? + wsinz moves in a circle of radius r if its tail is
fixed. Adding u to vcost + wsin# to get o(t), we find that the tip of o(¢)
moves in a circle of radius r whose center is at the tip of u. (See Fig. 14.6.7.)

Path of the tip of u+vcos ¢ + wsin ¢
if its tail is at O

Path of the tip of

Figure 14.6.7. The tip of vcos ¢+ wsin ¢ if
. its tail is at O -
u+ vcost + wsinf moves u+vcoss+wsint
in a circle of radius r with
center at the tip of u and in ,A
a plane parallel to that 0

spanned by v and w.
(b) We have
o(f)=u+vcost+wsint =2i+ j+ (j — k)cosz + (j + Kk)sin¢
=2i + (1+cost+ sint)j + (—cost + sint)k,

so the component functions are 2, 1 + cost + sinz, and —cos? + sinz. A

3 Formulas involving vector functions are sometimes clearer to write and read if scalars are
placed to the right of vectors. Any expression of the form vf(z) is to be interpreted as f(£)v.
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We now wish to define the rate of change, or derivative, of a vector function
o(r) with respect to ¢. If a(¢) is the displacement from a fixed origin to a
moving point, this derivative will represent the velocity of the point. To see
how the derivative should be defined, we examine the case of uniform
rectilinear motion.

Example 6 Let o(f)=u+ tv, so that o(¢) is the displacement from the origin to a point
moving uniformly with velocity vector v. Let u= ai + bj + ck and v=1/i+
mj + nk.

(a) Find the component functions of o(?).
(b) Show that the components of the velocity vector are obtained by differen-
tiating the component functions of a(r).

Solution (a) We have
o(t)=u+ tv=ai+ bj+ ck + 1(i + mj + nk)
=(a+ i+ (b+ mj+ (c+ nk,
so the component functions are a + /t, b + mt, and ¢ + nt.

(b) The derivatives of the component functions of o(¢) are the constants /, m,
and n; these are precisely the components of the velocity vector v. A

Example 7 Let o(r) = f(1)i + g(¢)j be a vector function in the plane. Show thgt the
tangent line at time ¢, to the parametric curve corresponding to &(¢) (with the
tail of o(7) fixed at zero) has the direction of the vector f'(£o)i + gt

Solution Recall from Section 2.4 that if (f(¢), g(¢)) is a parametrized curve in the plane,
then the slope of its tangent line at (f(zy), g(t)) is g'(t)/f (to)- A line in the
direction of f'(#)i + g'(t,)j has slope g’(t5)/f (%), so it is in the same direction
as the tangent line. A

Guided by Examples 6 and 7, we make the following definition.

Derivative of a Vector Function

Let o(?) = f(0)i + g(2)j + h(1)k be a vector function. If the coordinat.e
functions f, g, and & are all differentiable at ¢,, then we say that o is
differentiable at #,, and we define the derivative o'(t,) to be the vector

J' @i+ g'(t)j + I (1p)k:
6'(to) = [(to)i + g'(to)j + M (to)k.

The derivative of o is a function of the value of ¢ at which the derivative is
evaluated. Thus o'(¢) is a new vector function, and we may consider the
second derivative o”(t), as well as higher derivatives.

We will sometimes use Leibniz notation for derivatives of vector func-
tions: if r = (), we will write dr/dt for o’(¢) and d*r/dt* for a”(1).

The derivative of a vector function can also be expressed as a limit of
difference quotients. If r = a(z), we write Ar = o(¢ + At) — o(?). Then Ar/At
(i.e., the scalar 1/A¢ times the vector Ar) is a vector which approaches ¢'(?) as
At—0. (See Fig. 14.6.8 on the next page and Exercise 52.)
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Figure 14.6.8. As Az >0,
the quotient

[o(t + Ar) — o(2)] /At
approaches a’(?); i.e.,
Ar/At->dr/dr.

Example 8

Solution

Ar=0(t +At) —a(t)

a(t+ A

0

Let o(#) be the vector function of Example 5, with u, v, and w as in part (b) of
that example. Find ¢'(¢) and ¢”(¢).
In terms of components,
o(1)=2i+ (1+cost+sint)j+ (—cost + sinr)k.
Differentiating the components, we have
o'(t) = (—sint + cos?)j + (sint + cost)k
and
o”(t) = (—cost —sint)j + (cost — sint)k. A
The differentiation of vector functions is facilitated by algebraic rules which

follow from the corresponding rules for scalar functions. We list the rules in
the following box.

Differentiation Rules for Vector Functions

To differentiate a vector function a(f) = f(£)i + g(1)j + h()k, differenti-
ate it component by component: o’(f) = f'(:)i + g'(H)j + A'(H)k. Let o (¢),
o,(?), and o,() be vector functions and let p(r) and ¢(r) be scalar
functions.

Sum Rule: [ (1) + o,(1) ] = 0/(1) + 03(0).

Scalar Multiplication Rule: % [p(t)a(t)] = p'()o(t) + p(1)o'(1).

Dot Product Rule: g; [01(2) - 05(1) ] = 61(2) * 0(1) + &,(2) * O)(2).
Cross Product Rule: g; [0,(1) X 65(1)] = &/(£) X 0(1) + 6,(2) X a)(1).

Chain Rule: L[ a(g(1))] = 4'(1)o'(4(1)).

For example, to prove the dot product rule, let o,(¢) = fi(Di + g ()i + hy(Hk
and o,(f) = fL,(Di + g,(1)j + h,(t)k. Hence,

01(1) * 0(1) = fi(2) fo(2) + &1(2) 821) + Iy(D)hy(1),
so by the sum and product rules for real-valued functions, we have
2 o(1)- o:(t)] =[ O + F(AO] + [ 81(D8:1) + 81(Dgx(0)]
+ [ H(Dhy(2) + By(D)Ry(D)].
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Regrouping terms, we can rewrite this as

[Fi(Df0) + gi(Dga(t) + Ki(D)hx(1)]
+[ L) + gi(Dgx(1) + hi(1)hy(1)]
=[fi(ni+ gi(0)i + hi(0k] [ fo()i + ga(1)i + k(1)K ]
+[ [+ gi(Di + hy(0k] - [ f3(0)i + g5(0)i + hy(0)k]
= o/(1) - oy(1) + 0,(7) - 03(1),

so the dot product rule is proved. The other rules are proved in a similar way
(Exercises 53-56).

Example 9 Show that if o(¢) is a vector function such that || e ()| is constant, then o'(7) is
perpendicular to a(¢) for all ¢.

Solution Since ||a(¢)] is constant, so is its square ||o(¢)||* = () - o(¢). The derivative
of this constant is zero, so by the dot product rule we have

0= % [a(t) . a(t)] =da'(t) a(t) +a(t) - o'(t)=20(t)- o'(1);
so a(t) - a'(¢) = 0; that is, o'(¢) is perpendicular to o(z). A

Let (f(¢), g(2), k(1)) be a parametric curve. If f, g, and % are differentiable at
1y, the vector f'(zp)i + g'(1o)j + ' (1o)k is called the velocity vector of the curve

(f(tg). g(2g), (7))
at t,. Notice that if e(¢) is the vector function corresponding to the curve
atty) (f(1), g(1),h(1)), then the velocity vector at ¢, is just ¢”(¢,) (see Fig. 14.6.9). We
o often write v for the velocity vector—that is, v = o'(¢). In Leibniz notation, if

(1g)
Fi 14.69. Th 010, r= o(r), we have v=dr/dt.
fgure 14.6.2. The velocity Several other quantities of interest may be defined in terms of the velocity
vector of a parametric , . .
curve is the derivative of vector. If v = o'(1y) is the velocity of a curve at ¢,, then the length v = ||v||
the vector (7) from the = Ha"(tO.)H is. called the speed alqng the curve a.t to, and the line thro.ugh alty)
origin to the curve. in the direction of o’(#,) (assuming o’'(ty) * O). is f:alled the tangent line to the
curve (see Example 7). Thus the tangent line is given by r = &(¢,) + t0”(¢).
For a curve describing uniform rectilinear motion, the velocity vector is
constant (see Example 6). In general, the velocity vector is a vector function
v = o’'(¢) which depends on ¢. The derivative a = dv/dt = ¢”(¢) is called the
acceleration vector of the curve. Notice that if the curve is (f(?), g(), h(2)),
then the acceleration vector is

a=fr(0i+ g’ (O)j+ h"(Hk ‘
The terms velocity, speed, and acceleration come from physics, where

parametric curves represent the motion of particles. These topics will be
discussed in the next section.

Example 10 A particle moves in a helical path along the curve (cos¢,sinz,t). (a) Find its
velocity and acceleration vectors. (b) Find its speed. (c) Find the tangent line
at 1= 7 /4.

