Chapter 16

Gradients, Maxima,
and Minima

The gradient of a function of several variables vanishes at a maximum or a
minimum.

The gradient of a function f is a vector whose components are the partial
derivatives of f. Derivatives in any direction can be found in terms of the
gradient, using the chain rule. The gradient will be used to find the equations
for tangent planes to level surfaces. The last two sections of the chapter extend
our earlier studies of maxima and minima (Chapter 3) to functions of several
variables.

16.1 Gradients and
Directional Derivatives

The directional derivative is the dot product of the gradient and the direction
vector.

The right-hand side of the chain rule
du _ du dx , du d}’+8u dz

dt ox dt dy dt 9z dr

has the appearance of a dot product—in fact it is the dot product of the
vectors

dx. Ay, dz du. du. au

=i+ =j+=k and —i+ "j+ —k

dr '@ dx 0 y oz
We recognize the first vector as the velocity vector of a parametric curve; if
o(?) is the vector representation of the curve, it is just o’(¢). The second vector
is something new: it depends upon the function u = f(x, y,z) and contains in

vector form all three partial derivatives of f. This is called the gradient of f and
is denoted V. Thus

Vi(x 2) = fo (%, s )+ [(%, 35 20 + f (%, p, 2k
Example 1 (a) Find Vfif u = f(x, y,z) = xy — 2%
(b) Find V{ for the function f(x, y,z) = e — x cos(yz?).

Solution (a) Substituting the partial derivatives of f into the formula for the gradient of
S, we find Vf(x, y,z) = yi + xj — 2zk.

Copyright 1985 Springer-Verlag. All rights reserved.



798 Chapter 16 Gradients, Maxima, and Minima

(b) Here f.(x,y,2)= ye"y — cos(yz?), L(x, y,2) = xe™ + xz %sin(yz?), and
f.(x, y,z) = 2xyz sin( yz?), so
Vi(x, y,z)= [yexy — cos(yzz):]i + [xexy + xzzsin(yzz)]j
+[2xpzsin( yz°) |k. A

Notice that the vector Vf(x, y,z) is a function of the point (x, y,z) in space;
in other words, Vf is a function of the point in space where the partial
derivatives are evaluated. A rule @ which assigns a vector ®(x, y,z) in space
to each point (x, y,z) of some domain in space is called a vector field. Thus,

for a given function f, Vf is a vector field. Similarly, a vector field in the xy
plane is a rule @ which assigns to each point (x, y) a vector ®(x, y) in the

plane.
The Gradient
If z = f(x, y) is a function of two variables, its gradient vector field V{ is
defined by
. . 4+ 3
VI ) = o6 )i+ f (x5 i = i+

If u = f(x, y,z) is a function of three Variables, its gradient vector field
Vfis defined by

Vi(x. y.2) = felx, y,Z)i + L0 2+ L p,2)k
= M1 + ——_| +

du
ay k.

Az

We may sketch a vector field @(x, y) in the plane by choosing several values
for (x, y), evaluating ®(x, y) at each point, and drawing the vector ®(x, y)
with its tail at the point (x, y). The same thing may be done for vector fields
in space, although they are more difficult to visualize.

Example 2 Sketch the gradient vector field of the function f(x, y) = x*/10 + y*/6.

Solution  The partial derivatives are f.(x, y) = x/5 and fy(x, y) = y/3. Evaluating these
for various values of x and y and plotting, we obtain the sketch in Fig. 16.1.1.
For instance, f,(2,2) = 2 and f,(2,2) = ; thus the vector 2i+ 1j is plotted at
the point (2,2), as indicated in the figure A

Y 4
2., 2.
2,2 Vf(2,2)='5‘i+§,l

NN Y

NNN S

77 T NN

Figure 16.1.1. The gradient / / !
vector field Vf, where !

fx, )= (x*/10) + (*/6).
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16.1 Gradients and Directional Derivatives 799

In sketching a vector field ®(x, y), we sometimes find that the vectors are so
long that they overlap one another, making the drawing confusing. In this
case, it is better to sketch e®(x, y), where ¢ is a small positive number. This is
illustrated in the next example.

Example 3 (a) Illustrate the vector field ®(x, y) = 3yi — 3xj by sketching 1d(x, y).
(b) Using the law of equality of mixed partial derivatives, show that the vector
field in (a) is not the gradient vector field of any function.

Solution (a) If we sketched ®(x, y) = 3yi — 3xj itself, the vectors at different base
points would overlap. Instead we sketch 1®(x, y) =1 yi — 1xj in Fig. 16.1.2.

y

]IQ*‘
ﬁle

Figure 16.1.2. The vector |
field 3yi — 3xj is not the
gradient of a function.

(b) If ®(x, y)=3yi— 3xj were the gradient of a function z = f(x, y), we
would have 9z/dx = 3y and 9z/0y = —3x. By the equality of mixed partial
derivatives, 3% /9x 9y = —3 and 9% /3y dx = 3 would have to be equal; but
3 # —3, so our vector field cannot be a gradient. A

In a number of situations later in the book, the vector r from the origin to a
point (x, y,z) plays a basic role. The next example illustrates its use.

Example 4 Letr=xi+ yj+ zk and r = ||r|| =x* + y> + z*. Show that

V(%)=_r_r3’ r#0.

What is ||V(1/r)||?
Solution By definition of the gradient,
1 o (1\:, O /1N., @ (1
A= )i+ (2 )i+ 22 )k
v(r) Ex(r)l 8y(r)"+az(r)k

Now

\ulx

2Ly —L - x -
ax \r 9x 2 > p) (x2+y2+zz)3/2
and, similarly,

i(l)=_l ﬁ.(l):-i

oy \r Pl oz \r P2
Thus

1 . . | .
V(7)=—;xgl—%j—%k=—;5(x1+yj+zk)=—

~
~
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800 Chapter 16 Gradients, Maxima, and Minima
as required. Finally,
7)) -
r

In the next box we restate the chain rule from Section 15.3 in terms of
gradients.

1 1

r
Th=—= = —_—
H H r3 r2 x2+y2+ ZZ

L
3

The Chain Rule for Functions and Curves

Let f be a function of two (three) variables, o(¢) a parametric curve in
the plane (in space), and i(¢) = f(o(¢)) the composite function. Then

H(D)=Vf(e()-o'(0);  thatis, <L f(a(1)) =Vf(a(1)-o'(1).

In this form, the chain rule looks more like it did for functions of one
variable:

2 (f(g(1) = F(8(1))g'1).

Example 5 Verify the chain rule for u = f(x, y,z) = xy — z* and a(f) = (sint,cost,e").

Solution The gradient vector field of f is yi + xj — 2zk; the velocity vector is given by
o'(1) = costi — sintj + e’k. By the chain rule,

D4 _9f- o = (yi+ xj—22K) (costi —sintj + ')

= ycost — xsint — 2ze' = cos’t — sin’t — 2¢*.

To verify this directly, we first compute the composition as f(e(7))
= sintcost — e*. Then by one-variable calculus, we find

% f(o (1)) = —sin’ + cos’t — 2.
Thus the chain rule is verified in this case. A

Example 6 Suppose that f takes the value 2 at all points on a curve o(¢). What can you
say about V{(e(r)) and o'(¢)?

Solution  If f(a(#)) is always equal to 2, the derivative (d/dt) f(6(2)) is zero. By the
chain rule, 0 =Vf(a(?)) - 6/(¢), so the gradient vector Vf(a()) and the veloc-
ity vector o’(¢) are perpendicular at all points on the curve. A

Let u = f(x, y, z) be a function (with continuous partial derivatives) and o(?) a
parametrized curve in space. The derivative with respect to ¢ of the composite
function f(o(7)) may be thought of as “the derivative of [ along the curve
o(1).” According to the chain rule, the value of this derivative at ¢ = ¢, is
Vf(o(ty)) - o'(t;). We may write this dot product as

IVf(o (1))l 0" (2)llcos b,

where 6 is the angle between the gradient vector Vf(a(1,)) and the velocity
vector o'(¢) (Fig. 16.1.3). If we fix the function f and differentiate it along
various curves through a given point r (here, as usual, we identify a point with
the vector from the origin to the point), the derivative will be proportional to
the speed ||6(1,)|| and to the cosine of the angle between the gradient and
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16.1 Gradients and Directional Derivatives 801

V/i(a(t) velocity vectors. To describe how the derivative of f varies as we change the
direction of the curve along which it is differentiated, we fix r and choose
o(f) =r + d for d a unit vector. (Note that since d is a unit vector, the speed
of the curve o(¢) is 1, so 1 unit of time corresponds to 1 unit of distance along
the curve.)

We make the following definition: Let f(x, y,z) be a function of three
variables, r a point in its domain, and d a unit vector. Define the parametric
the curve 6 curve o(f) by a(t) =r + rd. The derivative (d/dt) f(o(1))|,_, 1s called the
directional derivative of f at r in the direction of d.

d Since o’(f)=d and |d|| =1, we see that if f has continuous partial
derivatives, the directional derivative at r in the direction of d is
X
Figure 16.1.3. The Vf(r)-d = [[Vf(r)|jcosb.
derivative of f along the Notice that the directional derivatives in the directions of i, j, and k are just
curve o(1) is the partial derivatives. For instance, choosing d =i, Vf-i=(fi+ fj+ fk)-i

4 f(a()=Vf(a() o'y =f Similarly, V/-j=/, and V/-k=[.. o
As we let d vary, the directional derivative takes its maximum value when
=IVf(a()Illle"(D)l[cos.  cosh = 1, that is, when d points in the direction of Vf(r). The maximum value
of the directional derivative is just the length ||V f(r)]].
The following box summarizes our findings.

Gradients and Directional Derivatives

The directional derivative at r in the direction of a unit vector d is the rate
of change of f along the straight line through r in direction d; i.e., along
o()=r+ud

The directional derivative at r in the direction d equals Vf(r)-d. It
is greatest (for fixed r) when d points in the direction of the gradient
V/(r) and least when d points in the same direction as — V f(r).

Example 7 Compute the directional derivatives of the following functions at the indicated
points in the given directions.

(@) f(x, )= x+2x>=3xp; (x0, yo) = (1, 1); d = (2,%).

(B) f(x, y) = In(Yx” + y? )i (xo, yo) = (1,0); d = (245 /5,15 /5).

(©) f(x, p,2) = xpz; (X, yo.29) = (1, 1, 1); d = (1/\/2_)i + (l/ﬁ)k

(d) f(x, y,2) = €™ + yz; (%o, o, 20) = (1, 1, 1); d = (1/3)i = j + k).

Solution (a) Vf(x, y) =(1 +4x — 3y, —3x). At (1,1) this is equal to (2, —3). The
directional derivative is Vf(xy, yo):d= (2, =3)-(3,4)= - £.

() Vf(x, y)=(x/(x*+ yD, y/(x* + p?)), so V£(1,0) = (1,0). Thus, the direc-
tional derivative in direction (25 / 5,5 /5)is 2/5 /5.

(©) Vf(x, y,2) = (yz,xz,xy), which equals (1,1,1) at (1,1,1). For d equal to
(1/42,0,1/42), the directional derivative is 1/y2 + 0+ 1/y2 =y2.

(d) Vf(x, y,z) = (e*%,z, y), which equals (e,1,1) at (1,1,1). For d equal to
(1/{3)+ (i —j+Kk), the directional derivative is e(1/y3)+ 1(—1y3)+
10/3)=¢/\3. A

If one wishes to move from r = (x, y,z) in a direction in which f is increasing

most quickly, one should move in the direction Vf(r). This is because

Vf(r)-d = ||Vf(r)|icosf is maximum when § =0, i.e, cosf = 1, so d is in the

direction of Vf(r). Likewise, — Vf(r) is the direction in which f is decreasing at

the fastest rate.
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802 Chapter 16 Gradients, Maxima, and Minima

Example 8 Let u = f(x, y,z) = (sinxy)e’zz. In what direction from (1,7,0) should one
proceed to increase f most rapidly?

Solution We compute the gradient:

vi= iy g—’y‘ j+ %k
=y cos(xy)e_zzi + x cos (xy)e_zzj + (—2zsin xy)e_zzk.
At (1,7,0) this becomes
7 cos(m)i + cos(m)j = —7i — j.

Thus one should proceed in the direction of the vector —7i —j. A

Example 9 Captain Astro is drifting in space near the sunny side of Mercury and notices
that the hull of her ship is beginning to melt. The temperature in her vicinity is
given by T=e * + e ¥ + &%, If she is at (1,1, 1), in what direction should
she proceed in order to cool fastest?

Solution In order to cool the fastest, the captain should proceed in the direction in
which T is decreasing the fastest; that is, in the direction —VT7T(1,1,1).
However,
AT T, AT ) _ i _ 9 i 4+ 3%

vT 8xl+8yj+azk e *i—2e Yj+ 3ek.
Thus,

—-VT(1,1,1)=e"'i+2e % -3k
is the direction required. A

Directional derivatives are also defined for functions of two variables. In this
case, we have a geometric interpretation of the directional derivatives of
f(x, y) in terms of the graph z = f(x, y). Given a point (x,, y,) in the plane
and a unit vector d = ai + bj, we can intersect the graph with the plane & in
space which lies above the line through (x,, y,) with direction d. (See Fig.
16.1.4.)

z=f(x,y)

Figure 16.1.4. The slope at
the point P of the curve C
in the plane & is the
directional derivative at
(xg, yo) of fin the
direction d.

The result is a curve C which may be parametrized by the formula
(x, y,2) = (xy + at, yo + bt, f(xy+ at, yo+ br)). The tangent vector to this

curve at P = (xg, yo, f(Xq, yo)) is
v=gqai+ bj+ —ad'_t f(xO + at, yo + bt)|,=0k

= ai + bj + [afx(xo,yo) + bf),(xo,yo)]k.
The slope of C in the plane & at P is the ratio of the vertical component

Copyright 1985 Springer-Verlag. All rights reserved.



