
THE HOPF BIFURCATION AND ITS APPLICATIONS

SECTION 1

INTRODUCTION TO STABILITY AND BIFURCATION IN

DYNAMICAL SYSTEMS AND FLUID MECHANICS

1

Suppose we are studying a physical system whose state x

dx
is governed by an evolution equation dt = X(x) which has

unique integral curves. Let X
o

be a fixed point of the flow

of X; i.e., X(XO) = O. Imagine that we perform an experiment

upon the system at time t = 0 and conclude that it is then

in state xo. Are we justified in predicting that the system

will remain at Xo for all future time? The mathematical

answer to this qu~stion is obviously yes, but unfortunately

it is probably not the question we really wished to ask.

Experiments in real life seldom yield exact answers to our

idealized models, so in most cases we will have to ask whether

the system will remain near Xo if it started near xo. The

answer to the revised question is not always yes, but even so,

by examining the evolution equation at hand more minutely, one

can sometimes make predictions about the future behavior of

a system starting near xo. A trivial example will illustrate

some of the problems involved. Consider the following two
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di~~erential equations on the real line:

X' (t) = -x (t)

and

X I (t) = x (t) •

The solutions are respectively:

and

(1.1)

(1. 2)

(1.1')

(1.2')

Note that 0 is a ~ixed point o~ both ~lows. In the first

case, for all Xo E R, lim x(xo,t) = O. The whole real line
t+oo

moves toward the origin, and the prediction that if Xo is

near 0, then x(xo,t) is near 0 is obviously justified.

On the other hand, suppose we are observing a system whose

state x is governed by (1.2). An experiment telling us that

at time t = 0, x'( 0) is approximately zero will certainly not

permit us to conclude that x(t) stays near the origin for

all time, since all points except 0 move rapidly away from O.

Furthermore, our experiment is unlikely to allow us to make

an accurate prediction about x(t) because if x(O) < 0, x(t)

moves rapidly away from the origin toward but if

x(O) > 0, x(t) moves toward +00. Thus, an observer watching

such a system would expect sometimes to observe x(t) t~

and sometimes x(t) ~ +00. The solution x(t)
t+oo

o for

all t would probably never be observed to occur because a

slight perturbation of the system would destroy this solution.

This sort of behavior is frequently observed in nature. It

is not due to any nonuniqueness in the solution to the dif~er-

ential equation involved, but to the instability of that

solution under small perturbations in initial data.
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Indeed, it is only stable mathematical models, or

features of models that can be relevant in "describing" nature.+

Consider the following example.* A rigid hoop hangs

from the ceiling and a small ball rests in the bottom of the

hoop. The hoop rotates with frequency w about a vertical

axis through its center (Figure l.la).

Figure l.la Figure l.lb

For small values of w, the ball stays at the bottom of the

hoop and that position is stable. However, when w reaches

some critical value wo' the ball rolls up the side of the

hoop to a new position x(w), which is stable. The ball may

roll to the left or to the right, depending to which side of

the vertical axis it was initially leaning (Figure l.lb).

The position at the bottom of the hoop is still a fixed point,

but it has become unstable, and, in practice, is never ob-

served to occur. The solutions to the differential equations

governing the ball's motion are unique for all values of w,

+For further discussion, see the conclusion of Abraham­
Marsden [1].

*This example was first pointed out to us by E. Calabi.
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but for w > wo' this uniqueness is irrelevant to us, for we

cannot predict which way the ball will roll. Mathematically,

we say that the original stable fixed point has become un-

stable and has split into two stable fixed points. See

Figure 1.2 and Exercise 1.16 below.

w

fixed
points

(0 ) Figure 1.2 ( b )

Since questions of stability are of overwhelming prac-

tical importance, we will want to define the concept of

stability precisely and develop criteria for determining it.