Solution (a) Differentiating the components, we have v = —(sin 2)i + (cos?)j + k, and
a=dv/dt= —(cost)i — (sint)j. Notice that the acceleration vector points
directly from (cosz,sin¢, ) to the z axis and is perpendicular to the axis as well
as to the velocity vector (see Fig. 14.6.10).
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Figure 14.6.10. The velocity
and acceleration of a
particle moving on a helix.

R0

(b) The velocity vector is v = —(sin )i + (cos t)j + k, so the speed is

v = |lv| =\/(—sint)2 + (cost)2 +1

=1sin% + cosr + 1 =2 .

(c) The tangent line is

r=0(ty) + 16'(ty) = (costy)i + (sinp)j + 1ok + t[(—sin to)i + (costy)j + k].
At 1, = 7 /4, we get

r=i(i+j)+%k+t{—Li+Lj+k]

V2 22

1—¢t., 1+1¢. a

=i+ L+ (T +0)k A

St LEt (5

Example 11 A particle moves in such a way that its acceleration is constantly equal to —k.
If the position when ¢ = 0 is (0,0, 1) and the velocity at t = O is i + j, when and
where does the particle fall below the plane z = 0?7 Describe the path travelled
by the particle.

Solution Let (f(?), g(), h(?)) be the parametric curve traced out by the particle, so that
the velocity vector is o'(¢) = f'(Di + g'()j + h'(1)k. The acceleration ¢”(¢) is
equal to —k, so we must have f”(¢) =0, g”(t) = 0, and 2"(¢) = — 1. It follows
that f(¢) and g'(¢) are constant functions, and 4'(¢) is a linear function with
slope —1. Since o’(0) =i+ j, we must have o'(f) =1+ j— tk. Integrating
again and using the initial position (0,0, 1), we find that (f(¢), g(2),kh(2)) =
(t,1,1 — 1 1?). The particle drops below the plane z = 0 when 1 — 1* = 0; that
is, t =V2 . At that time, the position is (\/f N2 ,0). The path travelled by the
particle is a parabola in the plane y = x. (See Fig. 14.6.11.) A

z

Figure 14.6.11. The path of
the parabola with initial
position (0, 0, 1), initial
velocity i + j, and constant
acceleration —kis a
parabola in the plane

y=x.
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Exercises for Section 14.6

Sketch the curves in Exercises 1-10.

1.

00 N W

9.
10.

x =sint, y =4cost, 0 < ¢t < 2.

. x=2sint, y =4cost, 0 <t < 2.

x=2t—-Ly=t+2;z=1
x=—-ty=2;z=1/t; 1<t <3
x=—ty=tz=1t50<1t<3

(-1 0< <2,
. (4cost,2sint, t); 0 < £ < 2.
. x=cost;y=sint; z=1/27; =27 <t < 2m.

@, 1/60); 1 <r<3.
(cosht,sinhz,1); —1 << 1.

Let u, v, and w be three vectors such that v and w are
perpendicular and have the same length r. In Exercises
11 and 12, (a) describe the motion of the tip of the
vector o(7) and (b) find the components of o(¢) if
u=i—j,v=2(j+k), w=2(j—k).

1.
12.

13.

14.

o(f)=u+ 2vcost + 4wsin .
o(f)=u+ 3vcost — Swsint.

Let o(¢) = 3costi — 8sintj + e’k. Find o'(¢) and
o’ (1).
(a) Give the “natural” domain for this vector

function:
_ 1. 1 . 1
a(t) = tl+—t_lj+-—t_2k.

(b) Find ¢’ and o”.

In Exercises 15-20, let o,(¢) = e‘i + (sin?)j + °k and
o,(t) = e i + (csct)j — 2¢°k. Find each of the stated
derivatives in two different ways:

15.

16.

17.

18.

19.

20.

21.

22,

21 + ox0)]
2 6,(0)- 030
2 a,(5) X ax(0)]
2 (01(1)- 20x(1) + i (0)])

d
aZ e'o(t)

AN

Show that if the acceleration of an object is
always perpendicular to the velocity, then the
speed of the object is constant. [ Hint: See Exam-
ple 9.]

Show that, at a local maximum or minimum of
lle(Dll, o'(¢) is perpendicular to o(z).

Compute (a) the velocity vector, (b) the acceleration
vector, and (c) the speed for each of the curves in
Exercises 23-32.

23.
24.
25.
26.
27.
28.
29.

The curve in Exercise 1.
The curve in Exercise 2.
The curve in Exercise 3.
The curve in Exercise 4.
The curve in Exercise 5.
The curve in Exercise 6.
The curve in Exercise 7.
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30.
3L
32.

The curve in Exercise 8.
The curve in Exercise 9.
The curve in Exercise 10.

For each of the curves in Exercises 33-38, determine
the velocity and acceleration vectors for all ¢ and the
equation for the tangent line at the specified value of .

33.
34.
35.
36.
37.
38.

39.

40.

41.

42.

43.

45.

46.

47.

(62,313, 8%); 1 =0.

(sin32,c0834,2t3/%); t = 1.

(cos’,3t — 3,1); t=0.

(tsint,tcost,3 8); t=0.

(2 te',e ); t=0.

(2cost,3sint, t); t = m.

Suppose that a particle follows the path
(e',e”*,cost) until it flies off on a tangent at
t = 1. Where is it at 1 = 2?

If the particle in Exercise 39 flies off the path at
t =0 instead of f = 1, where is it at t = 27
Describe and sketch the curves specified by the
following data:

(@) o'(t)=(1,0,1); 6(0)=(0,0,0),

(b) Ul(t) = (_ 1’ 1: l)a 0'(0) = (1’2’ 3)7

(©) o(t)=(—-11,1); o(0)=(0,0,0).

Suppose that a curve o(?) has the velocity vector
o'(t) = (a,b,sin¢), where a and b are constants.
Sketch the curve if a = — 1, b =2, and assuming
a(0) = (0,0, 1).

Suppose that a curve has the velocity vector
v=0'(t) =(sint, —cost,d), where d is a con-
stant. (a) Describe the curve. (b) Sketch the curve
if you know that (0) = i. (¢) What if in addition,
d=0?

. Suppose that o(t) is a vector function such that

o'() = — o(t). Show that a(r) = e ‘0(0). (Hint:

See Chapter 8.) What is the behavior of o(?) as

t—>o0?

(a) Let o,(¢) and o,(?) satisfy the differential

equation o”(f) = — o(t). Show that for any con-

stants 4, and 4,, 4,0,(f) + A,04(t) satisfies the

equation as well.

(b) Find as many solutions of ¢”(¢) = —a() as

you can.

Suppose that o(7) satisfies the differential equa-

tion o”(¢) + w’a(f) = 0. Describe and sketch the

curve if 6(0) = (0,0, 1) and ¢’(0) = (0, w, w).

(a) Sketch the following curves. On each curve,

indicate the points obtained when ¢ = 0,1,4,3, 1.
D x==-ty=2z=34;0<1t<1.

Gy x=—-ty=2%2=3% -1<r< 1

(iti) x = —sin(w?/2); y = 2sin(nwt /2);

z=3sin(nt/2); 6<t < L.

(b) Show that the set of points in space covered

by each of these curves is the same. Discuss

differences between the curves thought of as

functions of . (How fast do you move along the

curve as ¢ changes? How many times is each

point covered?)
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48. For each curve in Exercise 47, find the velocity
vector v and the speed v as functions of r.
Compute [%v dt, where [a, b] is the defining inter-
val for ¢ in each case. What should this number
represent? Explain the difference between the
result for part (i) and that for (i) and (iii).

49. Let § and ¢ be fixed angles, and consider the
following two curves:

(a) x=singcost,

y =sin¢sint, 0<t<2n
Z =Cos¢;

(b) x =sintcos¥,
y =sintsiné, 0<t<27

Z = COSt.

Show that each curve is a circle lying on the
sphere of radius 1 centered at the origin. Find
the center and radius of each circle. Sketch the
curves for ¢ = 45° and for 8 = 45°.

50. Suppose that 0 < # < 27 and 0 < ¢ < 27, and
let

o(0,¢) = ((2 + cosp)cos b, (2 + cos d)sin 8, sin ¢).

(Note that this is a vector function of two vari-

ables.)

(a) Describe each of the following curves:

(i) o(6,0); < 0 < 2m;

(i) o(8,m); 0 0 < 27;
(il) o(8,7/2); 0< @ 277,
(iv) 6(0,¢); 0<o<2
(v) 6(7/2,4); 0< ¢
vi) o(7/4,¢); 0 < o <2

(b) Show that the point (0, ¢) hes on the circle of
radius 2 + cos ¢ parallel to the xy plane and
centered at (0,0, sin¢).

(c) Show that &(#,¢) lies on the doughnut-
shaped surface (a forus) shown in Fig.
14.6.12.

(d) Describe and sketch the curve
((2 + cost)cost, (2 + cost)sin ¢, sin ¢).

