
Boundary-Value Problems
Ordinary Differential Equations:
finite Element Methods

INTRODUCTION

The numerical techniques outlined in this chapter produce approximate solutions
that, in contrast to those produced by finite difference methods, are continuous
over the interval. The approximate solutions are piecewise polynomials, thus
qualifying the techniques to be classified as finite element methods [1]. Here,
we discuss two types of finite element methods: collocation and Galerkin.

BACKGROUND

Let us begin by illustrating finite elements methods with the following BVP:

y" = y + [(x),

yeO) = 0
y(1) = 0

O<x<l (3.b)

(3.th)

Finite element methods find a piecewise polynomial (pp) approximation, u(x),
to the solution of (3.1). A piecewise polynomial is a function defined on a
partition such that on the subintervals defined by the partition, it is a polynomial.
The pp-approximation can be represented by

m

u(x) = 2: aj<pj(x)
j=l

(3.2)
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where {<!>Jx)lj= 1, ... , m} are specified functions that are piecewise continu­
ously differentiable, and {ah =1, ... , m} are as yet unknown constants. For
now, assume that the functions <!>j (x), henceforth called basis functions (to be
explained in the next section), satisfy the boundary conditions. The finite element
methods differ only in how the unknown coefficients {ajlj= 1, ... , m} are
determined.

In the collocation method, the set {ajU = 1, ... , m} is determined by
satisfying the BVP exactly at m points, {xiii = 1, ... ,m}, the collocation points,
in the interval. For (3.1):

u"(xi) - u(x;) - f(xi) = 0,

If u(x) is given by (3.2), then (3.3) becomes

i = 1, ... ,m (3.3)

m

L aj[<!>j(xi) - <!>j(xi)] - f(xi) = 0,
j=1

i = 1, ... ,m (3.4)

or in matrix notation,

(3.5)

where

(3.6)i = 1, ... ,m

The solution of (3.5) then yields the vector a, which determines the collocation
approximation (3.2).

To formulate the Galerkin method, first multiply (3.1) by <!>i and integrate
the resulting equation over [0, 1]:

f [y"(x) - y(x) - f(X)]<!>i(X) dx = 0,

Integration of y"(x)<!>;(x) by parts gives

fa
1

Y"(X)<j>i(X) dx = Y'(X)<!>i(X) I~ -f y' (x)<j>; (x) dx, i = 1, ... ,m

i=I, ... ,m

Since the functions <!>/x) satisfy the boundary conditions, (3.6) becomes

L1Y'(X)<!>;(X)dX +f [y(x) + f(X)J<l>i(X)dx = 0, (3.7)

For any two functions 'Y] and tjJ we define

('Y], tjJ) = f 'Y](x)tjJ(x) dx (3.8)
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With (3.8), Eq. (3.7) becomes

(y', <pD + (y, <Pi) + (f, <PJ = 0, i = 1, ... ,m
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(3.9)

and is called the weak form of (3.1). The Galerkin method consists of finding
u(x) such that

i = 1, ... ,m(u ', <pD + (u, <Pi) + (f, <PJ = 0,

If u(x) is given by (3.2), then (3.10) becomes:

(i: aj<p;, <P:) + (i: aj<pj, <Pi) + (f, <Pi) = 0,
J=l J=l

or, in matrix notation,

where

g = [11' ... ,JrnV
1i = (f, <Pi)

i=l, ... ,m

(3.10)

(3.11)

(3.12)

The solution of (3.12) gives the vector a, which specifies the Galerkin approx­
imation (3.2).

Before discussing these methods in further detail, we consider choices of
the basis functions.

PIECEWISE POLYNOMIAL FUNCTIONS

To begin the discussion of pp-functions, let the interval partition 'IT be given by:

with

a = Xl < X2 < ... < Xe+1 = b

h = max hj = max (xj + 1 - XJ)
l,;;;j,;;;e l,;;;j,;;;e

(3.13)

Also let {Pj(x)lj = 1, ... , €} be any sequence of € polynomials of order k
(degree <:;; k - 1). The corresponding pp-function, F(x), of order k is defined
by

(3.14)

j = 1, ... ,€
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where xj are called the breakpoints of F. By convention

F(x) = {Pl(X),
Pix),

and

(3.15)

F(xJ = Pi(x;) (right continuity) (3.16)

A portion of a pp-function is illustrated in Figure 3.1. The problem is how to
conveniently represent the pp-function.

Let S be a set of functions:

S = {A./x)lj = 1, ... , L} (3.17)

The class of functions denoted by !ZJ is defined to be the set of all functions
f(x) of the form

L

f(x) = 2.: ajA.j(x)
j=l

(3.18)

where the a/s are constants. This class of functions !ZJ defined by (3.18) is called
a linear function space. This is analogous to a linear vector space, for if vectors
xj are substituted for the functions A./x) in (3.18), we have the usual definition
of an element x of a vector space. If the functions A.j in S are linearly independent,
then the set S is called a basis for the space !ZJ, L is the dimension of the space
!ZJ, and each function A.j is called a basis function.