16.1 Gradients and Directional Derivatives 803

af.(xo, yo) + bf,(xq, yo) of v to the length ya® + b> of the horizontal compo-

nent; but ya? + b* = 1, since d = ai + bj is a unit vector. Hence the slope of
C in the plane & is just af.(xq, yo) + bf,(xg, yo) = d+ Vf(x,, yy), which is
precisely the directional derivative of f at (x,, y,) in the direction of d.

If we let the vector d rotate in the xy plane, then the plane & will rotate
about the vertical line through (x,, y,) and the curve C will change. The
slopes at P of all these curves are determined by the two numbers f,(x,, o)
and f,(xo, yo), and the tangent lines to all these curves lie in the tangent plane
to z = f(x, y) at P.

Example 10 Let f(x, y) = x* — y% In what direction from (0, 1) should one proceed in
order to increase f the fastest? Illustrate your answer with a sketch.

Solution The required direction is

Vf(0,1)=%i+g—§j at (0, 1)
=2xi-2yj  at(0,1)
= -2j.

Thus one should head toward the origin along the y axis. The graph of f,
sketched in Fig. 16.1.5, illustrates this. A

Figure 16.1.5. Starting from
(0, 1), moving in along the y
axis makes the graph rise
the steepest.

Our final example concerns the “position vector” r; see Example 4.

Example 11 Let r = xi + yj+ zk and = |r||. Compute Vr. In what direction is r increas-
ing the fastest? Interpret your answer geometrically.

Solution We know that r =/x? + y>+ z2, so

SO O Oy xy Va2
Vr 8xl+8yj+82k rl+r"+rk’

since 9r/dx =1 +2x/yx*+ y? + z> = x/r and so forth. Thus
i l i i 3 -[
Vr—r(xl+yj+zk) P

Thus r is increasing fastest in the direction of r/r, which is a unit vector
pointing outward from the origin. This makes sense since r is the distance
from the origin. A

Copyright 1985 Springer-Verlag. All rights reserved.



804 Chapter 16 Gradients, Maxima, and Minima

Exercises for Section 16.1

Compute the gradients of the functions in Exercises 1-8.

L f(x, p,z) =yx?+ p? + 2%,
2. f(x, y,2) = xy + yz + xz.

3. f(x, p2)=x+y> + 23

4. f(x, y,z2)= xy2 +yz2 + zx°.

5. f(x, y) = In(yx* + y*).

6. f(x, y)= (x? +yz)ln\/x2 +y2 .
7. f(x, y) = xe**7.

8. f(x, y) = xexp(xy® + 3).

9. Sketch the gradient vector field of f(x, y)=
x2/8+ y2/12 + 6.

10. Sketch the gradient vector field of f(x, y)=
x2/8 — y?/12.

11. (a) Hlustrate the vector field ®(x, y) = xj — yi by
sketching 1®(x, y) instead. (b) Show that @ is
not a gradient vector field.

12. (a) Sketch the vector field ®(x, y)=Li+
[1/(9 + x* + y3)j. (b) Explain why @ is or is not
a gradient vector field.

13. Show that V(1/r%) = —2r/r* (r = 0).

14. Find V(1/7%) (r = 0).

Verify the chain rule for the functions and curves in
Exercises 15-18.
15. f(x, y,2) = xz + yz + xy; o(¢) = {e’, cost,sin ).
16. f(x, y,z) = e¥?; a(t) = (61,312, 1%).

17. f(x, y,z) =yx* + y? + 2% ; 6() = (sint, cost, 1).

18. f(x, y,z) = xy + yz + xz; a(t) = (1, 1,1).

19. Suppose that f(a(?)) is an increasing function of
t. What can you say about the angle between the
gradient Vf and the velocity vector ¢'?

20. Suppose that f(o(?)) attains a minimum at the
time 7,. What can you say about the angle be-
tween Vf(o(1,)) and o’'(4,)?

In Exercises 21-28, compute the directional derivative
of each function at the given point in the given direc-
tion.

21 f(x, p) = % + 2 = 3xp%; (x0, yo) = (1,2);
d=(1/2,y3 /2).

22. f(x, y) = e*cos y; (xq, yo) = (0,7/4);

d =i+ 3j)/V10.

23. f(x, y) = 17x7; (x4, yo) = (1, 1);
d=G+))/V2.

24. f(x, p) = €77 (x0, yo) = (1,m/2);

d = (3i + 4j)/5.

25. f(x, y,z) = x? — 2xy + 32% (0, Vo, 20) =
(1LL2yd=(+j—-Kk/3.

26. f(x, y.2) = e—(x2+y2+z2); (X0> Yos 20) =
(1,10,100); d= (1, — 1, — 1) /3.

27. f(x, y,z) = sin(xyz); (xq, yo.20) = (1, L,w/4);
d= (]/\/2_’0’ - l/\/i)

28. f(x, y,2) = 1/(x*+ y* + z%); (X0, ¥, Z0) =
2,3, 1);d=(G—-2k+1i)//6.

In Exercises 29-32 determine the direction in which
each of the functions is increasing fastest at (1, 1).

29. fix, )= x?+2y?

30. g(x, y) = x* = 2y?

31, h(x, y)=e*sin y

32. I(x, y)=e"siny — e *cos y

33. Captain Astro is once again in trouble near the
sunny side of Mercury. She is at location (1, 1, 1),
and the temperature of the ship’s hull when she
is at location (x, y,z) will be given by T(x, y,z)
=e "%’ where x, y and z are measured
in meters.

(a) In what direction should she proceed in
order to decrease the temperature most rap-
idly?

(b) If the ship travels at ¢® meters per second,
how fast will be the temperature decrease if
she proceeds in that direction?

(c) Unfortunately, the metal of the hull will
crack if cooled at a rate greater than {14 ¢?
degrees per second. Describe the set of pos-
sible directions in which she may proceed to
bring the temperature down at no more than
that rate.

34. Suppose that a mountain has the shape of an
elliptic paraboloid z = ¢ — ax? — by?, where a, b,
and ¢ are positive constants, x and y are the
east-west and north-south map coordinates, and
z is the altitude above sea level (x, y, and z are all
measured in meters). At the point (1, 1), in what
direction is the altitude increasing most rapidly?
If a marble were released at (1, 1), in what direc-
tion would it begin to roll?

35. An engineer wishes to build a railroad up the
mountain of Exercise 34. Straight up the moun-
tain is much too steep for the power of the
engines. At the point (1, 1), in what directions
may the track be laid so that it will be climbing
with a 3% grade—that is, an angle whose tangent
is 0.03. (There are two possibilities.) Make a
sketch of the situation indicating the two possible
directions for a 3% grade at (1, 1).

36. The height & of the Hawaiian volcano Mauna
Loa is (roughly) described by the function
h(x, y) = 2.59 — 0.000242 — 0.00065x2, where h
is the height above sea level in miles and x and y
measure east-west and north-south distances in
miles from the top of the mountain.

At (x, y)= (-2, —4):

(a) How fast is the height increasing in the
direction (1, 1) (that is, northeastward)? Ex-
press your answer in miles of height per mile
of horizontal distance travelled.

(b) In what direction is the steepest upward
path?
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37.

38.

39.

40.

41.

42.

43.

44.

16.2 Gradients, Level Surfaces, and Implicit Differentiation

(¢) In what direction is the steepest downward
path?

(d) In what direction(s) is the path level?

(e) If you proceed south, are you ascending or
descending? At what rate?

(f) If you move northwest, are you ascending or
descending? At what rate?

(g) In what direction(s) may you proceed in
order to be climbing with a grade of 3%?

In what direction from (1,0) does the function

flx, y)y= x? —yz increase the fastest? Illustrate

with a sketch.

In what direction from (—1,0) does the function

f(x, ) = x* — y* increase fastest? Sketch.

In what direction is the length of r + j increasing

fastest at the point (1,0, 1)? (r = xi + yj + zk).

In what direction should you travel from the

point (2,4,3) to make the length of r+ Kk de-

crease as fast as possible?

Suppose that f and g are real-valued functions

(with continuous partial derivatives). Show that:

(a) Vf=0if fis constant;

®) V(f+g=Vf+Vg

(© V(c¢f)=cVfif cis a constant;

(d) V(fe)=fVg+gVy,

(©) V(f/8)=(gVf—fVg)/e at points where
g#0.

What rate of change does Vf(x, y,z)(—j) rep-

resent?

(a) In what direction is the directional deriva-
tive of f(x, y) = (x> — y?)/(x* + yH at (1, 1)
equal to zero?

(b) How about at an arbitrary point (xy, ) in
the first quadrant?

(¢) Describe the level curves of f. In particular,
discuss them in terms of the result of (b).

Suppose that f(x, y) is given (and has continuous

partial derivatives). At (1, 1) the directional deriv-

ative in the direction toward (2,4) is 2 and in the
direction toward (2,2) it is 3. Find the gradient

16.2 Gradients, Level Surfaces,

45.

46.

47.

48.

*49.

*50.
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of f at (1,1) and the directional derivative there

in the direction toward (2, 3).

A function f(x, y) has, at the point (1, 3), direc-

tional derivatives of +2 in the direction toward

(2,3) and —2 in the direction toward (1,4). De-

termine the gradient vector at (1, 3) and compute

the directional derivative in the direction toward

3,6).

In electrostatistics, the force P of attraction be-

tween two particles of opposite charge is given

by P = k(r/|r|®) (Coulomb’s law), where k is a

constant and r = xi + yj + zk. Show that P is the

gradient of f= —k/||r|. ,

The potential V' due to two infinite parallel fila-

ments of charge of linear densities A and —A is

V = (A/27e)in(r,/ ry), where r? = (x — xo)?* + y?

and r3 = (x + x)’ + y2. We think of the fila-

ments as being in the z direction, passing

through the xy plane at (— xg,0) and (xg, 0).

(a) Find V V(x, y), using the chain rule.

(b) Verify the flux law 92V /3x? + 3*V /9y = 0.

For each of the following find the maximum and

minimum values attained by the function f along

the curve a(1):

(@) f(x,y)=xy; a(f) = (cost,sin?);
0< <27

(d) f(x, y)=x2+ y% &(r) = (cost,2sint);
0<1t<2a.

What conditions on the function f(x, y) hold if

the vector field k X Vfis a gradient vector field?

(a) Let F be a function of one variable and f a
function of two variables. Show that the
gradient vector of g(x, y)= F(f(x, y)) is
parallel to the gradient vector of f(x, y).

(b) Let f(x, y) and g(x, y) be functions such
that Vf=AVg for some function A(x, y).
What is the relation between the level curves
of f and g? Explain why there might be a
function F such that g(x, y) = F(f(x, y)).

and Implicit Differentiation

The gradient of a function of three variables is perpendicular to the surfaces on
which the function is constant.

Recall that the tangent plane to a graph z = f(x, y) was defined as the graph
of the linear approximation to f. We found (Section 15.3) that the tangent
plane at a point could also be characterized as the plane containing the
tangent lines to all curves on the surface through the given point. For a
general surface, we take this as a definition.
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Definition: Tangent Plane to a Surface

Let S be a surface in space, ry a point of S. If there is a plane which

contains the tangent lines at r, to all curves through r, in S, then this

plane is called the tangent plane to S at ry. A normal to the tangent plane
_ is sometimes said to be perpendicular to S.

The next box tells how to find the tangent plane to a level surface.

Gradients and Tangent Planes

Let r, lie on the level surface S defined by f(x, y,z) = ¢, and suppose
that Vf(ry) # 0. Then V{f(r;) is normal to the tangent plane to S at r,.
(See Fig. 16.2.1.)

Vi)

o (o)

Figure 16.2.1. The gradient

of f atr, is perpendicular to

the tangent vector of any

curve in the level surface. 0

To prove this assertion, first observe that f(o()) = ¢ if the curve a(?) lies in S.
Hence

d
4 f(o(1)) = 0.
By the chain rule in terms of gradients, this gives
Vi(e()-o'(1)=0.
Setting 7 = ¢y, we have Vf(ry) - o'(¢,) = 0 for every curve o in S, so Vf(ry) is

normal to the tangent plane. (We required Vf(ry) # 0 so there would be a
well-defined plane orthogonal to Vf(r,).)

Example 1 Letu = f(x, y,z) = x*> + y* — z2. Find V (0,0, 1). Plot this on the level surface
flx, y,z)=—1
Solution We have

_dugp Bugy Buy o
Vf= axl+ 8y‘l+ 8zk 2xi + 2yj — 2zk.
At (0,0,1), V£(0,0,1) = —2k.
The level surface x*>+ y?— z>= —1 is a hyperboloid of two sheets
(Section 14.4). If we plot V£(0,0, 1) on it (Fig. 16.2.2), we see that it is indeed
perpendicular to the surface. A
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24002 .2 o

<

AR0,0,1)

Figure 16.2.2. Vf(0,0,1) is
perpendicular to the
surface.

Example 2 Find a unit normal to the surface sin(xy) = e at (1,7/2,0).

Solution Let f(x, y,z) =sin(xy) — e°, so the surface is f(x, y,z) =0. A normal is
Vf = ycos(xy)i + xcos(xp)j — e’k. At (1,7/2,0), we get —k. Thus —k (or k)
is the required unit normal. (It already has length 1, so there is no need to
normalize.) A

Example 3 The gravitational force exerted on a mass m at (x, y,z) by a mass M at the
origin is, by Newton’s law of gravitation,

GMm

r3

Write F as the negative gradient of a function ¥ (called the gravitational
potential) and verify that F is orthogonal to the level surfaces of V.

F=—

T, where r=xi+yj+:zk and r=|r|.

Solution By Example 4, Section 16.1, V(1/r) = —(r/r*). Therefore we can choose
V=—GMm/r to give F = —V V. The vector F points toward the origin. The
level surfaces of ¥ are 1/r = c—that is, r = 1 /¢, a sphere. Therefore, F is
orthogonal to these surfaces. A

The gradient enables us to compute the equation of the tangent plane to the
level surface S at ry. Indeed, Vf(ry) will be a normal to this plane, which
passes through r,. Therefore its equation can be read off immediately. (See
Section 13.4.)