VAN ANA
AR A

/

277,

N
//\

2

Figure 14.6.12. The points
o(0, ¢) (Exercise 50) lie on
this surface.

51 Suppose that Py = (xg, yo,0) is a point on the
unit circle in the xy plane. Describe the set of
points lying directly above or below P, on the
right circular helix of Example 3. What is the
vertical distance between coils of the helix?

*52. If ()= f(n)i+ g()j + h(t)k is a vector func-
tion, we may define lim,_,, 6(¢) componentwise;
that is,

Jim o (1) =[tliftlof(t)]i + [ lim g(t)]i
+[ lim h(t)]k

1,
if the three limits on the right-hand side all exist.
Using this definition, show that
lim — [cr(to + A1) — a(tp)] = o'(¢p).
A= 0 A
Prove the rules in Exercises 5356 for vector functions.
*53. The sum rule.
*54. The scalar multiplication rule.

*55. The cross product rule.
*56. The chain rule.

*57. Let r = () be a parametric curve.
(a) Suppose there is a unit vector u (constant)
such that e(f)-u=0 for all values of ¢.
What can you say about the curve o(¢)?
(b) What can you say if o(f)u= ¢ for some
constant ¢?
(c) What can you say if o(¢)-u=b|e(s)| for
some constant b with 0 < b < 1?
*58. Consider the curve given by

x=rcoswt, y=rsinw!, and z=ct,

where r, w, and ¢ are positive constants and

—00 <t <.

(a) What path is traced out by (x, y) in the
plane?

(b) The curve in space lies on what cylinder?

(¢) For what ¢, does the curve trace out one coil
of the helix as 7 goes through the interval
0<t<ty?

(d) What is the vertical distance between coils?

(e) The curve is a right-circular helix. Sketch it.
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14.7 The Geometry and
Physics of Space Curves

Particles moving in space according to physical laws can trace out geometrically
interesting curves.

This section is concerned with applications of calculus: arc length, Newton’s
second law, and some geometry of space curves.
In Section 10.4, we found the arc length formula

L=fa”\/mdt=f”\/(;_;y+(%)2 ’

for a parametric curve in the plane. A similar formula, with one term added,
applies to curves in space.

Arc Length

Let (x, y,z) = (f(2), g(2), h(?)) be a parametric curve in space. The length
of the curve, for ¢ in the interval [a, b], is defined to be

L= [P+ (g0 + (o) d

b 2 2 2
R R R R

Example 1 Find the length of the helix (cosz,sint, ) for 0 < ¢ < 7.

or

Example Here f'(r) = —sint, g'(r) =cost, and A'(f) =1, so the integrand in the arc

length formula (1) is ysin + cos% + 1 =y2, a constant. Thus the length is
simply

L=fw\/2_dt=7r\/5.A
0

Notice that the integrand in the arc length formula is precisely the speed
llo’(2)]| of a particle moving along the parametric curve. Thus the arc length,
which can be written as L = [%||0”(#)|| dt, is the integral of speed with respect
to time and represents the total distance travelled by the particle between time
a and time b.

Example 2 Find the arc length of (cost,sinz, %), 0 < ¢ < .

Solution The curve o(¢) = (cost, sint, t2) has velocity vector v = (—sin, cos t,21). Since
V]| =V1+ 4 =24/ + (%)2 , the arc length is

L= "2y + (1) a
[+
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This integral may be evaluated using the formula (43) from the table of

integrals:
f\/x2 + a dx= %[xw/xz +a’ +a’n(x +yx* + a® )] + C.

Thus

L=y fe (@) + (4m(e s ()]

=’77'\/772+% +}ln(7r+ W2+%)—%ln(\/_)
= Z Vi +427 + {In(27 +11 + 477

=~ 10.63. A

T

t=0

O

Example 3 Find the arc length of (¢',r,e), 0< 1< 1. [Hint: Use u=y1+2¢% to
evaluate the integral.]

Solution  o(1) = (e7,1,e"), 50 v=(e', 1,e"), and [[v|| =y1 +2¢*; so L = f31+2¢* dr.
To evaluate this integral, set u =1 + 2¢* , which leads to

SN2 i [t

u-—1

=f[l+%(ull)—%(u_}_l)]du (partial fractions)

1 1
=u+§1n(u—1)—§1n(u+1)+C

/ 7
=1 +2e% + %ln—le—l +C.
\/1—-!-262’ +1

(This result may be checked by differentiation.) To find L, we evaluate the last
exXpression at ¢ = 0 and ¢ = 1 and subtract, to obtain

2 _
L=\JI+28+ %m——“”el - %111@@2.64. A
frae +1 Gl

We turn next to the study of curves followed by physical particles subject to
forces. : ’

If a particle of mass m moves in space, the total force F acting on it at
any time is a vector which is related to the acceleration by Newton’s second
law (see Section 8.1): F = ma.

In many situations, the force is a given function of position r (the “force
law), and the problem of interest is to find the vector function r= a(?)
describing a particle’s motion, given the initial position and velocity. Thus,
Newton’s second law becomes a differential equation for o(¢), and techniques
of differential equations can be used to solve it (as we solved the spring
equation in Section 8.1). For example, a planet moving around the sun
(considered to be located at the origin) obeys to a high degree of accuracy
Newton’s law of gravitation:

F e _ GmMr=__ GmMr’
fr(f? r

Copyright 1985 Springer-Verlag. All rights reserved.



746 Chapter 14 Curves and Surfaces

This integral may be evaluated using the formula (43) from the table of

integrals:
f\/xz + a? dx=%[x\/x2 + a® +a21n(x +Vx2 + a® )] + C.
Thus

L=2-%[t\/t2+7)2+<%)21n(t+m)]

=myr’ +1 +%ln(7r +ymt+1 ) — %ln(\/_)
= 21+ 4n + 4In(27 +1 + 407

7
t=0

Al

Example 3 Find the arc length of (e’,z,e’), 0< ¢ < 1. [Hint: Use u=v1+2e* to
evaluate the integral.]

Solution (1) =(e',1,e"), so v=_(e", 1,e"), and ||v| =1 + 2¢*; so L = [}y1 + 2¢* dt.
To evaluate this integral, set u =1 + 2¢', which leads to

f 1+ 2e% dt=fu;l;—iu—l

=f[1+ %(ui 1)— %(Fll)]du (partial fractions)

=u+JIn—1)— Tin(u+ 1)+ C

i 2 _
=1 +2e* + %ln—ltze——l +C.
V14+2e* + 1

(This result may be checked by differentiation.) To find L, we evaluate the last
expression at t = 0 and ¢ = 1 and subtract, to obtain

2 _
L=\/1+2e2+%ln————vl+zel—\/§—%ln\/§ 1 <264 a
o Gl

We turn next to the study of curves followed by physical particles subject to
forces. ,

If a particle of mass m moves in space, the total force F acting on it at
any time is a vector which is related to the acceleration by Newton’s second
law (see Section 8.1): F = ma.

In many situations, the force is a given function of position r (the “force
law”), and the problem of interest is to find the vector function r= o(¢)
describing a particle’s motion, given the initial position and velocity. Thus,
Newton’s second law becomes a differential equation for o(¢), and techniques
of differential equations can be used to solve it (as we solved the spring
equation in Section 8.1). For example, a planet moving around the sun
(considered to be located at the origin) obeys to a high degree of accuracy
Newton’s law of gravitation:

__GmM_ _ _ GmM,
Irff P

>
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where r is the vector pointing from the sun to the planet at time ¢, M is the
mass of the sun, m that of the planet, » = ||r||, and G is the gravitational
constant (G =6.67 X 10~"" newton meter? per kilogram?). The differential
equation arising from this force law is

dr _ _ GM
7 T B
dat r
Rather than solving this equation here, we shall content ourselves with
understanding its consequences for the case of circular motion.

Example 4 A particle of mass m is moving in the xy plane at constant speed v in a
circular path of radius r,. Find the acceleration of the particle and the force
acting on it.