Define !ZJk (7I") (subspace of !ZJ) to be the set of all pp-functions of order
k on the partition 71". The dimension of this space is

(3.19)

Let v be a sequence of nonnegative integers vj, that is, v = {vjlj = 2, ... , e},
such that

d i - l

jumpXj dX i - l [f(x)] = 0 (3.20)

i = 1, ... , Vj' j = 2, ... ,e

\rPj

\P j - I ~

~~

fiGURE 3. t Piecewise polynomial function.
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where

101

(3.21)

or in other words, 11 specifies the continuity (if any) of the function and its

derivative at the breakpoints. Define the subspace .0 k(1T) of .0k(1T) by

.0 v ( ) = {f(X) is in .0J1T) and satisfies the jump} (3.22)
k 1T conditions specified by 11

The dimension of the space .0 kC1T) is
e

dim .0 k(1T) ~ (k - vj )
j=1

(3.23)

where VI = O.
We now have a space, .0 k(1T), that can contain pp-functions such as F(x).

Since the 'A./s can be a basis for .0 k(1T), then F(x) can be represented by (3.18).
Next, we illustrate various spaces .0k(1T) and bases for these spaces. When
using .0 k(1T) as an approximating space for solving differential equations by
finite element methods, we will not use variable continuity throughout the in­
terval. Therefore, notationally replace 11 by v, where {vi = vlj = 2, ... , .e}.

The simplest space is .0i(1T), the space of piecewise linear functions. A
basis for this space consists of straight-line segments (degree = 1) with discon­
tinuous derivatives at the breakpoints (v = 1). This basis is given in Table 3.1
and is shown in Figure 3.2a. Notice that the dimension of .0 i(1T) is .e + 1 and
that there are .e + 1 basis functions given in Table 3.1. Thus, (3.18) can be
written as

f(x)

TABU 3.t Linear Basis functions

(3.24)

0,

x - x j _ 1,
xj - x j _ 1

0,

0,

x - X e ,
X e+ 1 - X e

for x ;;. X2

for x'" Xe

forxe~X~Xe+l
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Wj(X)~ ~
XI X2 Xj_1 Xj Xj+1 xl. x,( +1

(0)

~
Vj(X) 51
or

Sj(X)

XI X2 Xj+1 Xi

(b)

fiGURE 3.2 Schematic of basis fll.mctions. (a) Piecewise linear functions.
(b) Piecewise hermite cubic functions.

Frequently, one is interested in numerical approximations that have continuity
of derivatives at the interior breakpoints. Obviously, .Q? H'IT) does not possess
this property, so one must resort to a high-order space.

A space possessing continuity of the first derivative is the Hermite cubic
space, .Q? ~('IT). A basis for this space is the "value" vj and the "slope" Sj functions
given in Table 3.2 and shown in Figure 3.2b. Some important properties of this
basis are

o at all Xi

(3.25)

Sj = 0 at all Xi

~>{~ at all Xi of- X j
at x j

The dimension of this space is 2(.£ + 1); thus (3.18) can be written as

€+1

f(x) = ~ [ap)vj + aF)sj]
j=1

(3.26)

where ay) and ay) are constants. Since v = 2, f(x) is continuous and also
possesses a continuous first derivative. Notice that because of the properties
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TABLE 3.2 Hermite Cubic Basis functions
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hj = Xj + 1 - Xj gl(X) = -2x3 + 3x 2, O~x~l

x-x· g2(X) = X3
- X2, O~x~l

~j(x)=T
J

Value Functions Slope Functions

VI = {gl(1 - ~1(X)), 0~X~X2 _ { -h1g2(1 - ~1(X», 0~X~X2

0, x2~x~1
SI - 0,

x2~x~1

el(~j-'(X))' Xj _ 1 ::S;X:S;;Xj rj-lgO<~j-l(X»' Xj_l~X~Xj

Vj = gl(l-~j(x», XjS;;X:'!SXj + 1 Sj = - hjg2(1- Ux», Xj~X~Xj+l

0, O~X~Xj_l,Xj+l ~x~ 1 0, O~X~Xj_l,Xj+l ~x~l

{O, °~ x ~ xe {0, °~ x ~ xe
Ve+1 = gl(~e(X», xe ~ X ~ 1 se+l = hegi~eCx», xe ~ x ~ 1

shown in (3.25) the vector

(1) _ [(1) (1) (1) ]T
01. - (Xl ,(X2 , ... , (Xe+l

give the values of f(x;), i = 1, ... , e + 1 while the vector

(2) _ [(2) (2) (2) ]T
01. - (Xl '(X2 , .•• , (Xe+l

gives the values of df(x;)/dx, i = 1, ... , .e + 1. Also, notice that the Hermite
cubic as well as the linear basis have limited or local support on the interval;
that is, they are nonzero over a small portion of the interval.

A suitable basis for it k(1T) given any v, k, and 1T is the B-spline basis [2].
Since this basis does not have a simple representation like the linear or Hermite
cubic basis, we refer the reader to Appendix D for more details on B-splines.
Here, we denote the B-spline basis functions by B/x) and write (3.18) as:

N

f(x) = ~ (XjBj(x)
j=l

where

N = dim itk(1T)

Important properties of the B/s are:

1. They have local support.

2. Bl(a) = 1, BN(b) = 1.

3. Each B/x) satisfies 0 ~ Bj(x) ~ 1 (normalized B-splines).

N

4. ~ B/x) = 1 for a ~ x ~ b.
j=l

(3.27)
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THE GALERKIN METHOD

Consider (3.1) and its weak form (3.9). The use of (3.2) in (3.9) produces the
matrix problem (3.12). Since the basis <l>i is local, the matrix A G is sparse.

