
Initlal..Value Problems for Ordinary
Differential Equations

INTRODUCTION

The goal of this book is to expose the reader to modern computational tools for
solving differential equation models that arise in chemical engineering, e.g.,
diffusion-reaction, mass-heat transfer, and fluid flow. The emphasis is placed
on the understanding and proper use of software packages. In each chapter we
outline numerical techniques that either illustrate a computational property of
interest or are the underlying methods of a computer package. At the close of
each chapter a survey of computer packages is accompanied by examples of
their use.

BACKGROUND

Many problems in engineering and science can be formulated in terms of dif­
ferential equations. A differential equation is an equation involving a relation
between an unknown function and one or more of its derivatives. Equations
involving derivatives of only one independent variable are called ordinary dif­
ferential equations and may be classified as either initial-value problems (IVP)
or boundary-value problems (BVP). Examples of the two types are:

IVP: y" = -yx (l.la)

yeO) = 2, y'(O) 1 (l.lb)

BVP: y" = -yx (l.2a)

yeO) = 2, y(l) = 1 (l.2b)
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where the prime denotes differentiation with respect to x. The distinction be­
tween the two classifications lies in the location where the extra conditions [Eqs.
(LIb) and (1.2b)] are specified. For an IVP, the conditions are given at the
same value of x, whereas in the case of the BVP, they are prescribed at two
different values of x.

Since there are relatively few differential equations arising from practical
problems for which analytical solutions are known, one must resort to numerical
methods. In this situation it turns out that the numerical methods for each type
of problem, IVP or BVP, are quite different and require separate treatment. In
this chapter we discuss IVPs, leaving BVPs to Chapters 2 and 3.

Consider the problem of solving the mth-order differential equation

y(m) = f(x, Y, y', y", ... , y(m-1») (1.3)

with initial conditions

y(xo) = Yo

y'(XO) = yb

y(m-1) (XO) = Y6m- 1)

where f is a known function and Yo, yb, ... ,Y6m
-1) are constants. It is customary

to rewrite (1.3) as an equivalent system of m first-order equations. To do so,
we define a new set of dependent variables Y1(X), Yz(x), ... , Ym(x) by

Yl = Y

Yz = Y'

Y3 = y"

Ym = y(m-1)

(1.4)

and transform (1.3) into

Y;' = Yz

y~ = Y3

= f1(X, Yl, Yz, , Ym)

= fz(x, Y1' Yz, , Ym) (1.5)

y:r, = f(x, Yv Yz, ... , Ym) = fm(x, Yv Yz, ... , Ym)

with

Y1(XO) = Yo

yzCxo) = yb
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In vector notation (1.5) becomes

y'(x) = rex, y)

y(xo) = Yo

where
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(1.6)

[

heX)]
y(x) = Y2~X) ,

Ym(X)
[

fleX, y)]
rex, y) = f2(X; y) ,

fm(x, y)
[

Yo]
Y

_ yb
o - .

y~m'-l)

It is easy to see that (1.6) can represent either an mth-order differential
equation, a system of equations of mixed order but with total order of m, or a
system of m first-order equations. In general, subroutines for solving IVPs as­
sume that the problem is in the form (1.6). In order to simplify the analysis, we
begin by examining a single first-order IVP, after which we extend the discussion
to include systems of the form (1.6).

Consider the initial-value problem

y' = f(x, y), Y(Xo) = Yo (1.7)

We assume that aflay is continuous on the strip Xo ~ x ~ XN' thus guaranteeing
that (1.7) possesses a unique solution [1]. If y(x) is the exact solution to (1.7),
its graph is a curve in the xy-plane passing through the point (xo, Yo). A discrete
numerical solution of (1.7) is defined to be a set of points [(Xi' u;)]~o, where
Uo = Yo and each point (Xi' u;) is an approximation to the corresponding point
(Xi' Y(Xi)) on the solution curve. Note that the numerical solution is only a set
of points, and nothing is said about values between the points. In the remainder
of this chapter we describe various methods for obtaining a numerical solution
[(Xi' Ui)]~O'

EXPLICIT METHODS

We again consider (1.7) as the model differential equation and begin by dividing
the interval [xo, XN] into N equally spaced subintervals such that

Xi = Xo + ih, i = 0, 1,2, ... , N

(1.8)

The parameter h is called the step-size and does not necessarily have to be
uniform over the interval. (Variable step-sizes are considered later.)
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If y(x) is the exact solution of (1.7), then by expanding y(x) about the
point Xi using Taylor's theorem with remainder we obtain:

Y(Xi+1) = y(xi) + (Xi+1 - xi)y'(Xi)

+ (X i + 12~ xy y"(~J,

The substitution of (1.7) into (1.9) gives

(1.9)

(1.10)

The simplest numerical method is obtained by truncating (1.10) after the second
term. Thus with Ui = y(xJ,

Ui+1 = Ui + hf(xi , uJ,

Uo = Yo

i = 0, 1, ... , N - 1, (1.11)

This method is called the Euler method.
By assuming that the value of Ui is exact, we find that the application of

(1.11) to compute Ui+1 creates an error in the value of Ui+1. This error is called
the local truncation error, ei+1. Define the local solution, z(x), by

Z'(X) = f(x, z), Z(Xi) = Ui (1.12)

An expression for the local truncation error, ei+1 = Z(Xi+1) Ui+1' can be
obtained by comparing the formula for Ui+1 with the Taylor's series expansion
of the local solution about the point Xi. Since

z(xi + h) = z(xi) + hf(Xi' z(xi» + ~~ z"(~J

or

Z(Xi + h) = Ui + hf(Xi' uJ + ~~ Z"(~i)'

it follows that

(1.13)

ei+1 = ~~ Z"(~i) = 0(h2
) (1.14)

The notation O( ) denotes terms of order ( ), i.e. ,f(h) = O(hL
) if If(h)1 ~ Ah l

as h~ 0, where A and I are constants [1]. The global error is defined as

(1.15)

and is thus the difference between the true solution and the numerical solution
at X = Xi+1. Notice the distinction between ei+1 and c; i+1. The relationships
between ei+1 and c; i+1 will be discussed later in the chapter.
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We say that a method is pth-order accurate if

ei+l = 0(hP+ 1)
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(1.16)

and from (1.14) and (1.16) the Euler method is first-order accurate. From the
previous discussions one can see that the local truncation error in each step can
be made as small as one wishes provided the step-size is chosen sufficiently small.

The Euler method is explicit since the function f is evaluated with known
information (i.e., at the left-hand side of the subinterval). The method is pictured
in Figure 1.1. The question now arises as to whether the Euler method is able
to provide an accurate approximation to (1.7). To partially answer this question,
we consider Example 1, which illustrates the properties of the Euler method.

EXAMPLE 1

Kehoe and Butt [2] have studied the kinetics of benzene hydrogenation on a
supported Ni/kieselguhr catalyst. In the presence of a large excess of hydrogen,
the reaction is pseudo-first-order at temperatures below 200°C with the rate
given by

mole/(g of catalyst·s)

where

Rg = gas constant, 1.987 cal/(mole'K)

- Q - Ea = 2700 cal/mole

PH2 = hydrogen partial pressure (torr)

ko = 4.22 mole/(gcat·s·torr)

Ko = 2.63 X 10- 6 cm3/(mole'K)

T = absolute temperature (K)

CB = concentration of benzene (mole/cm3).

Price and Butt [3] studied this reaction in a tubular reactor. If the reactor is
assumed to be isothermal, we can calculate the dimensionless concentration
profile of benzene in their reactor given plug flow operation in the absence of
inter- and intraphase gradients. Using a typical run,

PH2 = 685 torr

PB = density of the reactor bed, 1.2 gcat/cm3

e = contact time, 0.226 s

T = 150°C



6
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fiGURE. 1.1 Euler method.

SOLUTION
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y(x)

(X3'U3)
I
I
I SLOPE=f(x2,u2)
I
I
I
I
I
I

Define

C~ = feed concentration of benzene (mole/cm3
)

z = axial reactor coordinate (cm)

L reactor length

y dimensionless concentration of benzene (CB / C~)

x = dimensionless axial coordinate (z/L).

The one-dimensional steady-state material balance for the reactor that expresses
the fact that the change in the axial convection of benzene is equal to the amount
converted by reaction is

with

C~ at x o
Since e is constant,

: = - PBePH2koKoT exp [( - ~g-;' Ea
)] y

Let
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Using the data provided, we have <!>

equation becomes
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21.6. Therefore, the material balance

dy = -21.6y
dx

with

y 1 at x = 0

and analytical solution

y = exp (-21.6x)

Now we solve the material balance equation using the Euler method [Eq. (1.11)]:

where

U i + 1 = U i - 21.6hu;, i = 0, 1, 2, ... , N - 1

h=l
N

Table 1.1 shows the generated results. Notice that for N = 10 the differ­
ences between the analytical solution and the numerical approximation increase
with x. In a problem where the analytical solution decreases with increasing
values of the independent variable, a numerical method is unstable if the global
error grows with increasing values of the independent variable (for a rigorous
definition of stability, see [4]). Therefore, for this problem the Euler method is
unstable when N = 10. For N = 20 the global error decreases with x, but the
solution oscillates in sign. If the error decreases with increasing x, the method
is said to be stable. Thus with N = 20 the Euler method is stable (for this
problem), but the solution contains oscillations. For all N > 20, the method is
stable and produces no oscillations in the solution.

From a practical standpoint, the "effective" reaction zone would be ap­
proximately 0 ~ x ~ 0.2. If the reactor length is reduced to 0.2L, then a more
realistic problem is produced. The material balance equation becomes

dy = -4.32y
dx

y = 1 at x = 0

Results for the "short" reactor are shown in Table 1.2. As with Table 1.1, we
see that a large number of steps are required to achieve a "good" approximation
to the analytical solution. An explanation of the observed behavior is provided
in the next section.