Solution Let r be the vector from the center of the circle to the particle at time z.
Motion of the type described is given by

r= rocos( v )i + rosin( v )j.
o To

Differentiating twice, we see that

2 2 2 2
a= d—; = — D—cos(’—”)i— D—sin(t—v)j= -2
dt Iy o ry o rg
Y The force acting on the particle is F = ma = — (mo? /ror. A

Example 4 shows that in uniform circular motion, the acceleration vector
points in a direction opposite to r—that is, it is directed toward the center of
the circle (see Fig. 14.7.1). This acceleration, multiplied by the mass of the
particle, is called the centripetal force. Note that even though the speed is
constant, the direction of the velocity vector is continually changing, which is
why there is an acceleration. By Newton’s law, some force must cause the
Figure 14.7.1. The acceleration which keeps the particle moving in its circular path. In whirling a
acceleration vector of a rock at the end of a string, you must constantly be pulling on the string. If you
particle in uniform circular ~ Stop that force by releasing the string, the rock will fly off in a straight line
motion points to the center tangent to the circle. The force needed to keep a planet or satellite bound into
of the circle. an elliptical or circular orbit is supplied by gravity. The force needed to keep a
car going around a curve may be supplied by the friction of the tires against
the road or by direct pressure if the road is banked (see Exercise 12).
Suppose that a satellite is moving with a speed v around a planet with
mass M in a circular orbit of radius r,. Then the force computed in Example 4
must equal that in Newton’s law:

vl GM
— —=r=-— —/—r.
2 3
ro Fo

The lengths of the vectors on both sides of this equation must be equal. Hence

”2=GT,M' )

If T is the period of one revolution, then 27ry/ T = v (distance /time = speed);
substituting this value for v in equation (2) and solving for T2 we obtain the
rule:

(2)°
=r; i (3)
The square of the perfod is proportional to the cube of the radius. This law is one

T2
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Example 5

Solution

Example 6

Solution

of the famous three which were discovered empirically by Kepler before
Newton’s laws were formulated; it enables one to compute the period of a
satellite given the radius of its orbit or to determine the radius of the orbit if
the period is prescribed. If both the radius and period are known, (3) can be
used to determine GM, and hence if G is known, M can be computed.

Suppose we want to have a satellite in circular orbit about the earth in such a
way that it stays fixed in the sky over one point on the equator. What should
be the radius of such an orbit? (The mass of the earth is 5.98 x 10
kilograms.)

The period of the satellite should be 1 day, so T =60 X 60 X 24 = 86,400
seconds. By formula (3), the radius of the orbit should satisfy

. TM _ (86:400)7 X (6.67 X 107"") X (5.98 x 10%)
rp = =
2'77 2 2’/7 2
) (27)

= 7.54 X 10 meters’,
s0 ry = 4.23 X 107 meters = 42.300 kilometers
= 26,200 miles. A

Let r = o(t) be the vector from a fixed point to the position of an object, v the
velocity, and a the acceleration. Suppose that F is the force acting at time ¢.

(a) Prove that (d/dt)(mr X v) =& X F, (that is, “rate of change of angular
momentum = torque”’). What can you conclude if F is parallel to r? Is this
the case in planetary motion?

(b) Prove that a planet moving about the sun does so in a fixed plane. (This is
another of Kepler’s laws.)

(a) We use the rules of differentiation for vector functions:

%(mr)(v)=m£ Xv+mr><i!=mv><v+mr><a

dt dt
=0+rXma=rXF.

If F is parallel to r, then this last cross product is 0. Thus mr X v must be a
constant vector. It represents the angular momentum, a quantity which
measures the tendency of a spinning body to keep spinning. The magnitude of
mr X v measures the amount of angular momentum, and the direction is along
the axis of spin. If the derivative above is zero, it means that angular
momentum is conserved; both its magnitude and its direction are preserved.
This is the case for our model of planetary motion in which the sun is
regarded as fixed and the gravitational force

aGmM
s

is parallel to the vector r from the sun to the planet. (The actual situation is a
bit more complicated than this: in fact, both the sun and the planet move
around their common center of mass. However, the mass M of the sun is so
much greater than the mass m of the planet that this center of mass is very
close to the center of the sun, and our approximation is quite good. Things
would be more complicated, for example, in a double-star system where the
masses were more nearly the same and the center of gravity somewhere
between. What is conserved is the total angular momentum of the whole
system, taking both stars into account.)

r
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(b) Let I = mr X v be the angular momentum vector. Then certainly r-1= 0.
We argued above that d1/dr =0, so 1 is a constant vector. Since r satisfies
r-1=0, the planet stays in the plane through the sun with normal vector 1. 4

Our third and final application in this section is to the geometry of space
curves,

Differential geometry is the branch of mathematics in which calculus is
used to study the geometry of curves, surfaces, and higher dimensional
objects. When we studied the arc length of curves, we were already doing
differential geometry—now we will go further and introduce the important
idea of curvature.

The curvature of a curve in the plane or in space is a measure of the rate
at which the direction of motion along the curve is changing. A curve with
curvature zero is just a straight line. We can define the curvature as the rate of
change of the velocity vector, if the length of this vector happens to be 1;
otherwise the change in length of the velocity vector confuses the issue. We
therefore make the following definitions.

Parametrization by Arc Length
Let r = o(¢) be a parametric curve.

1. The curve is called regular if v = o’(¢) is not equal to 0 for any ¢.

2. If the curve is regular, the vector T = v /vl =a'(2)/]|0’(1)|| is called
the unit tangeni vector to the curve.

3. If the length of o’(¢) is constant and equal to 1 (in which case T = v),
the curve is said to be parametrized by arc length. :

Example 7 Suppose that the curve r = o(?) is parametrized by arc length. Show that the
length of the curve between f = g and 7 = b is simply b — a.

Solution The integrand in the arc length formula (1) is constant and equal to 1 if the
curve is parametrized by arc length. Thus

L=fb1dt=b—a.A

If a curve r = o(7), as it is presented to us, is regular but not parametrized by
arc length, we can introduce a new independent variable so that the new curve
is parametrized by arc length. In fact, we can choose a value a in the domain
of the curve and define s = p(¢) to be the arc length [}|/6'(u)|| du of the curve
between a and 7. We have ds/dr = lo’(5)]| > O since the curve is regular, so.
the inverse function ¢ = q(s) exists (see Section 5.3). Now look at the new
curve r = o,(s) = o(q(s)), which goes through the same points in space as the
original curve but at a different speed. In fact, the new speed is

i)l = g’ (s)0’(g(s))Il  (chain rule)
(o ()] (g(s) is positive)

1 ’
m llo’(g(s))I-

However, by the fundamental theorem of calculus and the definition of 2
p'(D)= e, so [|ej(s)]| = 1, and so the new curve is parametrized by arc
length. ‘
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Example 8 Find the arc length parametrization for the helix (cost,sinz,?).
Solution We have |[v|| =ysin + cos% + 1 =2. Taking a =0, we have s =p(1) =

Example 9

Solution

ﬁ,\/f du=\21 50 s =21t and t = s/\/f; the curve in arc length parame-
trization is therefore (cos(s /42 ),sin(s/ V2),s/42). A

The arc length parametrization is mostly useful for theoretical purposes,
since the integral in its definition is often impossible to evaluate. Still, the
existence of this parametrization makes the definitions which follow much
simpler.

Whenever a curve is parametrized by arc length, we will denote this
parameter by s. Notice that in this case T=v = dr/ds. Now we can define the
curvature of a curve.

Curvature

Let T be the unit tangent vector of a curve parametrized by arc length.
The scalar k = ||dT/ds| is called the curvature of the curve. If £ # 0O, the
unit vector N = (dT/ds)/||dT/ds| is called the principal normal vector
to the curve.

Let us show that the principal normal vector is perpendicular to the unit
tangent vector. Since T has constant length, we know, by Example 9 of the
previous section, that dT/ds is perpendicular to T. Since N has the same
direction as d'T/ds, it is perpendicular to T as well.

Compute the curvature and principal normal vector of the helix in Example 8.

We have T = —(1/y2 )sin(s/V2 )i + (1/¥2 )cos(s/v2 )j + (1/V2 )k, so dT/ds
= —(1/2)cos(s/ V2)i — (1/2)sin(s/ V2)j; the curvature is

oo S ) e Lo ) =4/1 =1
\/:cos(‘/i_)+4sm(‘/5) 4 7

and the principal normal vector is —cos(s/ Y2)i — sin(s/ 2)i- A

If a curve is not parametrized by arc length, it is possible to compute the
curvature and principal normal vector directly by the following formulas:

VXYV
o IV xv]

4
Il ¥

(v+ V)V = (V- vV
N(t) = H(V N v)vr — (V' . V)VH : ) (5)

We now prove formula (4). The curvature is defined as \|dT/dsl|. We
must use the chain rule to express this in terms of the original parametrization
t. First of all, we have T=v/||v|| =v/(v* V)72, so

dT _ dT dt _ 1 dT

Now ds/dt.= ||v|| and so
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ar
d

o)
(Zo-v e en 2l

1 =32 dv ~1/2dv
2(v v) 2(v I )v+(v V) r

=(v-v)'3/2[—(v d:’)v+(v V) dt}

” ”-—(v v)_- (v %v+(v V)Z,—} [ v+(v v)dt]

=y~ (v %)(v v)-—2(v-7)(v V) + (v v)(fl,‘; ‘2)]
=(v-v)~? (v v)( Z,;’ %) (v ‘é—)} ||v[|_4”v><%“2.
(See Exercise 38a, Sectlon 13.5.) Thus

e A e e gl

IvIf?
which is formula (4).
In Exercise 20, the reader is asked to derive (5) using similar methods.

