
(5.1)

Partial Differendal Equadons in Two
Space Variables

INTRODUCTION

In Chapter 4 we discussed the various classifications of PDEs and described
finite difference (FD) and finite element (FE) methods for solving parabolic
PDEs in one space variable. This chapter begins by outlining the solution of
elliptic PDEs using FD and FE methods. Next, parabolic PDEs in two space
variables are treated. The chapter is then concluded with a section on mathe­
matical software, which includes two examples.

ELLIPTIC rOES-fiNITE DIffERENCES

Background

Let R be a bounded region in the x - y plane with boundary aR. The equation

~ [alex, y) aw] + ~ [az(x, y) aw] = d (x, y, w, aw, aw)ax ax ay ay ax ay
alaz > 0

is elliptic in R (see Chapter 4 for the definition of elliptic equations), and three
problems involving (5.1) arise depending upon the subsidiary conditions pre­
scribed on aR:

1. Dirichlet problem:

w = f(x, y) on aR (5.2)

111



178 Partial Differential Equations in Two Space Variables

2. Neumann problem:

aw
- = g(x, y) on aR
an

where a/an refers to differentiation along the outward normal to aR

3. Robin problem:

aw
u(x, y)w + ~(x, y) an = "{(x, y) on aR

We illustrate these three problems on Laplace's equation in a square.

laplace's Equation in a Square

Laplace's equation is

(5.3)

(5.4)

o~ x ~ 1, 0 ~ Y ~ 1 (5.5)

Let the square region R, 0 ~ x ~ 1, 0 ~ y ~ 1, be covered by a grid with sides
parallel to the coordinate axis and grid spacings such that Llx = Ily = h. If
Nh = 1, then the number of internal grid points is (N - 1)2. A second-order
finite difference discretization of (5.5) at any interior node is:

1 1
(IlX)2 [Ui+1,j - 2ui ,j + Ui-1,j] + (lly)2 [Ui,j+l - 2ui ,j + ui,j-d = 0 (5.6)

where

Ui,j = w(xi , y)
Xi = ih
Yj = jh

Since Ilx = Ily, (5.6) can be written as:

Ui,j-l + Ui+1,j - 4ui ,j + Ui-1,j + Ui,j+l = 0

with an error of O(h2).

Dirichlet Problem If w = f(x, y) on aR, then

Ui,j = f(x i , Yj)

(5.7)

(5.8)

for (x;, yJ on aR. Equations (5.7) and (5.8) completely specify the discretization,
and the ensuing matrix problem is

Au = f (5.9)
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where
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A

J

-[

°

-[ °

(N - 1)2 x (N - 1)2

-1

-1

1 = identity matrix,

4 -1

-1
J=

J

(N - 1) x (N - 1)

(N - 1) x (N - 1)
-1

-1 . 4

U = [Ul,l, ... , UN-l,l, Ul,b ... , UN-l,b ... , Ul,N-V ... , UN_l,N_d T

f = [teO, Yl) + f(xv 0), f(X2' 0), ... ,f(XN-V 0)

+ f(l, Yl), f(O, Yz), 0, ... ,0, f(l, Yz), ... ,f(O, YN-l)

+ f(xv 1), f(xv 1), f(X2' 1), ... ,f(xN-v 1) + f(l, YN-l»)T

Notice that the matrix A is block tridiagonal and that most of its elements are
zero. Therefore, when solving problems of this type, a matrix-solving technique
that takes into account the sparseness and the structure of the matrix should be
used. A few of these techniques are outlined in Appendix E.

Neumann Problem Discretize (5.3) using the method of false boundaries to
gIVe:

or

where

gO,j = g(O, jh)

(5.10)
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Combine (5.10) and (5.7) with the result

Au = 2hg (5.11)

where

K -21

-1

A= (N + 1)2 X (N + If
-1

-21 K

4 -2
-1 4 -1
-1

K = (N + 1) x (N + 1)

-1 4-1
-2 4

1 = identity matrix, (N + 1) x (N + 1)

u = [uo,o, ... , UN,O, UO,l' ... , UN,l' ... , UO,N, ... , UN,N]T

g = [2go,o, gl,O, , 2gN,o, gO,l' 0, ... , 0, gN,l' ... ,

2g0,N' gl,N, , gN-l,N, 2gN,NF

In contrast to the Dirichlet problem, the matrix A is now singular. Thus A has
only (N + If - 1 rows or columns that are linearly independent. The solution
of (5.11) therefore involves an arbitrary constant. This is a characteristic of the
solution of a Neumann problem.

(5.12)

for 0,;:;; x,;:;; 1

for 0,;:;; y ,;:;; 1
x = 01}
x=

y=O}
y = 1

aw
ay - <P2W = go(x),

aw
- + T) w = gl(X),ay 2

Robin Problem. Consider the boundary conditions of form

aw
ax - <hw = Jo(Y),
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where <I> and 11 are constants and f and g are known functions. Equations (5.12)
can be discretized, say by the method of false boundaries, and then included in
the discretization of (5.5). During these discretizations, it is important to main­
tain the same order of accuracy in the boundary discretization as with the PDE
discretization. The resulting matrix problem will be (N + 1)2 X (N + 1)2, and
its form will depend upon (5.12).

Usually, a practical problem contains a combination of the different types
of boundary conditions, and their incorporation into the discretization of the
PDE can be performed as stated above for the three cases.

EXAMPLE 1

Consider a square plate R
conduction equation

{(x, y): 0 ~ x ~ 1, 0 ~ Y ~ I} with the heat

Set up the finite difference matrix problem for this equation with the following
boundary conditions:

T(x, y) = T(O, y)

T(I, y)

~; (x, 0) = 0

aT
- (x, 1) = k[T(x, 1) - T2]
ay

(fixed temperature)

(fixed temperature)

(insulated surface)

(heat convected away at y 1)

where Tv T2, and k are constants and T1 ~ T(x, y) ~ T2 .

SOLUTION

Impose a grid on the square region R such that Xi = ih, Yj = jh (Lix = Liy) and
Nh = 1. For any interior grid point

Ui,j-l + Ui+1,j - 4ui ,j + Ui-1,j + Ui,j+l = 0

where
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0,4

0,3

0,1

aT = k(T-T: )ay 2

1,4 2,4 3,4 4,4

13 23 3.3 43

12 22 32 42
T=T2

II 21 31 41

0,0 1,0 2,0

aT =0
ay

3,0 4,0
x

FIGURE. 5. t Grid fOil" Example t.