EXAMPLE 1

Set up the matrix problem for

_y"(X) = 1,

yeO) = 0

y(l) = 0

using ..0 i (rr) as the approximating space.

SOLUTION

Using ..0i(-rr) gives

0< x < 1,

£+1

u(x) = L ajwj
j=1

Since we have imposed the condition that the basis functions satisfy the boundary
conditions, the first and last basis function given in Table 3.1 are excluded.
Therefore, the pp-approximation is given by

£-1

u(x) = L ajwj
j= 1

where the w/s are as shown in Figure 3.3. The matrix AG is given by

A~ = r<1>;<1>: dx

Because each basis function is supported on only two subintervals [see Figure
3.2(a)],

A~ = 0 if Ii - jl > 1

FIGURE 3.3 Numbering of basis functions for Example t.
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Thus, A G is tridiagonal and

f
Xi [ 1 ]2 fXi+1 [ -1 ]2

= dx+ dx
Xi-l Xi - Xi- 1 Xi Xi+ 1 - Xi

1 1
= - +-- hi = Xi - Xi- 1

hi hi+/

e (Xi+l [ -1 ] [ 1 ]
A5+1 = J( <fJ;<fJ;+l dx = L _ _ dx

o x, Xi+l Xi Xi+1 Xi

1

G _ 1
A i,i-l - - h-

I

The vector g is given by

Therefore, the matrix problem is:
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o
~ (hI + h2 )

! (h 2 + h3 )

1

he- 2
ae- 2

1

(h:_J
~(he-2 + he-I)

0 he- 2
ae- 1

From Example 1, one can see that if a uniform mesh is specified using
!l? ~ ('IT), the standard second-order correct finite difference method is obtained.

Therefore, the method would be second-order accurate. In general, the Galerkin
method using !l?k('IT) gives an error such that [1]:

Ily - ull ~ Chk (3.28)
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where

y = true solution

u = pp-approximation

C = a constant

h = uniform partition

IIQII = max IQI
x

provided that y is sufficently smooth. Obviously, one can increase the accuracy
by choosing the approximating space to be of higher order.

EXAMPLE 2

An insulated metal rod is exposed at each end to a temperature, To. Within the
rod, heat is generated according to the following function:

H(T - To) + cosh(1)]

where

~ = constant

T = absolute temperature

The rod is illustrated in Figure 3.4. The temperature profile in the rod can be
calculated by solving the following energy balance:

d 2 T
H(T - To) + cosh(1)]K dz2 =

T= To at z = 0

T= To at z = L

(3.29)

where K is the thermal conductivity of the metal. When (~L2)/K = 4, the solution
of the BVP is

y = cosh (2x - 1) - cosh (1)

where y = T - To and x = z/L. Solve (3.29) using the Hermite cubic basis,
and show that the order of accuracy is O(h4) (as expected from 3.28).
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INSULATION

METAL

fiGURE. 3.4 Insulated metal rod.

SOLUTION

z=L
T=To

107

First put (3.29) in dimensionless form by using y = T - To and x = zlL.

d2 ~U
~2 = - [y + cosh(1)]
dx K

Since (~U)IK = 4, the ordinary differential equation (ODE) becomes

d 2y
dx2 = 4[y + cosh (1)]

Using iZ'HTI) (with TI uniform) gives the piecewise polynomial approximation

e+1
u(x) = 2: [aYlvj + a?lsJ

j~l

As with Example 1, y(O) = y(1) = 0 and, since v1(O) = 1 and ve+1(1) = 1,

u(x) = ai2ls1 + a~llv2 + a~2ls2' ... , a~llve + a~2lse + a~2l1se+1

The weak from of the ODE is

- (y', <p;) - 4(y, <PJ = 4(1, <Pi) cosh (1), i = 1, ... ,2(£ + 1) - 2

Substitution of u(x) into the above equation results in

- (u', <p;) - 4(u, <Pi) = 4(1, <Pi) cosh (1), i = 1, ... ,2(£ + 1) - 2

In matrix notation the previous equation is

[A + 4B] a = -4 cosh (1)F
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where

(s~,sD (s~, v~) (s~,s~)

(v~, sD (v~, v~) (v~, s~) (v~, v~) (v~, sD
(s~, sD (s~, vD (s~, s~) (s~, v;) (s;, s~)

A=

°

° (v~, V~-1) (V~,S~_1)

(s~, V~-1) (S~,S~_1)

(v~,v~)

(s~, v~)

(s~+l> v~)

(v~,s~) . (V~,S~+1)
(s~, s~) (s~, s~ + 1)
(s~+l>S~) (s~+l>S~+1)

B = the same as A except for no primes on the basis functions

F = [(1, S1), (1, v2), (1, S2), ... , (1, ve), (1, se), (1, Se+1)Y
Ol = [a(2) a(1) a(2) a(1) a(2) a(2) ]T

1 , 2' 2'···' e, e, e+1

Each of the inner products ( , ) shown in A, B, and F must be evaluated.
For example

with

x - X i - 1

Xi - X i - 1 '
1 - ~;(x)