Example 10 Find the curvature of the exponential spiral (e ~‘cost,e " ‘sint,0) (Fig. 14.7.2).
What happens as ¢ —> co?

¥y

~
1}

T N\ t=2x ¢
Figure 14.7.2. Graph of the
exponential spiral in the
(x, y) plane.

Solution We have
v=(—e ‘cost — e 'sint)i + (—e~'sint + e 'cost)j
and
V' = (e ‘cost + e 'sint + e 'sint — e ‘cost)i
+ (e 'sint — e 'cost — e 'cost — e 'sint)j
= 2e~'(sinti — cos tj).
Then

v Xy =2e-2| —cost—sint —sint+ cost|,
sin ¢ — cost

=2e " ¥(cos’ + cosssins + sin’t — costsin 1)k = 2e 'k,
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and so ||v X V|| = 2e %, Sinceé
Ivll = {{e ‘(cost + sint)]* + [e "(cost — sin)P}V/3,
v = e“”[(cost + sin#)’ + (cost — sint)2}3/2= e %23/2,
By formula (4),
’ -2t ‘
k= ﬁ = _eﬁ_ .

As t— o0, the curvature approaches infinity as the spiral wraps more and
more tightly about the origin. A

Exercises for Section 14.7

Find the arc length of the given curve on the specified 12. (a) Suppose that a car is going around a circular

interval in Exercises 1-6.

. (2cost,2sint,t); 0 < 1 < 27.

curve of radius r at speed v. It will then exert
an outward horizontal force on the roadway

2. (L3495 0<t< 1. due to the centripetal acceleration and a verti-
3. (sin31,¢0832,27%); 0< 1 < 1. cal force due to gravity. At what angle 4
2.2 should the roadway be banked so that the
4.(t+1 T\/_ £+, % ?)for 1 <1<2 total force tends to press the car directly into
5., for 1 < <2 (perpendicular to) the roadway? (See Fig.
6. (t,tsint,tcost); 0 < t < 7. 14.7.3.) How does the bank angle depend on »
7. A body of mass 2 kilograms moves in a circular and on the speed v?
path on a circle of radius 3 meters, making one
revolution every 5 seconds. Find the centripetal
force acting on the body.
8. Find the centripetal force acting on a body of
mass 4 kilograms, moving on a circle of radius 10
meters with a frequency of 2 revolutions per
second. .
9. A satellite is in a circular orbit 500 miles above Figure 14.7.3. For what
. . value of # does the total
the surface of the earth. What is the period of the force press directly into the
orbit? (See Example 5; 1 mile = 1.609 kilometer; the d 0
radius of the earth is 6370 km). roadway:
10. What is the gravitational acceleration on the satel- (b) Discuss how you might treat the design
lite in Exercise 9?7 The centripetal acceleration? problem in part (a) for a curve that is not part
11. For a falling body near the surface of the earth, of a circle. Design an elliptical racetrack with

the force of gravity can be approximated very

well as a constant downward force with magni-

tude F = GmM /R?, where G is the gravitational
constant, M the mass of the earth, m the mass of

the body, and R the radius of the earth (6.37 X

10° meters).

(a) Show that this approximation means that
any body falling freely (neglecting air resis-
tance) near the surface of the earth experi-
ences a constant acceleration of g = 9.8 me-
ters per second per second. Note that this
acceleration is independent of m: any two
bodies fall at the same rate.

(b) Show that the flight path of a projectile or a
baseball is a parabola (see Example 11 in
Section 14.6).

major axis 800 meters, minor axis 500 meters,
and speed 160 kilometers per hour.

13. A particle with charge ¢ moving with velocity

vector v through a magnetic field is acted on by

the force F = (¢/¢)v X B, where ¢ is the speed of

light and B is a vector describing the magnitude

and direction of the magnetic field. Suppose

that:

(1) The particle has mass m and is following a
path r = o(s) = xi + yj + zk.

2) o(0)=1i; 0'(0) = aj + ck.

(3) The magnetic field is constant and uniform
given by a vector B = bk.

(a) Use the equation F =(g/c)v x B to write dif-
ferential equations relating the components of
a=gc"(t)and v=¢6'(t).
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(b) Solve these equations to obtain the compo-
nentis of o (). [Hint: Integrate the equations
for d*x/dr* once, use item (2) in the list
above io determine the constant of integra-
tion, and substitute the resulting expression
for dx/dt into the equation for d%/dt? to
get an equation similar to the spring equa-
tion solved in Section 8.1.]

(c) Show that the path is a right circular helix.
What are the radius and axis of the cylinder
on which it lies? (The dimensions of the
helix followed by a particle in a magnetic
field in a bubble chamber are used to mea-
sure the charge to mass ratio of the particle.)

In Exercise 13, how does the geometry of the

helix change if (a) m is doubled, (b) ¢ is doubled,

(c) ||o’(0)]| is doubled?

Show that a circle of radius r has constant curva-

ture 1/r.

Compute the curvature #§#### and principal nor-

mal vector for the helix (rcoswt,rsinwt, ct) in

terms of , w, and c.

Find the curvature of the ellipse x*+ 2y?=1,

z =0. (Choose a suitable parametrization.)

Compute the curvature and principal normal

vector of the elliptical helix (cos¢,2sint, £).

Show that if the curvature of a curve is identi-

cally zero, then the curve is a straight line.

Derive formula (5) by using the methods used to

derive (4).

A particle is moving along a curve at constant

speed. Express the magnitude of the force on the

particle in terms of the mass of the particle, the
speed of the particle, and the curvature of the
curve.

Let T and N be the unit tangent and principal

normal vectors to a space curve r = a(t). Define

a third unit vector perpendicular to them by,

B =T XN. This is called the binormal vector.

Together, T, N, and B form a right-handed sys-

tem of mutually orthogonal unit vectors which

may be thought of as moving along the curve

(see Fig. 14.7.4.)

zZ 4

r=g(t) T

X
Figure 14.7.4. The vectors
T, N, and B form a
“moving basis” along the
curve,
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(a) Show that
B =(vXxa)/|lvXall = (vxa)/(k|v|]),

where a is the acceleration vector.

(b) Show that (dB/dr)-B=0. [Hint: ||B|)>=1
is constant.]

(c) Show that (dB/dr)+ T = 0. [Hint: Take de-
rivatives in B+ T = 0.]

(d) Show that dB/dr is a scalar multiple of N.
(e) Using part (d) we can define a scalar-
valued function 7 called the forsion by

dB/dt = — 7|)v||N. Show that

e [o'(5) X 6”(D] - 0"(1)
oy xo" (D>

(a) Show that if a curve lies in a plane, then the
torsion 7 is identically zero. [ Hint: The vec-
tor function o(#) must satisfy an equation of
the form o(¢)-n=0. By taking successive
derivatives show that o', o, and ¢’ all lie
in the same plane through the origin. What
does this do to the triple product in Exercise
22(e)?]

(b) Show that B is then constant and is a nor-
mal vector to the plane in which the curve
lies.

If the torsion is not zero, it gives a measure of

how fast the curve is tending to twist out of the

plane. Compute the binormal vector and the

torsion for the helix of Example 8.

Using the results of Exercises 22 and 23, prove

the following Frenet formulas for a curve para-

metrized by arc length:

dT _
=
dN
Vi kT
dB
ds
[Hint: To get the second formula from the oth-
ers, note that NN, N-B, and N-T are con-
stant. Take derivatives and use earlier tormulas
to get (dN/ds) - B and (dN/ds) - T.]
Kepler’s first law of planetary motion states that
the orbit of each planet is an ellipse with the sun as
one focus. The origin (0,0) is placed at the sun,
and polar coordinates (r,8) are introduced. The
planet’s motion is r = r(2), § = 8(z), and these
are related by r(¢)=1/[1 + ecos#(s)], where
I=k*/GM and e* =1~ 2k*E/G*M*m); k is a
constant, G is the universal gravitation constant,
E is the energy of the system, M and m are the
masses of the sun and planet, respectively
(a) Assume e < 1. Change to rectangular coor-
dinates to verify that the planet’s orbit is an
ellipse.
(b) Letp=1/r. Verify the energy equation

(du/d8)’+ p? = 2/ k°m)(GMmy — E).

kN,

+ 7B,

= —7N.
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Suppliement to Chapter 14:
Rotations and the Sunshine Formula

Rotations described in terms of the cross product are used to derive the sunshine
formula.

The purpose of this section is to derive the sunshine formula, which has been
stated and used in the supplements to Chapters 5 and 10. Before we begin the
actual derivation, we will study some properties of rotations in preparation for
the description of the earth rotating on its axis. The cross product, introduced
in Section 13.5, will be used extensively here.