At the boundaries x
Therefore

°and x 1 the boundary conditions are Dirichlet.

for j = 0, ... ,N

for j = 0, ... ,N

At Y = °the insulated surface gives rise to a Neumann condition that can be
discretized as

and at y

Ui,-l - Ui,l = 0,

1 the Robin condition is

for i = 1, . . . , N - 1

Ui,N-l - Ui,N+l = k[. - T]
2h U"N 2 , for i = 1, . . . , N - 1

If N = 4, then the grid is as shown inFigure 5.1 and the resulting matrix problem
is:



~

~
n'
"0
,.."
VI

I
"T1
5'
ii

-4 1 2 u1,o -T1
0

~
1 -4 1 2 uz,o 0 ro

:J

1 -4 2 U3,O - Tz
nro
U>

1 -4 1 1 ul,l - T1

1 1 -4 1 1 UZ,l 0
1 1 -4 1 U 3,1 - Tz

1 -4 1 1 Ul,Z - T1

1 1 -4 1 1 uz,z = 0
1 1 -4 1 U3,Z - Tz

1 -4 1 1 u1,3 - T1

1 1 -4 1 1 UZ,3 0
1 1 -4 1 U3,3 -Tz

2 (4 +2hk) 1 Ul,4 - (T1 +2hkTz)

2 1 - (4+2hk) 1 UZ,4 -2hkTz

2 1 - (4 +2hk) U3,4 - (Tz+2hkTz )

-go
W
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Notice how the boundary conditions are incorporated into the matrix problem.
The matrix generated by the finite difference discretization is sparse, and an
appropriate linear equation solver should be employed to determine the solution.
Since the error is 0(h2 ), the error in the solution with N = 4 is 0(0.0625). To
obtain a smaller error, one must increase the value of N, which in turn increases
the size of the matrix problem.

for (x, y) on aR

for (x, y) on aR

Variable Coefficients and Nonlinear Problems

Consider the following elliptic PDE:

- (P(x, y)wx)x - (P(x, y)wy)y + Tj(x, y)wo- = f(x, y)

defined on a region R with boundary aR and

aw
a(x, y)w + b(x, y) - = c(x, y),an

Assume that P, Px, Py, Tj, and f are continuous in Rand

P(x, y) > 0

Tj(x, y) > 0

Also, assume a, b, and c are piecewise continuous and

a(x, y) ;::", O}
b(x, y) ;::",0
a + b > 0

(5.13)

(5.14)

(5.15)

(5.16)

If (T = 1, then (5.13) is called a self-adjoint elliptic PDE because of the form
of the derivative terms. A finite difference discretization of (5.13) for any interior
node is

-OxCP(x;, y)oxu;) - oiP(x;, yj)OyU;,j) + Tj(x;, y)ut,j = f(x;, Yj)

where

U;+1/2,j - U;-1/2,jo u· . = ----"------==""-
x ',j ~x

U;,j+1/2 - U;,j-1/2
OyU;,j = -"-'-'-'::'::-~-y-~-=-=

(5.17)

The resulting matrix problem will still remain in block-tridiagonal form, but if
(T #. 0 or 1, then the system is nonlinear. Therefore, a Newton iteration must
be performed. Since the matrix problem is of considerable magnitude, one would
like to minimize the number of Newton iterations to obtain solution. This is the
rationale behind the Newton-like methods of Bank and Rose [1]. Their methods
try to accelerate the convergence of the Newton method so as to minimize the
amount of computational effort in obtaining solutions from large systems of
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nonlinear algebraic equations. A problem of practical interest, the simulation
of a two-phase, cross-flow reactor (three nonlinear coupled elliptic PDEs), was
solved in [2] using the methods of Bank and Rose, and it was shown that these
methods significantly reduced the number of iterations required for solution [3].

Nonuniform Grids

Up to this point we have limited our discussions to uniform grids, i.e., Ax = Ay.
Now let kj = yj+l - Yj and hi = Xi + 1 - Xi- Following the arguments of Varga
[4], at each interior mesh point (Xi' y) for which Ui,j = w(xi, Yj), integrate (5.17)
over a corresponding mesh region ri,j (a = 1):

(5.18)

By Green's theorem, any two differentiable functions sex, y) and t(x, y) defined
in ri,j obey

JJ(sx - ty) dx dy = J (t dx + s dy)
~. . ~..
i,J I,]

(5.19)

where ari,j is the boundary of ri,j (refer to Figure 5.2). Therefore, (5.18) can be
written as

(5.20)

hj-I hi

fiGURE 5.2 Nonuniform grid spacing (shaded area is the integration area). Adapted
from Richard S. Varga, Matrix Iterative Analysis, copyright © t 962, p. t 84. Reprinted
by permission of Prentice-Hall, Inc., Englewood Cliffs, N. J.
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The double integrals above can be approximated by

II z dx dy = A· . z· .1,J l,J

r ..
loj

for any function z(x, y) such that z(x;, Yj) = Z;,j and

(h;-l + hJ(kj - 1 + k)
A- . = -'-------'----'-

l,j 4

(5.21)

The line integral in (5.20) is approximated by central differences (integration
follows arrows on Figure 5.2). For example, consider the portion of the line
integral from (X;+l/2> Yj-lIz) to (Xi+lIZ' Yj+lIz):

where

Therefore, the complete line integral is approximated by

Using (5.23) and (5.21) on (5.20) gives

(5.22)

(5.23)

(5.24)
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where

(h i - 1 + hi)(kj - 1 + kj )
D'.,j. = L· . + M . + T· + B· . + 'n .. ------'----'-

I,j l,j I,j I,j 'Il,j 4

hi - 1 hi
k-T . = -- p. 1 ·+1 + -2 p'.+!,j.+!

j I,j 2 1- 2,j 2 2 2
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Notice that if hi = hi - 1 = kj = kj - 1 and P(x, y) = constant, (5,24) becomes
the standard second-order accurate difference formula for (5.17). Also, notice
that if P(x, y) is discontinuous at Xi and/or Yj as in the case of inhomogeneous
media, (5.24) is still applicable since P is not evaluated at either the horizontal
(Yj) or the vertical (x;) plane. Therefore, the discretization of (5.18) at any interior
node is given by (5.24). To complete the discretization of (5.18) requires knowl­
edge of the boundary discretization. This is discussed in the next section.