(1.1) Definition. Let Ft be a cO flow (or

semiflow)* on a topological space M and let A be an in-

variant set; i. e. , Ft (A) C A for all t. We say A is

stable (resp. asymptotically stable or an attractor) if for any

neighborhood U of A there is a neighborhood V of A such

*i.e., Ft : M ; M, FO = identity, and. Ft + s = FsoFt for all

t, s ER. C means Ft(x) is continuous in (t,x). A

semiflow is one defined only for t ~ O. Consult, e.g.,

Lang [1], Hartman [1], or Abraham-Marsden [1] for a discussion

of flows of vector fields. See section BA, or Chernoff­

Marsden [lJ for the infinite dimensional case.
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that the flow lines (integral curves) x(xo,t) - Ft(xO) be-

5

long to U if Xo E V (resp. n Ft (V) = A).
t>O

Thus A is stable (resp. attracting) when an initial

condition slightly perturbed from A remains near A

(resp. tends towards A). (See Figure 1.3).

If A is not stable it is called unstable.

stable
fixed

point

as ymptot ieo Ily
sto bl e

fixed point

Figure 1.3

stable
closed

or bit

W > Wo there are attract­

2cos e = g/w R, where e is

(1.2) Exercise. Show that in the ball in the hoop

example, the bottom of the hoop is an attracting fixed point

for w < Wo = Ig/R and that for

ing fixed points determined by

the angle with the negative vertical axis, R is the radius

of the hoop and g is the acceleration due to gravity.

The simplest case for which we can determine the

stability of a fixed point Xo is the finite dimensional,

linear case. Let X: Rn
+ Rn be a linear map. The flow of
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x is

point.
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tX
X(Xo,t) = e (xO). Clearly, the origin is a fixed

{e
Ajt

}Let {A j } be the eigenvalues of X. Then

are the eigenvalues of tX Suppose Re A. < 0 for all j •e

I/jtl
Re A.t J

Then = e J ->- 0 as t ->- 00. One can check, using

the Jordan canonical form, that in this case 0 is asymp-

totica11y stable and that if there is a A.
J

with pos~tive

real part, 0 is unstable. More generally, we have:

(1.3) Theorem. Let X: E ->- E be a continuous, linear

map on a Banach space E. The origin is a stable attracting

fixed point of the flow of X if the spectrum o(X) of X

is in the open left-half plane. The origin is unstable if

there exists z E o(X) such that Re(z) > O.

This will be proved in Section 2A, along with a review

of some relevant spectral theory.

Consider now the nonlinear case. Let P be a Banach

manifo1d* and let X be a c1 vector field on P. Let

Then dX(PO): T (P) ->- T (P)
PO Po

is a continuous

linear map on a Banach space. Also in Section 2A we shall

demonstrate the following basic theorem of Liapunov [1].

(1.4) Theorem. Let X be a c1 vector field on a

Banach manifold P and let Po be a fixed point of X, i. e. ,

X(PO) be the flow of i. e. , a= O. Let Ft X at Ft(X)

X(Ft (x», FO(X) = x. (Note that Ft(PO) = Po for all t. )

If the spectrum of dX(PO) lies in the left-half plane; i.e.,

O(dX(Po» C {z EQ::IRe z < O}, then Po is asymptotically

*We shall use only the most elementary facts about manifold
theory, mostly because of the convenient geometrical
language. See Lang [1] or Marsden [4] for the basic ideas.
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If there exists an isolated z Eo(dX(Pa)) such that

Re z > a, Pa is unstable. If O(dX(Pa)) c {zlRe z S a} and

there is a z E o(dX(Pa)) such that Re z = a, then stability

cannot be determined from the linearized equation.

(1.5) Exercise. Consider the following vector field on

2 2
~ : X(x,y) = (y,~(l-x )y-x). Decide whether the origin is un-

stable, stable, or attracting for ~ < a, ~ = a, and ~ > a.