Consider two unit vectors 1 and r in space with the same base point. If we
rotate r about the axis through 1, then the tip of r describes a circle (Fig.
14.S.1). (Imagine I and r glued rigidly at their base points and then spun about
the axis through 1.) Assume that the rotation is at a uniform rate counterclock-
wise (when viewed from the tip of 1), making a complete revolution in 7" units
of time. The vector r now is a vector function of time, so we may write
r = o(¢). Our first aim is to find a convenient formula for &(?) in terms of its
starting position r, = ¢ (0).

Let A denote the angle between 1 and r,; we can assume that A % 0 and
A # 7, i.e., | and 1, are not parallel, for otherwise r would not rotate. Construct
the unit vector m, as shown in Fig. 14.S.2. From this figure we see that

7~

Figure 14.S.1. If r rotates
about 1, its tip describes a
circle.

Iy = cosAl + sinAmy . (1)

(In fact, formula (1) can be taken as the algebraic definition of m, by writing
m, = (1/sin\)r, — (cosA/sinA)l. We assumed that A 70, and A # 7, so sinA
Figure 14.8.2. The vector #0.)

m, is in the plane of rp and Now add to this figure the unit vector ny = I X m,. (See Fig. 14.8.3.) The
L 1Sk°rth°goﬁall to fl’ and triple (1, my,ny) consists of three mutually orthogonal unit vectors, just like
makes an angle o . .

(77_/2) _ }\ (l?.]? k)

with ry.

Figure 14.S.3. The triple
(1, my, ny) is a right-handed
orthogonal set of unit
vectors.

Example 1 Let1=(1/y3)(i+j+k) and r, = k. Find m, and n,.

Solution The angle between I and r, is given by cosA=1-r,=1/ ¥3. This was
determined by dotting both sides of formula (1) by I and using the fact that |

is a unit vector. Thus sinA =y1 — cos’X =y2/3, and so from formula (1) we

get
_ 1 _ COSA
Mo = sin A (%) sin A I
3 1 3 1 .,
=4/ k——14/ -—(i+j+k
=Lk——1—(i+j)

6 V6
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and

k

1

B3 o=Li-Lja
| B R

Return to Fig. 14.8.3 and rotate the whole picture about the axis 1. Now m
and n will vary with time as well. Since the angle A remains constant, formula
(1) applied after time ¢ to r and 1 gives
1 cosA p
= ——r— 0221 1
M= SnA " sinA (1

(See Fig. 14.5.4.)

Figure 14.S.4. The three
vectors v, m, and n all
rotate about L

On. the other hand, since m is perpendicular to |, it rotates in a circle in
the plane of m, and n,. It goes through an angle 27 in time T, so it goes
through an angle 2#¢/T in ¢ units of time, and so

2mt )m0 + sm( 2? )no.

Inserting this in formula (1’) and rearranging gives

m = COS(

r=o(r)=(cosA)l + sm}\cos( 2t )mo + sm}\sm( 2? )no. (2)

This formula expresses explicitly how r changes in time as it is rotated
about 1, in terms of the basic trihedral (I, my, n,). -
Example 2 Express the function o(¢) explicitly in terms of I, Iy, and 7.

Solution We have cosA=1-r, and sinA = ||l X r,||. Furthermore n, is a unit vector
perpendicular to both 1 and r,, so we must have

_ IXr
BTN

Thus (sinA)ny =1Xr,. Finally, from formula (1), we obtain (sin\)m,=
— (cosMl =1, — (r, - DI. Substituting all this into formula (2),

r=(ro-Dl+ cos( Z;t )[ — (ro- D] + sm( 2t )(l X To)- A
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Example 3 Show by a direct geometric argument that the speed of the tip of r is
(2w / T)sinA. Verify that equation (2) gives the same formula.

Solution The tip of r sweeps out a circle of radius sinA, so it covers a distance 2 sinA
in time T Its speed is therefore (27 sinA)/ T (Fig. 14.S.5). From formula (2),
1 we find the velocity vector to be

f sin X - dr —_ 27 2t 27 ( 27rt)
7 sinA - sm( )m0 + sinA - T 7 cos T o
o and its length is (since my and n, are unit orthogonal vectors)
ari_ [ 2 2q 2mt 27\’ of 2mt
”dt \/sm?\(T)sm(T)+s1n}\ (T)Coi( T)

Figure 14.S.5. The tip of r
sweeps out a circle of — an. [ 27
radius sin A. sinA ( T

Now we apply our study of rotations to the motion of the earth about the
sun, incorporating the rotation of the earth about its own axis as well. We will
use a simplified model of the earth—sun system, in which the sun is fixed at the
origin of our coordinate system and the earth moves at uniform speed around
a circle centered at the sun. Let u be a unit vector pointing from the sun fo the
earth; we have u = cos(2wt/ T)i+ sin(2wt/ T,)j, where T, is the length of a
year (¢ and T, measured in the same units). See Fig. 14.8.6. Notice that the
unit vector pointing from the earth to the sun is —u and that we have oriented
our axes so that u=i when 7= 0.

) as above. A

k

Figure 14.S.6. The unit
vector u points from the
sun to the earth at time 7.

Next we wish to take into account the rotation of the earth. The earth
rotates about an axis which we represent by a unit vector I pointing from the
center of the earth to the North Pole. We will assume that 1 is fixed* with
respect to i, j, and k; astronomical measurements show that the inclination of 1
(the angle between 1 and k) is presently about 23.5°. We will denote this angle
. by a. If we measure time so that the first day of summer in the northern
hemisphere occurs when ¢ =0, then the axis 1 must tilt in the direction —i,
and so we must have 1 = cos ak — sincai. (See Fig. 14.5.7.)

Now let r be the unit vector at time ¢ from the center of the earth to a
Figure 14.5.7. Atr=0,the fixed point P on the earth’s surface. Notice that if r is located with its base
earth’s axis is tilted toward
the sun. * Actually, the axis | is known to rotate about k once every 21,000 years. This phenomenon,

called precession or wobble, is due to the irregular shape of the earth and may play a role in
long-term climatic.changes, such as ice ages. See pp. 130-134 of The Weather Machine by Nigel
Calder, Viking (1974).
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point at P, then it represents the local vertical direction. We will assume that P
is chosen so that at 1 = 0, it is noon at the point P; then r lies in the plane of 1
and i and makes an angle of less than 90° with —i. Referring to Fig. 14.S.8,
we introduce the unit vector my = —(sina)k — (cosa)i orthogonal to . We
then have ry = (cosA)l + (sinA)m,, where A is the angle between I and r,. Since
A =90° — [, where / is the latitude of the point P, we obtain the expression
I, = (sin /)l + (cos/)m,. As in Fig. 14.5.3, let ny =1 X my,.

Figure 14.S.8. The vectorr
is the vector from the
center of the earth to a Equator
fixed location P. The
latitude of P is / and the
colatitude is A = 90° — 1.
The vector my is a unit
vector in the plane of the
equator (orthogonal to 1)
and in the plane of | and ry.

S m

Example 4 Prove that ny=1XxXmy= —j.

Solution Geometrically, 1 X m, is a unit vector orthogonal to I and m, pointing in the
sense given by the right-hand rule. But I and m, are both in the ik plane, so
1 X m, points orthogonal to it in the direction —j (see Fig. 14.S.8).

Algebraically, 1 = (cosa)k — (sina)i and my, = —(sina)k — (cos )i, so
i j k
IXmy=| _ging 0 cosa |= —J(sin’a +cos’a)=—j. A
—cosa 0 -—sina

Now we apply formula (2) to get

. 2qt <y ainf 27t
r=(cosA)l + sm)\cos( de )m0 + s1n}\s1n< de )no,

where T, is the length of time it takes for the earth to rotate once about its
axis (with respect to the “fixed stars”—i.e., our i, j,k vectors).” Substituting the
expressions derived above for A, 1, m,, and n,, we get

r = sin/(cosak — sinai) + coslcos( 2t )(—sinak — cosai) — coslsin( 2t )j.
T, T,

Hence

_ . 2at \ |4 - [ 2t \,
r= —|sin/sina + cos/cosacos{ == | |i — cos/sin| === |j

T, T,
+[sinlc0sa - coslsinacos(%)]k. 3)
d

Example 5 What is the speed (in kilometers per hour) of a point on the equator due to the
rotation of the earth? A point at latitude 60°? (The radius of the earth is 6371
kilometers.)

Solution From Example 3, the speed is s = 7R/ T)sinA = 27R /T )cos], where R is
the radius of the earth and / is the latitude. (The factor R is inserted since r is
a unit vector; the actual vector from the earth’s center to a point P is Rr).

3 T, is called the length of the sidereal day. It differs from the ordinary, or solar, day by about 1
part in 365. (Can you explain why?) In fact, 7, ~23.93 hours.
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Using T, =23.93 hours and R = 6371 kilometers, we get s = 1673 cos/ ki-
lometers per hour. At the equator /=0, so the speed is 1673 kilometers per
hour; at / = 60°, s = 836.4 kilometers per hour. A

With formula (3) at our disposal, we are now ready to derive the sunshine
formula. The intensity of light on a portion of the earth’s surface (or at the top
of the atmosphere) is proportional to sin A, where 4 is the angle of elevation
of the sun above the horizon (see Fig. 14.5.9). (At night sin 4 is negative, and
the intensity then is of course zero.)