Example 4 Compute the equation of the plane tangent to the surface 3xy + z2=4 at
(1, 1,1).
Solution Here f(x, y,z) =3xy + z? and Vf=(3y,3x,2z), which at (1, 1, 1) is the vector
3i + 3j + 2k. Thus the tangent plane is
3(x—1D)+3(y—1)+2(z-1)=0 or 3x+3y+2z=8 A

Example 5 (a) Find a unit normal to the ellipsoid x*+ 2y2 +32z2=10 at each of the
points (10 ,0,0), (—10,0,0), (1,0,y3), and (— 1,0, —y3).
(b) Do the vectors you have\found point to the inside or outside of the
ellipsoid?
(c) Give equations for the tangent planes to the surface at the two points of
the surface with x;, = y, = 1.
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Solution (a) Letting f(x, y,z) = x> + 2y? + 32% = 10, we find Vf(x, y,z) = (2x,4y,62).
At (10 ,0,0), a unit normal to the ellipsoid is

V£(J10,0,0) (210 ,0,0)
1V£(/10.,0,0)) ((Nﬁ)2 +0°+0°)
At (—10,0,0), it is (—1,0,0). At (1,0,/3), it is

v/(1,0,3) =( I 036)
IVALO3) \ V28 V28 )

and at (—1,0, —3) it is (—1/v28,0, —3y3 /28).

(b) The vectors are pointing to the outside of the ellipsoid.

(c) The two points are (1, 1,\/7/73 ), and (1,1, —\/7/—3_ ). Evaluating the gra-
dient, Vf(1,1,/7/3) = (2,4,2/21) and Vf(1,1,—7/3) = (2,4, —2/21),
so the tangent planes to the surface at the points (1, 1,\/7/_3 ) and
(1,1, —\/%) are given by 2(x—1D)+4y—1)+ 2@(2 — \/7/—3) =0 and
2x—-1)+4(y—1)— 2‘/2_1(2 + ﬁ/_3) = 0, respectively. A

— =(1,0,0)

There is also a connection between gradients and tangents for functions of
two variables: the tangent line to a level curve of a function f(x,y) is
perpendicular to the gradient of f at each point. Combining this fact with the
box on p. 801, we see that the direction in which the function f is increasing or
decreasing most rapidly is perpendicular to the level curves of f. For example,
to get down most directly from the top of a hill, one should proceed in a
direction perpendicular to the level contours. (See Fig. 16.2.3.)

n h =300

Curve of steepest
descent

(a) Steepest descent of a hill (b) Contour map of hill 2000 feet high
Figure 16.2.3. The curve of
steepes(ti,delscent i; - Gradients, Level Surfaces,
perpendicular to the leve
curves. (a) Steepest descent and Level Curves
of a hill. (b) Contour map The normal to the tangent plane at ry = (xg, yy,2o) of the level surface
of hill 2000 feet high. f(x, y,z) = ¢ is Vf(ry). The equation of the plane is

fe(X05 Y0, 20)(X = Xo) + f,(X05 Yo, 20)(¥ = Yo) + f:(Xo0» Yo, Z0)(2 = 20) = 0.
The equation of the tangent line at (x,, y,) to the curve f(x, y) = c is

Fe(X05 Yo)(x — Xo) + f,(X0> Yo)(¥ = ¥o) = 0.

Copyright 1985 Springer-Verlag. All rights reserved.



16.2 Gradients, Level Surfaces, and Implicit Differentiation 809

Example 6 Find the equation of the tangent line to xy =6 at x =1, y = 6.

Solution - With f(x, y) = xp, we have f,(x, y) = y and f,(x, y) = x. Then f,(1,6) = 6 and
£,(1,6) =1, so from the preceding box, the equation of the tangent line
through (1,6) is

v6(x—1)+1(y~6)=0 or y=—6x+12. A

In the next example we check that the equation given in Section 15.2 for the
tangent plane to a graph is consistent with that given here.

Example 7 Let z = g(x, y). The graph of g may be defined as the level surface f(x, y,2)
= 0, where f(x, y,z) = z — g(x, y). Compute the gradient of f and verify that
it is perpendicular to the tangent plane of the graph z = g(x, y) as defined in
Section 15.2.

Solution  With f(x, y,z) = z — g(x, y),
VI(x. 3.2) = [l p )i+ f (%, 0,20 + fo(%, 95 2)k
= —g.(x, - gy(x, itk
This is exactly the normal to the tangent plane at (x, y) to the graph of g. A

Many functions of several variables are built by combining functions of one
variable. We actually found partial derivatives of such functions in our earlier
work on implicit differentiation and related rates. For instance, suppose that
y = f(x) and that x and y satisfy the relation

x*+ 8xsin y = 0.

Then differentiating with respect to x, using the chain rule for functions of one
variable, gives

3x? +85my+8xcosyg)—} =

which we can solve for dy /dx to obtain

dy _ 3x’+8siny
dx 8xcosy

From the point of view of multivariable calculus, we may say that the
graph y = f(x) lies on the level curve F(x, y) = 0, where

F(x, y)= x>+ 8xsin y.
A normal vector to this curve at (x, y) is

VF= gFH_ a_fj—(3x + 8sin y)i + (8x cos y)j,

0 a tangent vector is given by any vector perpendicular to VF, such as
(—8xcos y)i + (3x* + 8sin y)j.
Thus dy/dx, the slope of the tangent line, is
3x%+ 8sin y
—8xcosy

The general procedure is indicated in the following box.
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Implicit Differentiation
and Partial Derivatives

If y = f(x) is a function satisfying the relation z = F(x, y) =0, then

dy  0z/0x
dx  09z/dy’ O
ie.
Fx >

Indeed, differentiating F(x, y) = 0 with respect to x using the chain rule gives

OF dx | OF dy _
ox dx Ty dx O
ie.,

OF L OF by _
ox "y dx O

Solving for dy/dx gives the result in the box. Notice that in (1) it is incorrect
to “cancel the 9z’s,” because the minus sign would be left.

Example 8 Suppose that y is defined implicitly in terms of x by e* ™ + x?—y=1. Find
dy/dx at x =0, y = 0 using formula (1).

Solution Here z = F(x, y)=e* 7+ x>—y—1,50

9z =e¢* 7/ +2x and 9z ve0=1
0x |,
y
Likewise
82 x—y aZ
= =—e"7-1 and =], _,=-2
ay 1320
Therefore
9z/dx
- =L~ =1/2
dz/dy /

and so, by (1), dy/dx = 1/2. A

Formula (1) makes sense as long as 3z /3y # 0. In fact there is a result called
the implicit function theorem' which guarantees that F(x, y) =0 does indeed
define y as a function of x, provided that 9z/9y = 0. The values of x and y
may have to be restricted, as we found when studying implicit differentiation
in Section 2.3 (see Figure 2.3.1).

Example 9 Discuss what happens to y as a function of x if 3z/dy =0 in (1) for the
example x — y3 = 0.

Solution The equation z = F(x, y)=x — y*=0 implicitly defines the function y
= f(x)= Yx. We have 9z/9x =1 and 3z/9y = —3y% so dz/dy vanishes

! For a proof based on the mean value and intermediate value theorems, see J. Marsden and
A. Tromba, Vector Calculus, Second Edition, Freeman (1981), Section 4.4.
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when y = 0; this is just the point on the graph y = ¥x where the cube-root
function is not differentiable and the tangent line becomes vertical. A

In related rate problems, we have a parametric curve (x, y) = (g(1), k(1))
which lies on a level curve F(x, y) = 0. Differentiating with respect to ¢ by the
chain rule, we get
- dx dy k
O0=F(x0) g4 tE&x»N 3 2

which is a relation between the rates dx/dt and dy/dt. Such relations were
obtained in Section 2.5 using one variable calculus.

Example 10  Suppose that x = g(¢) and y = h(¢) satisfy the relation x*> — y*> = xy. Find a
relation between dx /dt and dy/dt:
(a) by one-variable calculus;
(b) by formula (2).
Solution (a) Differentiating the relation x* — y* = xy with respect to ¢ by one-variable
calculus, we obtain 2x(dx/dt) —2y(dy/dt) =y (dx/dt) + x (dy/dt) or,
equivalently, 2x — y)(dx/dt) — 2y + x)(dy/dt) = 0.
(b) To apply formula (2), we set F(x, y)= x?— y>— xy. Then F,(x,y)
=2x —y and F,(x, y) = —(2y + x), so (2) gives the same relation between
dx/dt and dy/dt: 2x — y)(dx/dt) — 2y + x)(dy/dt) = 0. A
Example 11  Suppose that x = g(¢) and y = h(?) satisfy the relation x” = 2. Find a relation
between dx /dt and dy/ dr.
Solution Let z = F(x, y)= x” — 2. Then 0z/3x = yx”~! and 9z/dy = x’Inx, so the
relation is
y—1dx y d_y =
yxr et Inx 7 0.
Using the fact that x» = 2, we can simplify this to
) dx @ _
el +Inx dt 0. A

Exercises for Section 16.2

In Exercises 1-4, find V£(0,0, 1) and plot it on the level
surface f(x, y,z) = c¢ passing through (0,0, 1).

. f(x, y,z)= x>+ y*+ 22

2 f(x, y,2) =z — x?—~y?

3. flx,y,2)=z—x+y

4. f(x, y,2)=22—x -y
In Exercises 5-8, find a unit normal to the given
surface at the given point.

5. xyz=28; (1, 1,8).

6. x5/2+y—z+1=0at(0,0,1).

7. cos(xy)=e® —2 at (1,7,0).

8. e =c¢at(l,1,1)

9

. Coulomb’s law states that the electric force on a
charge ¢ at (x, y,z) produced by a charge Q at
the origin is F= Qgr/r*. Find V so that F =
~— V¥V and verify that F is orthogonal to the level
surfaces of V. .
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10. Joe Perverse has invented a new law of gravita-
tion. In this theory, the force exerted on a mass
m at (x, y,z) by a mass M at the origin is
F=—JMmr/ >, where J is Joe’s constant. Find
V such that F= —VV and verify that F is or-
thogonal to the level surfaces of V.
In Exercises 11-16, find the equation for the tangent
plane to each surface at the indicated point.
11, x2+2y? +322=10; (1,y3, 1.
12. xy22 =1; (I, L, 1).
13. x% + 2p? + 3xz = 10; (1,2,1).
14. y2 — x2=3; (1,2, 8).
15. xyz=1; (1,1, 1).
l6. xy/z=1; (1,1, 1).
Find the equation for the tangent line to each curve at
the indicated point in Exercises 17-20.
17. x2+ 2% =3; (1, D).
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18. xy = 17; (x4, 17/ xp).

19. cos(x + y)=1/2; x=w/2, y =0.

20. e? =2; (1, In2).
Find the equation of the line normal to the given
surface at the given point in Exercises 21-24.

21 e~ PR = o730 (1 1, 1)

22. 2x2+ 3%+ 22 =9; (1,1,2)

2. x/yz=1; (1,1, 1)

24. xy22 =4;(1,1,2)
In Exercises 25-30, suppose that y is defined implicitly
in terms of x by the given equation. Find dy/dx using

fogmula (1).
25

26. x2—y*=

27. x/y =10

28. y —sinx® + x?— yr=1

29. x*—sin y + y*=4

30. e* 4+ 3 =0
In Exercises 31-34, find dy/dx at the indicated point
using formula (1).

31. 3x2+y2—e"=0; x=0,y=1

32. x2+y4=1;x=l,y= 1.

33. cos(x+p)=x+1/2;x=0,y=w/3.

34. cos(xy)=1/2; x=1,y==/3.
In Exercises 35-38, discuss what happens to y as a
function of x if 3z /3y = 0 in (1) for the given equation.

35. x—p?=0 36. x —cos y=0

37. x—y°=0 38. x —sin y =0
In Exercises 39-42, suppose that x and y are functions
of ¢ satisfying the given relation. Find a relation be-
tween dx /dt and dy/dt using formula (2).

39. xIny=1 40. sin{xy) + cos(xy) =1

41 x* 4yt =1 42. x2+3y?=2

43. (a) Derive a formula like (1) for dx/dy when x
and y are related by F(x, y) =0. (b) Use your
result in (a) to find dx/dy for the functions in
Exercises 29 and 30.

44. Let y be a function of x satisfying F(x, y,x + y)
=0, where F(x, y,z) is a given function. Find a
formula for dy/dx.

16.3 Maxima and Minima

Suppose that x = g(r) and y = h(?) satisfy the equations
in Exercises 45 and 46. Relate dx /dt and dy/ dr.

45. In(xcos y) = x

46. cos(x — 2y2+ y¥) =y

47. (a) Find the plane which is tangent to the surface
zZ= x? +y2 at the point (1, —2,5).

*(b) Letting f(x, y) = x> + p?, define the “slope”
of the tangent plane relative to the xy plane
and show that it equals ||Vf(1, —2)]|.

48. (a) Show that the curve x2—y?=c, for any
value of ¢, satisfies the differential equation
dy/dx =x/y.

(b) Draw in a few of the curves x2 —y2 = ¢, say
for ¢ = x£1. At several points (x, y) along
each of these curves, draw a short segment of
slope x/y; check that these segments appear
to be tangent to the curve. What happens
when y = 0? What happens when ¢ = 0?

49. Suppose that a particle is ejected from the sur-

face x? + y? — z? = —1 at the point (1, 1,/3) in

a direction normal to the surface at time =0

with a speed of 10 units per second. When and

where does it cross the xy plane?

%50. Let V' be a function defined on a domain in
space. The force field associated with V is F
=®(x, y,z)= —VV(x, y,z); we call V the po-
tential of ®. Let a point with mass m move on a
parametric curve o(¢) and satisfy Newton’s sec-
ond law ma =F, where a is the acceleration of
the curve. Use the chain rule to prove the law
of conservation of energy: E = !m|e' ()] +
V[e(t)] is constant, where o(¢) is the position
vector of the curve.