Physically, the solutions are easily rationalized. Since benzene is a reactant,
thus being converted to products as the fluid progresses toward the reactor outlet
(x = 1), Y should decrease with x. Also, a longer reactor would allow for greater
conversion, i.e., smaller y values at x = 1.
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TABU 1.1 Results of Euler Method on :: = -21.6y,y = 1 atx = 0

Analytical
x Solutiont N = 10 N = 20 N = 100 N = 8000

0.00 1.00000 1.0000 1.00000 1.00000 1.00000
0.05 0.33960 - 0.80000( -1) 0.29620 0.33910
0.10 0.11533 -1.1600 0.64000( -2) 0.87733( -1) 0.11499
0.15 0.39164( -1) - 0.51200( - 3) 0.25986( -1) 0.38993( -1)
0.20 0.13300(-1) 1.3456 oo40960( - 4) 0.76970( -2) 0.13222(-1)
0.25 0045166( - 2) - 0.32768( - 5) 0.22798( -2) 0044837( - 2)
0.30 0.15338( - 2) -1.5609 0.26214( -6) 0.67528( - 3) 0.15204(-2)
0.35 0.52088( -3) -0.20972( -7) 0.20000(-3) 0.51558( - 3)
0.40 0.17689(-3) 1.8106 0.16777( -8) 0.59244( -4) 0.17483(-3)
0045 0.60070( -4) -0.13422( -9) 0.17548(-4) 0.59286(-4)
0.50 0.20400( -4) -2.1003 0.10737( -10) 0.51976( - 5) 0.20104(-4)
0.55 0.69276( - 5) - 0.85899( -12) 0.15395( - 5) 0.68172( -5)
0.60 0.23526( -5) 204364 0.68719( -13) 0045600( - 6) 0.23117( - 5)
0.65 0.79892(-6) -0.54976( -14) 0.13507( - 6) 0.78390(-6)
0.70 0.27131( -6) -2.8262 oo43980( - 15) oo40006( - 7) 0.26582( - 6)
0.75 0.92136( -7) - 0.35184( -16) 0.11850(-7) 0.90139(-7)
0.80 0.31289( -7) 3.2784 0.28147( -17) 0.35098( - 8) 0.30566(-7)
0.85 0.10626(-7) - 0.22518( -18) 0.10396( - 8) 0.10365( -7)
0.90 0.36084( -8) -3.8030 0.18014( -19) 0.30793(-9) 0.35148( - 8)
0.95 0.12254( - 8) -0.14412( -20) 0.91207( -10) 0.11919( - 8)
1.00 0.41614( - 9) 404114 0.11529( - 21) 0.27015( -10) 0.40416( - 9)

t ( - 3) denotes 1.0 x 10-3,

STABILITY

In Example 1 it was seen that for some choices of the step-size, the approximate
solution was unstable, or stable with oscillations. To see why this happens, we
will examine the question of stability using the test equation

dy = Ay
dx

yeO) = Yo

where Ais a complex constant. Application of the Euler method to (1.17) gives

Ut+1 = Ut + Ahut
or

Ut+l = (1 + hA)Ut = (1 + hA)2Ut _ 1 =

The analytical solution of (1.17) is

y(x t+ 1) = yoeAXi+l = yoe(i+l)hA

(1.18)

(1.19)

(1.20)

Comparing (1.20) with (1.19) shows that the application of Euler's method to
(1.17) is equivalent to using the expression (1 + hA) as an approximation for
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TABLE. 1.1 Results of Euler Method on dy = -4.31y, Y = 1 at x = 0
dx

Analytical
x Solution N = 100 N = 1000 N = 8000

0.0 1.00000 1.00000 1.00000 1.00000
0.1 0.64921 0.64300 0.64860 0.64913
0.2 0.42147 0.41345 0.42068 0.42137
0.3 0.27362 0.26585 0.27286 0.27353
0.4 0.17764 0.17094 0.17698 0.17756
0.5 0.11533 0.10992 0.11479 0.11526
0.6 0.07487 0.07067 0.07445 0.07481
0.7 0.04860 0.04544 0.04828 0.04856
0.8 0.03155 0.02922 0.03132 0.03152
0.9 0.02048 0.01878 0.02031 0.02046
1.0 0.01330 0.01208 0.01317 0.01328

e Ah . Now suppose that the value Yo is not exactly representable by a machine
number (see Appendix A), then eo = Yo - Uo will be nonzero. From (1.19),
with Uo replaced by Yo - eo,

Ui+1 (1 + h1l.)i+1 (yo - eo)

and the global error (5 i+1 is

(5i+1 = Y(Xi+1) - Ui+1 = yoe(i+1)hA - (1 + hA)i+1 (Yo - eo)

or

(5i+1 = [e(i+1)Ah - (1 + hA)i+1] Yo + (1 + hA)i+1eo (1.21)

Hence, the global error consists of two parts. First, there is an error that results
from the Euler method approximation (1 + hA) for eAh . The second part is the
propagation effect of the initial error, eo. Clearly, if 11 + hAl> 1, this component
will grow and, no matter what the magnitude of eo is, it will become the dominant
term in (5 i + l' Therefore, to keep the propagation effects of previous errors
bounded when using the Euler method, we require

11 + hAl <s; 1 (1.22)

The region of absolute stability is defined by the set of h (real nonnegative) and
Avalues for which a perturbation in a single value Ui will produce a change in
subsequent values that does not increase from step to step [4]. Thus, one can
see from (1.22) that the stability region for (1.17) corresponds to a unit disk in
the complex hA-plane centered at ( -1, 0). If Ais real, then

- 2 <S; hA <S; 0 (1.23)

Notice that if the propagation effect is the dominant term in (1.21), the global
error will oscillate in sign if - 2 <S; hA <S; - 1.
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EXAMPLE 2
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Referring to Example 1, find the maximum allowable step-size for stability and
for nonoscillatory behavior for the material balance equations of the "long" and
"short" reactor. Can you now explain the behavior shown in Tables 1.1 and
1.2?

SOLUTION

For the long reactor: 'AL = - 21.6
For the short reactor: 'As = - 4.32
For stability: 0;;,: h'A ;;,: - 2
For nonoscillatory error: 0 ;;,: h'A > -1

(real)
(real)

Unstable
Stable, error oscillations
Stable, no error oscillations

Long Reactor

0.0926 < h
0.0463 ~ h ~ 0.0926

h < 0.0463

Short Reactor

0.4630 < h
0.2315 ~ h ~ 0.4630

h < 0.2315

For the short reactor, all of the presented solutions are stable and non­
oscillatory since the step-size is always less than 0.2315. The large number of
steps required for a "reasonably" accurate solution is a consequence of the first­
order accuracy of the Euler method.

For the long reactor with N > 20 the solutions are stable and nonoscillatory
since h is less than 0.0463. With N = 10, h = 0.1 and the solution is unstable,
while for N = 20, h = 0.05 and the solution is stable and oscillatory. From the
above table, when N = 20, the global error should oscillate if the propagation
error is the dominant term in Eq. (1.21). This behavior is not observed from
the results shown in Table 1.1. The data for N = 10 and N = 20 can be explained
by examining Eq. (1.21):

6i+l = [e(i+l)Ah - (1 + h'A)i+l]yo + (1 + h'A)i+leo = (A)yo + (B)eo

For N = 10, h = 0.1 and 'Ah = -2.16. Therefore,

o
1
2

(A)

1.2753
-1.3323

1.5624

(B)

-1.160
1.3456

-1.5609

Global Error Calculated from
Results Shown in Table 1.1

1.2753
-1.3323

1.5624

Since Yo = 1 and eo is small, the global error is dominated by term (A) and not
the propagation term, i.e., term (B). For N = 20, h = 0.05 and 'Ah = -1.08.
Therefore,
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o
1
2

(A)

0.4196
0.1089
0.3967 x 10- 1

(B)

-0.08
0.64 x 10- 2

-0.512 X 10-3

Global Error Calculated from
Results Shown in Table 1.1

0.4196
0.1089
0.3967 x 10- 1

As with N = 10, the global error is dominated by the term (A). Thus no os­
cillations in the global error are seen for N = 20.

From (1.19) one can explain the oscillations in the solution for N = 10
and 20. If

(1 + hA) < 0

then the numerical solution will alternate in sign. For (1 + hA) to be equal to
zero, hA = -1. When N = 10 or 20, hA is less than -1 and therefore oscillations
in the solution occur.

For this problem, it was shown that for the long reactor with N = 10 or
20 the propagation error was not the dominant part of the global error. This
behavior is a function of the parameter A and thus will vary from problem to
problem.

From Examples 1 and 2 one observes that there are two properties of the
Euler method that could stand improvement: stability and accuracy. Implicit
within these categories is the cost of computation. Since the step-size of the
Euler method has strict size requirements for stability and accuracy, a large
number of function evaluations are required, thus increasing the cost of com­
putation. Each of these considerations will be discussed further in the following
sections. In the next section we will show methods that improve the order of
the accuracy.

RUNGE·KUTIA METHODS

Runge-Kutta methods are explicit algorithms that involve evaluation of the
function f at points between Xi and Xi + l' The general formula can be written as

where

v

U i + 1 = U i + 2: wjKj
j=1

(1.24)

(1.25)
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(1.26)

Notice that if v = 1, WI = 1, and K 1 = hf(x;, u;), the Euler method is obtained.
Thus, the Euler method is the lowest-order Runge-Kutta' formula. For higher­
order formulas, the parameters w, C, and a are found as follows. For example,
if v = 2, first expand the exact solution of (1.7) in a Taylor's series,

Y(Xi+1) = y(x) + hf(x;, y(x;)) + ~~ f'(x;, y(x)) + 0(h3
)

Next, rewrite f'(x;, y(x)) as

d~ = a~ + af; dy I
d d

(fx + fyf);
x ax ay x X=Xi

Substitute (1.27) into (1.26) and truncate the 0(h3
) term to give

h2

Ui+1 = U; + h~ + 2" (fx + fyf);

Expand each of the K/s about the ith position. To do so, denote

K1 = hf(x;, u;) = h~

and

(1.27)

(1.28)

(1.29a)

(1.29b)

Recall that for any two functions 'Y) and <p that are located near x; and U;,

respectively,

f('Y), <p) = f(x;, u;) + ('Y) - x;)fx(x;, u;) + (<p - u;)fy(x;, u;)

Using (1.30) on K 2 gives

K2 = h(f; + c2hfx + a21K d y)

or

K2 = h~ + h2(C2fx + a2dyf);

Substitute (1.29a) and (1.31) into (1.24):

U;+l = U; + w1hf; + w2h~ + w2h2c2(fx); + a21w2h2(fyf);

Comparing like powers of h in (1.32) and (1.28) shows that

WI + 0>2 = 1.0

W2C2 = 0.5

(1.30)

(1.31)

(1.32)

The Runge-Kutta algorithm is completed by choosing the free parameter; i.e.,
once either WI' W2' C2' or a21 is chosen, the others are fixed by the above formulas.
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If Cz is set equal to 0.5, the Runge-Kutta scheme is

13

Ui+l = Ui + hl(xi + ~h, Ui + ~hl;),

Uo = Yo

or a midpoint method. For Cz = 1,

h
U i + 1 = Ui + "2 [I; + I(xi + h, Ui + hj;)L

Uo = Yo

i = 0, 1, ... , N - 1

0,1, ... , N - 1

(1.33)

(1.34)

These two schemes are graphically interpreted in Figure 1.2. The methods are
second-order accurate since (1.28) and (1.31) were truncated after terms of O(hZ).