EXAMPLE 2

In Chapter 4 we discussed the annular bed reactor (see Figure 4.5) with its mass
continuity equation given by (4.46). If one now allows for axial dispersion of
mass, the mass balance for the annular bed reactor becomes

0
1
at = [AmAn] L~ (rDrat) + [An/Am]~ (Dz at) + [AmAn] 02<tlR(f)az ReSc rar ar ReSc az az ReSc

where the notation is as in (4.46) except for

Dr = dimensionless radial dispersion coefficient
DZ = dimensionless axial dispersion coefficient

At r = rsc> the core-screen interface, we assume that the convection term is
equal to zero (zero velocity), thus reducing the continuity equation to

! i (rDr at) + ~ (Dz at) = 0rar ar az az
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Also, since the plane r = rsc is an interface between two media, Dr and DZ are
discontinuous at this position. Set up the difference equation at the interface
r = rsc using the notation of Figure 5.3. If we now consider Dr and DZ to be
constants, and let hi- 1 = hi' and k j - 1 = k j , show that the interface discretization
simplifies to the standard second-order correct discretization.

SOLUTION

Using (5.18) to discretize the PDE at r = rsc gives

-II [! i (rDr at) + ~ (Dz at)] r dr dz 0_ r ar ar az az
r ..

'.}

Upon applying Green's theorem to this equation, we have

I [ at at]- rDr - dz - DZ - r dr = 0_ ar az
ar. .'.}

If the line integral is approximated by central differences, then

(
h 1 h ) (u ..-U·· 1)+ ~Dz + -.!.Dz l,j I,j- - 0

. 1· 1 . 1· 1 r· -
2 l-_,j-_ 2 l+-,j-_ 1 k

2 2 2 2 j-1

where

Di-l,j+l = Di-l,j-l = D~
2 2 2 2

Df-£,j+£ = Df-l,j-l = D~
2 2 2 2

Now if Dr and DZ are constants, hi- 1 hi = h, and k j - 1 = k j = k, a second­
order correct discretization of the continuity equation at r = rsc is
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CORE SCREEN

(rj, Z j)

k j-I

(rj,zH)

r = rsc

FIGURE 5.3 Grid spacing at core-screen interface of annular bed reador.

(ri = ih, Zj = jk):

~: [(1 + ~) ui+1,j - 2ui,j + (1 - ~) U i - 1,j]

DZ
+ k2 [Ui,j+1 - 2ui,j + Ui,j-1] = 0

Next, we will show that the interface discretization with the conditions stated
above simplifies to the previous equation. Since hi -1 = hi = hand kj -1 = kj = k,
multiply the interface discretization equation by l/(hkri) to give

DZ
+ k2 [Ui,j+1 - 2ui,j + ui,j-d 0

Notice that

ri+~ (i+ !)h 1
1 +-

r i ih 2i

ri+1 + ri-1 (i + !)h + (i - ~)h2 2 2
r i ih

ri-1 (i - ~)h 12 1
r i ih 2i
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and that with these rearrangements, the previous discretization becomes the
second-order correct discretion shown above.

Irregular Boundaries

Dirichlet Condition One method of treating the Dirichlet condition with irreg­
ular boundaries is to use unequal mesh spacings. For example, in figure SAa a
vertical mesh spacing from position B of f3h and a horizontal mesh spacing of
OI.h would incorporate aR into the discretization at the point B.

Another method of treating the boundary condition using a uniform mesh
involves selecting a new boundary. Referring to Figure SAa, given the curve
aR, one might select the new boundary to pass through position B, that is,
(xs, Ys)· Then, a zeroth-degree interpolation would be to take Us to be
f(xs, Ys + f3h) or f(xs + OI.h, Ys) where w = f(x, y) on aR. The replacement
of Us by f(xs, Ys + f3h) can be considered as interpolation at B by a polynomial
of degree zero with value f(xs, Ys + f3h) at (xs, Ys + f3h). Hence the term
interpolation of degree zero. A more precise approximation is obtained by an
interpolation of degree one. A first-degree interpolation using positions Us and
Uc is:

Us - f(xs, Ys + f3h)
f3h

or

Us = (f3 ~ l)UC + (f3 ~ l)f(xs, Ys + f3h)

Alternatively, we could have interpolated in the x-direction to give

Us = (01. : l)UA + (01. ~ l)f(xs + OI.h, Ys)

/3h

(5.25)

(5.26)

ilR

(0)

ilR

(b)

fiGURE 5.4 Irregular boundaries. (a) Uniform mesh with interpolation. (b) Non­
uniform mesh with approximate boundary aRh'
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Normal Derivative Conditions. Fortunately, in many practical applications nor­
mal derivative conditions occur only along straight lines, e.g., lines of symmetry,
and often these lines are parallel to a coordinate axis. However, in the case
where the normal derivative condition exists on an irregular boundary, it is
suggested that the boundary aR be approximated by straight-line segments de­
noted aRh in Figure 5.4(b). In this situation the use of nonuniform grids is
required. To implement the integration method at the boundary aRh' refer to
Figure 5.5 during the following analysis. If b(xi, yJ :;f 0 in (5.14), then Ui,j is
unknown. The approximation (5.22) can be used for vertical and horizontal
portions of the line integral in Figure 5.5, but not on the portion denoted aRh'
On aRh the normal to aRh makes an angle ewith the positive x-axis. Thus, aRh
must be parameterized by

x = Xi+1/2 - 'A sin e

and on aRh

Y = Yj-1/2 + 'A cos e

aWe' e- = Wx cos + wy sman

(5.27)

(5.28)

The portion of the line integral (Xi+1/2' Yj-1/2) to (Xi' y) in (5.20) can be written
as

if if aw
- (PWx cos e + PWy sin e) d'A = - P- d'A

o 0 an

FIGURE 5.5 Boundary point on aRh' Adapted from Richard S. Varga, Matrix IteratIve
AnalysIs, © 1962, p. 184. Reprinted by permission of Prentice-Hali, Inc., Englewood
Cliffs, N. J.
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or by using (5.14):

-L{PWx dy - PWy dx} = - LP [C(A) -b~A~A)W(A)] dA

= _ p . . [Ci,j - ai,jUi,j] .e (5.29)
',j b· .

t,j

where

1
.e = - Yh2 + k?

2 ' r 1 (path length of integration).

Notice that we have used the boundary condition together with the differential
equation to obtain a difference equation for the point (x;, y).

ELLIPTIC PDES-fINITE ELEMENTS

Background

Let us begin by illustrating finite element methods with the following elliptic
PDE:

and

a2
W a2 w

-2 + -2 = -f(x, y),ax ay for (x, y) in R (5.30)

W(x, y) = 0, for (x, y) on aR (5.31)

Let the bounded domain R with boundary aR be the unit square, that is, 0 :;:::; x :;:::; 1,
o< Y :;:::; 1. Finite element methods find a piecewise polynomial (pp) approxi­
mation, u(x, y), to the solution of (5.30). The pp-approximation can be written
as

m

u(x, y) = La/pix, y)
j=l

(5.32)

where {<hex, y)lj = 1, ... ,m} are specified functions that satisfy the boundary
conditions and {ajlj = 1, ... , m} are as yet unknown constants.