*51. The level surfaces of a potential function V are
called equipotential surfaces.

() What is the relation between the force vec-

tor and the equipotential surfaces?

(b) Explain why “sea level” is approximately an

equipotential surface for the earth’s gravita-
tional field. What spoils the approximation?

First and second derivative tests are developed for locating maximum and
minimum points for functions of two variables.

In studying maxima and minima for functions of one variable, we found that
the basic tests involved the vanishing of the first derivative and the sign of the
second derivative. In this section we develop tests involving first and second
partial derivatives for locating maxima and minima of functions of two

variables.

The definitions of maxima and minima for functions of two variables are
similar to those in the one-variable case, except that we use disks instead of
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intervals. Recall that the disk of radius r about (xg, yo) consists of all (x, y)
such that the distance \/(x ~ xg)* + () — yo)* is less than r. (See Fig. 15.1.2.)

Definition of Maxima and Minima

Let f(x, y) be a function of two variables. We say that (xg, o) 1s a local
minimum point for f if there is a disk (of positive radius) about (x4, o)
such that f(x, y) > f(x,, y,) for all (x, y) in the disk.
Similarly, if f(x, y) < f(xq, yo) for all (x, y) in some disk (of posi-
tive radius) about (x4, yo), we call (xq, yo) a local maximum point for f.
A point which is either a local maximum or minimum point is
called a local extremum.

We may also define global maximum and minimum points to be those at
which a function attains the greatest and least values for all points in its
domain.

Example 1  Refer to Fig. 16.3.1, a computer-drawn graph of z = 2(x? + yz)e_"lﬁy " Where
are the maximum and minimum points?

Figure 16.3.1. The volcano: z =2(x? + yhexp(— x2 — 3. (a) Coordinate grid lifted to the surface.
(b) Level curves lifted to the surface.
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Solution

Example 2

Solution

Example 3

Solution

There is a local (in fact, global) minimum at the volcano’s center (0, 0), where
7z =0. There are maximum points all around the crater’s rim (the circle

2+y*=1). A

The following is the analog in two variables of the first derivative test for one
variable (see Section 3.2).

First Derivative Test

Suppose that (x, o) is a local extremum of f and that the partial
derivatives of f exist at (xo, yo)- Then f,(xo, yo) = f,(%o, yo) = 0

We consider the case of a local minimum; the proof for a local maximum is
essentially the same.

By assumption, there is a disk of radius r about (x,, ¥o) on which
f(x, ») > f(xo, yo)- In particular, if |x — xo| <, then f(x, Vo) > f(x0, yo) SO
the function g(x) = f(x, y,) has a local minimum at x,. By the first derivative
test of one-variable calculus, g'(x) = 0; but g’(x,) is just £, (xg, yo)- Similarly,
the function A(y) = f(x,, y) has a local minimum at y,, so £ (o> yo)=0.

The first derivative test has a simple geometric interpretation: at a local
extremum of f, the tangent plane to the graph z = f(x, y) is horizontal (that is,
parallel to the xy plane.)

Points at which f, and f, both vanish are called critical points of f. As in
one-variable calculus, finding critical points is only the first step in finding
local extrema. A critical point could be a local maximum, local minimum, or
neither. After looking at some examples, we will present the second derivative
test for functions of two variables.

Verify that the critical points of the function in Example 1 occur at (0,0) and
on the circle x* + y*= 1.

Since z = 2(x2 + y»)e ™", we have

% = 4x(e_"2_)’2) +2(x? +y2)e_x2_y2(—2x)
= dx(e )1 - = )

and

9 —x2ey?

gy =Y 0= x*=y?).

These vanish when x = y =0 or when x>+ y*=1. A

Let z = x2 — y2. Show that (0,0) is a critical point. Is it a local extremum?

The partial derivatives 9z/3x = 2x and 9z/dy = —2y vanish at (0,0), so the
origin is a critical point. It is neither a local maximum nor minimum since
fx, )= x*— y2 is zero at (0,0) and can be either positive (on the x axis) or
negative (on the y axis) arbitrarily near the origin. This is also clear from the
graph (see Fig. 16.1.5), which shows a saddle point at (0,0). A

If we know in advance that a function has a minimum point, and that the
partial derivatives exist there, then we can use the first derivative test to locate
the point.
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Example 4 (a) Find the minimum distance from the origin to a point on the plane
x+3y—z=6.
(b) Find the minimum distance from (1,2,0) to the cone 2% = x? + y.

Solution (a) Geometric intuition tells us that any plane contains a point which is closest
to the origin. To find that point, we must minimize the distance d=

Vx? + y*+ z?, where z = x + 3y — 6. It is equivalent but simpler to minimize
d*=x*+ Y+ (x+3y— 6)°. By the first derivative test, we must have

3(d?) .
ix =0 thatis, 2x+2(x+3y—6)=0
and
9(d?) .
5 =0 thatis, 2y + 6(x + 3y —6)=0.
Solving these equations gives y =18, x = & . Thusz=x+3y — 6= — &, and

so the minimum distance is d = \x* + y* + z? = 611 /11. (See Fig. 16.3.2.)

V4

¥y

Figure 16.3.2. The point
nearest to the origin on the
planez=x + 3y —61is
6/11,18/11, —6/11).

(b) We minimize the square of the distance: d?=(x — 1)+ (y — 2)* + z°.
Substituting z? = x* + »2, we have the problem of minimizing

flayy=(x= 17+ (y =2+ x*+?
=2x2+2y2—2x—4y+5.
Now

fi(x,y)=4x—2 and fy(x, y)y=4 -4
Thus the critical point, obtained by setting these equal to zero, isx =4,y = 1.
This is the minimum point. The minimum distance is

d=\/(1/2— 1+ (1-2)"+ (1/2) + 1

=V1/44+1+1/441=y5/2~1581. A

Example 5 A rectangular box, open at the top, is to hold 256 cubic centimeters of cat
food. Find the dimensions for which the surface area (bottom and four sides)
is minimized.

Solution Let x and y be the lengths of the sides of the base. Since the volume of the box

is to be 256, the height must be 256/xy. Two of the sides have area
x(256/xy), two sides have area y(256/xy), and the base has area xy, so the

Copyright 1985 Springer-Verlag. All rights reserved.



816

Chapter 16 Gradients, Maxima, and Minima

Example 6

Solution

total surface area is 4 = 2x(256/xy) + 2y(256/xy) + xy = 512/y + 512/x +
xy. To minimize 4, we must have

_ 34 _ 512 _ 94 _ 512
=L =-224y, 0=2C=-"2+

0x x ay »?
The first equation gives y = 512/ x?; substituting this into the second equation
gives 0= —512(x?/512)> + x = —x*/512 + x. Discarding the extraneous
root x =0, we have x*/512 =1, or x = {512 = 8. Thus y = 512/x* =8, and
the height is 256/ xy = 4, so the optimal box has a square base and is half as
high as it is wide. (We have really shown only that the point (8, 8) is a critical
point for f, but if there is any minimum point this must be it.) A

X.

We now turn to the second derivative test for functions of two variables. Let
us begin with an example.

Captain Astro is being held captive by Jovians who are studying human
intelligence. She is in a room where a loudspeaker emits a piercing noise.
There are two knobs on the wall, whose positions, x and y, seem to affect the
loudness of the noise. The knobs are initially at x = 0 and y = 0 and, when the
first knob is turned, the noise gets even louder for x < 0 and for x > 0. So the
captain leaves x = 0 and turns the second knob both ways, but, alas, the noise
gets louder. Finally, she sees the formula f(x, y) = x* + 3xy + p* + 16 printed
on the wall. What to do?

First of all, she notices that f(x,0)= x>+ 16 and f(0, y) = y* + 16, so the
function f, like the loudness of the noise, increases if either x or y is moved
away from zero. But look! If we set y = —x, then the “3x)” term becomes
negative. In fact, f(x, —x) = x? — 3x? + x* + 16 = — x> + 16. Captain Astro
rushes to the dials and turns them both at once, in opposite directions. (Why?)
The noise subsides (and the Jovians cheer). A

The function f(x, y) = x* + 3xy + y*>+ 16 has a critical point at (0,0), and
the functions g(x)= f(x,0) and h(y)= f(0, y) both have zero as a local
minimum point; but (0,0) is not a local minimum point for f, because
flx, —x) = —x?+ 16 is less than f(0,0)= 16 for arbitrarily small x. This
example shows us that to tell whether a critical point (x,, y,) of a function
f(x, y) is a local extremum, we must look at the behavior of f along lines
passing through (x,, o) in all directions, not just those parallel to the axes.

The following test enables us to determine the nature of the critical point
(0,0) for any function of the form Ax>+ 2Bxy + Cy>.

Maximum-Minimum Test
for Quadratic Functions

Let g(x, y) = Ax*+ 2Bxy + Cy?, where 4, B, and C are constants.

1. If AC— B?>0, and 4 > 0, [respectively 4 < 0], then g(x, y) has a
minimum [respectively maximum] at (0, 0).

2. If AC — B? <0, then g(x, y) takes both positive and negative values
for (x, y) near (0,0), so (0,0) is not a local extremum for g.

To prove these assertions, we consider the two cases separately.

1. IfAC - B2 > 0, then A cannot be zero (why?), so we may write

Copyright 1985 Springer-Verlag. All rights reserved.



16.3 Maxima and Minima 817

_ 2, 2B C 2\ _ 2 Bﬁz 2 36’2
g(x,y)—A(x +—A xy+Zy)—A(x+ xy + Ay— PP

- B V., 1

—A(x+zy)+Z(AC—Bz)y2. (1)

Both terms on the right-hand side of (1) have the same sign as 4, and they
are both zero only when x + (B/A)y =0 and y = 0—that is, when (x, y)
= (0,0). Thus (0,0) is a minimum point for g if 4 > 0 (since g(x, y) > 0 if
(x, ) #(0,0)) and a maximum point if 4 <0 (since g(x, y) <0 if (x, y)
# (0,0)).

2. f AC — B> < 0and 4 # 0, then formula (1) still applies, but now the terms
on the right-hand side have opposite signs. By suitable choices of x and y
(see Exercise 49), we can make cither term zero and the other nonzero. If
A =0, then g(x, y) = y(2Bx + Cy), so we can again achieve both signs. B

In case 2 of the preceding box, (0,0) is called a saddle point for g(x, y). (See
Exercises 49 and 50 for a further discussion of this case and the case
AC— B*=0)

Example 7 (a) Apply the maximum-minimum test to f(x, y) = x* + 3xy + y*+ 16.
(b) Determine whether (0, O) i a maximum point, a minimum point, or
neither, of g(x, y) =3x*—5xy + 3y

Solution (a) We may write this as g(x, y) + 16, where g(x, y) = x* + 3xy + y* has the
form used in the test, with 4 =1, B=3,and C=1. Since AC — B*=1—2is
negative, there exist choices of x and y making g(x, y) both positive and
negative, so f has a saddle point at (0,0). (Equation (1) gives g(x, y)
= (x+2y)* — 2»% so moving along the line x = — 3y makes g negative,
while moving along y = 0 makes g positive.)

(b) A=3, B=—3,and C=3,s0 A=3>0 and AC— B*=9-2 >0.
Thus (0,0) is a minimum point by part 1 of the maximum-minimum test. A

Note that for the quadratic function g(x, y) in the preceding box, the
constants 4, B, and C can be recovered from g by the formulas
2 2 2
a1 51 ¥ _109%
2 9x2 2 dx oy 2 ayz
so that the signs of 4 and AC — B? are the same as those of d%/0x? and
¥%g/dx*)(d%/dy?) — (8%g/0xdy)>. The second derivative test for general
functlons involves just these combinations of partial derivatives.

Second Derivative Test

Let f(x, y) have continuous second partial derivatives, and suppose that
(x4, yo) is a critical point for f:

fe(x0>0)=0 and S (X0, 10) =0
Let 4 = f,,.(xo, yo), B = S (X0, yo), and C = f (xq, yo).

If: then:
A>0,4C—- B*>0 (x9, yg) is a local minimum;
A<0,AC—B*>0 (xg, ¥p) is a local maximum;
AC - B?<0 (xg, yo) is a saddle point;
AC—B?=0 the test is inconclusive.
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Figure 16.3.3. The
point (x, y) is
(xo+ rcosf, yo+ rsinf).

Example 8

Solution

To prove these assertions, we look at f along straight lines through (xg, ¥o)-
Specifically, for each fixed § in [0,27], we will consider the function A(r)
= f(xo + rcosf, yo + rsinf), which describes the behavior of f along the line
through (x,, y,) in the direction of cos#i + sin 8j. (See Fig. 16.3.3.)

For each 8, h(r) is a function of one variable with a critical point at r = 0.
To analyze the behavior of #(r) near r = 0 by using the second derivative test
for functions of one variable, we differentiate 4(r) using the chain rule of
Section 15.3. Let x = xo + rcosf and y = y, + rsinf; then

n(r)=f.(x, y)% +fy(x, ») %yr_ = f.(x, y)cosf +fy(x,y)sin0.

We differentiate again, applying the chain rule to f, and f,:

TPy = dx dy
h"(r) _fxx(-x,_y)cosgz; +fxy(x,y)cosﬁﬁ

. dx Ay
+fyx(x,y)s1n0?17 +fyy(x,y)sm05 .

Since f,, = f,. by equality of mixed partials, this becomes
h(r) = fo (X, y)cos™ + 2f, (x, y)cosfsind + f, (x, y)sin’f
or
R"(r) = fu(Xo + rcosb, yo + rsinf)cosd
+2f,,(xo + reost, yo + rsinf)cos@sin 8
+ £, (o + rcosf, yo+ rsinf )sin’f. 2)
Setting r = 0, we get
B"(0) = fou(Xq, Y0)c0s™ + 2f,, (X, yo)cosdsind + f (xo, Yo)sin’d,

which has the form Ax?+ 2Bxy + Cy?, with x = cosf, y =sinf, and with
A = fi (X0, Yoh B = [, (X0, yo)s C = fy (x5 yo)- Let AC — B*=D.