If a pth-order accurate formula is desired, one must take v large enough
so that a sufficient number of degrees of freedom (free parameters) are available
in order to obtain agreement with a Taylor's series truncated after terms in hP •

A table of minimum such v for a given p is

p

v

Since v represents the number of evaluations of the function I for a particular
i, the above table shows the minimum amount of work required to achieve
a desired order of accuracy. Notice that there is a jump in v from 4 to 6 when
p goes from 4 to 5, so traditionally, because of the extra work, methods with
p > v have been disregarded. An example of a fourth-order scheme is the

(0)

+LOPE=f(Xi+h,Ui+hf (Ui»=S2

// I

SL¥<toPE=f(~~=SI: UI+I

Ui :

- I, I SLOPE= SI+S2
I --

I I 2
, I
I I

Xi Xi

(b)

SLOPE=S3

fiGURE 1.1. Ramge-I{utta interpretations. (a) (q. (1.34). (b) Eq. (1.33).
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Runge-Kutta-Gill Method [41] and is:

Ui + 1 = Ui + HKI + K4) + HbK2 + dK3 )

K 2 = hf(xi + ~h, U i + ~KI)

K3 = hf(xi + ~h, Ui + aKI + bK2)

K4 = hf(xi + h, Ui + cK2 + dK3)

0- 1 2 - 0
a =

2
b =

2

0 0
c =

2 '
d = 1 + -

2

for

(1.35)

i = 0, 1, ... , N - 1 and Uo = Yo

The parameter choices in this algorithm have been made to minimize round-off
error.

Use of the explicit Runge-Kutta formulas improves the order of accuracy,
but what about the stability of these methods? For example, if A is real, the
second-order Runge-Kutta algorithm is stable for the region - 2.0 ~ Ah ~ 0,
while the fourth-order Runge-Kutta-Gill method is stable for the region
-2.8 ~ Ah ~ 0.

EXAMPLE 3

A thermocouple at equilibrium with ambient air at lOoC is plunged into a warm­
water bath at time equal to zero. The warm water acts as an infinite heat source
at 20°C since its mass is many times that of the thermocouple. Calculate the
response curve of the thermocouple.

Data: Time constant of the thermocouple = 0.4 min-I.

SOLUTION

Define

Cp = thermal capacity of the thermocouple

U = heat transfer coefficient of the thermocouple

A = heat transfer area of thermocouple

t = time (min)

T, Tp' To = temperature of thermocouple, water, and ambient air
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T - T
6 = ---"'p-­

Tp - To

C
'T] = U~ = time constant of the thermocouple

t
t* - 10

15

T = lOoC at t = 0

The governing differential equation is Newton's law of heating or cooling and
is

dT
Cp di = UA(Tp -. T),

If the response curve is calculated for 0 :;;; t :;;; 10 min, then

d6
dt*

The analytical solution is

-256,

6 = e-25t*,

6 = 1 at t = 0

o:;;; t* :;;; 1

Now solve the differential equation using the second-order Runge-Kutta method
[Eq. (1.34)]:

Uo = 1

where

U;+l = U; + ~ [I; + f«( + h, U; + hi;)],

-25u;

i = 0, 1, ... , N - 1

f«( + h, U; + hi;) = -25(u; + hf;)

and using the Runge-Kutta-Gill method [Eq. (1.35)]:

Uo = 1

U;+l = u; + ~(Kl + K4) + ~(bK2 + dK3) , i = 0, 1, ... , N - 1

K 1 = -25hu;

K2 = -25h(u; + !K1)

K3 = -25h(u; + aK1 + bK2)

K4 = - 25h(U; + cK2 + dK3)

Table 1.3 shows the generated results. Notice that for N = 20 the second­
order Runge-Kutta method shows large discrepancies when compared with the
analytical solution. Since A = - 25, the maximum stable step-size for this method
is h = 0.08, and for N = 20, h is very close to this maximum. For the
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dO
- 250, 0 = t at t* = 0TABLE 1.3 Comparison of Runge-Kutta Methods dt* =

Second~Order Runge-Kutta
Method Runge-Kutta-Gill Method

Analytical
t* Solution N = 20 N = 200 N = 20 N = 200

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.20000 0.67379( - 02) 0.79652(-01) 0.68350( -02) 0.89356(-02) 0.67380( -02)
0040000 OA5400( - 04) 0.63444( - 02) 0046717(-04) 0.79845(-04) OA5401( - 04)
0.60000 0.30590( -06) 0.50534( -03) 0.31931( - 06) 0.71346(-06) 0.30591( -06)
0.80000 0.20612( -08) OA0252( -04) 0.21825( -08) 0.63752( -08) 0.20612( - 08)
1.00000 0.13888( -10) 0.32061( - 05) 0.14917( -10) 0.56966( -10) 0.13889(-10)

Runge-Kutta-Gill method the maximum stable step-size is h = 0.112, and h
never approaches this limit. From Table 1.3 one can also see that the Runge­
Kutta-Gill method produces a more accurate solution than the second-order
method, which is as expected since it is fourth-order accurate. To further this
point, refer to Table 1.4 where we compare a first (Euler), a second, and a
fourth-order method to the analytical solution. For a given N, the accuracy
increases with the order of the method, as one would expect. Since the Runge­
Kutta-Gill method (RKG) requires four function evaluations per step while the
Euler method requires only one, which is computationally more efficient? One
can answer this question by comparing the RKG results for N = 100 with the
Euler results for N = 800. The RKG method (N = 100) takes 400 function
evaluations to reach t* = 1, while the Euler method (N = 800) takes 800. From
Table 1.4 it can be seen that the RKG (N = 100) results are more accurate than
the Euler (N = 800) results, and require half as many function evaluations. It
is therefore shown that for this problem although more function evaluations per
step are required by the higher-order accurate formulas, they are computation­
ally more efficient when trying to meet a specified error tolerance (this result
cannot be generalized to include all problems).

Physically, all the results in Tables 1.3 and 1.4 have significance. Since
e = (Tp - T)/(Tp - To), initially T = To and e = 1. When the thermocouple
is plunged into the water, the temperature will begin to rise and Twill approach
Tp , that is, e will go to O.

So far we have always illustrated the numerical methods with test problems
that have an analytical solution so that the errors are easily recognizable. In a
practical problem an analytical solution will not be known, so no comparisons
can be made to find the errors occurring during computation. Alternative strat­
egies must be constructed to estimate the error. One method of estimating the
local error would be to calculate the difference between u,!+ 1 and Ui + 1 where
U i + 1 is calculated using a step-size of hand U'!+l using a step-size of h/2. Since
the accuracy of the numerical method depends upon the step-size to a certain
power, U'!+l will be a better estimate for Y(Xi +l) than Ui + 1• Therefore,



TABU 1.4 Comparison of Runge·Kutta Methods with the Euler Method
dO- = -250, 0 = 1 at t* = 0
dt*

Second·Order Runge.Kutta
Method Runge-Kutta-Gill Method Euler Method

Analytical
t* Solution N = 100 N = 800 N = 100 N = 800 N = 100 N = 800

0.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.20000 0.67379( -02) 0.71746( -02) 0.67436( -02) 0.67393(-02) 0.67379( -02) 0.31712( -02) 0.62212( - 02)
0.40000 0.45400(-04) 0.51476(-04) 0.45476( - 04) 0.45418(-04) 0.45400( - 04) 0.10057(-04) 0.38703(-04)
0.60000 0.30590( -06) 0.36932( - 04) 0.30667( - 06) 0.30609( -06) 0.30590( -06) 0.31892( -07) 0.24078( -06)
0.80000 0.20612( - 08) 0.26497( -08) 0.20680( - 08) 0.20628( - 08) 0.20612( -08) 0.10113(-09) 0.14980(-08)
1.00000 0.13888( -10) 0.19011( -10) 0.13946( -10) 0.13902( -10) 0.13888( -10) 0.32072( -12) 0.93191( -11)

e'
~
(J)

~
s=
$:
(J)

9'
o
0..
VI

-"'-I



18

and

Initial-Value Problems for Ordinary Differential Equations

For Runge-Kutta formulas, using the one-step, two half-steps procedure can be
very expensive since the cost of computation increases with the number of
function evaluations. The following table shows the number of function evalu­
ations per step for pth-order accurate formulas using two half-steps to calculate
U7+1:

p

Evaluations of
fper step

2

5

3

8

4 5

11 14

Take for example the Runge-Kutta-Gill method. The Gill formula requires four
function evaluations for the computation of Ui+1 and seven for U7+1' A better
procedure is Fehlberg's method (see [5]), which uses a Runge-Kutta formula of
higher-order accuracy than used for Ui+1 to compute U7+1' The Runge-Kutta­
Fehlberg fourth-order pair of formulas is

[25 k 1408k 2197k 1k ]
Ui + 1 = Ui + 216 1 + 2565 3 + 4104 4 - :5 5 ,

[
16 k 6656 k 28561 k 9 k + 2 k ]

U i + 135 1 + 12825 3 + 56430 4 - 55 5 55 6 ,

where

k1 = hf(xi, uJ
k2 = hf(xi + ~h, Ui + ~kl)

k3 = hf(Xi + ih, ui + iik1 + !zk2)

k4 = hf(xi + Hh, Ui + ~~~~kl - iig~k2 + ii~~k3)

k - hf( + h + mk 8k + 3680k - M2..k)5 - Xi ,Ui 216 1 - 2 ill 3 4104 4

On first inspection the system (1.36) appears quite complicated, but it can be
programmed in a very straightforward way. Notice that the formula for U i + 1 is
fourth-order accurate but requires five function evaluations as compared with
the four of the Runge-Kutta-Gill method, which is of the same order accuracy.
However, if ei+l is to be estimated, the half-step method using the Runge-Kutta­
Gill method requires eleven function evaluations while Eq. (1.36) requires only
six-a considerable decrease! The key is to use a pair of formulas with a common
set of k/s. Therefore, if (1.36) is used, as opposed to (1.35), the accuracy is
maintained at fourth-order, the stability criteria remains the same, but the cost
of computation is significantly decreased. That is why a number of commercially
available computer programs (see section on Mathematical Software) use Runge­
Kutta-Fehlberg algorithms for solving IVPs.
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(1.37)

In this section we have presented methods that increase the order of ac­
curacy, but their stability limitations remain severe. In the next section we discuss
methods that have improved stability criteria.