In the collocation method the set {ajlj = 1, , m} is determined by
satisfying the PDE exactly at m points, {(Xi' Yi)li = 1, , m}, the collocation
points in the region. The collocation problem for (5.30) using (5.32) as the pp­
approximation is given by:

ACa = -f (5.33)



Elliptic PDES-Finite Elements

where
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f = [I(x!> Yl), ... ,f(xm, Ym)]T

The solution of (5.33) then yields the vector Ol, which determines the collocation
approximation.

To formulate the Galerkin method, first multiply (5.30) by <Pi and integrate
over the unit square:

II e:~ + ~:~) <Pi dx dy = - II f(x, Y)<Pi dx dy
R R

i = i, ... ,m

Green's first identity for a function t is

II (at a<pi at a<pi) d d--+-- x Y
ax ax ay ay

R

II (aZt aZt) I at= - - + - <p. dx dy + - <p. deaxz ayz I an I

R M

(5.34)

(5.35)

where

~ = denotes differentiation in the direction of outward normal
an

e = path of integration for the line integral

Since the functions <Pi satisfy the boundary condition, each <Pi is zero on aR.
Therefore, applying Green's first identity to (5.34) gives

II (aw a<Pi + aw a<pi) dx dy = II f(x, y) <Pi dx dy
ax ax ay ay

R R

i = 1, ... ,m

For any two piecewise continuous functions 1] and <\1 denote

(1], <\1) = II 1]<\1 dx dy
R

(5.36)

(5.37)

Equation (5.36) can then be written as

(V'w, V'<Pi) = (f, <Pi)'
where

i = 1, ... ,m (5.38)

V' = gradient operator.
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This formulation of (5.30) is called the weak form. The Galerkin method consists
in finding u(x) such that

i = 1, ... ,m (5.39)

or in matrix notation,

where

g = [gl> ... ,gmV

gi = (I, <Pi)

Next, we discuss each of these methods in further detail.

(5.40)

Collocation
In Chapter 3 we outlined the collocation procedure for BVPs and found that
one of the major considerations in implementing the method was the choice of
the approximating space. This consideration is equally important when solving
PDEs (with the added complication of another spatial direction). The most
straightforward generalization of the basis functions from one to two spatial
dimensions is obtained by considering tensor products of the basis functions for
the one-dimensional space !L?k(1T) (see Chapter 3). To describe these piecewise
polynomial functions let the region R be a rectangle with G1 ~ x ~ bv Gz ~ Y ~ b2J

where -00 < Gi ~ bi < 00 for i = 1,2. Using this region Birkhoff et al. [5] and
later Bramble and Hilbert [6,7] established and generalized interpolation results
for tensor products of piecewise Hermite polynomials in two space variables.
To describe their results, let

(5.41)

h = max hi = max (X i + 1 - xJ
l~is.;;.Nx l:s:i~Nx

k = max k· = max (Yj+l - Yj)
l,,;,j,,;,Ny J l,,;,j,,;,Ny

p = max {hJ k}

be the partitions in the x- and y-directions, and set 1T = 1Tl X 1T2' Denote by
Q32(1T) the set of all real valued piecewise polynomial functions <Pi defined on

1T such that on each subrectangle [XiJ Xi+l] x [YjJ Yj+d of R defined by 1T, <Pi is
a polynomial of degree at most 3 in each variable (x or y). Also, each <Pi'
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(a<p;)/(ax), and (a<p;)/(ay) must be piecewise continuous. A basis for !Z!2 is the
tensor products of the Hermite cubic basis given in Chapter 3 and is

{V;(X)Vj(y), s;(x)Vj(Y)' v;(x)s/y), S;(X)Sj(Y)} [:1 [:1 (5.42)

where the v's and s's are listed in Table 3.2. If the basis is to satisfy the ho­
mogeneous Dirichlet conditions, then it can be written as:

i = 1,Nx + 1, j = 1, ... ,Ny + 1
i=1, ,Nx +1, j=1,Ny +1
i = 2, ,Nx , j = 2, ... ,Ny

(5.43)

Using this basis, Prenter and Russell [8] write the pp-approximation as:

Nx +1 N y +1 [ au
u(x, y) = 2: 2: u(xb Yj)v;Vj + - (x;, Yj)S;Vj

;=1 j=1 ax (5.44)

au a2u ]+ - (x;, Y)V;Sj + -- (x;, Yj)S;Sj
ay ax ay

which involves 4(Nx + 1)(Ny + 1) unknown coefficients. On each subrectangle
[x;, x;+d X [Yj' Yj+d there are four collocation points that are the combination
of the two Gaussian points in the x direction, and the two Gaussian points in
the Y direction, and are:

TL = (x; + ~ [1 - ~l Yj + 1[1- ~])

TT,j = (x; + ~ [1 + ~l Yj + 1[1-~])
TL = (x; + ~ [1 - ~l Yj + 1[1+ ~])

Ttj = (x; + ~ [1 + ~l Yj + 1[1+ ~])

(5.45)

Collocating at these points gives 4Nx Ny equations. The remaining 4Nx + 4Ny + 4
equations required to determine the unknown coefficients are supplied by the
boundary conditions [37]. To obtain the boundary equations on the sides x = a1

and x = h1 differentiate the boundary conditions with respect to y. For example,
if

au = y2 at x = a1 and x = h1ax
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(5.46)

a2 u
-- = 2y at x = a l and x = b Iax ay

Equation (5.46) applied at Ny - 1 boundary nodes (yjlj = 2, ... , Ny) gives:

au
ax (a v Yj) = yJ

a2u
ax ay (aI' y) = 2Yj

au
ax (b v Yj) = yJ

(5.47)

or 4Ny - 4 equations. A similar procedure at y = a2 and y = b2 is followed to
give 4Nx - 4 equations. At each corner both of the above procedures are applied.
For example, if

(5.48)

then

au ag
- (av a2) = - (aI' a2)
ay ay

Thus, the four corners supply the final 12 equations necessary to completely
specify the unknown coefficients of (5.44).

EXAMPLE 3

Set up the colocation matrix problem for the PDE:

a2 w a2w
- + - = <P °~ x ~ 1, °~ Y ~ 1ax2 ay2 '

with

w = 0, for x = 1

w= 0, for y = 1

aw
0, for x = °-=

ax

aw
0, for y = °-=

ay
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where 1> is a constant. This PDE could represent the material balance of an
isothermal square catalyst pellet with a zero-order reaction or fluid flow in a
rectangular duct under the influence of a pressure gradient. Let N x = Ny = 2.