Many interesting physical problems are governed by dif-

ferential equations depending on a parameter such as the

angular velocity w in the ball in the hoop example. Let

X : P + TP be a (smooth) vector field on a Banach manifold P.
~

Assume that there is a continuous curve p(~) in P such

that X (p(~)) = a, i.e., p(~) is a fixed point of the flow
~

of X~. Suppose that p(~) is attracting for ~ < ~a and

unstable for ~ > ~a. The point (p(~a)'~a) is then called

a bifurcation point of the flow of X~. For ~ < ~a the flow

of X can be described (at least in a neighborhood of p(~))
~

by saying that points tend toward p(~). However, this is not

true for ~ > ~a' and so the character of the flow may change

abruptly at ~a. Since the fixed point is unstable for

~ > ~a' we will be interested in finding stable behavior for

~ > ~a. That is, we are interested in finding bifurcation

above criticality to stable behavior.

For example, several curves of fixed points may corne to-

gether at a bifurcation point. (A curve of fixed points is a

curve a: I + P such that X (a(~)) = a for all ~. One
~

such curve is obviously ~ ~ p(~).) There may be curves of

stable fixed points for ~ > ~a. In the case of the ball in
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the hoop, there are two curves of stable fixed points for

W > wO' one moving up the left side of the hoop and one moving

up the right side (Figure 1.2).

Another type of behavior that may occur is bifurcation

to periodic orbits. This means that there are curves of the

form a: I .... P such that a(]10) = p(]10) and a(]1) is on a

closed orbit Y]1 of the flow of

Hopf bifurcation is of this type.

mechanics will be given shortly.

X]1. (See Figure 1.4). The

Physical examples in fluid

x

-----t=====-f--unstable fixed point

- sta b Ie closed orbit

y

-stable fixed point

unstable fixed
point ---

stable fixed point

x

(a) Supercritica I Bifurcation

(Stable Closed Orbits)

(b) Subcritical Bifurcation

(Unstable Closed Orbits)

Figure 1.4

The General Nature of the Hopf Bifurcation
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The appearance of the stable closed orbits (= periodic

solutions) is interpreted as a "shift of stability" from the

original stationary solution to the periodic one, i.e., a

point near the original fixed point now is attracted to and

becomes indistinguishable from the closed orbit. {See

Figures 1.4 and 1.5).

9

stable point appearance of

a closed orbit

further
bifurco-

~

tions

the closed orbit

grows in amplitude

Figure 1.5

The Hopf Bifurcation

Other kinds of bifurcation can occur; for example, as

we shall see later, the stable closed orbit in Figure 1.4 may

bifurcate to a stable 2-torus. In the presence of symmetries,

the situation is also more complicated. This will be treated

in some detail in Section 7, but for now we illustrate what

can happen via an example.

(1.6) Example: The Ball in the Sphere. A rigid,

hollow sphere with a small ball inside it hangs from the
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ceiling and rotates with frequency w about a vertical axis

through its center (Figure 1.6).

Figure 1. 6

w<wo

For small w, the bottom of the sphere is a stable point,

but for w > Wo the ball moves up the side of the sphere to

a new fixed point. For each w > wo' there is a stable, in­

variant circle of fixed points (Figure 1.7). We get a circle

of fixed points rather than isolated ones because of the

symmetries present in the problem.

stable circle

Figure 1. 7

Before we discuss methods of determining what kind of

bifurcation will take place and associated stability questions,
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we shall briefly describe the general basin bifurcation

picture of R. Abraham [1,2].

In this picture one imagines a rolling landscape on

which water is flowing. We picture an attractor as a basin

into which water flows. Precisely, if F
t

is a flow on M

and A is an attractor, the basin of A is the set of all

11

x E M which tend to A as t + +00. (The less picturesque

phrase "stable manifold" is more commonly used.)

As parameters are tuned, the landscape, undulates and

the flow changes. Basins may merge, new ones may form, old

ones may disappear, complicated attractors may develop, etc.

The Hopf bifurcation may be pictured as follows. We

begin with a simple basin of parabolic shape; Le., a point

attractor. As our parameter is tuned, a small hillock forms

and grows at the center of the basin. The new attractor is,

therefore, circular (viz the periodic orbit in the Hopf

theorem) and its basin is the original one minus the top point

of the hillock.