IMPLICIT METHODS

If we once again consider Eq. (1.7) and expand y(x) about the point Xi + 1 using
Taylor's theorem with remainder:

Y(Xi) = Y(Xi+1) - hy'(Xi+1) + ~~ Y"(~i)'

Substitution of (1.7) into (1.37) gives

y(xi) = Y(Xi+1) - hf(xi+1' Y(Xi+1))

h2 _ _

+ 2! t: (~, y(~)), (1.38)

A numerical procedure of (1.7) can be obtained from (1.38) by truncating after
the second term:

Uo = Yo

i = 0, 1, ... , N - 1, (1.39)

(1.40)

Equation (1.39) is called the implicit Euler method because the function f is
evaluated at the right-hand side of the subinterval. Since the value of U i + 1 is
unknown, (1.39) is nonlinear iffis nonlinear. In this case, one can use a Newton
iteration (see Appendix B). This takes the form

[s+1] _ h[fl afl ([S+1] Is] )]Ui+1 - [s]. + ay [s] Ui+1 - Ui+1 + Ui
u 1+1 U l +l

or after rearrangement

( 1 - h af) I ([S+1] - [s]) - hil Is]ay u['] Ui+1 Ui+1 - ['I + Ui - Ui+1
1+1 U 1+ 1

where U~11 is the sth iterate of Ui+1. Iterate on (1.41) until

IU~~";.1] - U!111 ~ TOL

(1.41)

(1.42)

where TOL is a specified absolute error tolerance.
One might ask what has been gained by the implicit nature of (1.39) since

it requires more work than, say, the Euler method for solution. If we apply the
implicit Euler scheme to (1.17) (X. real),
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(1.43)_ ( 1 ) _ ( 1 );+1
U; + 1 - 1 _ h'A U; - 1 _ h'A Yo

If 'A < 0, then (1.39) is stable for all h > °or it is unconditionally stable, and
never oscillates.

The implicit nature of the method has stabilized the algorithm, but unfor­
tunately the scheme is only first-order accurate. To obtain a higher order of
accuracy, combine (1.38) and (1.10) to give

i = 0, 1, ... , N - 1,

2[Y(Xi+1) - y(x;)] = h[/;+1 + /;] + O(h3
)

The algorithm associated with (1.44) is

h
U;+1 = U; + 2 [/;+1 + /;],

(1.44)

(1.45)

Uo = Yo

which is commonly called the trapezoidal rule. Equation (1.45) is second-order
accurate, and the stability of the scheme can be examined by applying the method
to (1.17), giving ('A real)

(1 + ¥)
(1 _~h)

;+1

Yo (1.46)

If 'A < 0, then (1.45) is unconditionally stable, but notice that if h'A < - 2 the
method will produce oscillations in the sign of the error. A summary of the
stability regions ('A real) for the methods discussed so far is shown in Table 1.5.

From Table 1.5 we see that the Euler method requires a small step-size
for stability. Although the criteria for the Runge-Kutta methods are not as

dy
TABLE 1.5 Comparison of Methods Based upon dx = -TY, y(O) = t, T > 0 and

is a real constant

Stable Step-Size, Stabie Step-Size, Unstable Order of
Method No Oscillations Oscillations Step-Size Accuracy

Euler (1.11) hT < 1 10;;; hT 0;;; 2 2 < hT 1
Second-order Runge-

Kutta (1.33) hT 0;;; 2 None 2 < hT 2
Runge-Kutta-Gill (1.35) hT 0;;; 2.8 None 2.8 < hT 4
Implicit Euler (1.39) hT < 00 None None 1
Trapezoidal (1.45) hT < 2 2 0;;; hT 0;;; 00 None 2
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(1.47)

stringent as for the Euler method, stable step-sizes for these schemes are also
quite small. The trapezoidal rule requires a small step-size to avoid oscillations
but is stable for any step-size, while the implicit Euler method is always stable.
The previous two algorithms require more arithmetic operations than the Euler
or Runge-Kutta methods when f is nonlinear due to the Newton iteration, but
are typically used for solution of certain types of problems (see section on
stiffness) .

In Table 1.5 we once again see the dilemma of stability versus accuracy.
In the following section we outline one technique for increasing the accuracy
when using any method.

EXTRAPOLATION

Suppose we solve a problem with a step-size of h giving the solution Ui at Xi'
and also with a step-size h/2 giving the solution Wi at Xi' If an Euler method is
used to obtain Ui and Wi' then the error is proportional to the step-size (first­
order accurate). If Y(x i ) is the exact solution at X;, then

Ui = Y(xi) + <l>h

h
Wi = Y(Xi) + <1>2"

where <I> is a constant. Eliminating <I> from (1.47) gives

Y(xi) = 2Wi - Ui (1.48)

If the error formulas (1.47) are exact, then this procedure gives the exact solution.
Since the formulas (1.47) usually only apply as h ~ 0, then (1.48) is only an
approximation, but it is expected to be a more accurate estimate than either Wi
or Ui' The same procedure can be used for higher-order methods. For the trap­
ezoidal rule

EXAMPLE 4

Ui = Y(Xi) + <l>h2

Wi = Y(Xi) + <I> (~) 2

4w· - Ui
Y(Xi) = 1

3

(1.49)

The batch still shown in Figure 1.3 initially contains 25 moles of n-octane and
75 moles of n-heptane. If the still is operated at a constant pressure of 1 at­
mosphere (atm) , compute the final mole fraction of n-heptane, x{.p if the re­
maining solution in the still, Sf, totals 10 moles.
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fiGURE 1.3 Batch still.

Still

D 'YH' Distillate

Data: At 1 atm total pressure, the relationship between XH and the mole
fraction of n-heptane in the vapor phase, YH, is

2. 16xH
YH = 1 + 1.16 XH

SOLUTION

An overall material balance is

dS = -dD

A material balance of n-heptane gives

d(xHS)

Combination of these balances yields

rSf dS rx
{, dXH

Js o S = Jx'i, YH - XH

where So = 100, Sf = 10, x~ = 0.75.
Substitute for YH and integrate to give

(
Sf) (1 - X~)[(l _ X~)(X~)]1/1.16
SO 1 - x~ 1 - x~ x~

and

X~ = 0.37521825

Physically, one would expect XH to decrease with time since heptane is lighter
than octane and would flash in greater amounts than would octane. Now compare
the analytical solution to the following numerical solutions. First, reformulate
the differential equation by defining

So - S
t=---"---

So - Sf
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so that

Thus:

dXH-=
dt

O~t~l

1.16 (Sf - So) xH(l - XH)

(So(l - t) + Sft) (1 + 1. 16xH) ,
at t = 0

23

If an Euler method is used, the results are shown in Table 1.6. From a practical
standpoint, all the values in Table 1.6 would probably be sufficiently accurate
for design purposes, but we provide the large number of significant figures to
illustrate the extrapolation method. A simple Euler method is first-order ac­
curate, and so the truncation error should be proportional to h(1/N). This is
shown in Table 1.6. Also notice that the error in the extrapolated Euler method
decreases faster than that in the Euler method with increasing N. The truncation
error of the extrapolation is approximately the square of the error in the basic
method. In this example one can see that improved accuracy with less compu­
tation is achieved by extrapolation. Unfortunately, the extrapolation is successful
only if the step-size is small enough for the truncation error formula to be
reasonably accurate. Some nonlinear problems require extremely small step­
sizes and can be computationally unreasonable.

Extrapolation is one method of increasing the accuracy, but it does not
change the stability of a method. There are commercial packages that employ
extrapolation (see section on Mathematical Software), but they are usually based
upon Runge-Kutta methods instead of the Euler or trapezoidal rule as outlined

TABU t.6 Errors in the Euler Method and
the Extrapolated Euler Method for Exam·
pie 4

Number of
Steps

Absolute
Total Number Value
of Steps of the Error

Euler Method

50
100
200
400
800

1,600

50
100
200
400
800

1,600

0.01373
0.00675
0.00335
0.00166
0.00083
0.00041

Extrapolated Euler Method

50-100 150
100-200 300
200-400 600
400-800 1,200
800-1600 2,400

0.000220
0.000056
0.000013
0.000003
0.000001
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(1.50)

above. In the following section we describe techniques currently being used in
software packages for which stability, accuracy, and computational efficiency
have been addressed in detail (see, for example, [5]).

MULTISTEP METHODS

Multistep methods make use of information about the solution and its derivative
at more than one point in order to extrapolate to the next point. One specific
class of multistep methods is based on the principle of numerical integration. If
the differential equation y' = f(x, y) is integrated from Xi to Xi+l' we obtain

J:"+1 y' dx = J:"+1 f(x, y(x» dx

or

Y(Xi+l) = y(x;) + {'+1 f(x, y(x» dx

To carry out the integration in (1.50), approximate f(x, y(x» by a polynomial
that interpolates f(x, y(x» at k points, Xi' Xi-l, ... , Xi-k+l. If the Newton
backward formula of degree k-l is used to interpolate f(x, y(x», then the
Adams-Bashforth formulas [1] are generated and are of the form

where

k

Ui+l = Ui + h 2,bjU!-j+l
j=l

(1.51)

U; = f(xj' Uj)

This is called a k-step formula because it uses information from the previous k
steps. Note that the Euler formula is a one-step formula (k = 1) with b l = 1.
Alternatively, if one begins with (1.51), the coefficients bj can be chosen by
assuming that the past values of U are exact and equating like powers of h in
the expansion of (1.51) and of the local solution Zi+1 about Xi. In the case of a
three-step formula

Substituting values of Z into this and expanding about Xi gives

Zi+l = Zi + hz;[b1 + b2 + b3] - h2z7[b2 + 2b3] + ~~ zt[b2 + 4b3] + ...

where
h2

Z,'-l = z,~ - hz'! + - Z~II +
I 2!'