SOLUTION

Using (5.44) as the pp-approximation requires the formulation of 36 equations.
Let us begin by constructing the internal boundary node equations (refer to
Figure 5.6a for node numberings):

aw (1, 2) = 0, a
2
w (1, 2)

ax ax ay

w(3,2)
aw

0, ay (3,2) = 0

~; (2, 1) 0,
a2 w
-(2 1)ax ay ,

w(2, 3) = 0, aw (2, 3) 0
ax

o

o

where w(i, j) w(x i, yJ At the corners

aw (1, 1) = aw (1, 1) = a
2

w (1, 1) 0
ax ay ax ay

aw a2 w
w(l, 3) = - (1, 3) = - (1, 3) 0

ax ax ay

w(3,1) aw (3, 1) = a
2

w (3, 1) 0
ay ax ay

y y

,3)

(1,1)
x

=0

1.0

~=o
o y

w=O

V1V2 ,VI SZi'I S3 V2VZtV2SZ,V2S3

V2V2 ,V252/253 S2V2,5{>2,5253

S2V2'5252~2S, 5,v2,5?2'S3%
w

VI VI' VI V2,VI~ V2V1,V2V2 ,V2~

v2v[ 1 V2V2,V2S; 52V,,52V2 ,5,A,

5 2V"S2V2'Sij, 53V,,53V2,~

1.0

ow =0
ax

,2)

x
(2,1) (3,1)

EI:COLLOCATION POINT

(i,j) : (x i' Yj )

(2,3)
(3

EI EI EI EI

EI EI EI EI

(2,2) (3
EI EI EI EI

EI EI EI EI

(1,2)

(1,3)

(0) (b)

fiGURE. 5.6 Grid for Example 3. (a) Collocation points. (b) Nonvanishing basis
functions.
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aw aw
w(3, 3) = - (3, 3) = - (3, 3) = 0

ax ay

This leaves 16 equations to be specified. The remaining 16 equations are the
collocation equations, four per subrectangle (see Figure 5.6a). If the above
equations involving the boundary are incorporated in the pp-approximation,
then the result is

U(x, y)

a=

where

U;,j = u(x;, Yj)

The pp-approximation is then used to collocate at the 16 collocation points.
Since the basis is local, various terms of the above pp-approximation can be
zero at a given collocation point. The nonvanishing terms of the pp-approxi­
mation are given in the appropriate subrectangle in Figure 5.6b. Collocating at
the 16 collocation points using the pp-approximation listed above gives the
following matrix problem:

where

1 = [1, ... , IV

[
aUl Z aU13 auz 1

U U --'--'U --'UI,V I,Z' ay' ay' Z,V ax' z,z

auz,z auz,z aZuz,z aUZ,3 aZUZ,3
ax' ay' ax ay' ay' ax ay

aU3,1 au3,z aZu3,z aZU3,3]T
ax' ax' ax ay' ax ay

(for any function 1jJ)

and for the matrix A c,



-\C
\C

A C =

V'IIIV1V 1V'IIIVlVZ V'I11V1SZ

V'II4VI Vl V'II4V I VZV'II4VlSZ

V'I11VZV 1V'I11SZV 1 V'IIIVZVZ V'Il1SZVZ V'I11VzSZ V'I11SzSZ

V'II4VZVl V'II4SZV l V'II4VZVZ V'II4S ZVZ V'II4VzSZ V'II4S zSZ

V'~ZIV2V2 V'~ZISZVZ V'~21VZSZ V'bszsz V'~ZIVZS3V'bSZS3

V'~Z4VZVZ V'~Z4SZVZ V'~Z4VZSZ V'~Z4S2SZ V'~Z4VZS3V'~Z4SZS3

V'11IS 3V 1

V'114S 3V :

V'~21S3VZ V'~ZIS3SZ V'bS3S3

V'~24S3V ZV'~Z4S3S2 V'~Z4S3S3
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The solution of this matrix problem yields the vector a, which specifies the values
of the function and its derivatives at the grid points.

Thus far we have discussed the construction of the collocation matrix prob­
lem using the tensor products of the Hermite cubic basis for a linear PDE. If
one were to solve a nonlinear PDE using this basis, the procedure would be the
same as outlined above, but the ensuing matrix problem would be nonlinear.

In Chapter 3 we saw that the expected error in the pp-approximation when
solving BVPs for ODEs was dependent upon the choice of the approximating
space, and for the Hermite cubic space, was O(h4). This analysis can be extended
to PDEs in two spatial dimensions with the result that [8]:

lu(x, y) - w(x, y)1 = O(p4)

Next, consider the tensor product basis for.!Z!'fe ('ITl) x .!Z!'fe ('ITz) where 'ITI and
x y

'ITz are given in (5.41), kx is the order of the one-dimensional approximating
space in the x-direction, and ky is the order of the one-dimensional approximating
space in the y-direction. A basis for this space is given by the tensor products
of the B-splines as:

/

DIMX IDIMY

B;(x)B~(y) i~l j~l

where

Bf(x) = B-spline in the x-direction of order kx

B~(y) = B-spline in the y-direction or order ky

DIMX = dimension of .!Z!t

DIMY = dimension of .!Z! 'fey

The pp-approximation for this space is given by

DIMX DIMY

u(x, y) = 2: 2: (Xi,jBf(x)B~(y)
i~ 1 j= 1

where (Xi,j are constants, with the result that

lu(x, y) - w(x, y)1 = O(p'!)

where

(5.49)

(5.50)

(5.51)

Galerkin

The literature on the use of Galerkin-type methods for the solution of elliptic
PDEs is rather extensive and is continually expanding. The reason for this growth
in use is related to the ease with which the method accommodates complicated
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geometries. First, we will discuss the method for rectangles, and then treat the
analysis for irregular geometries.