Notice that complicated attractors can spontaneously

appear or dissappear as mesas are lowered to basins or basins

are raised into mesas.

Many examples of bifurcations occur in nature, as a

glance at the rest of the text and the bibliography shows.

The Hopf bifurcation is behind oscillations in chemical and

Ibiological systems (see e.g. Kopell-Howard [1-6], Abraham [1,2]

and Sections 10, 11), including such 'things as "heart flutter". *

One of the most studied examples comes from fluid mechanics,

so we now pause briefly to consider the basic ideas of

*That "heart flutter" is a Hopf bifurcation is a conjecture
told to us by A. Fischer; cf. Zeeman [2].
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the subject.

The Navier-Stokes Equations

Let D C R
3

be an open, bounded set with smooth boundary.

We will consider D to be filled with an incompressible ,

homogeneous (constant density) fluid. Let u and p be the

velocity and pressure of the fluid, respectively. If the

fluid is viscous and if changes in temperature can be

neglected, the equations governing its motion are:

au + (u.V)u - v~u = -grad p (+ external forces)at

div u = 0

(L3)

(1. 4)

The boundary condition is ul aD o (or ul aD prescribed,

if the boundary of D is moving) and the initial condition is

that u(x,O) is some given uO(x). The problem is to find

u(x,t) and p(x,t) for t > O. The first equation (1.3) is

analogous to Newton's Second Law F rna; the second (1.4) is

equivalent to the incompressibility of the fluid.*

Think of the evolution equation (1.3) as a vector field

and so defines a flow, on the space I of all divergence free

vector fields on D. (There are major technical difficulties

here, but we ignore them for now - see Section 8. )

The Reynolds number of the flow is defined by R = UL ,
v

where U and L are a typical speed and a length associated

with the flow, and v is the fluid's viscosity. For example,

if we are considering the flow near a sphere

toward which fluid is projected with constant velocity
....

U i
00

*see any fluid mechanics text for a discussion of these
points. For example, see Serrin [1], Shinbrot [1] or Hughes­
Marsden [3].
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(Figure 1.8), then L may be taken to be the radius of the

sphere and U U
oo

•

13

--
Figure 1.8

If the fluid is not viscous (v 0), then R 00, and

the fluid satisfies Euler's equations:

auat + (u·V)u

divu

-grad p

o.

(1.5)

(1.6)

The boundary condition becomes: ul aD is parallel to aD, or

ul laD for short. This sudden change of boundary condition

from u = 0 on aD to ul laD is of fundamental significance

and is responsible for many of the difficulties in fluid

mechanics for R very large (see footnote below).

The Reynolds number of the flow has the property that,

if we rescale as follows:

* U*
u U- u

* L*
x L x

t* T*
tT

* ru*) 2pP lU
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then if T = L/U, T* = L*/U* and provided R* = U*L*/V* =

R = UL/v, u* satisfies the same equations with respect to x*

and t* that u satisfies with respect to x and t; i.e.,

*~ + (u*·V*)u*
dt*

div u* a

-grad p* (1. 7)

(1. 8)

of similarity.)

with the same boundary condition u*1 = a
dD

is easy to check and is called Reynolds' law

as before. (This

Thus, the nature of these two solutions of the Navier-Stokes

equations is the same. The fact that this rescaling can be

done is essential in practical problems. For example, it

allows engineers to testa scale model of an airplane at low

speeds to determine whether the real airplane will be able to

fly at high speeds.

(1.7) Example. Consider the flow in Figure 1.8. If

the fluid is not viscous, the boundary condition is that the

velocity at the surface of the sphere is parallel to the

sphere, and the fluid slips smoothly past the sphere

(Figure 1.9).

Figure 1. 9

Now consider the same situation, but in the viscous case.

Assume that R starts off small and is gradual~y increased.