4h2

Z,'-2 = z,' - 2hz~' + - Z~II +, 2!'
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The Taylor's series expansion of Zi+ 1 is

hZ h3

Z,"+l = Z," + hZ,~ + -z" + -ZIII +2! l 3! l

and upon equating like power of h, we have

bl + bz + b3 = 1

25

1
-2:

The solution of this set of linear equations is bl = ~, bz = -~, and b3

Therefore, the three-step Adams-Bashforth formula is

Ui + l = Ui + :2 [23ul - 16ul_ l + 5u;_z]

2.­
12·

(1.52)

with an error ei + 1 = O(h4) [generally ei + l = O(hk + l ) for any value of k; for
example, in (1.52) k = 3].

A difficulty with multistep methods is that they are not self-starting. In
(1.52) values for Ui, u;, U;-l, and u;-z are needed to compute Ui+l' The tradi­
tional technique for computing starting values has been to use Runge-Kutta
formulas of the same accuracy since they only require Uo to get started. An
alternative procedure, which turns out to be more efficient, is to use a sequence
of s-step formulas with s = 1, 2, . . . , k [6]. The computation is started with
the one-step formulas in order to provide starting values for the two-step formula
and so on. Also, the problem of getting started arises whenever the step-size h
is changed. This problem is overcome by using a k-step formula whose coeffi­
cients (the b/s) depend upon the past step-sizes (hs = Xs - Xs-l' S = i, i - 1,
... ,i - k + 1) (see [6]). This kind of procedure is currently used in commercial
multistep routines.

The previous multistep methods can be derived using polynomials that
interpolated at the point Xi and at points backward from Xi' These are sometimes
known as formulas of explicit type. Formulas of implicit type can also be derived
by basing the interpolating polynomial on the point Xi+l' as well as on Xi and
points backward from Xi' The simplest formula of this type is obtained if the
integral is approximated by the trapezoidal formula. This leads to

which is Eq. (1.45). Iffis nonlinear, U i + 1 cannot be solved for directly. However,
we can attempt to obtain Ui + 1 by means of iteration. Predict a first approximation
U)~l to Ui+l by using the Euler method

[0] _ + h,-r
U i + 1 - Ui :Ii (1.53)
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(1.54)

Then compute a corrected value with the trapezoidal formula

ul~~l] = Ui + ~ Lt; + !(ull1)], s = 0, 1, ...

For most problems occurring in practice, convergence generally occurs within
one or two iterations. Equations (1.53) and (1.54) used as outlined above define
the simplest predictor-corrector method.

Predictor-corrector methods of higher-order accuracy can be obtained by
using the multistep formulas such as (1.52) to predict and by using corrector
formulas of type

k

Ui + 1 = Ui + h L bj U;_j+l
j=O

(1.55)

Notice that j now sums from zero to k. This class of corrector formulas is called
the Adams-Moulton correctors. The b/s of the above equation can be found in
a manner similar to those in (1.52). In the case of k = 2,

(1.56)

with a local truncation error of 0(h4). A similar procedure to that outlined for
the use of (1.53) and (1.54) is constructed using (1.52) as the predictor and
(1.56) as the corrector. The combination (1.52), (1.56) is called the Adams­
Moulton predictor-corrector pair of formulas.

Notice that the error in each of the formulas (1.52) and (1.56) is 0(h4).

Therefore, if ei + 1 is to be estimated, the difference

Ui+l from (1.56), Ui +l from (1.52)

would be a poor approximation. More precise expressions for the errors in these
formulas are [5]

for (1.52)

for (1.56)

where Xi - 2 < ~ and ~* < X i + 1• Assume that ~* = ~ (this would be a good
approximation for small h), then subtract the two expressions.

ei+l - ei + 1 = Ui+l - Ui + 1 = - fzh4y""(~)

Solving for h4y""(~) and substituting into the expression ei+l gives

1*1_.1.1* 1ei + 1 - 10 Ui + 1 - Ui+l

Since we had to make a simplifying assumption to obtain this result, it is better
to use a more conservative coefficient, say /;. Hence,

I * 1-.1 I * Iei + 1 - 8 Ui + 1 - Ui + 1 (1.57)
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Note that this is an error estimate for the more accurate value so that Ui+1 can
be used as the numerical solution rather than Ui +1' This type of analysis is not
used in the case of Runge-Kutta formulas because the error expressions are very
complicated and difficult to manipulate in the above fashion.

Since the Adams-Bashforth method [Eq. (1.51)] is explicit, it possesses
poor stability properties. The region of stability for the implicit Adams-Moulton
method [Eq. (1.55)] is larger by approximately a factor of 10 than the explicit
Adams-Bashforth method, although in both cases the region of stability de­
creases as k increases (see p. 130 of [4]). For the Adams-Moulton predictor­
corrector pair, the exact regions of stability are not well defined, but the stability
limitations are less severe than for explicit methods and depend upon the number
of corrector iterations [4].

The multistep integration formulas listed above can be represented by the
generalized equation:

k j k2

Ui + 1 = 2: ai+1,j Ui -j+1 + h i+ 1 2: b i + 1,j u:- j + 1
j=l j=O

(1.58)

which allows for variable step-size through h i + 1, a i+ 1,j, and b i + 1,j' For example,
if k1 = 1, a i + 1,1 = 1 for all i, b i + 1,j = bi,j for all i, and kz = q - 1, then a
qth-order implicit formula is obtained. Further, if bi + 1,0 = 0, then an explicit formula
is generated. Computationally these methods are very efficient. If an explicit
formula is used, only a single function evaluation is needed per step. Because
of their poor stability properties, explicit multistep methods are rarely used in
practice. The use of predictor-corrector formulas does not necessitate the so­
lution of nonlinear equations and requires S + 1 (S is the number of corrector
iterations) function evaluations per step in x. Since S is usually small, fewer
function evaluations are required than from an equivalent order of accuracy
Runge-Kutta method and better stability properties are achieved. If a problem
requires a large stability region (see section of stiffness), then implicit backward
formulas must be used. If (1.58) represents an implicit backward formula, then
it is given by

k j

Ui + 1 2: a i + 1,j Ui - j + 1 + h i + 1 b i + 1,0 u:+ 1
j=l

or
Ui + 1 = bi+1,0 hi+1 f(Ui+1) + <Pi (1.59)

where <Pi is the grouping of all known information. If a Newton iteration is
performed on (1.59), then

[1 - bi+1,0 h i + 1 :; ui1J [Ui~~l] - ui11]

= b i + 1,0 h i + 1 fl u[s] + <Pi - ui11'
i+1

s = 0,1, ... (1.60)
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Therefore, the derivative aflay must be calculated and the function f evaluated
at each iteration. One must "pay" in computation time for the increased stability.
The order of accuracy of implicit backward formulas is determined by the value
of k 1• As k1 is increased, higher accuracy is achieved, but at the expense of
decreased stability (see Chapter 11 of [4]).

Multistep methods are frequently used in commercial routines because of
their combined accuracy, stability, and computational efficiency properties (see
section on Mathematical Software). Other high-order methods for handling
problems that require large regions of stability are discussed in the following
section.

HIGH-ORDER METHODS BASED ON KNOWLEDGE Of {)ff{Jy

A variety of methods that make use of aflay has been proposed to solve problems
that require large stability regions. Rosenbrock [7] proposed an extension of the
explicit Runge-Kutta process that involved the use of aflay. Briefly, if one allows
the summation in (1.25) to go from 1 to j, i.e., an implicit Runge-Kutta method,
then,

(1.61)

If kj is expanded,

(

j-1 )
kj = hf U i + 2: a'zkzZ= 1 ]

(1.62)

and rearranged to give

[
af ( j -1 _ )] _ ( j -1 _ )

1 - hajj - Ui + 2: a'lkZ kj = hf Ui + 2: a·zkzay Z=1 ] Z=1 ]
(1.63)

the method is called a semi-implicit Runge-Kutta method. In the function f, it
is assumed that the independent variable x does not appear explicitly, i.e., it is
autonomous. Equation (1.63) is used with

v

Ui + 1 = Ui + 2: wjkj
j=1

(1.64)

to specify the method. Notice that if the bracketed term in (1.63) is replaced
by 1, then (1.63) is an explicit Runge-Kutta formula. Calahan [8], Allen [9],
and Caillaud and Padmanabhan [10] have developed these methods into algo­
rithms and have shown that they are unconditionally stable with no oscillations
in the solution. Stabilization of these algorithms is due to the bracketed term in
(1.63). We will return to this semi-implicit method in the section Mathematical
Software.

Other methods that are high-order, are stable, and do not oscillate are the
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second- and third-order semi-implicit methods of Norsett [11], more recently
the diagonally implicit methods of Alexander [12], and those of Bui and Bui
[13] and Burka [14].

STIffNESS

Up to this point we have limited our discussion to a single differential equation.
Before looking at systems of differential equations, an important characteristic
of systems, called stiffness, is illustrated.

k 1

Suppose we wish to model the reaction path A :;::::=: B starting with pure A.
k2

The reaction path can be described by

dCA--;It = - k1CA + kZCB (1.65)

where

CA = C1 at t = 0

CA = concentration of A

t = time

One can define Y1 = (CA - C~)I(C~ - C~) where C~ is the equilibrium
value of CA (t -i> 00). Equation (1.65) becomes

dYl =dt -(k1 + kz) Yl' Yl = 1 at t = 0 (1.66)

If k 1 = 1000 and kz = 1, then the solution of (1.66) is

(1.67)

If one uses the Euler method to solve (1.66), then

h < llOl
for stability. The time required to observe the full evolution of the solution is

k3

very short. If one now wishes to follow the reaction path B -i> D, then

dCB 0----;[( = -k3CB , CB = CB at t = 0 (1.68)

If k3 = 1 and Yz = CB/C~, then the solution of (1.68) is

Yz = e- t

If the Euler method is applied to (1.68), then

h<1

(1.69)
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for stability. The time required to observe the full evolution of the solution is
long when compared with that required by (1.66). Next suppose we wish to
simulate the reaction pathway

(1.71)

(1.70)

[l,OyQy = f, yeO)

The governing differential equations are

dCA"dt = -k1CA + k2CB

dCB _ k C - (k k )Cdt - 1 A 2 + 3 B'

CA = Cl, CB = 0 at t = 0

This system can be written as

dy
dt

where

The solution of (1.71) is

(1.72)

A plot of (1.72) is shown in Figure 1.4. Notice that Yl decays very rapidly, as
would (1.67), whereas Y2 requires a long time to trace its full evolution, as would
(1.69). If (1.71) is solved by the Euler method

1
h < - (1.73)

IAG'lmax

where III. glma. is the absolute value of the largest eigenvalue of Q. We have the
unfortunate situation with systems of equations that the largest step-size is gov­
erned by the largest eigenvalue while the integration time for full evolution of
the solution is governed by the smallest eigenvalue (slowest decay rate). This
property of systems is called stiffness and can be quantified by the stiffness ratio
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fiGURE 1.4 Results from Eq. (1.72).