Consider a region R that is a rectangle with a l ~ x ~ bl , a2 ~ Y ~ b2, with
-00 < ai ~ bi < 00 for i = 1,2. A basis for the simplest approximating space
is obtained from the tensor products of the one-dimensional basis of the space
..0i(1T), i.e., the piecewise linears. If the mesh spacings in x and yare given by
1TI and 1T2 of (5.41), then the tensor product basis functions wi,/x, y) are given
by

[x - Xi-I] [Y - Yj-ll Xi- l ~ x~ Xi' Yj-l ~ Y ~ Yj
hi- l kj- l

[X - Xi-I] [Yj+l - Y1 Xi- l ~ X ~ Xi' Yj~Y ~Yj+l
hi- l kj

Wi,j (5.52)

[Xi+l - X] [Y-Yj-l} Xi~X~Xi+h Yj-l ~ Y ~ Yj
h, k j - l

[Xi+lhi- X] [Yj+lk
j
- Y1 Xi ~ X ~ Xi+h Yj~Y~Yj+1

with a pp-approximation of

Nx+l Ny+l
u(x, y) = L L U(Xi' Yj)Wi,j

i= I j= I
(5.53)

Therefore, there are (Nx + l)(Ny + 1) unknown constants u(xi , y), each
associated with a given basis function Wi,j' Figure 5.7 illustrates the basis function
Wi,j' from now on called a bilinear basis function.

EXAMPLE 4

Solve (5.30) with f(x, y) 1 using the bilinear basis with Nx = Ny = 2.

fiGURE 5.7 Bilinear basis function.
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SOLUTION

The PDE is

0<;; x <;; 1, 0 <;; Y <;; 1

with

w(x, y)

The weak form of the PDE is

o on the boundary

II (aw a<Pi aw a<pi) II- -- + - -- dx dy = <Pi dx dy
ax ax ay ay

R R

where each <Pi satisfies the boundary conditions. Using (5.53) as the pp-approx­
imation gives

3 3

u(x, y) = 2: 2: u(xi, Yj)Wi,j
i~ 1 j~ 1

Let hi = k j = h = 0.5 as shown in Figure 5.8, and number each of the sub­
rectangles, which from now on will be called elements. Since each Wi,j must
satisfy the boundary conditions,

leaving the pp-approximation to be

u(x, y) = u(xz, yz)wz,z = UzWz

y

x
1.0

U 1,3 U 2 ,3 U 3,3

® CD
U 1,2 U2,2 U 3,2

® @

U',I U 2tl U 3,Io
o

1.0

fiGURE 5.8 Grid for Example 4. CD = element I.
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Therefore, upon substituting u(x, y) for w(x, y), the weak form of the PDE
becomes

II ( awz awz awz awz) IIUz - - + Uz - - dx dy = Wz dx dy
ax ax ay ay

R R

or

where

II (awz awz + awz awz) dx d
Azz = ax ax ay ay y

R

gz = II Wz dx dy
R

This equation can be solved on a single element ei as

ei = 1, ... ,4

and then summed over all the elements to give

4 4

Azzuz = L A~2UZ = L g~; = gz
ei=l ej=l

In element 1:

Uzu(x, y) = hZ (1 - x)(l - y),

and

0.5 ~ x ~ 1, 0.5 ~ Y ~ 1

1
W z = hZ (1 - x)(l - y)

Thus

Aiz = h14 e e [(1 - yf + (1 - x)Z] dx dy = ~
)0.5 )0.5 3

and

gi = 1z f e (1 - x)(l - y) dx dy = h
Z

h 0.5 )0.5 4

For element 2:

(h = 0.5)

Uz
u(x, y) = hZ (1 - y)x, o~ x ~ 0.5, 0.5 ~ Y ~ 1.0
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1
W z = hZ x(l - Y)

The results for each element are

Element Aei
22

1
2
'3

2 2
3

3 :<
3

4 2
3

Thus, the solution is given by the sum of these results and is

Uz = i hZ = 0.09375

In the previous example we saw how the weak form of the PDE could be
solved element by element. When using the bilinear basis the expected error in
the pp-approximation is

Iu(x, Y) - w(x, Y)I = O(pZ) (5.54)

(5.55)

where p is given in (5.41). As with ODEs, to increase the order of accuracy,
the order of the tensor product basis functions must be increased, for example,
the tensor product basis using Hermite cubics given an error of 0(p4). To illustrate
the formulation of the Galerkin method using higher-order basis functions, let
the pp-approximation be given by (5.50) and reconsider (5.30) as the elliptic
PDE. Equation (5.39) becomes

(V ~~x ~~y (Xi,jB~(x)B;(y), VB;';,(X)B~(Y)) = 0B;';,(X)B~(Y))

m = 1, ... , DIMX, n = 1, ... , DIMY

In matrix notation (5.55) is

Aa = g (5.56)
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where

_ [- - ]Tg - gl>"" gz

gj = [(f, B:(x)B{(y)), ... , (f, B:(x)Bt>IMy(y))]T

Ap,q = (VB:(x)Br(y), VB~,(x)B~(y))

p = DIMY (m - 1) + n (1 ~ P ~ DIMX x DIMY)

q = DIMY (i - 1) + j (1 ~ q ~ DIMX x DIMY)

Equation (5.56) can be solved element by element as

No. of elements No. of elements

L Aiq<Xq = L gi
ei=l ei=l

205

(5.57)

The solution of (5.56) or (5.57) gives the vector a, which specifies the pp­
approximation u(x, y) with an error given by (5.51).

Another way of formulating the Galerkin solution to elliptic problems is
that first proposed by Courant [9]. consider a general plane polygonal region R
with boundary aR. When the region R is not a rectangular parallelepiped, a
rectangular grid does not approximate R and especially aR as well as a triangular
grid, i.e., covering the region R with a finite number of arbitrary triangles. This
point is illustrated in Figure 5.9. Therefore, if the Galerkin method can be
formulated with triangular elements, irregular regions can be handled through
the use of triangulation. Courant developed the method for Dirichlet-type boundary
conditions and used the space of continuous functions that are linear polynomials
on each triangle. To illustrate this method consider (5.30) with the pp-approx­
imation (5.32). If there are TN vertices not on aR in the triangulation, then
(5.32) becomes

TN

u(x, y) = L <Xs<Ps(x, y)
s~l

(5.58)

Given a specific vertex s = e, <Xe = u(xf, Ye) with an associated basis function
<l>e(x, y). Figure 5.lOa shows the vertex (xeo Ye) and the triangular elements that
contain it, while Figure 5.10b illustrates the associated basis function. The weak
form of (5.30) is

II (au a<l>s + au a<l>s) dx dy = II f(x, Y)<l>s dx dy
ax ax ay ay

R R

s = 1, ... , TN (5.59)
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(0)
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(b)

fiGURE 5.9 Grids on a polygonal region. (a) Rectangular grid. (b) Triangular grid.

or in matrix notation

Aa = g

where

A sq = JJ [a<ps a<pq + a<ps a<pq] dx dy
ax ax ay ay

R

g = [JJf(x, Y)<Pl dx dy, ... , JJf(x, y)<PTN dx dY] T

R R

(5.60)