(In the laboratory this is usually accomplished by increasing
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-+
the velocity Uooi, but we may wish to think of it as v -+ 0,

i.e., molasses changing to water.) Because of the no-slip

condition at the surface of the sphere, as Uoo gets larger,

the velocity gradient increases there. This causes the flow

to become more and more complicated (Figure 1.10).*

For small values of the Reynolds number, the velocity

field behind the sphere is observed to be stationary, or

approximately so, but when a critical value of the Reynolds

number is reached, it becomes periodic. For even higher

values of the Reynolds number, the periodic solution loses

stability and further bifurcations take place. The further

bifurcation illustrated in Figure 1.10 is believed to repre-

sent a bifurcation from an attracting periodic orbit to a

periodic orbit on an attracting 2-torus in I. These further

bifurcations may eventually lead to turbulence. See Remark

1.15 and Section 9 below.

--. 0::
R =50 (a periodic solution) I I

further bifurcation as R increases

~ t

~-ct~~~
~~ "-....Y "---./

R =75 (a slightly altered periodic solution)

Figure 1.10

*These large velocity gradients mean that in numerical
studies, finite difference techniques become useless for
interesting flows. Recently A. Chorin [1] has introduced
a brilliant technique for overcoming these difficulties
and is able to simulate numerically for the first time,
the "Karmen vortex sheet", illustrated in Figure 1.10.
See also Marsden [5] and Marsden-McCracken [2].

15
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(1.8) Example. Couette Flow. A viscous, * incompressi­

ble, homogeneous fluid fills the space between two long,

coaxial cylinders which are rotating. For example, they may

rotate in opposite directions with frequency w (Figure 1.11).

For small values of w, the flow is horizontal, laminar and

stationary. fluid

I
I I

wfH- W

I

Figure 1.11

If the frequency is increased beyond some value wo' the

fluid breaks up into what are called Taylor cells (Figure 1.12).

top view

Figure 1.12

*couette flow is studied extensively in the literature (see
Serrin [1], Coles [1]) and is a stationary flow of the Euler
equations as well as of the Navier-Stokes equations (see the
following exercise).
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Taylor cells are also a stationary solution of the Navier-

Stokes equations. For larger values of w, bifurcations to

periodic, doubly periodic and more complicated solutions may

take place (Figure 1.13).

17

he Iicc I stru cture doubly periodic structure

}o'igure 1.13

For still larger values of w, the structure of the Taylor

cells becomes more complex and eventually breaks down

completely and the flow becomes turbulent. For more informa-

tion, see Coles [1] and Section 7.

(1. 9) Exercise. Find a stationary solution
..,.
u to the

Navier-Stokes equations in cylindrical coordinates such that

U depends only on r, u r = Uz = 0, the external force

f 0 and the angular velocity w satisfies

and wlr=A = + P2 (i.e., find Couette flow).
2

U is also a solution to Euler equations.

Wlr=A = -PI'
1

Show that

(Answer: where and s =

Another important place in fluid mechanics where an

instability of this sort occurs is in flow in a pipe. The
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flow is steady and laminar (Poiseuille flow) up to Reynolds

numbers around 4,000, at which point it becomes unstable and

transition to chaotic or turbulent flow occurs. Actually if

the experiment is done carefully, turbulence can be delayed

until rather large R. It is analogous to balancing a ball

on the tip of a rod whose diameter is shrinking.

Statement of the Principal Bifurcation Theorems

Let X: P + T{P) be a ck vector field on a manifold
lJ

P depending smoothly on a real parameter lJ. Let F~ be the

flow of Let be a fixed point for all lJ, an

attracting fixed point for lJ < lJO' and an unstable fixed

point for lJ > lJO' Recall (Theorem 1.4) that the condition

for stability of PO is that 0{dX
lJ

{PO)) C {zlRe z < O}. At

lJ = lJO' some part of the spectrum of dXlJ{po) crosses the

imaginary axis. The nature of the bifurcation that takes

place at the point (PO,lJ
O

) depends on how that crossing

occurs (it depends, for example, on the dimension of the

generalized eigenspace* of dX (PO) belonging to the part of
lJO

the spectrum that crosses the axis). If P is a finite

dimensional space, there are bifurcation theorems giving

necessary conditions for certain kinds of bifurcation to occur.