Now suppose that D >0 and f,, (xq, yo) > 0. By the maximum-
minimum test for quadratic functions, £”(0) > 0, so 4 has a local minimum at
r = 0. Since this is true for all values of 4, f has a local minimum along each
line through (x,, yo)- It is thus plausible that f has a local minimum at (xo, yo),
so we will end the proof at this point. (Actually, more work is needed; for
further details, see Exercises 51 and 52.)

If D >0 and f,,(xg, po) <O, then f has a local maximum along every line
through (x4, yo); if D <0, then f has a local minimum along some lines
through (x,, y,) and a local maximum along others. M

Find the maxima, minima, and saddle points of z = (x* — yz)e(*"z_yz)/ 2

First we locate the critical points by setting 9z /3x = 0 and 9z /dy = 0. Here

0z _ . 2 N (—xP—D)/2
E—Px x(x*=y?)]e y

and

0z _ [ _~, _ 2 N (—xE-yD /2
ay‘[ 2y = y(x* =y |e T,
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so the critical points are the solutions of
x|:2—(x2—y2):|=0, y[—2—(x2—y2)]=0.

This has solutions (0,0), (£+v2,0), and (0, =2).
The second derivatives are

2
% = [2 —5x7 4+ x}(x* = »?) +y2]e(-x2_y2)/2,

x

9%z 22

axdy xp(x? = y?)e 02,

0% _rc.2_ 202 .2 27 (—x2—y) /2
ﬁ—[Sy 2+ yi(x y)—x}e rre

Using the second derivative test results in the following data:

Point A B C AC — B? Type
(0,0) 2 0 -2 -4 saddle
(2,0 —4/e 0 —-4/e 16/ maximum
(=2 ,0) —-4/e 0 —4/e 16/ ¢* maximum
0,/2) 4/e 0 4/e 16/ ¢* minimum
0, —2) 4/e 0 4/e 16/ ¢* minimum

The results of this example are confirmed by the computer-generated graph in
Fig. 16.3.4. A

<2

o
[ - R =S SRR N

Figure 16.3.4. Computer-

generated graph of
z=(x2— yHel~¥ /2,

Example 9 Let z = (x?+ y*)cos(x + 2y). Show that (0,0) is a critical point. Is it an
extremum?

Solution We compute:

g—)zc = 2xcos(x + 2y) — ()c2 + yz)sin(x + 2y),
0z _ 5 +2y) — 2(x* + y?)sin(x + 2
9y P eos(x +2p) = AxT+ yTsin(x + 2y).

These vanish at (0, 0), so (0,0) is a critical point.
The second derivatives are:
oz

i 2cos(x + 2p) — dxsin(x + 2y) — (x + y*)cos(x + 2p),
x
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9%z
dxdy

2
8_22 = 2cos(x + 2y) — 8ysin(x + 2y) — 4(x* + y*)eos(x + 2y).

= —4xsin(x + 2y) — 2y sin(x + 2p) — 2(x* + yp*)cos(x + 2y),

Evaluating at x =0, y =0, we get 4 =2, B=0, and C=2, so 4>0,
AC — B? >0, and thus (0,0) is a local minimum. A

Example 10 Find the point or points on the elliptic paraboloid z = 4x? + y* closest to
(0,0, 8).

Solution The typical point on the paraboloid is (x, y, 4x? + y?); its distance from

0,0,8) is \/)c2 + 74 (4x7 + - 8)2 . It is convenient to minimize the

square of the distance:

f(x, )= x?+ yr+ (4)c2 +y? — 8)2.
We begin by locating the critical points of f. The partial derivatives of f
are

X, ) =2x + 2(4x* + 2_8)-8x =2x(32x%+ 8y? — 63),
(%)) y Y

jg,(x y)=2+ 2(4x2 +y2 —8)-2y= ?.y(8x2 + 2y2 — 15).
For f.(x, y) to be zero we must have x =0 or 32x? + 8y? — 63 =0. For

/,(x, y) to be zero we must have y =0 or 8x%+ 2y* — 15 = 0. Thus there are
four possibilities:

CaseI. x =0and y =0.
Case II. x = 0and 8x> +2y*> — 15=0. Then 2y> — 15=0o0ry = = y15/2.
Case III. 32x>+8y*—63=0 and y=0. Then 32x2-63=0 and so
x = *63/32.
Case 1V. 32x>+8y?—63 =0 and 8x”+ 2y>— 15 =0. Subtracting four
times the second equation from the first gives —3 = 0, which is
impossible, so case IV does not occur.

A simple way to see which of the points in cases I, II, and III minimizes the
distance is to compute f(x, y) in each case and choose the smallest value. We
leave this method to the reader and, instead, use the second derivative test.
The second derivatives are

for = 2(32x7 + 8y% — 63) + 2x - 64x = 192x? + 16p* — 126,
fy= 2(8)(2 + 2y2 —15)+2y-4y = 16x% + 12y2 — 30,
fxy = fyx = 32xy.

Case 1. f,, = —126, f,,= =30, f,, =0. Thus f_f, —fxzy =126-30> 0, so
this point is local maximum for f
Case 1. f,, = —126 <0, f, =12-4 —=30>0, f, =0 Therefore
fx f fx < 0, so these two pomts are saddles for f.
Case 1II. f,, =192-% — 126 >0, f,=16-9% —30>0, f,, =0. Therefore

Sy = fx > 0, so these two points are local minima for f. Thus the
closest points to (0,0, 8) on the paraboloid are

(%\/%_,0,5—83) and (_%\/%"Q%)-A
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Supplement to Section 16.3:
Astigmatism

The visual problem called astigmatism results from a deviation from circular
symmetry in the shape of the lens in your eye. Correcting astigmatism requires
a compensating eyeglass or contact lens with the “opposite” deviation.

A piece of the lens surface may be described by a function z = fx, »)
= Ax> + 2Bxy + Cy?, for x and y small. The lens is symmetric about the z
axis when B =0 and 4 = C. In general, if we slice the lens by a plane of the
form — xsinf + y cos@ = 0, which contains the z axis and the vector cos#i +
sin §j, the slice is bounded by a curve through the origin whose curvature there
is 2(A cos®f + 2Bsinf cos# + Csin?d) (see Section 14.7 and Exercise 56). The
maxima and minima of curvature occur when tan28=2B/(4 — C). Notice
that the direction of maximum and minima curvature differ by 90°; this
means that an optometrist must know only one of these directions in order to
orient corrective lenses properly.

Exercises for Section 16.3

1. Refer to Fig. 16.3.5, a computer-generated graph
of z=(x*-3x)/(1 + »?). Where are the maxi-
mum and minimum points?

Figure 16.3.5. Computer-
generated graph of
z=(x>=3x)/(1 + y?.

(a) Coordinate grid lifted to
the graph. 3

(b) Level curves lifted to
the graph. ] ;
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2. Refer to Fig. 16.3.6, a computer-generated graph
of z = sin(wx) /(1 + y?). Where are the maximum
and minimum points?

Find the critical points of each of the functions in
Exercises 3-6. Decide by inspection whether each of
the critical points is a local maximum, minimum, or
neither.

In

3. f(x, y)= x>+ 2?2

4. f(x, y)= x2—2y?

5. f(x, y) = exp(— x* — Ty* + 3)
6. f(x, y) = exp(x* + 2y?)

7. Minimize the distance to the origin from the
plane x — y + 2z =3,

8. Find the distance from the plane given by
x + 2y + 3z — 10=0: (a) To the origin. (b) To
the point (1, 1, 1).

9. Suppose that the material for the bottom of the
box in Example 5 costs b cents per square centi-
meter, while that for the sides costs s cents per
square centimeter. Find the dimensions which
minimize the cost of the material.

10. Drug reactions can be measured by functions of
the form R(u,t)=u’(c—w)t?e ™', 0<u<ec,
t > 0. The symbols u and ¢ are drug units and
time in hours, respectively. Find the dosage u
and time ¢ at which R is a maximum.

Exercises 11-16 use the maximum—minimum test for

quadratic functions to decide whether (0,0) is a maxi-
mum, minimum, or saddle point.

L. f(x, y) = x>+ xp + y*

12. f(x, p)=x*— xy + y* + L.
13. f(x, y) =2 — x? + 3xp.

14. f(x, y) = x? +y2 — xy.

15. f(x, y) =y

16. f(x, y)=3+2x*— xy + y*

Chapter 16 Gradients, Maxima, and Minima

Figure 16.3.6. Computer-
generated graph of

sin(zx) /(1 + y?).

20. f(x, y) = x? +y2 + 3xy + 10.

21. f(x, y) = x*+ y* — 6x — 14y + 100.

22. f(x, y) =y2 - x2

23. f(x, )= 2x? — 2xy +y2 —2x + 1.

24. f(x, y)=x*—3xy + 5x — 2y + 6> + 8.

25. f(x, y) =3x*+ 2xp + 2p? — 3x + 2y + 10.

26. f(x, y) = x*+ xp* + y*.

27. f(x, yy=e'*¥ .

28. f(x, y) = (x> + yHe* 7

29. f(x, y) =1In(2 + sin xy). {Consider only the criti-
cal point (0, 0).]

30. f(x, y) =sin(x? + y?). [Consider only the critical
point (0, 0).] ‘

31. Analyze the behavior of z = x% + xy° + xp at
its critical points.

32. Test for extrema: z = In(x? + y2 + 1).

33. Analyze the critical point at (0,0) for the func-
tion f(x, y) = x> + y>. Make a sketch.

34. Locate any maxima, minima, or saddle points of
f(x, ») = In(ax? + by2 +1),a,b>0.

35. A computer-generated graph of

is shown in Fig. 16.3.7. (a) Show, by calculation,
that all critical points of the function lie on
circles whose radius satisfies the equation =r
= tan(wr). (b) Which points are maxima? Min-
ima? (¢) What symmetries does the graph have?

36. Show that z = (x> —3x)/(1 + y%) has exactly
one local maximum and one local minimum.
What symmetries does the graph have? (It is
computer drawn in Fig. 16.3.5.)

37. The work w done in a compressor with k + 1

z = (sinwr)/ar,

compression cylinders is given by
C] # 07

Find the critical points of each of the functions in
Exercises 17-30 and classify them as local maxima,
minima, or neither.

17. f(x, )= x>+ y*+ 6x — 4y + 13.

18. f(x,y)=x2+y2+3x—2y+ 1.

19. f(x, y)= x? —y2 +xy—T7

w=c y+tc,,

where

k
y= _ZOT,-(p.-/pm)("_”/"-
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Figure 16.3.7. The
sombrero: z = (sinar)/ar.

The symbols 7; and p; stand for temperature and

pressure in cylinder i, 1 < i < k+ 1; the pres-

sures pi, ..., p, are the independent variables,
while pg, pry1>To, - - - » Ty and n > 1 are given.

(a) Find relations between the variables if w is a
minimum.

*(b) Find p,, p,, p; explicitly for the case k = 3.

B38. Planck’s law gives the relationship of the energy
E emitted by a blackbody to the wavelength A
and temperature 7T
2ak°T5  x° he
——hz&—e"—l’ where x—m.

The constants are 4 = 6.6256 X 10~ 3* joule sec-

onds (Planck’s constant), k= 1.3805x 10~2

joule kilograms™' (Boltzmann’s constant), ¢ =

2.9979 x 108 meter second ™! (velocity of light).

The plot of E versus A for fixed T is called a

Planck curve.

(a) The maximum along each Planck curve is
obtained by setting dE /9 = 0 and solving
for Anax- The relationship so derived is
called Wien’s displacement law. Show that
this law is just A, = hc/kTx,, where
5—x9—5e *=0.

(b) Clearly x, is close to 5. By examining the
sign of f(x)=5— x —5e™%, use your cal-
culator to complete the expansion x,=
4.965 ... to a full six digits.

£ (c) Improve upon the displacement law A,
= (0.00289/ T by giving a slightly better con-
stant. The peak for the earth (288°K) is
about 10 micrometers, the peak for the sun
(6000°K) about 0.48 micrometers, so the
maximum occurs in the infared and visible
range, respectively.

39. Apply the second derivative test to the critical

point in Example 5.

40. (a) Show that if (xq, yg,2¢) is a local minimum
or maximum point of w = f(x, y,z), then
ow/dx, ow/dy, and dw/dz are all zero at
(XO’ Yo> ZO)'

(b) Find the critical points of the function
sin(x? + y2 + z2). :

(¢) Find the point in space which minimizes the
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sum of the squares of the distances from
(0,0,0), (1,0,0), (0,1,0), and (0,0, 1).
41. Analyze the behavior of the following functions
at the indicated points:
@ f(x, y)=x2—y*+ 3xy; (0,0).
®) f(x,p)= x2+ y*+ Cxp; (0,0). Determine
what happens for various values of C. At
what values of C does the behavior change
qualitatively?
42. Find the local maxima and minima for z =
(x2 + 3yDe' ~**~", (See Fig. 14.3.15.)
Exercises 43-48 deal with the method of least squares. Tt
often happens that the theory behind an experiment
indicates that the data should lie along a straight line of
the form y = mx + b. The actual results, of course, will
never exactly match with theory, so we are faced with
the problem of finding the straight line which best fits
some experimental data (xy, yy), . . ., (x,, »,) as in Fig.
16.3.8. For the straight line y = mx + b, each point will
deviate vertically from the line by an amount d; = y, —
(mx; + b). We would like to choose m and b in such a
way as to make the total effect of these deviations as
small as possible. Since some deviations are negative
and some are positive, however, a better measure of the
total error is the sum of the squares of these deviations;
so we are led to the problem of finding m and b to
minimize the function

s=f(mb)=d? +d}+ --- +d?

= > (= mx;— b)’,

i=1
where xq, . . . , ¥, are given data.

¥y

, X, and yy, ...

(x3,3)

(x3,72)

Figure 16.3.8. The method
of least squares finds a
straight line which “best”
approximates a set of data.
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43.