(0) (b)

fiGURE 5.10 Linear basis function for triangular elements. (a) Vertex (xe, Ye)' (b)
Basis function <Pe.
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Equation (5.60) can be solved element by element (triangle by triangle) and
summed to give

2: A;~aq = 2: g;i
ei ej

s = 1, ... , TN, q = 1, ... , TN (5.61)

Since the PDE can be solved element by element, we need only discuss the
formulation of the basis functions on a single triangle. To illustrate this for­
mulation, first consider a general triangle with vertices (Xi' Yi), i = 1, 2, 3. A
linear interpolation Pl(x, y) of a function C(x, y) over the triangle is given by
[10]:

where

3

Pl(x, y) = 2: a;(x, Y)C(Xb y;)
i=l

al(x, y) = l/J(-r23 + 'll23X - ~23Y)

a2(x, y) = l/J(-r3l + 'll3lX - ~3lY)

a3(x, y) = l/J(T12 + 'll12X - ~12Y)

l/J = (twice the area of the triangle)-l

(5.62)

To construct the basis function <Pe associated with the vertex (xe, Ye) on a single
triangle set (xe, Ye) = (Xl, Yl) in (5.62). Also, since <Pe(xe> Ye) = 1 and <Pe is
zero at all other vertices set C(xl, Yl) = 1, C(x2, Y2) = 0 and C(X3' Y3) = 0 in
(5.62). With these substitutions, <Pe = PI(X, y) = al(x, y). We illustrate this
procedure in the following example.

EXAMPLE 5

Solve the problem given in Example 3 with the triangulation shown in Figure
5.11.

SOLUTION

From the boundary conditions
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y

1.0
U 1,3 U 2,3 U 3,3

® ®

CD ®
U 1,2 U 2,2 U 3,2

@) ®

® CD
U 2,I U 3,I

X

0 1.0

fiGURE 5.11 Triangulation for Example 5. CD = element J

Therefore, the only nonzero vertex is uz,z, which is common to elements 2, 3,
4, 5, 6, and 7, and the pp-approximation is given by

u(x, y) = uz,z<Pz(x, y) = uz<Pz

Equation (5.61) becomes
7 7

~ A~2Uz = ~ g~i
ei=2 ei=2

where

A ei = JJ (a<pz a<pz + a<pz a<pz) dx d
zz ax ax ay ay y

Triangle
ei

Triangle
ei

The basis function <p~i can be constructed using (5.62) with (Xl> Yl) = (0.5,0.5)
giving

Thus,

e,
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and

ei

For element 2 we have the vertices

(Xl' Yl) = (0.5, 0.5)

(X2' Y2) = (1, 0.5)

(x3 , Y3) = (0.5, 0)

and

1
tV = 0.25

1"23 = (1)(0) - (0.5)(0.5) = - 0.25

~23 = 1 - 0.5 = 0.5

1123 = 0.5

A~2 = II (0.25)-2[(0.5)2 + (0.5)2] dx dy = 1

2 - II 1 ] _ 0.25g2 - (0.25) [-0.25 + 0.5x - 0.5y dx dy - -6-

Likewise, the results for other elements are

Element Aei g;i22

0.25
2 1.0 -

6

0.5
0.25

3 -
6

0.5
0.25

4 -
6

0.25
5 0.5 -

6

0.5
0.25

6 -
6

0.25
7 1.0 -

6
-

Total 4.0 0.25

which gives

U2 = 0.0625

209



210

C3

Partial Differential Equations in Two Space Variables

c,

(a)

C2

( b)

fiGURE 5. t 2. Node positions for triangular elements. (a) Linear basis. (b) Quadratic
basis: C, = C(x" y,).

The expected error in the pp-approximation using triangular elements with
linear basis functions is O(h2

) [11], where h denotes the length of the largest side
of any triangle. As with rectangular elements, to obtain higher-order accuracy,
higher-order basis functions must be used. If quadratic functions are used to
interpolate a function, C(x, Y), over a triangular element, then the interpolation
is given by [10]:

where

6

L bi(x, y)C(x, y)
i= 1

(5.63)

j = 1, 2, 3b/x, y) = aj(x, y)[2aj(x, y) - 1],

b4(x, y) = 4a1(x, y)a2(x, y)

bs(x, y) = 4a 1(x, y)a3(x, y)

b6(x, y) = 4aix, y)a3(x, y)

and the ai(x, y)'s are given in (5.62). Notice that the linear interpolation (5.62)
requires three values of C(x, y) while the quadratic interpolation (5.63) requires
six. The positions of these values for the appropriate interpolations are shown
in Figure 5.12. Interpolations of higher order have also been derived, and good
presentations of these bases are given in [10] and [12].

Now, consider the problem of constructing a set of basis functions for an
irregular region with a curved boundary. The simplest way to approximate the
curved boundary is to construct the triangulation such that the boundary is
approximated by the straight-line segements of the triangles adjacent to the
boundary. This approximation is illustrated in Figure 5.9b. An alternative pro­
cedure is to allow the triangles adjacent to the boundary to have a curved side
that is part of the boundary. A transformation of the coordinate system can
then restore the elements to the standard triangular shape, and the PDE solved
as previously outlined. If the same order polynomial is chosen for the coordinate
change as for the basis functions, then this method of incorporating the curved
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boundary is called the isoparametric method [10-12]. To outline the procedure,
consider a triangle with one curved edge that arises at a boundary as shown in
Figure 5.13a. The simplest polynomial able to describe the curved side of the
triangular element is a quadratic. Therefore, specify the basis functions for the
triangle in the Al-A2 plane to be quadratics. These basis functions are completely
specified by their values at the six nodes shown in Figure 5.13b. Thus the
isoparametric method maps the six nodes in the x-y plane onto the ACA2 plane.
The PDE is solved in this coordinate system, giving U(Al> A2), which can be
transformed to u(x, y).

PARABOLIC PDES IN TWO SPACE VARIABLES

In Chapter 4 we treated finite difference and finite element methods for solving
parabolic PDEs that involved one space variable and time. Next, we extend the
discussion to include two spatial dimensions.