If P is not finite dimensional, we may be able, nevertheless,

to reduce the problem to a finite dimensional one via the

center manifold theorem by means of the following simple but

crucial suspension trick. Let ~ be the time 1 map of the

As we shall show in Section 2A,

That is,

P x IR.onflow
_ lJ

Ft - (Ft,lJ)

o (dX{PO,lJo) )
0{d~{Po,lJn)) = e

*The definition and basic properties are reviewed in Section 2A.
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The following theorem is now applicable to ~ (see

Sections 2-4 for details).

(1.10) Center Manifold Theorem (Kelley [1], Hirsch­

Pugh-Shub [1], Hartman [1], Takens [2], etc.). Let ~ be

a mapping from a neighborhood of a O in a Banach manifold P

to P. We assume that ~ has k continuous derivatives and

19

We further assume that

spectral radius 1 and that the spectrum of

has

splits in-

to a part on the unit circle and the remainder, which is at

a non-zero distance from the unit circle. Let Y denote the

generalized eigenspace of d~(aO) belonging to the part of

the spectrum on the unit circle; assume that Y has dimension

d < Then there exists a neighborhood V of a O in P

and a ck- l submanifold M, called a center manifold for ~,

of V of dimension d, passing through a O and tangent to

Y at aO' such that:

(a) (Local Invariance): If x EM and ~(x) E V, then

~(x) E M.

(b) (Local Attractivity): If ~n(x) E V for all

n 0,1,2, ••• , then as n ~ 00, ~n(x) ~ M.

(1.11) Remark. It will be a corolla~y to the proof of

the Center Manifold Theorem that if ~ is the time 1 map of

Ft defined above then the center manifold M can be chosen

so that properties (a) and (b) apply to Ft for all t > O.

(1.12) Remark. The Center Manifold Theorem is not

always for
00

intrue C ~ the following sense: since

~ E~ for all k, we get a sequence of center manifolds ~,

but their intersection may be empty. See Remarks 2.6
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regarding the differentiability of M.

We will be particularly interested in the case in which

bifurcation to stable closed orbits occurs. With X as
~

before, assume that for ~ = ~O (resp. ~ > ~o), 0(dX~(pO»

has two isolated nonzero, simple complex conjugate eigenvalues

A(~) and A(~) such that Re A(~) = 0 (resp. > 0) and such

that d(RedA(~» I > O. Assume further that the rest of
~ ~=~o

0(dX~(po» remains in the left-half plane at a nonzero

distance from the imaginary axis. Using the Center Manifold

Theorem, we obtain a 3-manifold M C P, tangent to the eigen-

space of A(~O),A(~O) and to the ~-axis at ~ = ~O' locally

invariant under the flow of X, and containing all the local

recurrence. The problem is now reduced to one of a vector

field in two dimensions X: R2
+ R2 • The Hopf Bifurcation

~

Theorem in two dimensions then applies (see Section 3 for

details and Figures 1.4, 1.5):

(1.13) Hopf Bifurcation Theorem for Vector Fields

(Poincar~ [1], Andronov and Witt [1], Hopf [1], Ruelle­

Takens [1], Chafee [1], etc.). Let X be a ck (k ~ 4)
~

vector field on R2 such that X (0) = 0 for all ~ and
~

X = (X~,O) is also Ck • Let dX~(O,O) have two distinct,

simple* complex conjugate eigenvalues A(~) and A(~) such

that for ~ < 0, Re A(~)

for ~ > 0, Re A(~) > O.