X i + 1 - X

Xi+1 - Xi

where

°1 = e' Xi-1 ~ X ~ Xi

0, otherwise

°2 =
{I, Xi ~ X ~ X i + 1

0, otherwise

and

or for a uniform partition,



The Galerkin Method 109

Once all the inner products are determined, the matrix problem is ready to be
solved. Notice the structure of A or B (they are the same). These matrices are
block-tridiagonal and can be solved using a well-known block version of Gaussian
elimination (see page 196 of [3]). The results are shown below.

h (uniform
partition) tly - uti

1 0.1250 0.6011 x 10-5

2 0.0556 0.2707 x 10- 6

3 0.0357 0.4872 x 10-7

4 0.0263 0.1475 x 10-7

Since Ily - ull ~ ChP , take the logarithm of this equation to give

lnlly - ull ~ InC + pLnh

Let e(h) = Ily - ull (u calculated with a uniform partition; subinterval size h),
and calculate p by

In (e(ht _ 1))

e(ht )

p = -----

In (h~~l)

From the above results,

p

1
2
3
4

3.83
3.87
3.91

which shows the fourth-order accuracy of the method.
Thus using .CZ? H1T) as the approximating space gives a Galerkin solution

possessing a continuous first derivative that is fourth-order accurate.

Nonlinear Equations

Consider the nonlinear ODE:

y" = f(x, y, y'),

y(O) = y(l) = 0

O<x<l

(3.30)

Using the B-spline basis gives the pp-approximation

N

u(x) = 2: ujBj(x)
j~l

(3.31)
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Substitution of (3.31) into the weak form of (3.30) yields

(£OljBl, B;) + (t(x, £OljBj, £OljBl), B;) = 0,
~1 J=l J=l

i = 1, ... ,N

The system (3.32) can be written as

A« + H(<<) = 0

(3.32)

(3.33)

where the vector H contains inner products that are nonlinear functions of «.
Equation (3.33) can be solved using Newton's method, but notice that the vector
H must be recomputed after each iteration. Therefore, the computation of H
must be done efficiently. Normally, the integrals in H do not have closed form,
and one must resort to numerical quadrature. The rule of thumb in this case is
to use at least an equal number of quadrature points as the degree of the
approximating space.

Inhomogeneous Dirichlet and Flux Boundary Conditions

The Galerkin procedures discussed in the previous sections may easily be mod­
ified to treat boundary conditions other than the homogeneous Dirichlet con­
ditions, that is, yeO) = y(l) = O. Suppose that the governing ODE is

(a(x)y'(x))' + b(x)y(x) + c(x) = 0, 0 < x < 1 (3.34)

subject to the boundary conditions

y(l) = \j!2 (3.35)

where \j!1 and \j!2 are constants. The weak form of (3.34) is

Since

a(x)y' (x)B;(x)

o

(a(x)y' (x), B; (x)) + (b(x)y(x), B;(x))

+ (c(x), B;(x)) = 0 (3.36)

and

then

1,

N

2: Bj(O) = 0
j~2

N-1

2: Bj (l) = 0
j=l

(3.37)
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to match the boundary conditions. The value of i in (3.36) goes from 2 to N - 1
so that the basis functions satisfy the homogeneous Dirichlet conditions [elim­
inates the first term in (3.36)]. Thus (3.36) becomes:

N-1

~ aj[(a(x)Bj, BD - (b(x)Bj, Bi)] = (c(x), Bi)
j=2

+ t!J1[-(a(x)B~, BD + (b(x)Bv Bi )]

+ t!J2[ -(a(x)B~, BD + (b(x)BN> Bi )], i = 2, ... ,N - 1 (3.38)

If flux conditions are prescribed, they can be represented by

ThY + 131Y' ="'11 at x = 0

1llY + 132Y' ="'12 at x = 1

where 1]1> 1]2' 131, 132, "'11' and "'12 are constants and satisfy

h11 + 11311 > 0

11]21 + 11321 > 0
Write (3.39) as

"'11 1]1y' = - - - Y at x = 0
131 131

(3.39)

"'12 1]2y' = - - - Y at x = 1 (3.40)
132 132

Incorporation of (3.40) into (3.36) gives:

f uj[(a(X)Bj, BD - (b(x)Bj, Bi ) - OnOj1a(0) 1]1 + oiNojN a(l) 1]2]
j=l 131 132

where

i = 1, ... ,N (3.41)

{

I,
Os, =

0,

s = t

s -# t

Notice that the subscript i now goes from 1 to N, since yeO) and y(l) are
unknowns.

Mathematical Software

In light of the fact that Galerkin methods are not frequently used to solve BVPs
(because of the computational effort as compared with other methods, e.g.,
finite differences, collocation), it is not surprising that there is very limited
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software that implements Galerkin methods for BVPs. Galerkin software for
BVPs consists of Schryer's code in the PORT library developed at Bell Labora­
tories [4]. There is a significant amount of Galerkin-based software for partial
differential equations, and we will discuss these codes in the chapters concerning
partial differential equations. The purpose for covering Galerkin methods for
BVPs is for ease of illustration, and because of the straightforward extension
into partial differential equations.