45.

46.

47.

48.

*49,

*50.

Chapter 16 Gradients, Maxima, and Minima

For each set of three data points, plot the points,

write down the function f(m, b), find m and b to

give the best straight-line fit according to the

method of least squares, and plot the straight

line.

(a) (xl’ _yl) = (17 1)! (Xz, y2) = (27 3)’ (X3, }’3)
=(43). ,

(b) (xl H }’1) = (0’ 0)> (xz, )’2) = (172)’ (X}, }’3)
=(2,3).

. Show that if only two data points (x,, y;) and

(x3, y,) are given, then this method produces the
line through (x;, ;) and (x,, y,).

Show that the equations for a critical point,
0s5/3b=0 and 3s/dm =0, are equivalent to
m(Zx;)+nb =2y, and m(Ex?) + b(Zx,)
= Zx;y;, where all the sums run from i=1 to
i=n.

If y=mx + b is the best-fitting straight line to
the data points (xy, y)), ..., (x,, y,) according
to the least squares method, show that

n

> (y;— mx;— b)=0.

i=1
That is, show that the positive and negative
deviations cancel (see Exercise 45).
Use the second derivative test to show that the
critical point of f is actually a minimum.
Use the method of least squares to find the
straight line that best fits the points (0, 1), (1, 3),
(2,2), (3,4), and (4, 5). Plot your points and line.

Complete the proof of the maximum-minimum
test for quadratic functions by following these
steps:

(a) If A 0and AC ~ B? < 0, show that

glx, y)=

A[(x + gy) - eyM(x + gy) + ey]
for some number e. What is e?

(b) Show that the set where g(x, y) = 0 consists
of two intersecting lines. What are their
equations?

(c) Show that g(x, y) is positive on two of the
regions cut out by the lines in part (b) and
negative on the other two.

(d) If 4 =0, g(x, y)=2Bxy + Cyz. B must be
nonzero. (Why?) Write g(x, y) as a product
of linear functions and repeat parts (b) and
(c).

Discuss the function Ax”+ 2Bxy + Cy? in the

case where AC — B2=0.

(a) If A 50, use formula (1) in the proof of the
maximum-minimum test for quadratic
functions.

*51.

*52,

*53.

*54,

*55.

*56.

(b) Sketch a graph of the function f(x, y)=
x2+2xy + y2

(c) What happens if 4 = 0?

Let f(x, y) = 3x% — dx% + 2.

(a) Show that f(x, y) has a critical point at the
origin.

(b) Show that for all values of 8, the function
h(r) = f(rcos#,rsin @) has a local minimum
atr=0.

(c) Show that, nevertheless, the origin is not a
local minimum point for f.

(d) Find the set of (x, y) for which f(x, y)=0.

(e) Sketch the regions in the plane where f(x, y)
is positive and negative.

(f) Discuss why parts (b) and (c) do not contra-
dict one another.

Complete the proof of the second derivative test

by following this outline:

(a) We begin with the case in which D > 0 and
Jfix(x0,¥0) > 0. Using Exercise 78, Section
15.1, show that there is a number ¢ > 0 such
that whenever (x, y) lies in the disk of ra-
dius & about (xq, yo),

Focl, D (3, 9) = fi(x, )

and f,.(x, y) are both positive.

(b) Show that the function A(r) is concave up-
ward on the interval (—e¢,¢) for any choice
of 8. ‘

(c) Conclude that f(x, y) > f(xg, yg) for all
(x, y) in the disk of radius & about (xg, yo).

(d) Complete the case in which D >0 and
fxx(XOs )’o) < 0

(e) Complete the case D < 0 by showing that f
takes values near (xg, y;) which are greater
and less than f(y, yg).

Find the point or points on the elliptic parabo-

loid z =4x? + »? closest to (0,0,a) for each a.

(See Example 10.) How does the answer depend

upon a? :

Let f(x, y) >0 for all x and y. Show that f(x, y)

and g(x, y) =[f(x, ) have the same critical

points, with the same “type” (maximum, mini-
mum, or saddle).

Consider the general problem of finding the
points on a graph z = k(x, y) closest to a point
(a, b, c). Show that (xg, yo) is a critical point for
the distance from (x, y, k(x, y)) to (a, b, ¢) if and
only if the line from (a, b, ¢) to (xg, o, k(xg, yo))
is orthogonal to the graph at (xq, yo, k(xo, yo))-

(See the supplement to this section.)
(a) Show that if the surface z = Ax? + 2Bxy +

Copyright 1985 Springer-Verlag. All rights reserved.
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Cy? is sliced by the plane —xsinf + ycos 6 -(b) Show thatif B> — AC < 0and 4 > 0, then the
=0, then the curvature of the slice at the maximum and minima of curvature occur
origin is twice the absolute value of 4 cos?6 + when tan 20 = 2B/(4 — C).

2Bsin O cos ) + Csin?6.

16.4 Constrained Extrema
and Lagrange Multipliers

The level surfaces of two functions must cross, except where the gradients of the
functions are parallel.

In studying maximum-minimum problems for a function f(x) defined on an
interval [a, b], we found in Section 3.5 that the maximum and minimum points
could occur either at critical points (where f'(x)=0) or at the end-
points @ and b. For a function f(x, y) in the plane, it is common to replace the
interval [a,b] by some region D; the role of the endpoints is now played by
the boundary of D, which is a curve in the plane (possibly with corners).

The problem of finding extrema in several variables can be attacked in
steps:

Step 1. Suppose that (x,, y,) is an extremum lying inside D, like the point P,
in Fig. 16.4.1, and that the partial derivatives of f exist? at (xg, yo)-
Then our earlier analysis applies and (x,, y,) must be a critical point.
Figure 16.4.1. If the interior  Srep 2. The extreme point (x,, y,) may lie on the boundary of D, like P, in
point P, is an extreme point Fig. 16.4.1. At such a point, the partial derivatives of f might not be
of fon D, then the partial zero. Thus we must develop new techniques for finding candidates for
derivatives of f at P, if the extreme points of f on the boundar
they exist, must be zero. If Y-
Step 3. The function f should be evaluated at the points found in Steps 1 and

the boundary point P, is an
extreme point, the partial 2, and the largest and smallest values should be identified.

derivatives there might not  If we can parametrize the boundary curve, say by o(z) for ¢ in [, ], then the

be zero. restriction of f to the boundary® becomes a function of one variable, A(t)
= f(o(?)), to which the methods of one-variable calculus apply, as in the
following example.

Example 1 Find the extreme values of z = f(x, y) = x? + 2y? on the disk D consisting of
points (x, y) satisfying x* + y* < 1.

Solution Srep 1. At a critical point, 3z/dx =2x =0 and 0z/dy = 4y = 0. Thus, the
only critical point is (0,0). It is clearly a minimum point for f; we may also
verify this by the second derivative test:

82
dx?

=2>0

and
2
3_22 _E)iz_ = =2-4—0>0.
x> J\ 9y? dxy

2 As with functions of one variable, there may be points where the derivatives of f do not exist. If
there are such points, they must be examined directly to see if they are maxima or minima.

3 That is, the function which has the same values as f but whose domain consists only of the
boundary points.
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This result confirms that (0,0) is a local minimum.
Step 2. The boundary of D is the unit circle, which we may parametrize by
(cost,sin?). Along the boundary,

h(t) = f(cost,sint) = cos’ + 2sin’t = 1 + sin’.

Since A'(t) =2sintcost, W'(£)=0 at t =0, /2, m, and 37 /2 2= gives the
same point as zero). Thus, the only boundary points which could possibly be
local maxima and minima are (cosz?, sin¢) for these values of ¢, i.e., (1,0), (0, 1),
(—1,0), and (0, —1).

Step 3. Evaluating f at the points found in Steps 1 and 2, we obtain:

f(0,00=0, f(1,00=1, f(0,1)=2, f(—1,00=1, f(O,—1)=2.

Thus, f has a minimum point at (0,0) with value 0 and maximum points
at (0,1) and (0, —1) with value 2. (See Fig. 16.4.2.) The points (1,0) and
(—1,0) are neither maxima nor minima for f on D even though they are
minima for f on the boundary. A

Figure 16.4.2. The function
f(x, y) = x*+ 2y? on the
disk D has a minimum
point at (0,0) and
maximum points at (0, 1)
and (0, —1).

y

Often it is inconvenient to find a parametrization for the curve C on which we
are searching for extrema. Instead, the curve C may be given as a level curve
of a function g(x, y). In this case, we can still derive a first derivative test for
local maxima and minima. The following result leads to the method of
Lagrange multipliers. '

First Derivative Test for Constrained Extrema

Let f and g be functions of two variables with continuous partial
derivatives. Suppose that the function f, when restricted to the level
curve C defined by g(x, y) = ¢, has a local extremum at (x,, y,) and
that Vg(x,, yo) # 0. Then there is a number A such that

V(x> y0) =AVg(x0, y0)-

If A= 0, this formula says that the level curves of f and g through
(xg, ¥o) have the same tangent line at (x,, y,)-

To demonstrate the result in this box, choose a parametrization (x, y) = o(f)
for C near (xg, yo), with a(0) = (x4, y¢) and ¢'(0) # 0.* Since f has a local
extremum at (xg, yo), the function A(7) = f(o(¢)) has a local extremum at
t =0, so #'(0) =0. According to the chain rule (Section 16.1), we get A’(0)
=Vf(xy, yo) - 0°(0), so Vf(x,, y,) is perpendicular to ¢’(0); but we already

* The implicit function theorem guarantees that such a parametrization exists; see J. Marsden
and A. Tromba, Vector Calculus, Freeman (1981), p. 237. We will not need to know the explicit
parametrization for the method to be effective.
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know that the gradient Vg(x,, y,) is perpendicular to the tangent vector ¢’(0)
to the level curve C (Section 16.2). In the plane, any two vectors perpendicular
to a given nonzero vector must be parallel, so Vf(xy, yo) = AVg(xy, yo) for
some number A. If A0, the tangent line to the level curve of f through
(xg> ¥o),» which is perpendicular to Vf(x,, yo), is also perpendicular to the
vector Vg(x,, yo); the tangent line to C is also perpendicular to Vg(xg, yo)
so the level curves of fand g through (x,, y,) must have the same tangent line.
This completes the demonstration. ll

There is a nice geometric way of seeing the result above. If the level
curves of f and g had different tangent lines at (x,, y,), then the level curves
would cross one another. It would follow that the level curve C of g would
intersect level curves of f for both higher and lower values of f, so the point
(x9, ¥o) would not be an extremum (see Fig. 16.4.3).

y
T2(xg,¥0)

Fle,y) < f(xg,¥0)

J&x,p) = fxp, ¥o)
FGx,p) > flxg,yo)

Figure 16.4.3. If Vg(xq, yo)
and Vf(xg, yo) are not
parallel, the level curve
g(x, y) = c cuts all nearby
level curves of f.

gx,y)=0C

T f(xg,¥0)

X

In some problems, it is easiest to use the geometric condition of tangency
directly. More often, however, we look for a point (Xos Yo) on C and a
constant ), called a Lagrange multiplier, such that Vf(x,, yo) = AVg(xy, yo).
This means we wish to solve the three simultaneous equations

S, ) = Agu(%, »),
5 (x5 0) =28, (%, y), )
g(xy)=c
for the three unknown quantities x, y, and A. Another way of looking at
equations (1) is that we seek the critical points of the auxiliary function

k(x, y,A) = f(x, y) — M g(x, ») — c]. (By a critical point of a function of three
variables, we mean a point where all three of its partial derivatives vanish.)

Here
kx=fx_>\gx’
k,=f —Ag>
ky=c—g

and setting these equal to zero produces equations (1). We call this attack on
the problem the method of Lagrange multipliers.

Method of Lagrange Muitipliers

To find the extreme points of f(x, y) subject to the constraint g(x, y)
= ¢, seek points (x, y) and numbers A such that (1) holds.
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Example 2

Solution

Example 3

Solution

Find the extreme values of f(x, y)= x? — y? along the circle S of radius 1
centered at the origin.

The circle S is the level curve g(x, y)= x? +y2 =1, so we want x, y, and A
such that

Je(%: p) = Ago(x, y),
5 (% p)y =Ag,(x, )

g(xy)=1
That is,
2x = A2x,
2y = —A2y,
x*+y*=1

From the first equation, either x =0 or A= 1. If x =0, then from the third
equation, y = * 1, and then from the second, A = —1. If A = I, then y = 0 and
x = =*1; so the eligible points are (x, y)=(0, 1) with A= —1 and (x, y)
=(*1,0) with A =1. We must now check them to see if they really are
extrema and, if so, what kind. To do this, we evaluate f:

fO.1)=f0,~1)= —1,
f(1L.0) = (-1 =1,

so the maximum and minimum values are 1 and — 1. A

Find the point(s) furthest from and closest to the origin on the curve
xS+ y6 = 1. :

We extremize f(x, y) = x*+ y* subject to the constraint g(x, y) = x°+ y°
= 1. The Lagrange multiplier equations (1) are

2x = 6\x>,
2y = 6?\y5,
x +y6 = 1.

If we rewrite the first two of these equations as
x(6Ax* —2) =0,
y(6?\y4 -2)=0,

we find the solutions (0, =1) and (£1,0) with A = 1. If x and y are both
nonzero, we have x* = 1/3X = y*, so x = + y, and we get the further solutions

(= §1/2, = §1/2), with A = 223 /3.

To tell which points are maxima and minima, we compute; [0, £1)
=f(£1,0)=1, while f(= §1/2,% §1/2)=231/2 =2**>1, so the
points (0, 1) and (% 1,0) are closest to the origin, while (= §1/2, =+ {1/2)
are farthest (see Fig. 16.4.4). A
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Figure 16.4.4. Extreme
points of x> + y* on the
curve x°+ y¢=1.