[15] SR,

maxlrealpartofA 6',1
i

SR = . I 1 f I'mm rea parto A6',
;

realpartof A6',<0, i= 1, ... ,m,

(1.74)

m = numberofequationsinthesystem

which allows for imaginary eigenvalues. Typically SR = 20 is not stiff, SR = 103

is stiff, and SR = 106 is very stiff. From (1.72) SR = 10
1
01 = 103

, and the system
(1.71) is stiff. If the system of equations (1.71) were nonlinear, then a lineari­
zation of (1.71) gives

where

dy
dt = Q(t;)y(t;) + J(t;)(y - yeti))

yeti) = vector y evaluated at time t;

Q(t;) = matrix Q evaluated at time t;

J(t;) = matrix J evaluated at time t;

(1.75)
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The matrix J is called the Jacobian matrix, and in general is

all all all
aY1' ayz' ... , aYm

J=
aim aim aim
ay/ ayz' ... , aYm

For nonlinear problems the stiffness is based upon the eigenvalues of J and thus
applies only to a specific time, and it may change with time. This characteristic
of systems makes a problem both interesting and difficult. We need to classify
the stiffness of a given problem in order to apply techniques that "perform"
well for that given magnitude of stiffness. Generally, implicit methods "out­
perform" explicit methods on stiff problems because of their less rigid stability
criterion. Explicit methods are best suited for nonstiff equations.

SYSnMS Of DiffERENTIAL EQUATIONS

A straightforward extension of (1.11) to a system of equations is

i = 0, 1, ... , N - 1 (1.76)

Uo = Yo

Likewise, the implicit Euler becomes

"0 = Yo

while the trapezoid rule gives

h
"i+1 = "i + '2 [f(xi, "i+1) + f(xi, "i)],

Uo = Yo

i = 0, 1, ... , N - 1

i = 0, 1, ... , N - 1

(1.77)

(1.78)

For a system of equations the Runge-Kutta-Fehlberg method is

* + [16 k 6656 k 28561 k 9 k 2 k ]"i + 1 = "i 135 1 + 12825 3 + 56430 4 - 55 5 + 55 6

where

k . = [k{l} k{Z} k~m}]T
Z l , I'··" I

(1.79)
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and, for example,

k {]} - h.f ( {I} {2} {m})
1 - 1j Xi' Ui ,Ui , ... ,Ui , j = 1, ... ,m

33

<Pji = u}J1 + ~k¥1

k¥1 = h/i(xi + ~h, <P1i' <P2;, ... , <Pmi), j = 1, ... ,m

(1.80)

The Adams-Moulton predictor-corrector formulas for a system of equations are

U i + 1 = Ui + :2 [23uI - 16uI_1 + 5uI-z]

*- h[5' 8' ']Ui+ 1 - U i + 12 Ui+1 + U i - Ui-1

An algorithm using the higher-order method of Caillaud and Padmanabhan
[10] was formulated by Michelsen [16] by choosing the parameters in (1.63) so
that the same factor multiplies each k;, thus minimizing the work involved in
matrix inversion. The final scheme is

i = 0, 1, ... , N - 1

Uo = Yo

_ [ af]-l
k 1 = h I - hal ay (Ui) feu;)

_ [ af] -1 _
k2 = h I - hal ay (Ui) f(u i + b2k1)

_ [ af] -1 _ _
k3 = h I - hal ay (Ui) (b31k 1 + b32k2)

where I is the identity matrix,

a1 = 0.43586659

b2 = 0.75

-1
b31 = -6 (8at - 2a1 + 1)

a1

2
b32 = -9 (6at - 6a1 + 1)

a1

(1.81)
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(1.82)

As previously stated, the independent variable x must not explicitly appear in
f. If x does explicitly appear in f, then one must reformulate the system of
equations by introducing a new integration variable, t, and let

dx- = 1
dt

be the (m + 1) equation in the system.

EXAMPLE 5

Referring to Example 1, if we now consider the reactor to be adiabatic instead
of isothermal, then an energy balance must accompany the material balance.
Formulate the system of governing differential equations and evaluate the stiff­
ness. Write down the Euler and the Runge-Kutta-Fehlberg methods for this
problem.

Data
Cp = 12.17 X 104 J/(kmole'°C)

- b.Hr = 2.09 x 108 J/kmole

SOLUTION

Let T* = TlTo, TO = 423 K (150°C). For the "short" reactor, .

dy [3.21]
dx = -0.1744 exp T* y (material balance)

dT* [3.21]dx = 0.06984 exp T* y (energy balance)

y = 1, T* = 1 at x = 0

First, check to see if stiffness is a problem. To do this the transport equations
can be linearized and the Jacobian matrix formed.

J =

(
3.21)-0.1744 exp T*

(
3.21)0.06984 exp T*

0.56 (3.21)
(T*)Z exp T* y

- 0.224 (3.21)
(T*)Z exp T* y

At the inlet T* = 1 and y = 1, and the eigenvalues of J are approximately
(6.3, -7.6). Since T* should increase as y decreases, for example, if T* = 1.12
and y = 0.5, then the eigenvalues of J are approximately (3.0, -4.9). From
the stiffness ratio, one can see that this problem is not stiff.
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Euler:

U{1} = U{1} - 01744 exp [3.21] U{1} hz+1 I' U{2} z
z

U{2} = U{2} + 006984 exp [3.21] U{1} h
z+ 1 z· U{2} z

z

ub1
} = 1

U{2} = 1
o

Runge-Kutta-Fehlberg:

ui21 = ui1}+ [C1·ki1}+ C2'k~1} + C3·kr} + C4'k~1}]

U{2} = U{2} + [C1'k{2} + C2·k{2} + C3·k{2} + C4·k{2}]z+l z 1 3 4 5

U{1}* = u{l} + [C5·k{l} + C6·k{1} + C7·k{1} + C8·k{1} + C9·k{1}]z+1 I 1 3 4 5 6

U{2}* = U{2} + [C5'k{2} + C6·k{2} + C7·k{2} + C8·k{2} + C9·k{2}]z+1 z 1 3 4 5 6

35

C1 = ii6,

C2 = i~~~,

C3 = ~i~~,

C5 = 1~~

C6 = 1~6i;5

C7 = ~~~~6

C4 = -!, C8 = 9-so

C9 = is

Define

[
3.21]F1(A, B) = -0.1744 exp 13 A

[
3.21]F2(A, B) = 0.06984 exp 13 A

then

k{l} = hF1(u{l} U{2})
1 l , l

ki2} = hF2(ui1}, ui2})

k~1} = hF1(ui1} + ~ki1}, ui2} + ~ki2})

k~2} = hF2(ui1} + ~kil}, ui2} + ~ki2})
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(1.84)

(1.86)

(1.85)

Thus far we have only concerned ourselves with constant step-sizes. Variable
step-sizes can be very useful for (1) controlling the local truncation error and
(2) improving efficiency during solution of a stiff problem. This is done in all
of the commercial programs, so we will discuss each of these points in further
detail.

Gear [4] estimates the local truncation error and compares it with a desired
error, TOL. If the local truncation error has been achieved using a step-size hI,

e = <!>h~ + 1 (1.83)

Since we wish the error to equal TOL,

TOL = <!>h~+1

Combination of (1.83) and (1.84) gives

[ ]

1/(P+l)

h - h TOL
2 - 1 e

Equation (1.83) is method-dependent, so we will illustrate the procedure with
a specific method. If we solve a given problem using the Euler method,

Ui+l = Ui + hd(uJ

and the implicit Euler,

(1.87)

and subtract (1.86) and (1.87) from (1.10) and (1.38), respectively (assuming
Ui = Yi), then

Ui+l - Y(Xi+1) = - ~hi Ii + O(hI)

Wi+l - Y(Xi+l) = ~hf Ii + O(hI)

The truncation error can now be estimated by

The process proceeds as follows:

(1.88)

(1.89)

(1.90)

1.

2.
3.

4.

Equations (1.86) and (1.87) are used to obtain Ui+l and Wi+l.

The truncation error is obtained from (1.89).

If the truncation error is less than TOL, the step is accepted; if not, the
step is repeated.

In either case of step(3), the next step-size is calculated according to

(
TOL) 1/2

h2 = hI -­
ei + 1
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To avoid small errors, one can use an h2 that is a certain percentage smaller
than calculated by (1.90).

Michelsen [16] solved (1.81) with a step-size of h and then again with
h/2. The semi-implicit algorithm is third-order accurate, so it may be written as

(1.91)

(1.92)

where gh4 is the dominant, but still unknown, error term. If Ui+1 denotes the
numerical solution for a step-size of h, and OOi+ 1 for a step-size of h/2, then,

Ui+1 = Y(Xi+1) + gh4 + 0(h5
)

OOi+1 = Y(Xi+1) + 2g (i) 4 + 0(h5
)

where the 2g in (1.92) accounts for error accumulation in each of the two
integration steps. Subtraction of the two equations (1.92) from one another gives

(1.93)

Provided ei + 1 is sufficiently small, the result is accepted. The criterion for step­
size acceptance is

where

j = 1,2, ... ,m (1.94)

e{j} = local truncation error for the j component

If this criterion is not satisfied, the step-size is halved and the integration re­
peated. When integrating stiff problems, this procedure leads to small steps
whenever the solution changes rapidly, often times at the start of the integration.
As soon as the stiff component has faded away, one observes that the magnitude
of e decreases rapidly and it becomes desirable to increase the step-size. After
a successful step with hi' the step-size hi+1 is adjusted by

. [{ I e{j} I} -1/4 ]hi+1 = hi mIll 4 max TOL{j} ,3, j = 1, 2, ... , m (1.95)

For more explanation of (1.95) see [17]. A good discussion of computer algo­
rithms for adjusting the step-size is presented by Johnston [5] and by Krogh
[18].