Sunlight

Figure 14.S.9. The intensity
of sunlight is proportional
to sinA. The ratio of area 1
to area 2 is sin 4.

Thus we want to compute sin 4. From Fig. 14.5.10 we see that sin4 =
—u-r. Substituting u = cos(27z/ T,)i + sin(27t/ T,)j and formula (3) into this
formula for sin 4 and taking the dot product gives

sinAd = cos( 2mt )[sinlsina + cos/cosa cos( M)}
7, T,

. Dt . [ 2at
+ sin| &= coslsm( == )}
= cos( 2T”;’)sinlsinoz

2mt 2mt \ 4 of 2 \gin( 27t
+cosl[cos(Ty)cosacos( T, )+sm( 7} )sm( T, ” @)

-
(VAVAVAN

Figure 14.S.10. The Sunlight

geometry for the formula
sin A4 = c0s(90° — A)
= —u-r.

Example 6 Set ¢ = 0 in formula (4). For what / is sin4 = 0? Interpret your result.
Solution With 7 = 0 we get

sind =sin/sina + cos/cosa = cos(! — a).

This is zero when / — a = + 7 /2. Now sin 4 = 0 corresponds to the sun on the
horizon (sunrise or sunset), when 4 = 0 or 7. Thus, at = 0, this occurs when
I'=a = (m/2). The case a + (7/2) is impossible, since / lies between — 7 /2
and 7 /2. The case / = a — (7/2) corresponds to a point on the Antarctic
Circle; indeed at ¢ = 0 (corresponding to noon on the first day of northern
summer) the sun is just on the horizon at the Antarctic Circle. 4
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Our next goal is to describe the variation of sin4 with time on a particular
day. For this purpose, the time variable ¢ is not very convenient; it will be
better to measure time from noon on the day in question.

To simplify our calculations, we will assume that the expressions
cos(2mt/ T,) and sinQ2wt/ T }) are constant over the course of any particular
day; since 7, is 365 times as large as the change in ¢, this is a reasonable
approx1mat10n On the nth day (measured from June 21), we may replace
27t/ T, by 27n /365, and formula (4) gives

sind = (sin/)P + (cosl)[ Qcos( 277,” ) + Rs m( 277,7’ )}, &)
d d
where P = cos(2mn/365)sina, Q = cos(2wn/365)cosa, and R = sin(27n /365).
We will write the expression Q cos(2wt/T,) + Rsin(2wt/T,) in the form
Ucos[27(t — t,)/ T,), where 1, is the time of noon of the nth day. To find U,
we use the addition formula to expand the cosine:

a2, Yt 2, 2t \ .. 2at,
— = + .
Ucos( T, T, ) U[cos( T, )cos( T, sn( T, )sm T,

Setting this equal to Qcos(2wt/T,) + Rsin(2wt/T,) and comparing coeffi-
cients of cos2xt/ T, and sin2xt/ T, gives

7t 7t,
Td Td

Squaring the two equations and adding gives

Ul=Q*+R? or U=yQ?+R* ]

while dividing the second equation by the first gives tan(2wt,/T,) = R/ Q. We
are interested mainly in the formula for Uj; substituting for Q and R gives

_ 2an 27n
U—\/COS(365 )cosa+s1n(365)
= 2( 270\ | _ gin? in2( 27n
—\/cos ( 365 )(1 sin“a) + sin ( 365 )
=\/1—cos(§g’51)sma.

Letting 7 be the time in hours from noon on the nth day so that (1 — 1,)/ T,
= 7/24, we may substitute into formula (5) to obtain the final formula:

sind = smlcos( %767;1 )sina + cosl\/r— cos ( %767{51 )sm o cos( 22727 ) (6)

which is identical (after some changes in notation) to formula (1) on page 301.

Example 7 How high is the sun in the sky in Edinburgh (latitutde 56°) at 2 p.M. on
February 1?

Solution We plug into formula (6): a =23.5°, /=90 —56=34°, n= number of days
after June 21 = 225, and 7 = 2 hours. We get

sin4 = 0.5196,
soA=2313° A

6 We take the positive square root because sin 4 should have a local maximum when 7 =1,.
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Exercises for The Supplement to Chapter 14

. Let 1=(j+k)/y2 and ry=(i—j)/y2. (a) Find
mg and ny. (b) Find r = o(¢) if T =24. (c) Find
the equation of the line tangent to o(¢) at ¢ = 12
and T = 24.

2. From formula (2), verify that o(7/2)-n=0.
Also, show this geometrically. For what values of ¢
is o(¢)»n=0?

3. If the earth rotated in the opposite direction about
the sun, would 7, be longer or shorter than 24
hours? (Assume the solar day is fixed at 24 hours.)

4. Show by a direct geometric construction that r
= o(T;/4) = —sin/sinai — cos /j + sin / cos ak.
Does this formula agree with formula (3)?

5.

6.

Derive an “exact” formula for the time of sunset
from formula (4).

Why does formula (6) for sin A not depend on the
radius of the earth? The distance of the earth from
the sun?

. How high is the sun in the sky in Paris at 3 P.M. on

January 15? (The latitude of Paris is 49°N).

. How much solar energy (relative to a summer day

at the equator) does Paris receive on January 15?7
(The latitude of Paris is 49° N).

. How would your answer in Exercise 8 change if

the earth were to roll to a tilt of 32° instead of
23.5°7

Review Exercises for Chapter 14

Sketch the graphs of the conics in Exercises 1-8.

1. 4x2+9y2=36 2. )c-~~-12y2
3.x2—4?=16 4. 4x% + 16y = 81
5. 100x% + 100y% =1 6. y> =16 + 4x>
7. x*—y=14 8. 2x2+2y2=80

Sketch the graphs of the conics in Exercises 9—12.
9. 9x*—18x + y2— 4y +4=0.
10. 9x2 + 18x—y2+2y—8=0.
11. x2 + 2xy + 3y2 = 14.
12. x* = 2xy — 3y% = 14.
Sketch or describe the level curves for the functions and
values in Exercises 13-16.
13. f(x, y)=3x—2y; c=2
14.f(x,y)=x2—y2; c=—1
15. fx, y)=x*+xy; c =2
16. f(x, y) = xX+4;¢=85
Describe the level surfaces f(x, ¥,z) = c for each of the
functions in Exercises 17-20. Sketch for ¢ =1 and
c=25.
17. flx, y,2)=x—y—z
18. f(x, y,z2)=x+y—2z
19. f(x, p,2) = x*+ y> + 22+ 1
20. f(x, y,z) = x* + 2y + 322
Sketch and describe the surfaces in Exercises 21-28.

21. x2+4y2+22=1 22. x2+4y2—22=0
23.x2+4y2—zz=1 24.x2+4y2+22=0
25. 32+ 4yr -z =1 26. x2+4y2—z=0
27. 2+ 4y + 2 =1 28. x4+ 4y? +z=0

29. This exercise concerns the elliptic hyperboloid of
one sheet. An example of this type was studied in
Example 6, Section 14.4. A standard form for the

30.

31.

equation is

X 2

? 2 ? =1 (a, b, and ¢ positive).

(a) What are the horizontal cross sections ob-
tained by holding z constant?

(b) What are the vertical cross sections obtained
by holding either x or y constant?

(c) Sketch the surface defined by

2 2 2
L+y__ZT=1'

4 1

In a yz plane, sketch the cross-section curves
obtained from this surface when x is held
constantly equal to 0, 1, 2, and 3 (x =2 is
especially interesting).

(a) Describe the level surfaces of the function
flx, y,2) = x>+ y2 — 22 In particular, dis-
cuss the surface f(x, y,z) = ¢ when c is posi-
tive, when c is negative, and when ¢ is zero.

(b) Several level surfaces of f are sketched in
Fig. 14.R.1. Find the value of ¢ associated
with each.

(¢) Describe how the appearance of the level
surfaces changes if we consider instead the
function g(x, y,z) = x* + 2y? — 2%

Let f(x, y) = x? 4+ 2p? + 1

(a) Sketch the level curves f(x, y)=c for ¢ =
=10, —1,0, 1, 2, and 10.

(b) Describe the intersection of the graph of f
with the vertical planes x=1, x= —1,
x=2y=1lLy=2y=—-1

(c) Sketch the graph of f.
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(1)
(i)
(iif)

’/(iV)

)

X

Figure 14.R.1. Level

surfaces of x2 + y? — 2%

32. Do as in Exercise 31 for f(x, y)=y/x, and
describe the intersection of the graph of f with
the cylinder of radius R (that is, » = R in cylin-
drical coordinates).