< 0, for ~ = 0, Re A(~) 0, and

Also assume d R~ A(~) I > O.
~ ~=O

Then there is a ck- 2 function ~: (-8,8) + R such that

*Simple means that the generalized eigenspace (see Section 2A)
of the eigenvalue is one dimens~onal.
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2rr
(xl,O,~(xl» is on a closed orbit of period ~ and

1),,(0) I
radius growing like ~,of the flow of X for xl I 0 and

such that ~(O) = O. There is a neighborhood U of (0,0,0)

in ~3 such that any closed orbit in U is one of the above.

Furthermore, (c) if 0 is a "vague attractor"* for XO' then

~(xl) > 0 for all xl I 0 and the orbits are attracting

(see Figures 1.4, 1.5).

If, instead of a pair of conjugate eigenvalues crossing

the imaginary axis, a real eigenvalue crosses the imaginary

axis, two stable fixed points will branch off instead of a

closed orbit, as in the ball in the hoop example. See

Exercise 1.16.

After a bifurcation to stable closed orbits has occurred,

one might ask what the next bifurcation will look like. One

can visualize an invariant 2-torus blossoming out of the

closed orbit (Figure 1.14). In fact, this phenomenon can occur.

In order to see how, we assume we have a stable closed orbit

transverseNlet

for F~. Associated with this orbit is a Poincar~ map. To

define the Poincar~ map, let Xo be a point on the orbit,

be a codimension one manifold through

to the orbit. The Poincar~ map P
~

takes each point x E U,

a small neighborhood of Xo in N, to the next point at which

F~(X) intersects N (Figure 1.15). The poincar~ map is a

diffeomorphism from U to V - P~(U) eN, with P~(xo) = Xo

*This condition is spelled out below, and is reduced to a
specific hypothesis on X in Section 4A. See also Section 4C.
The case in which d Re )"(~)/d~ = 0 is discussed in
Section 3A. In Section 3B it is shown that "vague attractor"
can be replaced by "asymptotically stable". For a discussion
of what to expect generically, see Ruelle-Takens [1],
Sotomayer [1], Newhouse and Palis [1] and Section 7.
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Figure 1.14

x
----+-+........- N

Figure 1.15

(see Section 2B for a summary of properties of the Poincar~

map). The orbit is attracting if 0 (dP1I (xo» c {z I Iz I < I}

and is not attracting if there is some z E o(dP1I (xo» such

that Iz I > 1.

We assume, as above, that

field on a Banach manifold P

X : P + TP is a
1I

with XlI (PO) = 0

Ck vector

for all 1I.

We assume that is stable for 1I < lIO' and that be-

comes unstable at lIO' at which point bifurcation to a stable,

closed orbit Y(lI)

map associated with

takes place.

Y(lI) and let

Let P be the Poincar~
1I

X o(1I) E Y (1I). We further

assume that at 1I = 1I1' two isolated, simple, complex con­

jugate eigenvalues A(ll) and A(ll) of dPlI(xO(ll» cross

the unit circle such that dIA(ll)j I > 0 and such that the
dll 1I=1l

1
rest of o(dPll(xO(lI») remains inside the unit circle, at a

nonzero distance from it. We then apply the Center Manifold

Theorem to the map P = (Pll,ll) to obtain, as before, a

locally invariant 3-manifold for P. The Hopf Bifurcation
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Theorem for diffeomorphisms (in (1.14) below) then applies to

yield a one parameter family of invariant, stable circles for

P~ for ~ > ~l. Under the flow of x~, these circles be-
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come stable invariant 2-tori for F~
t (Figure 1.16).

(d)

-
/

I
/
I N

\
\ /

~.