Example 4

Solution

Copyright 1985 Springer-Verlag. All rights reserved.
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For functions of three variables subject to a constraint, there is a similar
method. (See Review Exercise 44 if there are two constraints.) Thus, if we are
extremizing f(x, y,z) subject to the constraint g(x, y,z) = ¢, we can proceed
as follows (see Exercise 23).

Method 1.
V£(xo, Yo»>20) =AVg(xqg, Yo, 20)s

Find points (xg, yg,2¢) and a number A such that

and
g(Xg5 Yo>20) = €,

or
Method 2. Find critical points of the auxiliary function of four variables
given by

k(x,y,z,A) = f(x, y,2) — A[ g(%, y»2) — c].

The density of a metallic spherical surface x*+ y2+ z2=4 is given by
p(x, y,z)=2+ xz + y*. Find the places where the density is highest and
lowest.

We want to extremize p(x, y,z) subject to the constraint g(x,y,z) =x*+
»?+ z2 = 4. Using either method 1 or 2 above gives the equations

px = A z=2\x
py=?\gy e 2y =2\
pz=}\gz ) X=2}\Z
g=4 x2+y2+zz=4

If y % 0 then A = 1 from the second equation, and so z = 2x and x = 2z which
implies x = z = 0. From the last equation, y = =2. If y = 0 then we have
z=2\x, x=2z and x*>+z’=4
Thus z = 4\, so if z# 0 then A= +1/2,s0 x = = z. If x = z, then from the
last equation x =z = *y2. If x= —2z, then x = +y2 and z= Fy2. The
case y = 0 and z = 0 cannot occur (why?).
Thus we have six possible extrema:

(t\/f,O,i\/f), (i\/f,o,i\/f).

Evaluating p at these six points, we find that p is a maximum at the two points

(0, =2,0) (where p is 6) and a minimum at the two points (* V2,0, 7V2)
(where p is 0). A

(0, £2,0),
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The multiplier A was introduced as an “artificial” device enabling us to find
maxima and minima, but sometimes it represents something meaningful.

Example 5 Suppose that the output of a manufacturing firm is a quantity Q of product
which is a function f(K, L) of the amount K of capital equipment or invest-
ment and the amount L of labor used. If the price of labor is p, the price of
capital is ¢, and the firm can spend no more than B dollars, how do you find
the amount of capital and labor to maximize the output Q?

Solution It is useful to think about the problem before applying our machinery. We
would expect that if the amount of capital or labor is increased, then the
output Q should also increase; that is,

aQ 9Q

= > — = 0.

0K 0 d oL 0
We also expect that as more and more labor is added to a given amount of
capital equipment, we get less and less additional output for our effort; that is,

2
9
aL?

Similarly,

3%Q
aK?

It is thus reasonable to expect the level curves of output (called isoquants)
Q = f(K, L) = c to look something like the curves sketched in Fig. 16.4.5, with

¢ < ¢y < cy.

<0

Figure 16.4.5. What is the
largest value of Q in the
shaded triangle?

We can interpret the convexity of the isoquants as follows. As you move
to the right along a given isoquant, it takes more and more capital to replace a
unit of labor and still produce the same output. The budget constraint means
that we must stay inside the triangle bounded by the axes and the line
pL + gK = B. Geometrically, it is clear that we produce the most by spending
all our money in such a way as to pick the isoquant which just touches, but
does not cross, the budget line.

Since the maximum point lies on the boundary of our domain, to find it
we apply the method of Lagrange multipliers. To maximize Q = f(K, L)
subject to the constraint pL + ¢gK = B, we look for critical points of the
auxiliary function,

h(K,L,\) = f(K,L) = N(pL + 4K — B);

so we want
00 00 _
5?_}\41, E_}\P’ pL+ gK = B.
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These are the conditions we must meet in order to maximize output. (We will
work out a specific case in Example 6.)

. In this example, A does represent something interesting and useful. Let
k = gK and I = pL, so that k is the dollar value of the capital used and / is the
dollar value of the labor used. Then the first two equations become

ok ¢ 9K p oL _ dl

Thus, at the optimum production point, the marginal change in output per
dollar’s worth of additional capital investment is equal to the marginal change
of output per dollar’s worth of additional labor, and A is this common value.
At the optimum point, the exchange of a dollar’s worth of capital for a dollar’s
worth of labor does not change the output. Away from the optimum point the
marginal outputs are different, and one exchange or the other will increase the
output.’ A

Example 6 Carry out the analysis of Example 5 for the production function Q(K, L)
— AK°L'™™, where A and « are positive constants and a < 1. This Cobb-

>

Douglas production function is sometimes used as a simple model for the
national economy. Then Q is the output of the entire economy for a given
input of capital and labor.

Solution The level curves of output are of the form 4K af 1=« = ¢ or, solving for L,

Since a/(a — 1) < 0, these curves do look like those in Fig. 16.4.5. The partial
derivatives of Q are

aQ _ a—-1yl—a aQ _ _ ay —«
aK—aAK L and ﬁ_(l a)AKL s

so there are no critical points except on the axes, where Q =0. Thus the

maximum must lie on the budget line pL + gK = B. The method of Lagrange
multipliers gives the equations

adK*" L' =g,
(1 — a)AK"L™" = Ap,
pL + gK = B.
Eliminating A from the first two equations gives
apL = (1 — a)gk,

and from the third equation we obtain

5 More of this type of mathematical analysis in economics can be found in Microeconomic
Theory, by James Henderson and Richard Quandt, McGraw-Hill (1958). This reference discusses
a second derivative test for the Lagrange multiplier method. {See also J. Marsden and A. Tromba,
Vector Calculus, Second Edition, Freeman (1981).]
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Exercises for Section 16.4

Use the method of Example 1 to find the extreme
values of the functions in Exercises 1-4 on the disk
x? +y2 < 1.

L f(x, y) =2x*+ 3)?

2. fix, y)=xy + 5y

3. f(x, y)= 5x%— 2y2 + 10

4
Find

flxe, y)=3xy—y+5
the extrema of f subject to the stated constraints in

Exercises 5-12.

5
6
7
8
9
10
11
12

13.

14.

15.

16.

17.

Sf(x, y)=3x+2y; 2x2 + 3y2 < 3.

S ) =xy; 2x+3y <10,0< x, 0 < p.
fley)y=x+y; x4 yi=1.

fle, )y =x—yy xt—yi=2.

Sy = xt+y =1

. f(x, y) = cos’x + coshy; x + y = 7 /4.

. f(x, )= x—3y; x2+y2= 1.
.f(x,y)=x2+y2; x4+y4=2.

Cascade Container Company produces a card-
board shipping crate at three different plants in
amounts x, y, z, respectively, producing an annu-
al revenue of R(x, y,z)= 8xy22 —.200,000(x +
y + z). The company is to produce 100,000 units
annually. How should production be handled to
maximize the revenue?

The temperature T on the spherical surface x* +
y2+ z2=1 satisfies the equation T(x, y,z)=
xz + yz. Find all the hot spots.

A rectangular mirror with area 4 square feet is
to have trim along the edges. If the trim along
the horizontal edges costs p cents per foot and
that for the vertical edges costs g cents per foot,
find the dimensions which will minimize the total
cost.

The Baraboo, Wisconsin, plant of International
Widget Co. uses aluminum, iron, and magnesium
to produce high-quality widgets. The quantity of
widgets which may be produced using x tons of
aluminum, y tons of iron, and z tons of magne-
sium is Q(x, y,z) = xpz. The cost of raw materi-
als is aluminum, $6 per ton; iron, $4 per ton; and
magnesium, $8 per ton. How many tons each of
aluminum, iron, and magnesium should be used
to manufacture 1000 widgets at the lowest possi-
ble cost? [Hint: You want an extreme value for
what function? Subject to what constraint?]

A water main consists of two sections of pipe of
fixed lengths, /,,/, carrying fixed amounts Q,
and Q, liters per second. For a given total loss of
head 4, the (variable) diameters D,, D, of the
pipe will result in a minimum cost if

C=1{{a+ bD,) + l,(a + bD,) = minimum
subject to the condition

cly le cly sz

h= 2=
D} Dj

Find the ratio D,/ D,.

20.

21.

22.

*23.

. A firm uses wool and cotton fiber to produce

cloth. The amount of cloth produced is given by
Q(x, y)=xy — x —y+ 1, where x is the num-
ber of pounds of wool, y is the number of
pounds of cotton, and x > 1 and y > 1. If wool
costs p dollars per pound, cotton costs g dollars
per pound, and the firm can spend B dollars on
material, what should the mix of cotton and wool
be to produce the most cloth?

. Let f(x, y) = x + xy + y*

(a) Find the maximum and minimum points
and values of f along the circle x> +y2 =1
Moving counterclockwise along the circle
x2+y2= 1, is the function increasing or
decreasing at the points (*+1,0) and

©, =1)?

Find extreme points and values for f in the
disk D consisting of all (x, y) such that
2+ yr< L

Locate extreme points and values for the func-
tion f(x, y)=x>+y>—x—y+1 in the disk
X2+ < 1.

A transformer is built from wire of cross sections
¢, and ¢, wound with n, and n, turns onto the
primary and secondary coils, respectively. The
corresponding currents are /; and i,. The thick-
ness x of the primary winding and the thickness
y of the secondary winding will result in mini-
mum copper loss if

(b)

(©)

_ pmm(D) + x)if + prym(Dy = p)i3

91 92
is a minimum. The resistivity p and iron core
diameters D, D, are constants.
(a) From transformer theory, n,i; = nyi, =
constant. By an argument involving insula-
tion thickness, one can show that g,
= axh/n, and g, = ayh/n,, where a and h
are constants. Use these relations to simplify
the expression for C.
Physical constraints give x + y = }(D, —
D). Apply the method of Lagrange multipli-
ers to find x and y which minimize C sub-
ject to this condition.
The state of Megalomania occupies the region
x* +2p* < 30,000. The altitude at point (x, y) is
§xy + 200x meters above sea level. Where are
the highest and lowest points in the state?
Suppose that (x, yg, z¢) is a critical point for the
restriction of the function f(x, y, z) to the surface
g(x, y,z) = c. The method of Lagrange multipli-
ers tells us that in this case the partial derivatives
with respect to x, y, z, and A of the function of
four variables

k(x, y,z,A) = f(x, y,z)
— }\[g(x, y.z) — cl

C

(b)

are equal to zero.
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(a) Interpret this fact as the statement about the _(c) Rework Example 5, Section 16.3 by mini-
gradient vectors of f and g at (xo, yo,Zo)- mizing a function of x, y, and A subject to
(b) Find the maxima and minima of xyz on the the constraint xyh = 256.

sphere x? + y? + 22 = 1.

Review Exercises for Chapter 16

Calculate the gradients of the functions in Exercises
1-4.

1. f(x, y) :2e_")’ -;- cos(xy) ‘ 7?;‘.,“““\\“‘/‘“
2 Jx ) = +; ; F— = ““\\\\‘\\o

3. fx, y)= e* — cos (xyz)

4. f(x, y) = tan"'(x* + y?)
In Exercises 5-8, calculate (a) the directional derivative
of the function in the direction d=i/y2 —j/y2 and
(b) the direction in which the function is increasing
most rapidly at the given point.

5. f(x, y) =sin(x* — 2p%); (1, = 1)

x —

6. f(x, y)= ﬂ_i; ©,1)

7. f(x, y) = exp(x2 — y2 +2): (- 1,2) 26. Find the maxima, minima, and saddles of the

3. f(x’ y) = sin~'(x — 2p%); (’0 0) ’ function z = (2 + cos wx)(sinwy), which is
In Exercises 9-12, find the equation of the tangent graphed in Fig. 16.R.2.
plane to the surface at the indicated point.

9. z=x>+2y% (1,1,3)

boemis

Figure 16.R.1. Computer- generated graph of
z=(3x*—4x> — 12x2 + 18)/12(1 + 4y?).

10. z = cos(x® + %); (0,0,1) SN
5 s Us P ‘$“\
2 2 2 _ 1. 1 1 1 0’:‘“‘\\\\\»‘.0:‘:"“\“
1. X2+ + 22 =1; (_3,7,_3) < T

\“\\\\\\\":0:‘:“““““\‘\\\\““‘ 0 RN

eSS RS P 7SR S

57 i
S 1P NS TS

7 “‘{“‘R’s‘:‘t“‘\‘\\ \333333&&\&{{

12. X+ y3+ 22 =3; (1,1, 1) 1
Suppose that x = f(r) and y = g(t) satisfy the relations :
in Exercises 13—16. Relate dx /dt and dy/dt.

13. X2+ xp + y* =1

14. cos(x — y) =14

15. (x + y)’ + (x — y)* =427 "

16. tan"Y(x — y)=7/4
Suppose that x and y are related by the equations given
in Exercises 17-20. Find dy/dx at the indicated points.

17. x+cosy=Lx=1y=a/2

18. x4-§y4= 171’ x=-ly=2 27. Find and describe the critical points of f(x, y)

19. fiutdu=53,x=-2,y=2 = ysin(mx) (See Fig. 16.R.3).

20, [2f(ndr=1, x=2, y=4; if [3f(ndt=T,

f@=3,f@=5 f@=11f4)=13.

Find and classify (as maxima, minima or saddles) the

SN
OSSN

M
INEEES TIN50 S\
S

SSSRNAN

Figure 16.R.2. Computer- generated graph of
z = (2 + coswx)(sin7y).

>
criti¢al points of the functions in Exercises 21-24. o ";’d\
1, ' N\ "““\
L) =6y ) L //'7""7;% /
2. f(x, y)= 26" = y*+ 5xy . ///,/I/,';o‘;:;\ /II/,,';:::.‘::;\,,,,,,,,I;;, 2 ,
) 2 s 4 7 (consi S == iy
24. f(x, y) = sin(x? + y?) (consider only (0,0)). A W%m%};ﬁﬁm%;;;ﬂllﬁ\\
AN ////,,'-{”""“3}:\\{\\\(\\ % A N
25. Prove that (L \\\\T\}\\\\\\\\W\\\\\\\\\\W \\\\
a0 e Nl N
_3xf—4x® - 1252+ 18 N N\
2= 2 Ny Y
12(1 + 4y?) \\O.I,, ,

has one local maximum, one local minimum, and
one saddle point. (The computer-generated

i 16.R.3. C ter- ted f
graph is shown in Fig. 16.R.1.) Figure 16.R.3. Computer-generated graph o

z = ysin{mx).
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834 Chapter 16 Gradients, Maxima, and Minima

28. A computer-generated graph of the function
z =sin(7x)/(1 + y?) is shown in Fig. 16.R.4.
Verify that this function has alternating maxima
and minima on the x axis with no other critical

points.