In Exercises 33-38, fill in the blanks and plot.

Rectangular Cylindrical Spherical
coordinates coordinates coordinates
33, (1,-1LDH
34, (1,0,3)
35. (5,7/12,4)
36. 8,37/2,2)
37. 3, -w/6,7/4)
38. (10,7 /4,7 /2)

39. A surface is described in cylindrical coordinates
by 372 = z? + 1. Convert to rectangular coordi-
nates and plot.

40. Show that a surface described in spherical coor-
dinates by f(p,$) = 0 is a surface of revolution.

41, Describe the geometric meaning of replacing
(p,8,¢) by (0,6 + 7,6 + 7 /2) in spherical coor-
dinates.

42. Describe the geometric meaning of replacing
(0,8, ¢) by (4p, 8, ¢) in spherical coordinates.

43. Describe by means of cylindrical coordinates a
solenoid consisting of a copper rod of radius 5
centimeters and length 15 centimeters wound on
the outside with copper wire to a thickness of 1.2
centimeters. Give separate descriptions of the rod
and the winding.

44, A gasoline storage tank has two spherical cap
ends of arc length 56.55 feet. The cylindrical part
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of the tank has length 16 feet and circumference
113.10 feet. Let (0,0,0) be the geometric center
of the tarik. See Fig. 14.R.2.

113.10 ft

\ =N
} 56.55 ft
/
\_/
L—lﬁft

(a) Describe the cylindrical part of the tank via
cylindrical coordinates.

(b) Describe the hemispherical end caps with
spherical coordinates. (Set up spherical coor-
dinates using the centers of the cap ends as
the origin.)

Sketch the curves or surfaces given by the equations in
Exercises 45-52.

45. z=x+y

46. x>+ 2xz+ 22 =0

47. o(t)=3sinti+ tj+ costk

48. o(f) =(sint,t + 1,2t — 1)

49. 2= —(x* + y¥/4)

50. z = —(x? +y2)

51, 22= —x?2—3y?+2

52. 2% = x*—4y?
Find the equation of the line tangent to each of the
curves at the indicated point in Exercises 53 and 54.

53. (£ + 1,e7 ", cos(mt /2)); t = 1

54, (12— l,cost?, ity 1=y
Find the velocity and acceleration vectors for the curves
in Exercises 55-58.

55. o(¢)=e'i+sintj+ cosrk.

t2
6. a:(1) = ~

Figure 14.R.2. The gasoline
storage tank for Exercise 44.

i+¢4+k

2

57. a(t) = o,(t) + o,(t), where o, and o, are given in
Exercises 55 and 56.

58. a(t) = o,(¢) X o,(t), where o, and o, are given in
Exercises 55 and 56. :

59. Write in parametric form the curve described by
the equations x — 1 =2y + 1 =3z + 2.
60. Write the curve x = y®= 22+ 1 in parametric

form.
61. Find the arc length of o(r) = ti+In¢j+ 2y2¢k;
<r<2.

62. Express as an integral the arc length of the curve
x?=y> =75 between x =1 and x =4. (Find a
parametrization.)

63. A particle moving on the curve o(f) =37 —
sintj — e'k is released at time 7 = 4 and flies off
on a tangent. What are its coordinates at time
t=1?7

64. A particle is constrained to move around the unit
circle in the xy plane according to the formula
(x,y,2)= (cos(t?), sin(1%),0), t > O.
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65.

66.

Chapter 14 Curves and Surfaces

(a) What are the velocity vector and speed of
the particle as functions of ¢?

(b) At what point on the circle should the parti-
cle be released to hit a target at (2,0, 0)? (Be
careful about which direction the particle is
moving around the circle.)

(c) At what time ¢ should the release take place?
(Use the smallest 7 > 0 which will work.)

(d) What are the velocity and speed at the time
of release?

(e) At what time is the target hit?

A particle of mass m is subject to the force law

F = — kr, where & is a constant.

(a) Write down differential equations for the
components of r(z).

(b) Solve the equations in (a) subject to the
initial conditions r(0) = 0, r'(0) = 2j + k.

Show that the quantity
mi|dr ), k
5 ' il Fr°r

is independent of time when a particle moves

under the force law in Exercise 65.

. Find the curvature of the ellipse 4x? + 9y = 16.

* 68.

69.

70.

Let r=0a(¢) be a curve in space and N be its

principal normal vector. Consider the “parallel

curve” r = p(f) = o(2) + N(¢), where a(t) is the

displacement vector to P(¢) from a fixed origin.

(a) Under what conditions does p(f) have zero
velocity for some t,? [Hint: Use the Frenet
formulas, Exercise 25, Section 14.7]

(b) Find the parametric equation of the parallel
curve to the ellipse (4cosz,4sin¢, 0).

Find a formula for the curvature of the graph

» = f(x) in terms of f and its derivatives.

The contour lines on a topographical map are

the level curves of the function giving height

above sea level as a function of position. Figure

14.R.3 is a portion of the U.S. Geological Survey

map of Yosemite Valley. There is a heavy con-

tour line for every 200 feet of elevation and a

lighter line at each 40-foot interval between

these.

(a) What does it mean in terms of the terrain
when these contour lines are far apart?

(b) What if they are close together?

(c) What does it mean when several contour
lines seem to merge for a distance? Is eleva-
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Figure 14.R.3. Yosemite
Valley (portion). (U.S.
Department of Interior
Geological Survey.)

Copyright 1985 Springer-Verlag. All rights reserved.




(d

©

tion really a function of position at such
points? (Look at the west face of Half
Dome. Does this seem like a good direction
from which to climb it?)

Sketch a cross section of terrain along a
north—south line through the top of Half
Dome. ,

A hiker is not likely to follow the straight
north—south path in part (d) and is probably
more interested in the behavior of the ter-
rain along the trail he or she will follow. The
3-mile route from the Merced River (alti-
tude approximately 6100 feet) to the top of
Half Dome (approximately 8842 feet) along
the John Muir and Half Dome Trails has
been emphasized in Fig. 14.R.3. Show how a
cross section of the terrain along this trail
behaves by plotting altitude above sea level
as a function of miles along the trail. (A
piece of string or flexible wire may be of aid
in measuring distances along the trail.)

*71. Find the curvature of the “helical spiral”
(t,tcost, tsint) for t > 0. Sketch.

Describe the level curves f(x, y) = ¢ for each of
the following functions. In particular, discuss any
special values of ¢ at which the behavior of the
level curves changes suddenly. Sketch the curves
forc=—1,0, and 1.

*72.

*73.

(a)
(b)
©
(d
(®
®
(2)

(®)
©

fx, y)=x+2p;
fGe, py=x2 =y
flx y)=y*— x%
G, p) = X2+ y%
f(x, ) = xp;

fx, »)y=y— 2x2.

Write in parametric form the curve which is
the intersection of the surfaces x% + p2 + 722
=3andy=1

Find the equation of the line tangent to this
curve at (1,1, 1).

Write an integral expression for the arc
length of this curve. What is the value of
this integral?

Copyright 1985 Springer-Verlag. All rights reserved.
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*74. Let n be a positive integer and consider the curve

(a)

(b)

(©)
(d

*75.

x = cos cos(4nt)
= I -7 <t < E
y = costsin(4nr) 3 <t 7

z =sint

Show that the path traced out lies on the
surface of the sphere of radius 1 centered at
the origin.

How many times does the curve wind
around the z axis?

Where does the curve cross the xy plane?
Sketch the curve when n=1 and when
n=2,

Let u; and u, be unit vectors, and define the

curve o(¢) by

()
(b)
©
@

©

*76 ()

(b)
©

W COS ¢ + uysin ¢
0<t<

(ST

o) = —— |
® |{mycos £ + uysin ¢}

Find o(0) and o (7 /2).

On what surfaces does a(z) lie for all ¢?
Find, by geometry, the arc length of the
curve o(?) for 0 < ¢ < w/2.

Express the arc length of the curve o(¢) for
0 < ¢ < 7/2 as an integral.

Find a curve o(¢) which traverses the same
path as o(¢) for 0 < ¢ < #/2 and such that
the speed [|a7(?)}| is constant.

Show that the hyperboloid x? + y? — 22 =4
is a ruled surface by finding two straight
lines lying in the surface through each point.
[Hint: Let (xq, yg,zo) lie on the surface;
write the equation of the line in the form
x=xq+at, y=yo+ bt, z=1zy+t; write
out x* + y? — 22 =4 using x3 + y} — z2=4
to obtain two equations for @ and b repre-
senting a line and a circle in the (a, b) plane.
Show that these equations have two solu-
tions by showing that the distance from the
origin to the line is less than the radius of
the circle.]

Is the hyperboloid x?+ y?~ 22=—4 a
ruled surface? Explain.

Generalize the results of parts (a) and (b).