....... ---
Figure 1.16

(1.14) Hopf Bifurcatio; Theorem for Diffeomorphisms

(Sacker [1], Naimark [2], Ruelle-Takens [1]). Let P~: R2
+ R2

be a one-parameter family of ck (k > 5) diffeomorphisms

satisfying:

(a) P (0) = a for all ~
~

(b) For ~ < 0, a(dP (O»C {zl Iz' < I}
~

(c) For ~ a (Il > 0), a(dP (0» has two isolated,
~

simple, complex conjugate eigenvalues ;\(~) and A(~) such

that IA(~) I = 1 (I A(~) I > 1) and the remaining part of

a(dP (0» is inside the unit circle, at a nonzero distance
~

from it.

dIA(~)11 >0
d •
~ ~=O

Then (under two more "vague attractor" hypotheses which will

be explained during the proof of the theorem), there is a
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continuous one parameter family of invariant attracting

circles of P, one for each ].l E (0, E:) for small E: > O.
].l

(1.15) Remark. In Sections 8 and 9 we will discuss how

these bifurcation theorems yielding closed orbits and in-

variant tori can actually be applied to the Navier-Stokes

equations. One of the principal difficulties is the smooth­

ness of the flow, which we overcome by using general smooth-

ness results (Section 8A). Judovich [1-11], Iooss [1-6], and

Joseph and Sattinger have used Hopf's original method for

these results. Ruelle and Takens [1] have speculated that

further bifurcations produce higher dimensional stable, in-

variant tori, and that the flow becomes turbulent when, as an

integral curve in the space of all vector fields, it becomes

trapped by a "strange attractor" (stran';Je attractors are

shown to be abundant on k-tori for k ~ 4); see Section 9.

They can also arise spontaneously (see 4B.8 and Section 12).

The question of how one can explicitly follow a fixed point

through to a strange attractor is complicated and requires

more research. Important papers in this direction are

Takens [1,2], Ne'i"house [1] and Newhouse and Peixoto [1].

(1.16) Exercise o (a) Prove the following:

and <1>: H -r H
].l

that the map

Theorem. Let H be a Hilbert space (or manifold)

a map defined for each ].l E R such

(].l,x) ~ ,(x) is a ck
map, k > 1,

].l

from R x H to H, and for all ].l E IR, '].l(0) O.

Define L].l D'].l(O) and suppose the spectrum of L].l

lies inside the unit circle for ].l < O. Assume further

there is a real, simple, isolated eigenvalue A(].l)

of such that A (0) =0 1, (dA/d].l) (0) > 0, and
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has the eigenvalue 1 (Figure 1.17); then there is a
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Ck - l curve 1 of fixed points of <1>: (x,l.1) r>- (<I>l.1 (x),l.1)

near (0,0) E IH x iR. The curve is tangent to IH at

(0,0) in iH x iR (Figure L 18). These points and the

points of (0,1.1) are the only fixed points of <I> in

a neighborhood of (0,0).

(b) Show that the hypotheses apply to the ball

in the hoop example (see Exercise 1.2).

Hint: Pick an eigenvector (z,O) for (LO'O) in

iH x iR with eigenvalue 1. Use the center manifold theorem

Figure 1.17

fL
unstable,

H
Figure 1.18

to obtain an invariant 2-manifold C tangent to (z,O) and

the 1.1 axis for <I> (x,l.1) = (<I>l.1(x),l.1). Choose coordinates

(a,l.1) on C where a is the projection to the normalized

eigenvector for Set in
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these coordinates. Let g (O:,I.l) == f (O:,I.l) _ 1
0:

and we use the

implicit function theorem to get a curve of zeros of g in

C. (See Ruelle-Takens [1, p. 190]).

(1.17) Remark. The closed orbits which appear in the

Hopf theorem need not be globally attracting, nor need they

persist for large values of the parameter I.l. See remarks

(3A. 3) •

(1.18) Remark. The reduction to finite dimensions

using the center manifold theorem is analogous to the reduction

to finite dimensions for stationary bifurcation theory of

elliptic type equations which goes under the name "Lyapunov-

Schmidt" theory. See Nirenberg [1] and Vainberg-Trenogin [1,2].

(1.19) Remark. Bifurcation to closed orhits can occur

by other mechanisms than the Hopf bifurcation. In Figure 1.19

is shown an example of S. Wan.

Fi xed points
move off axis
of symme~ry
and a closed
orbit forms

Au 0 0
~ Fixed pOints_O

come together

Figure 1.19