COLLOCATION

Consider the nonlinear ODE

y" = f(x, Y, y'), a<x<b (3.42a)

ThY + 131Y' = "11 at x = a

'TlzY + I3zY' = "Iz at x = b (3.42b)

(3.43)j = 1, ... ,€, i = 1, ... ,k - M

where 'Tll, 'Tlz, 131> I3z, "11> and "Iz are constants. Let the interval partition be given
by (3.13), and let the pp-approximation in iZ?k(1T) (v ~ 2) be (3.31). The
collocation method determines the unknown set {ajlj = 1, ... ,N} by satisfying
the ODE at N points. For example, if k = 4 and v = 2, then N = 2€ + 2. If
we satisfy the two boundary conditions (3.42b), then two collocation points are
required in each of the € subintervals. It can be shown that the optimal position
of the collocation points are the k - M (M is the degree of the ODE; in this
case M = 2) Gaussian points given by [5]:

h (h.)
Tji = Xj + -.:f + -.:f Wi'

where

W = k - M Gaussian points in [ - 1, 1]

The k - M Gaussian points in [ -1, 1] are the zeros of the Legendre polynomial
of degree k - M. For example, if k = 4 and M = 2, then the two Gaussian
points are the zeros of the Legendre polynomial

-1":; x.,:; 1

or
1

W z = V3

Thus, the two collocation points in each subinterval are given by

h· h· ( 1 )
TjI = xj + -.:f - -.:f V3

(3.44)
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The 2€ equations specified at the collocation points combined with the
two boundary conditions completely determines the collocation solution
{ajlj = 1, ... , 2€ + 2}.

EXAMPLE 3

Solve Example 2 using spline collocation at the Gaussian points and the Hermite
cubic basis. Show the order of accuracy.

SOLUTION

The governing ODE is:

d2yd2 = 4[y + cosh (1)], 0 < x < 1
x y(O) = y(l) = 0

Let

Ly = -y" + 4y = -4 cosh (1)

and consider a general subinterval [xj' xj+d in which there are four basis func­
tions-vj , Vj+l' Sj, and Sj+l-that are nonzero. The "value" functions are eval­
uated as follows:

vj = gl(l - /;/X)) , [xj' xj+d

Vj = -2 [X
j
+1h- xr+ 3 [X

j
+ 1h- xr,

12 6
vi = - h3 (x j + 1 - x) + h2

_ 12 6 8 ( )3 12 ( )2
LVj - h3 (Xj +1 - x) - h2 - h3 Xj +1 - X + h2 Xj +1 - X

-2 [x ~ Xjr + 3 [x ~ Xjr

12 6
- h3 (x - Xj) + h2

12 6 8 ( )3 12 ( )2
LVj +1 = h3 (x - Xj ) - h2 - h3 X - Xj + h2 X - xj

The two collocation points per subinterval are

Tjl = Xj + i-~ (~) = Xj + i [1 -~]
Tj2 = Xj + i+ ~ (~) = xj + i [1 -~]
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Using TjI and Tj2 in LVj and LVj+ 1 gives

12 6
= h2 (1 - PI) - h2 - 8(1 - PI? + 12(1 - Pl)2

12 6
= h2 (1 - P2) - h2 - 8(1 - P2)3 + 12(1 - P2)2

_ 12 6 3 2 2
- h2 PI - h2 - 8Pl + 1 PI

_ 12 6 3 12 2
P 8p + P2- h2 2 - h2 - 2

The same procedure can be used for the "slope" functions to produce

6 2
LSiTjl) = h (1 - PI) - h - 4h[(1 - PI? - (1 PI?]

6 2
LSiTj2) = h (1 - P2) - h - 4h[(1 - P2)3 - (1 - P2)2]

() 6 2 [ 3 2]Lsj + 1 Tj1 = - h PI + h + 4h PI - PI ,

() 6 2 [ 3 2]LSj + 1 Tj2 = -h P2 + h + 4h P2 - P2 .

For notational convenience let

F1 = LSiTj1) - LSj+ 1(Tj2)

F2 = LSiTj2) - LSj+ 1(Tj1)

F3 = LV/Tj2) = LVj+ 1(TjI)

F4 = LVj(Tj1) = LVj+ 1(Tj2)

At x = 0 and x = 1, Y = O. Therefore,

a (1) = a (1) = 0
1 e+1

Thus the matrix problem becomes:

F1 F3 -F2 a(2) 11

F2 F4 -F1 a(l) 12
F4 F1 F3 -F2 0 (2)a 2

F3 F2 F4 -F1 a(l)
3

- 4 cosh (1)

F4 F1 -F2 a (2) 1
0

e

F3 F2 -F1 (2)
1a e+ 1
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This matrix problem was solved using the block version of Gaussian elimination
(see page 196 of [4]). The results are shown below.

1
2
3
4

From the above results

1
2
3
4

h (uniform
partition)

0.100
0.050
0.033
0.250

p

4.00
3.90
4.14

Ily - ull
0.2830 X 10-6

0.1764 X 10- 7

0.3483 X 10-8

0.1102 X 10-8

0< x < xp

which shows fourth-order accuracy.
In the previous example we showed that when using ..0' k(7T), the error

was O(h4
). In general, the collocation method using ..0' k(7T) gives an error of

the same order as that in Galerkin's method [Eq. (3.28)] [5].