We are now ready to discuss commercial packages that incorporate a variety
of techniques for solving systems of IVPs.

MATHEMATICAL SOfTWARE

Most computer installations have preprogrammed computer packages, i.e., soft­
ware, available in their libraries in the form of subroutines so that they can be
accessed by the user's main program. A subroutine for solving IVPs will be
designed to compute a numerical solution over [xa, XN] and return the value UN
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given xo, XN' and Uo' A typical calling sequence could be

CAll DRIVE (FUNC, X, XEND, U, TOl),

where

FUNC = a user-written subroutine for evaluating f(x, y)

X = Xo

XEND= XN

U = on input contains Uo and on output contains UN

TOL = an error tolerance

This is a very simplified call sequence, and more elaborate ones are actually
used in commercial routines.

The subroutine DRIVE must contain algorithms that:

1. Implement the numerical integration

2. Adapt the step-size

3. Calculate the local error so as to implement item 2 such that the global
error does not surpass TaL

4. Interpolate results to XEND (since h is adaptively modified, it is doubtful
that XEND will be reached exactly)

Thus, the creation of a software package, from now on called a code, is a
nontrivial problem. Once the code is completed, it must contain sufficient doc­
umentation. Several aspects of documentation are significant (from [24]):

1. Comments in the code identifying arguments and providing general instruc­
tions to the user (this is valuable because often the code is separated from
the other documentation)

2. A document with examples showing how to use the code and illustrating
user-oriented aspects of the code

3. Substantial examples of the performance of the code over a wide range of
problems

4. Examples showing misuse, subtle and otherwise, of the code and examples
of failure of the code in some cases.

Most computer facilities have at least one of the following mathematical
libraries:

IMSl [19]
NAG [20]

HARWEll [21]
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The Harwell library contains several IVP codes, IMSL has two (which will be
discussed below), and NAG contains an extensive collection of routines. These
large libraries are not the only sources of codes, and in Table 1.7 we provide a
survey of IVP software (excluding IMSL, Harwell, and NAG). Since the pro­
duction of software has increased tremendously during recent years, any survey
of codes will need continual updating. Table 1.7 should provide the reader with
an appreciation for the types of codes that are being produced, i.e., the under­
lying numerical methods. We do not wish to dwell on all of these codes but only
to point out a few of the better ones. Recently, a survey of IVP software [33]
concluded that RKF45 is the best overall explicit Runge-Kutta routine, while
LSODE is quite good for solving stiff problems. LSODE is the update for
GEAR/GEARB (versions of which are presently the most used stiff IVP solver)
[34].

The comparison of computer codes is a difficult and tricky task, and the
results should always be "taken with a grain of salt." Hull et al. [35] have
compared nonstiff methods, while Enright et al. [36] compared stiff ones. Al­
though this is an important step, it does not bear directly on how practical a
code is. Shampine et al. [37] have shown that how a method is implemented

TABLE. 1.1 (VI' Codes

[22]
[23]

DE is limited to 20 equations [6]
or less: ODE has no size limit

Same as DE/ODE except that [6]
nonlinear sclliar equations can
be coupled to the IVPs

Allow for nonstiff Adams and [24], [25]
stiff backward formulas;
GEARB allows for banded
structure of the Jacobian

Replacement for GEAR/ [26]
GEARB

Differ from GEARIGEARB in [27]
how the variable step-size is
performed

Designed to solve systems aris- [28]
ing from a method of lines
discretization of partial dif­
ferential equations

Name

RKF45
GERK
DE/ODE

DEROOT/OD­
ERT

GEARIGEARB

LSODE

EPISODE/EPI­
SODEB

M3RK

STRIDE
STIFF3
BLSODE
STINT
SECDER

Method Implemented

Runge-Kutta-Fehlberg
Runge-Kutta-Fehlberg
Variable-order Adams multi-

step
Variable-order Adams multi­

step

Variable-order Adams multi­
step and backward multistep

Same as GEARIGEARB

Stabilized explicit Runge-Kutta*

Implicit Runge-Kutta
Semi-implicit Runge-Kutta
Blended multistep'
Cyclic composite multistep'
Variable-order Enright for-

mula'

Comments

See text; Eq. (1.81) with (1.95)
For stiff oscillatory problems

Reference

[29]
[17]
[30]
[31]
[32]

*Method not covered in this chapter.
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may be more important than the choice of method, even when dealing with the
best codes. There is a distinction between the best methods and the best codes.
In [31] various codes for nonstiff problems are compared, and in [38] GEAR
and EPISODE are compared by the authors. One major aspect of code usage
that cannot be tested is the user's attitude, including such factors as user time
constraints, accessibility of the code, familiarity with the code, etc. It is typically
the user's attitude which dictates the code choice for a particular problem, not
the question of which is the best code. Therefore, no sophisticated code com­
parison will be presented. Instead, we illustrate the use of software packages by
solving two problems. These problems are chosen to demonstrate the concept
of stiffness.

The following codes were used in this study:

1. IMSL-DVERK: Runge-Kutta solver.

2. IMSL-DGEAR: This code is a modified version of GEAR. Two methods
are available in this package: a variable-order Adams multistep method and
a variable-order implicit multistep method. Implicit methods require Ja­
cobian calculations, and in this package the Jacobian can be (a) user-sup­
plied, (b) internally calculated by finite differences, or (c) internally cal­
culated by a diagonal approximation based on the directional derivative
(for more explanation see [24]). The various methods are denoted by the
parameter MF, where

MF

10
21
22
23

Method

Adams
Implicit
Implicit
Implicit

Jacobian

User-supplied
Finite differences
Diagonal approximation

3. STIFF3: Implements (1.81) using (1.94) and (1.95) to govern the step-size
and error.

4. LSODE: updated version of GEAR. The parameter MF is the same as for
DGEAR. MF = 23 is not an option in this package.

5. EPISODE: A true variable step-size code based on GEAR. GEAR, DGEAR,
and LSODE periodically change the step-size (not on every step) in order
to decrease execution time while still maintaining accuracy. EPISODE adapts
the step-size on every step (if necessary) and is therefore good for problems
that involve oscillations. For decaying or linear problems, EPISODE would
probably require larger execution times than GEAR, DGEAR, or LSODE.

6. ODE: Variable-order Adams multistep solver.
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(1.96)

We begin our discussions by solving the reactor problem outlined in Ex­
ample 5:

dy [3.21]dx = -0.1744 exp T* Y

dT* [3.21]dx = 0.06984 exp T* Y

Y = T* = 1 at x = 0

Equations (1.96) are not stiff (see Example 1.5), and all of the codes performed
the integration with only minor differences in their solutions. Typical results are
shown in Table 1.8. Notice that a decrease in TOL when using DVERK did
produce a change in the results (although the change was small). Practically
speaking, any of the solutions presented in Table 1.8 would be acceptable. From
the discussions presented in this chapter, one should realize that DVERK, ODE,
DGEAR (MF = 10), LSODE (MF = 10), and EPISODE (MF = 10) use
methods that are capable of solving nonstiff problems, while STIFF3, DGEAR
(MF = 21,22,23), LSODE (MF = 21,22), and EPISODE (MF = 21,22,23)
implement methods for solving stiff systems. Therefore, all of the codes are
suitable for solving (1.96). One might expect the stiff problem solvers to require
longer execution times because of the Jacobian calculations. This behavior was
observed, but since (1.96) is a small system, i.e., two equations, the execution
times for all of the codes were on the same order of magnitude. For a larger
problem the effect would become significant.

Next, we consider a stiff problem. Robertson [39] originallyproposed the

TABU 1.8 Typical Results from Software Packages Using Eq. (1.96)

x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DVERK,
TaL = (-4)

y T*
1.000000 1.00000
0.699795 1.12021
0.528839 1.18868
0.413483 1.23487
0.329730 1.26841
0.266347 1.29379
0.217094 1.31352
0.178118 1.32912
0.146869 1.34164
0.121569 1.35177
0.100931 1.36003

DVERK,
TaL = (-6)

y T*
1.000000 1.00000
0.700367 1.11999
0.529199 1.18853
0.413737 1.23477
0.329919 0.26833
0.266492 1.29373
0.217208 1.31347
0.178209 1.32909
0.146943 1.34161
0.121629 1.35175
0.100980 1.36002

DGEAR
(MF = 21),
TaL = (-4)

Y T*
1.000000 1.00000
0.700468 1.11994
0.529298 1.18849
0.413775 1.23475
0.329864 1.26836
0.266349 1.29379
0.217070 1.31353
0.178076 1.32914
0.146801 1.34167
0.121495 1.35180
0.100864 1.36006

STIFF3,
TaL = (-4)

Y T*
1.000000 1.00000
0.700371 1.11998
0.529208 1.18853
0.413745 1.23477
0.329924 1.26833
0.266497 1.29373
0.217211 1.31347
0.178212 1.32909
0.146945 1.34161
0.121630 1.35175
0.100982 1.36001
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following set of differential equations that arise from an autocatalytic reaction
pathway:

dYl =
dt - 0.04Yl + 104YzY3

dYzdt = 0.04Yl - 104YzY3 - 3 X 107y~

dY3 = 3 X 107y~
dt

(1.97)

The Jacobian matrix is

Yz(O) = 0, Y3(0) = 0 at t = 0

[

-0.04

J = ~.04

104Y3
-104Y3 - 6 X 107Yz

6 X 107Yz
(1.98)

When t varies from 0.0 to 0.02, one of the eigenvalues of J changes from - 0.04
to -2,450. Over the complete range of t, 0 ~ t ~ 00, one of the eigenvalues
varies from -0.04 to -104• Figure 1.5 shows the solution of (1.97) for 0 ~ t ~ 10.
Notice the steep gradient in Yz at small values of t. Thus the problem is very
stiff. Caillaud and Padmanabhan [10], Seinfeld et al. [40], Villadsen and Mich­
elsen [17], and Finlayson [41] have discussed this problem. Table 1.9 shows the

i.0 ~--r------,-----,------,-------,0.36

0.80

0.60

0.40

0.20

0.32

0.28

0.24

0.20

0.00 '"""'-----'-----'-----'------''------' 0.16
0.0 2.0 4.0 6.0 8.0 10.0

fiGURE 1.5 Results from Eq. (1.97).
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results at t = 10. At a TOL of 10 -4 all of the nonstiff methods failed to produce
a solution. At smaller tolerance values, the nonstiff methods failed to produce
a solution or required excessive execution times, i.e., two orders of magnitude
greater than those of the stiff methods. This behavior is due to the fact that the
tolerances were too large to achieve a stable solution (recall that the step-size
is adapted to meet the error criterion that is governed by the value of TOL) or
a solution was obtained but at a high cost (large execution time) because of the
very small step-size requirements of nonstiff methods (see section on stiffness).