SIREETTAALL
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\ ... S ST

Figure 16.R.4. Computer-generated graph of
sin(mx)/(1 + y2).

29. In meteorology, the pressure gradient G is a vec-
tor quantity that points from regions of high
pressure to regions of low pressure, normal to the
lines of constant pressure (isobars).

(a) In an xy coordinate system,

P, OJP.
G=— v @ j-
Write a formula for the magnitude of the
pressure gradient.

(b) If the horizontal pressure gradient provided
the only horizontal force acting on the air,
the wind would blow directly across the
isobars in the direction of G, and for a giv-
en air mass, with acceleration proportional
to the magnitude of G. Explain, using New-
ton’s second law.

(c) Buys—Ballot’s law states: “If in the North-
ern Hemisphere, you stand with your back
to the wind, the high pressure is on your
right and the low pressure on your left.”
Draw a figure and introduce xy coordinates
so that G points in the proper direction.

(d) State and graphically illustrate Buys—Bal-
lot’s law for the Southern Hemisphere, in
which the orientation of high and low pres-
sure is reversed.

30. A sphere of mass m, radius @, and uniform

density has potential u and gravitational force F,

at a distance r from the center (0, 0, 0), given by

2

Im _ mr m .
= -, F=—-——r (r<a)
“ 2a 24° a’ ( )
_m —.m
u=-, F= r3r (r>a).

Here, r = |r}|, r = xi + yj + zk.

(a) Verify that F = Vu on the inside and out-
side of the sphere.

(b) Check that u satisfies Poisson’s equation:
3% /9x% + 0%u/dy? + 0%u /02 = constant
inside the sphere.

(¢) Show u satisfies Laplace’s equation:
3% /9x? + 3% /3y* + 0% /322 = 0 outside
the sphere.

31. Minimize the distance from (0,0,0) to each of
the following surfaces. [ Hint: Write the square of
the distance as a function of x and y.]

(@) z=yx*-1;

(b) z=06xy+7;

() z=1/xy.

32. Suppose that f(x, y)= x2+y. Find the maxi-
mum and minimum values of f for (x, y) on a
circle of radius 1 centered at the origin in two
ways:

(a) By parametrizing the circle.

(b) By Lagrange multipliers.

In Exercises 33-36, find the extrema of the given func-
tions subject to the given constraints.

33, flx, y)=x*—2xy + 2p% x2 4+ yr = 1.

34, f(x, yy=xy—y5 x4+ =1

35. f(x, y)= cos(x? —yz); x? +y2 =1

xt—y?

36.f(x,y)=2—»5;x+y= 1.

x“+y

37. An irrigation canal in Arizona has concrete sides
and bottom with trapezoidal cross section of area
A= y(x+ytan#) and wetted perimeter P =
x +2y/cost, where x = bottom width, y =
water depth, # = side inclination, measured from
vertical. The best design for fixed inclination 8
is found by solving P = minimum subject to
the condition A4 = constant. Show that y?
=Acosf/(2 —sinf).

38. The friction in an open-air aqueduct is propor-
tional to the wetted perimeter of the cross sec-
tion. Show that the best form of a rectangular
cross section is one with the width x equal to
twice the depth y, by solving the problem perime-
ter = 2y + x = minimum, area = xy = constant.

39. (a) Suppose that z = f(x, y) is defined, has con-
tinuous second partial derivatives, and is har-

monic:
2 2
2 L 92 _o
dx? 8y2

Assume that (3%2/3x?)(xg, yo) # 0. Prove that f
cannot have a local maximum or minimum at
(x0, Yo)-

(b) Conclude from (a) that if f(x, y) is harmonic
on the region x? + y2 < 1 and is zero on x? +y2
=1, then f is zero everywhere on the unit disk.
[Hint: Where are the maximum and minimum
values of f?)
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40. (a) Suppose that u = f(x, y) and o= g(x, y)

have continuous partial derivatives which satisfy
the Cauchy— Riemann equations:

du _ 2o du_ 2o

ox 9y and ay ax
Show that the level curves of u are perpendicular
to the level curves of o.
(b) Confirm this result for the functions u =
x?— y? and v = 2xy. Sketch some of the level
curves of these functions (all on the same set of

Review Exercises for Chapter 16 835

(b) Use this method to show that the tangent

plane of the graph of

f(x, y) = (x + cos y)x?
at (1,0,2) is as sketched in Figure 16.R.6.

axes).
41. Consider the two surfaces \  om—— < ——
S x4yl 4 22 — ¢ |V I
1ixT YT = fx, p,2) =6 7=
S, :2x2+ 3y + 22 =g(x, y,2) = 9. (1,0,0)
(a) Find the normal vectors and tangent planes
to S, and S, at (1, 1,2). /
(b) Find the angle between the tangent planes.
(c) Find an expression for the line tangent at Figure 16.R.6. The plane
(1,1,2) to the curve of intersection of S, and referred to in Exercise
S,. [Hint: Tt lies in both tangent planes.] 43(b).
42. Repeat Exercise 41 for the surfaces x2 — y2 + 22
=1land 2x?—p?2+5z2=6at (1,1, - 1). 44. (a) Use a geometric argument to demonstrate
43. (a) Consider the graph of a function f(x, y) that if f(x, y,z) is extremized at (xg, g, zg)

(Figure 16.R.5). Let (xg, yg) lie on a level
curve C, so Vf(xq, o) is perpendicular to
this curve. Show that the tangent plane to
the graph is the plane that (i) contains the
line perpendicular to V f(xy, o) and lying in
the horizontal plane z = f(xq, ), and (i)
has slope ||Vf(xg, yo)l| relative to the xy
plane. (By the slope of a plane P relative to
the xy plane, we mean the tangent of the
angle 4, 0 < § < 7, between the upward
pointing normal p to P and the unit vec-
tor k.)

45.

subject to two constraints g,(x, y,z) = ¢,
and gy(x, y,z) = ¢,, then there should exist
A, and A, such that

Vi(xo, y0,20) = AV gi(x0, yo,20)
+ A,V g5(x0,5 yo»20)-
(b) Extremize f(x, y,z)=x — y + z subject to
the constraints x?+ y?+z?=1 and x +
y+2z=1
A pipeline of length / is to be constructed from

one pipe of length /; and diameter D, connected
to another pipe of length /, and diameter D,.

The finished pipe must deliver (' liters per sec-
ond at pressure loss 4. The expense is reduced to
a minimum by minimization of the cost C
= Ili(a+ bD)) + LL(a + bD,) (a,b = constants)
subject to the conditions

L+ h=1

I3 I
h=kQ™" { — + },
DM D

where k,m,m,,m, are constants. Show that
D, = D, in order to achieve the minimum cost.
[Hint: As in Exercise 44, the partials of C —
Al — Ak with respect to /,, [, Dy and D, must
all be zero for suitable constants A; and A,.]
Ammonia, NH;, is to be produced at fixed tem-
perature T and pressure p. The pressures of N,,
H,, NHj are labeled as u, v, w, and are known to
satisfy u+ v+ w=p, w?=cuv® (c=positive
constant). Due to the nature of the reaction
N, + 3H, =2NH,;, the maximium ammonia pro-
duction occurs for w = maximum. Find the max-
imum pressure w,,.

slope of tangent plane = |7 £||

level curve raised to graph

(g, 20,00, 79)) and

graph of f
/

y
/ ;; xo0,0) 46.

Vf(xg,v0)

/L

level curve
x

Figure 16.R.5. Relationship
between the gradient of a
function and the plane
tangent to the function’s
graph (Exercise 43(a)).
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For Exercises 47-50, consider the level curves for the
function f(x, y) shown in Figure 16.R.7. Find or esti-
mate the maximum value of f(x, y) for each of the
given constraint conditions.

Figure 16.R.7. Level curves
of a function f.

47. x>0,y >0, y=—3x+2
48. x2+y2<4

49. x2+y2=4

50. x=4,0< y<4

51. Refer to Figure 16.R.7. The function f has ex-
actly one saddle point. Find it.

52. Refer to Figuie 16.R.7. There are two points on
the graph z = f(x, y) at which the tangent plane
is horizontal. Give the equation of the tangent
plane at each such point.

53. (a) Let y be defined implicitly by

x2+yd+e’=0.
Compute dy/dx in terms of x and y.
(b) Recali from p. 810 that
oF

aF/dx .

% = — ﬁ—é—a; if B = 0.
Obtain a formula analogous to this if y;, y,
are defined implicitly by

Fi(x, yi(x), ya(x)) = 0,

Fy(x, y(x), yo(x)) = 0.

(¢) Lety, and y, be defined by
x?+ yt=cosx,
x? -y =sinx.

Compute dy,/dx and dy,/dx using (b).
54. Thermodynamics texts® use the relationship

(a_y 3z (6_x)= -
dx J\ oy J\ oz '
Explain the meaning of this equation and prove
that it is true. [Hint: Start with a relationship

F(x, y,z) = 0 that implicitly defines x = f(y, z),
y = g(x,2), and z = h(x, y) and differentiate.]
55. (a) Suppose that F(x, y) = P(x, y)i+ Q(x, y)j.
Show that if there is a function f(x, y) with
continuous second partial derivatives such
that F =V, then P, = Q..
(b) Suppose that

F(x, y,z)= P(x, y,2)i+ Q(x, y,2)j + R(x, y, 2)k.

Show that if there is a function f(x, y,z)
with continuous second partial derivatives
such that F =V, then

Py:Qx’ Pzsz’ Qz=Ry'

(¢) Let F=3xyi— ye”j. Is there an f such that
F=Vf?

*56. (Continuation of Exercise 55.) Suppose that P

and Q have continuous partial derivatives every-

where in the xy plane and that P, = Q,. Follow

the steps below to prove that there is a function f

such that Vf= Pi+ Qj; that is, f, = P and

fi=0.

(a) Let g(x, y) be an antiderivative of Q with
respect to y; that is, g, = Q. Establish that
P — g, is a function of x alone by showing
that (P — g,), = 0.

(b) If P-—g, = 0, then we may simply take
g = f. Otherwise let A(x) be an antideriv-
ative of P— g.; that is, A'(x)=P — g,.
Show that f(x, y) = g(x, ) + y(x) satisfies
Vi=Pi+ Qj :

%57. For each of the following vector fields Pi + Qj,

find a function f such that f, = P and f, = Q or
show that no such function exists. (See Exercises
55 and 56.)

(a) (xzy2 + 2x)ex—vzi + 2x3ye"y2j;

by (X% +2x)e™i + 2xYe™j;

. 2 .
@ —H—i+ —T
L+ x"+y I+ x"+y
2y . 2x

) i+

Trxty Taxiir

*58. (The gradient and Laplacian in polar coordinates.)

Let r and 6 be polar coordinates in the plane and
let f be a given function of (x, y). Write

u=f(x, y)= f(rcosf,rsinf).

Let i, = cos#i + sinfj and i, = —sinfi + cosbj.

(a) Show that when based at v= xi+ yj the
vectors i, and iy are orthogonal unit vectors
in the directions of increasing r and 6, re-
spectively.

(b) Show that

_ du _ sinf du\,
Vf—(cosﬂW )1

., 0u , cosd ou\.
+(sm067+ p ag)j

6 See S. M. Binder, “Mathematical methods in elementary thermodynamics,” J. Chem. Educ. 43. (1966): 85-92. A proper
understanding of partial differentiation can be of significant use in applications; for example, see M. Feinberg, “Constitutive
equation for ideal gas mixtures and ideal solutions as consequences of simple postulates”, Chem. Eng. Sci. 32 (1977): 75-78.
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(¢) Show that
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*59. Find a family of curves orthbgonal to the level
curves of f(x, y) = x? — »? as follows:

(a) Find an expression for a vector normal to
the level curve of f through (x,, y,) at the
point (xg, yo).

(b) Use this expression to find a vector tangent
to the level curve of f through (x,, y,) at
()Co, Py 0)'

(¢) Find a function g which has these vectors as
its gradient.

(d) Explain why the level curves of g should
intersect those of f orthogonally.

(¢) Draw a few of the level curves of fand g to
illustrate this result.

*60. (a) Figure 16.R.8 shows the graph of the function
z=(x*=y% /(x> + y?). Show that z has differ-
ent limits if we come in along the x or y axis.
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Figure 16.R.8. Computer-

generated graph of

2= = p)/(x* + ).
(b) Figure 16.R.9 shows the graph of the func-
tion z=2xy*/(x*+ p*. Show that if we ap-
proach the origin on any straight line, z ap-
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Figure 16.R.9. Computer-
generated graph of
z=2xp?/(x? + 9.
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proaches zero, but z has different limits when

(0,0) is approached along the two parabolas

X == yz.

*61. Let f(x, y) = y*/(x* + »?); £(0,0) = 0.

(a) Compute f,, f» fx(0,0), and £0,0).

(b) Show that, for any #, the directional deriva-
tive (d/dr) f(rcos@,rsinf)|,_, exists.

(c) Show that the directional derivatives are not
all given by dotting the direction vector with
the gradient vector (see Fig. 16.R.10). Why
does this not contradict the chain rule?
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525558
s
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U
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Figure 16.R.10. Computer-generated graph of z
= P /(x2 + ).

*62. Do the same things as in Exercise 61 for z
= (x* = 3xp?) /(x> + y?), which is graphed in
Fig. 16.R.11.

Figure 16.R.11. Computer-generated graph of :
= (x* = 399 /(x* + ).