EXAMPLE 4

The problem of predicting diffusion and reaction in porous catalyst pellets was
discussed in Chapter 2. In that discussion the boundary condition at the surface
was the specification of a known concentration. Another boundary condition
that can arise at the surface of the pellet is the continuity of flux of a species as
a result of the inclusion of a boundary layer around the exterior of the pellet.
Consider the problem of calculating the concentration profile in an isothermal
catalyst pellet that is a slab and is surrounded by a boundary layer. The con­
servation of mass equation is

d 2c
D - = k9l(c),

dx2

where

D = diffusivity

x = spatial coordinate (xp = half thickness of the plate)

c = concentration of a given species

k = rate constant

~(c) = reaction rate function
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The boundary conditions for this equation are

dc = 0 at x = 0
dx

where

dc
-D - = S (c - c)dx h 0

at x = Xp (continuity of flux)

Co = known concentration at the exterior of the boundary layer

Sh = mass transfer coefficient

Set up the matrix problem to solve this ODE using collocation with .cl'~(7f),

where

7f: 0 = Xl < X2 < ... < Xe+l = x p

and

for 1 ~ i ~ e (i.e., uniform)

SOLUTION

First, put the conservation of mass equation in dimensionless form by defining

C=~
Co

<I> = x Jk (Thiele modulus)
p D

. ShXp
Bl = -- (Biot number)

D

With these definitions, the ODE becomes

d
2
C = <1>2 [ 9l(C)]

dz2
Co

dC = 0 at z = 0
dz

dC = Bi (1 - C) at z = 1
dz
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The dimension of .!lJ ~ (7f) is 2(.£ + 1), and there are two collocation points in
each subinterval.

The pp-approximation is

e+1
u(x) = ~ (a?)vj + a?)sj)

j=l

With C'(O) = 0, af) is zero since s~ = 1 is the only nonzero basis function in
u'(O). For each subinterval there are two equations such that

for i = 1, ... , .£. At the boundary z = 1 we have

(2) B' (1 (1) )ae+ 1 = 1 - ae+ 1

since S~+l = 1 is the only nonzero basis function in u'(1) and Vf+1 = 1 is the
only nonzero basis funciton in u(1).

Because the basis is local, the equations at the collocation points can be
simplified. In matrix notation:

V~(Tl1)' V~(Tl1)' S~(Tl1)
a(l)

1

V~(Td, v~(Td, s~(Td
a(l)

2

V~(T21)' S~(T21)' V~(T21)' S~(T21) 0 a (2)
2

V~(Td, S~(T22)' V~(T22)' S~(T22)
a(l)

3

a (2)
3

<1>2

= -F
Co

a (1)
e

0 V~(Td, s~(Td, V~+l(Tf1) - Bi S~+JTf1) a (2)
e

V~(Td, s~(Td, V~+l(Tf2) - Bi S~+l(Tf2)
(1)

ae+1
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where

Yl'{co[aplvlrjl) + aFlSlrjl) + ag\vj+1(-rjl) + af;\Sj+l(-rjl)]}
Yl'{cO[aplVj(-rj2) + aFlslrj2) + agllVj+l(Tj2) + af;llSj+l(Tj2)]}

C~i S;+l(Tn) ~ Yl'{cO[aplVe(T,:l) + aplSe(Tn)
c Bi + ai~l(Ve+l(Tn) - Bise+l(Tn)) + Bise+l(Tn)]}
~2 S;+l(Tn) + Yl'{cO[aplVe(Tn) + aFlse(Ta)

+ ai~1(Ve+l(Te2) - Bise+l(Tn» + Bise+l(Tn)H

This problem is nonlinear, and therefore Newton's method or a variant of it
would be used. At each iteration the linear system of equations can be solved
efficiently by the alternate row and column elimination procedure of Varah [6].
This procedure has been modified and a FORTRAN package was produced by
Diaz et al. [7].

As a final illustration of collocation, consider the m nonlinear ODEs

with

y" = f(x, y, y'), a<x<b (3.45a)

g(y(a), y(b), y'(a), y'(b» = 0

The pp-approximations ( il k(-lT» for this system can be written as

N

u(x) = L OljBj(x)
j=l

(3.45b)

(3.46)

where each Olj is a constant vector of length m. The collocation equations for
(3.45) are

and,

i = 1, ... , k - 2, S = 1, ... , .e (3.47)

(3.48)

If there are m ODEs in the system and the dimension of ilk('lT) is N, then
there are mN unknown coefficients that must be obtained from the nonlinear
algebraic system of equations composed of (3.47) and (3.48). From (3.23)

e
N = k + L (k - v)

j=2
(3.49)
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and the number of coefficients is thus

mk + m(e - 1)(k - v)

119

(3.50)

The number of equations in (3.47) is m(k - 2)e, and in (3.48) is 2m. Therefore
the system (3.47) and (3.48) is composed of 2m + meek - 2) equations. If we
impose continuity of the first derivative, that is, v = 2, then (3.50) becomes

mk + m(e - 1)(k - 2)

or

2m + meek - 2) (3.51)

Thus the solution of the system (3.47) and (3.48) completely specifies the pp­
approximation.