TABU 1.9 Comparison of Software Packages on the Robertson Problem
(Results at t = 10)

Execution
Time Ra-

Code MF TOL YI Yz X 104 Y3 tiot
DVERK ( -4) No solution
DVERK (-6) No solution
DVERK ( -8) No solution
ODE ( -4) No solution
ODE ( -6) 0.8411 0.1586 0.1589 339.0
ODE ( -9) 0.8414 0.1623 0.1586 347.0
DGEAR 10 ( -4) No solution
DGEAR 21 ( -4) 0.8414 0.1624 0.1586 0.25
DGEAR 22 ( -4) 0.8414 0.1624 0.1586 1.0
DGEAR 23 ( -4) No solution
DGEAR 10 ( -6) 0.8414 0.1619 0.1586 261.0
DGEAR 21 ( -6) 0.8414 0.1623 0.1586 1.0
DGEAR 22 ( -6) 0.8414 0.1623 0.1586 1.0
DGEAR 23 ( -6) 0.8414 0.1624 0.1586 2.5
LSODE 10 ( -4) No solution
LSODE 21 ( -4) No solution
LSODE 22 ( -4) No solution
LSODE:j: 10 ( -4) No solution
LSODE:j: 21 ( -4) 0.8414 0.1623 0.1586 1.75
LSODE:j: 22 ( -4) 0.8414 0.1623 0.1586 1.75
LSODE 10 ( -6) No solution
LSODE 21 ( -6) 0.8414 0.1623 0.1586 1.75
LSODE 22 ( -6) 0.8414 0.1623 0.1586 1.75
EPISODE 10 ( -4) No solution
EPISODE 21 ( -4) No solution
EPISODE 22 ( -4) No solution
EPISODE 23 ( -4) No solution
EPISODE 10 ( -6) 0.8414 0.1623 0.1586 530.0
EPISODE 21 ( -6) 0.8414 0.1623 0.1586 1.5
EPISODE 22 ( -6) 0.8414 0.1623 0.1586 1.5
EPISODE 23 ( -6) 0.8414 0.1623 0.1586 3.8
STIFF3 ( -4) 0.8414 0.1623 0.1586 1.25
STIFF3 ( -6) 0.8414 0.1623 0.1586 3.0
"EXACT"§ 0.841 0.162 0.159

tExecution time ratio = execution time/execution time of DGEAR [MF = 21, TOL = (-6)].

+Tolerance for Y2 is (-8); for YJ and Y3, (-4).

§Caillaud and Padmanabhan [10].
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TABU 1.10 Comparison of Code Results to the "Exad" Solution for Time = 1, 4,
and 10

Code MF TOL t Yt Y2X 104
Y3

"EXACT" 1.0 0.966 0.307 0.0335
4.0 0.9055 0.224 0.0944

10.0 0.841 0.162 0.159
STIFF3 ( -6) 1.0 0.9665 0.3075 0.3351( -1)

4.0 0.9055 0.2240 0.9446( -1)
10.0 0.8414 0.1623 0.1586

EPISODE 21 ( -6) 1.0 0.9665 0.3075 0.3351( -1)
4.0 0.9055 0.2240 0.9446( -1)

10.0 0.8414 0.1623 0.1586
DGEAR 10 ( -6) 1.0 0.9665 0.3087 0.3350( -1)

4.0 0.9055 0.2238 0.9445( -1)
10.0 0.8414 0.1619 0.1586

DGEAR 21 ( -6) 1.0 0.9665 0.3075 0.3351( -1)
4.0 0.9055 0.2240 0.9446( -1)

10.0 0.84414 0.1623 0.1586
ODE ( -6) 1.0 0.9665 0.3075 0.3351( -1)

4.0 0.9055 0.2222 0.9452( -1)
10.0 0.8411 0.1586 0.1589

All of the stiff algorithms were able to produce solutions with execution
times on the same order of magnitude. Caillaud and Padmanabhan [10] have
studied (1.97) using Runge-Kutta algorithms. Their "exact" results (fourth-order
Runge-Kutta with step-size = 0.001) and the results obtained from various codes
are presented in Table 1.10. Notice that when a solution was obtained from
either a stiff or a nonstiff algorithm, the results were excellent. Therefore, the
difference between the stiff and nonstiff algorithms was their execution times.

The previous two examples have illustrated the usefulness of the com­
mercial software packages for the solution of practical problems. It can be
concluded that generally one should use a package that incorporates an implicit
method for stiff problems and an explicit method for nonstiff problems (this was
stated in the section on stiffness, but no examples were given).

We hope to have eliminated the "blackbox" approach to the use of initial­
value packages through the illustration of the basic methods and rationale behind
the production of these programs. No code is infallible, and when you obtain
spurious results from a code, you should be able to rationalize your data with
the aid of the code's documentation and the material presented in this chapter.

PROBLEMS*

1. A tubular reactor for a homogeneous reaction has the following dimen­
sions: L = 2 m, R = 0.1 m. The inlet reactant concentration is
Co = 0.03 kmole/m3 , and the inlet temperature is To = 700 K. Other

* See the Preface regarding classes of problems.
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y = 1 at z = 0

data is as follows: - 6.H = 104 kJ/kmole, Cp = 1 kJ/(kg'K), Ea = 100
kJ/kmole, P = 1.2 kglm3 , Uo = 3 mis, and ko = 5s- 1

. The appropriate ma­
terial and energy balance equations are (see [17] for further explanation):

~ = - Da y exp [8(1 - ~)l 0~ z ~ 1,

~: = ~Da y exp [8(1 - ~)] - Hw (8 - 8w )

where

LkoDa=­
Uo

C
y=­

Co

T
8 =-

To

Ifone considers the reactor to be adiabatic, U = 0, the transport equations
can be combined to

d
- (8 + ~y) = 0
dz

which gives

8 = 1 + ~(1 - y)

using the inlet conditions 8 = Y = 1. Substitution of this equation into
the material balance yields

dy [ 8~(1 - y) ]
dz = - Da y exp 1 + ~(1 _ y) ,

(a) Compute y and 8 if U = 0 using an Euler method.

(I» Repeat (a) using a Runge-Kutta method.

(c) Repeat (a) using an implicit method.
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(d) Check algorithms (a) to (c) by comparing their solutions to the
analytical solution by letting 8 = O.

2. Write a subroutine called EULER such that the call is

CAll EULER (FUNC, XO, XOUT, H, TOl, N, V),
where

FUNC = external subroutine to calculate the right-hand-side functions

XO = initial value of the independent variable

XOUT = final value of the independent variable

H = initial step-size

TOL = local error tolerance

N = number of equations to be integrated

Y = vector with N components for the dependent variable y. On
input y is the vector initial values, on output it contains the
computed values of y at XOUT.

The routine is to perform an Euler integration on

dy

dx

yeO) = Yo, XO ~ X ~ XOUT

Create this algorithm such that it contains an error-checking routine and
a step-size selection routine. Test your routine by solving Example 5.
Hopefully, this problem will give the reader some feel for the difficulty
in creating a general-purpose routine.

3.* Repeat Problem 1, but now allow for heat transfer by
letting U = 70 J/(m2 ·s·K). Locate the position of the hot spot,
8max , with 8w = 1.

4.* In Example 4 we evaluated a binary batch distillation system. Now con­
sider the same system with recycle (R = recycle ratio) and a constant
condenser hold-up M (see Figure 1.6).

Still

FIGURE 1.6 Batch still with recycle.
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A mass balance on n-heptane for the condenser is

M dxc = V (YH - xJ
dt

An overall balance on the still gives

41

ds

dt

-V
=---

R + 1

while an overall balance on n-heptane is

Repeat the calculations of Example 1.4 with s
Xc = 0.85 at t = O. Let R = 0.3 and M = 10.

0.75, and

5.* Consider the following process where steam passes through a coil, is
condensed, and is withdrawn as condensate at the same temperature in
order to heat liquid in a well-stirred vessel (see Figure 1.7).
If

Fs flow rate of steam

H v latent heat of vaporization of the steam

F flow rate of liquid to be heated

To inlet liquid temperature

T outlet liquid temperature

and the control valve is assumed to have linear flow characteristics such
that instantaneous action occurs, i.e., the only lags in the control scheme

TEMP. CONTROLLER

CONTROL
LINE

THERMOCOUPLE
THERMOWELLfI F,To,L1QUID IN

/-----+--STI RRER

Fs STEAM IN

CONDENSATE
OUT

F,T,L1QUID OUT

FlGURf 1.1 Temperature control process.
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occur in the temperature measures, then the process can be described by

dT
Mcp dt = FCp(To - T) + FsHv

C dTw - ( )
I dt - UIAI T - Tw

C dTt - U ( )z dt - zAz Tw - Tt

Fs = Kp(Ts - Tt)

For convenience allow

(liquid energy balance)

(thermowell energy balance)

(thermocouple energy balance)

(proportional control)

F
1 min- 1-

M

Hv
= 1°C/kg

Mcp

To = SO°C

10 UIAI = UzAz = 1 min- l

CI Cz

The system of differential equations becomes

dTdi = Fs - T + To

dTt
dt = Tw - T t

Fs = Kp(Tt - Ts)

Initially T = SO°C. Investigate the temperature response, T(t), to a lOoC
step increase in the designed liquid temperature, Ts = 60°C, for Kp = 2
and Kp = 6. Recall that with proportional control there is offset in the
response.

6.* In a closed system of three components, the following reaction path can
occur:

k3

2B~ C + B
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dCA

dt

dCB
dt

dCc
dt

7.

Calculate the reaction pathway for k 1 = 0.08, k2

k3 = 6 X 107 .

Develop a numerical procedure to solve

d
2
f + ~ df = <1PR(f) 0 ~ r ~ 1

dr2 r dr '

%(0) = 0, f(l) = 1

2 X 104 , and

Hint: Let df/dr(l) = ex and choose ex to satisfy (df/dr) (0) = O.

(Later in this text we will discuss this method for solving boundary-value
problems. Methods of this type are called shooting methods.)
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