Mathematical Software

The available software that is based on collocation is rather limited. In fact, it
consists of one code, namely COLSYS [8]. Next, we will study this code in detail.

COLSYS uses spline collocation to determine the solution of the mixed­
order system of equations

where

U~Ms)(X) = fs(x; z(u)),

a<x<b

s = 1, ... ,d

(3.52)

M s = order of the s differential equation

II = [Ul> Uz, ..• , UdV is the vector of solutions

z(u) = (u l , ui, ... , u~Ml-1l, ... , Ud' u~, ... , u5tMd - l
))

It is assumed that the components Ul , Uz, ... , Ud are ordered such that

M l ~ M z ~ ... ~ M d ~ 4

Equations (3.52) are solved with the conditions

(3.53)

j = 1, ... ,M* (3.54)

where
d

M* L M s
s= 1

and

a ~ ~i ~ ~z ~ . .. ~ ~M' ~ b

Unlike the BVP codes in Chapter 2, COLSYS does not convert (3.52) to a first­
order system. While (3.54) does not allow for nonseparated boundary conditions,
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such problems can be converted to the form (3.54) [9]. For example, consider
the BVP

y" = f(x, y, y'), a<x<b

y'(a) = <X, g(y(a), y(b)) = 0 (3.55)

Introducing a (constant) Vex) gives an equivalent BVP

y" = f(x, y, y'), a < x < b

V' = 0, (3.56)

y'(a) = <X, yea) = V(a), g(V(b), y(b)) = 0

which does not contain a nonseparated boundary condition.
COLSYS implements the method of spline collocation at Gaussian points

using a B-spline basis (modified versions of deBoor's algorithms [2] are used to
calculate the B-splines and their derivates). The pp-solutions are thus in !lJ '( ('IT)
where COLSYS sets k and v* such that

where

s = 1, ... ,d (3.57)

v* = {Vj = M s I j = 2, ... , t'}

q = number of collocation points per subintervals

The matrix problem is solved using an efficient implementation of Gaussian
elimination with partial pivoting [10], and nonlinear problems are "handled"
by the use of a modified Newton method. Algorithms are included for estimating
the error, and for mesh refinement. A redistribution of mesh points is auto­
matically performed (if deemed worthwhile) to roughly equidistribute the error.
This code has proven to be quite effective for the solution of "difficult" BVPs
arising in chemical engineering [11].

To illustrate the use of COLSYS we will solve the isothermal effectiveness
factor problem with large Thiele moduli. The governing BVP is the conservation
of mass in a porous plate catalyst pellet where a second-order reaction rate is
occurring, i.e.,

d 2c _ rF.2 2
dx2 - 'J! C , 0 < x < 1,

C'(O) = 0

c(l) = 1 (3.58)
where

c = dimensionless concentration of a given species

x = 'dimensionless coordinate

<I> = Thiele modulus (constant)
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The effectiveness factor (defined in Chapter 2) for this problem is

E = L1

c2 dx

121

(3.59)

For large values of <1>, the "exact" solution can be obtained [12] and is

where Co is given by

1 J2E = ~ 3" (1 - C6)1/2 (3.60)

<I> J~3 Co = (lle
o d~ (3.61)

Jo V~3 -: 1

This problem is said to be difficult because of the extreme gradient in the solution
(see Figure 3.5). We now present the results generated by COLSYS.

COLSYS was used to solve (3.58) with <I> = 50, 100, and 150. A tolerance
was set on the solution and the first derivative, and an initial uniform mesh of
five subintervals was used with initial solution and derivative profiles of 0.1 and
0.001 for 0 ~ x ~ 1, respectively. The solution for <I> = 50 was used as the
initial profile for calculating the solution with <I> = 100, and subsequently this
solution was used to calculate the solution for <I> = 150. Table 3.3 compares

x
I.°,-0_,9,9_0__0_,9,9_2__0.:,:,,9.:,:94-'-------'0'--,9,9_6_----'0_,9,9_8_--:::;"",1.0

u~

Z
0
I- 0.8«
0::
I-
Z
W
U 0,6
Z
0
U

(j)
(j)

0.4w
.-J
Z
0
u;
Z 0.2w
::2:
0

DIMENSIONLESS DISTANCE,x

fiGURE 3.5 Solution of E.q. (3.58).
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TABLE. 3.3 Results for Eq. (3.58)
Tolerance = 10-4

Collocation Points Per Subinterval = 3

50
100
150

COLSYS

0.1633( -1)
0.8165( -2)
0.5443( -2)

"Exact"
0.1633( -1)
0.8165( -2)
0.5443( -2)

the results computed by COLSYS with those of (3.60) and (3.61). This table
shows that COLSYS is capable of obtaining accurate results for this "difficult"
problem.

COLSYS incorporates an error estimation and mesh refinement algorithm.
Figure 3.6 shows the redistribution of the mesh for <I> = 50, q = 4, and the
tolerance = 10-4

• With the initial uniform mesh (mesh redistribution number = 0;
i.e., a mesh redistribution number of 1) designates that COLSYS has automat­
ically redistributed the mesh 1) times), COLSYS performed eight Newton iter­
ations on the matrix problem to achieve convergence. Since the computations
continued, the error exceeded the specified tolerance. Notice that the mesh was
then redistributed such that more points are placed in the region of the steep
gradient (see Figure 3.5). This is done to "equidistribute" the error throughout
the x interval. Three additional redistributions of the mesh were required to
provide an approximation that met the specified error tolerance. Finally, the
effect of the tolerance and q, the number of collocation points per subinterval,
were tested. In Table 3.4, one can see the results of varying the aforementioned
parameters. In all cases shown, the same solution, u(x), and value of E were

CD =LOCATION OF MESH
POINT

NI(a)=a NEWTON ITERATIONS

NI(ll FOR CONVERGENCE

NI(])

NI(])

NI(l)

NI(8)

~
w
CD 4
~
~

z
z
o
i= 3
~

CD
~

~ 2
o
W
~

:c
(/)
w
~

o
o 0.2 0.4

x
0.6 0.8 1.0

FIGURE 3.6 Redistribution of mesh.
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TABU 3.4 further Results for £q. (3.58)
«P = 50

123

Collocation Points
Per Subinterval
3
3
2
4

Number of
Subintervals

20
114
80
12

Tolerance on
Solution and
Derivative
10-4

10- 6

10- 4

10-4

E.T.R.*

1.0
4.6
1.9
1.1

* E.T.R. = execution time ratio.

obtained. As the tolerance is lowered, the number of subintervals and the exe­
cution time required for solution increase. This is not unexpected since we are
asking the code to calculate a more accurate solution. When q is raised from 3
to 4, there is a slight decrease in the number of subintervals required for solution,
but this requires approximately the same execution time. If q is reduced from
3 to 2, notice the quadrupling in the number of subintervals used
for solution and also the approximate doubling of the execution time. The dras­
tic changes in going from q = 2 to q = 3 and the relatively small changes when
increasing q from 3 to 4 indicate that for this problem one should specify q ~ 3.

In this chapter we have outlined two finite element methods and have
discussed the limited software that implements these methods. The extension
of these methods from BVPs to partial differential equations is shown in later
chapters.

PROBLEMS

1. A liquid is flowing in laminar motion down a vertical wall. For z < 0, the
wall does not dissolve in the fluid, but for 0 < z < L, the wall contains a
species A that is slightly soluble in the liquid (see Figure 3.7, from [13]).
In this situation, the change in the mass convection in the z direction
equals the change in the diffusion of mass in the x direction, or

~ (UZcA ) = D a
2

c A

az ax 2

where U z is the velocity and D is the diffusivity. For a short "contact time"
the partial differential equation becomes (see page 561 of [13]):

ax aCA = D a
2
cA

az ax2

CA = 0 at z = 0

CA = 0 at x = 00

CA c1 at x = 0
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h-.,---,--"; LAMIN AR
VELOCITY
PROFILE

INSOLUBLE
WALL--+-O-

SOLUBLE
WALL
OF A

x

fiGURE 3.7 Solid dissolution Into failing film.
Adapted from R. B. Bird, W. E. Stewart, and E. N.
Lightfoot, Transport Phenomena, copyright © 1960,
p. 551. Reprinted by permission of John Wiley and
Sons, New York.

where f(n)

where a is a constant and c1 is the solubility of A in the liquid. Let

f = CAand ~ = x (~)1/3
c1 9Dz

The PDE can be transformed into a BVP with the use of the above di­
mensionless variables:

d
2
f + 3e df = 0

de d~

f = 0 at ~ = 00

f = 1 at ~ = 0

Solve this BVP using the Hermite cubic basis by Galerkin's method and
compare your results with the closed-form solution (see p. 552 of [13]):

fi;x exp ( - ~3)d~

f= fm
LX I3n-1r13dl3, (n > 0), which has the recursion formula

f(n + 1) = nf(n)

The solution of the Galerkin matrix problem should be performed by
calling an appropriate matrix routine in a library available at your instal­
lation.

2. Solve Problem 1 using spline collocation at Gaussian points.
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3.* Solve problem 5 of Chapter 2 and compare your results with those obtained
with a discrete variable method.

4.* The following problem arises in the study of compressible boundary layer
flow at a point of attachment on a general curved surface [14].

f'" + (f + cg)f" + (1 + Swh - (f'F) = 0

gill + (f + cg)g" + c(l + Swh - (f')2) = 0

hlf + (f + cg)h' = 0

with

f=g=f' = g' = 0 at Tj = 0

h= 1 at Tj = 0

f' = g' = 1 at Tj ~ 00

h = 0 at Tj~oo

where f, g, and h are functions of the independent variable Tj, and c and
Sw are constants. As initial approximations use

Tj2
f(Tj) = g(Tj) = ---2

Tjoo

h(Tj) = Tjoo - Tj

Tjoo

where Tjoo is the point at which the right-hand boundary conditions are
imposed. Solve this problem with Sw = 0 and c = 1.0 and compare your
results with those given in [11].

5.* Solve Problem 4 with Sw = 0 and c = -0.5. In this case there are two
solutions. Be sure to calculate both solutions.

6.* Solve Problem 3 with [3 = 0 but allow for a boundary layer around the
exterior of the pellet. The boundary condition at x = 1 now becomes

dy = Bi (1 - y)
dx

Vary the value of Bi and explain the effects of the boundary layer.
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