Method of Lines

Consider the parabolic PDE

aw = D [a 2 w + a2 w]
at ax2 ay2

oR

o~ t, o~ x ~ 1, (5.64)

( 0)

(O,I)

-----...~II--....-----... },.,
(0,0) (1,0)

( b)

fiGURE. 5.13 C.oordinate transformation. (a) xy-plane. (b) AtAz-plane.
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(5.65)

with D constant. Discretize the spatial derivatives in (5.64) using finite dif-
ferences to obtain the following system of ordinary differential equations:

au·· D D
a~'J = (LiX)JUi+1,j - 2ui,j + Ui-1J + (Liy)JUi,j+l - 2ui,j + Ui,j-l]

where

Ui,j = w(xiJ y)

Xi = i Lix

Yj = j Liy

Equation (5.65) is the two-dimensional analog of (4.6) and can be solved in a
similar manner. To complete the formulation requires knowledge of the subsid­
iary conditions. The parabolic PDE (5.64) requires boundary conditions at X = 0,
x = 1, y = 0, and y = 1, and an initial condition at t = 0. As with the MOL
in one spatial dimension, the two-dimensional problem incorporates the bound­
ary conditions into the spatial discretizations while the initial condition is used
to start the IVP.

Alternatively, (5.64) could be discretized using Galerkin's method or by
collocation. For example, if (5.32) is used as the pp-approximation, then the
collocation MOL discretization is

(5.66)

i = 1, ... ,m

where (Xi> y;) designates the position of the ith collocation point. Since the MOL
was discussed in detail in Chapter 4 and since the multidimensional analogs are
straightforward extensions of the one-dimensional cases, no rigorous presenta­
tion of this technique will be given.

Alternating Direction Implicit Methods

Discretize (5.65) in time using Euler's method to give

ut,j = [~~~] [U?+l,j + U?-l,j] + [~~;] [Ui,j+l + Ui,j-l]

[
2D Lit 2D Lit]

+ ui,j 1 - (LiX)2 - (Liy)Z

where

(5.67)
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For stability

[ 1 1] 1
D ilt (ilX)2 + (ily)2 < 2"

If ilx = ily, then (5.68) becomes

D ilt 1
--~­

(ilX)2 4

213

(5.68)

(5.69)

(5.70)

which says that the restriction on the time step-size is half as large as the one­
dimensional analog. Thus the stable time step-size decreases with increasing
dimensionality. Because of the poor stability properties common to explicit
difference methods, they are rarely used to solve multidimensional problems.
Inplicit methods with their superior stability properties could be used instead of
explicit formulas, but the resulting matrix problems are not easily solved. An­
other approach to the solution of multidimensional problems is to use alternating
direction implicit (ADI) methods, which are two-step methods involving the
solution of tridiagonal sets of equations (using finite difference discretizations)
along lines parallel to the x-y axes at the first-second steps, respectively.

Consider (5.64) with D = 1 where the region to be examined in (x, y, t)
space is covered by a rectilinear grid with sides parallel to the axes, and
h = ilx = ily. The grid points (Xi' yj' tn ) given by x = ih, Y = jh, and t = n ilt,
and ui,j is the function satisfying the finite difference equation at the grid points.
Define

ilt
T = h2

Essentially, the principle is to employ two difference equations that are used in
turn over successive time-steps of ilt/2. The first equation is implicit in the x­
direction, while the second is implicit in the y-direction. Thus, if Ui,j is an in­
termediate value at the end of the first time-step, then

or

Ui,j un. T [ 2- + O~Ui,J= 2" °XUi,jl,J

Un+ 1 U· . T [ 2- + 02Un+l]= 2" °xUi,jl,J l,J Y l,J

[1 - ! Tonti = [1 + ! TO~]Un

[1 - !To~]Un+l = [1 + !Tonti

(5.71)

(5.72)
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for all i and j

These formulas were first introduced by Peaceman and Rachford [13], and
produce an approximate solution which has an associated error of O(Lit2 + h2 ).

A higher-accuracy split formula is due to Fairweather and Mitchell [14] and is

[1 - H,. - ~) 8;]ii = [1 + H,. + ~) 8~]un

[1 - ~ (,. - ~) 8~]un+l = [1 + ~ (,. + ~) 8~]ii (5.73)

with an error of O(Llt2 + h4). Both of these methods are unconditionally stable.
A general discussion of ADI methods is given by Douglas and Gunn [15].

The intermediate value ii introduced in each ADI method is not necessarily
an approximation to the solution at any time level. As a result, the boundary
values at the intermediate level must be chosen with care. If

W(x, y, t) = g(x, y, t) (5.74)

when (x, y, t) is on the bounadry of the region for which (5.64) is specified,
then for (5.72)

and for (5.73)

Ui,j = ,. ~ ~ [1 - HT - n8~]gZ:1 + ,. ; ~ [1 + HT + ~) 8~]gi,j

(5.75)

(5.76)

If g is not dependent on time, then

Ui,j = gi,j (for 5.72) (5.77)

Ui,j = (1 + ~ 8~)gi,j (for 5.73) (5.78)

A more detailed investigation of intermediate boundary values in ADI methods
is given in Fairweather and Mitchell [16].

ADI methods have also been developed for finite element methods. Doug­
las and Dupont [17] formulated ADI methods for parabolic problems using
Galerkin methods, as did Dendy and Fairweather [18]. The discussion of these
methods is beyond the scope of this text, and the interested reader is referred
to Chapter 6 of [11].

MATHEMATICAL SOFTWARE

As with software for the solution of parabolic PDEs in one space variable and
time, the software for solving multidimensional parabolic PDEs uses the method
of lines. Thus a computer algorithm for multidimensional parabolic PDEs based
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(5.79)

upon the MOL must include a spatial discretization routine and a time integrator.
The principal obstacle in the development of multidimensional PDE software
is the solution of large, sparse matrices. This same problem exists for the de­
velopment of elliptic PDE software.

Parabolics
The method of lines is used exclusively in these codes. Table 5.1 lists the parabolic
PDE software and outlines the type of spatial discretization and time integration
for each code. None of the major libraries-NAG, Harwell, and IMSL-contain
multidimensional parabolic PDE software, although 2DEPEP is an IMSL prod­
uct distributed separately from their main library. As with one-dimensional PDE
software, the overwhelming choice of the time integrator for multidimensional
parabolic PDE software is the Gear algorithm. Next, we illustrate the use of
two codes.

Consider the problem of Newtonian fluid flow in a rectangular duct. Ini­
tially, the fluid is at rest, and at time equal to zero, a pressure gradient is imposed
upon the fluid that causes it to flow. The momentum balance, assuming a constant
density and viscosity, is

av Po - PL [a 2v a2v]p-= +/-L-+-at L ax2 ay2

TABLE 5.1 Parabolic PDE Codes

Spatial Discretiza- Spatial
Code tion Time Integrator Dimension Region Reference

DSS/2 Finite difference Options including 2or3 Rectangular [19]
Runge-Kutta and
GEARB [24]

PDETWO Finite difference GEARB [24] 2 Rectangular [20]
FORSIM VI Finite difference Options including 2or3 Rectangular [21]

Runge-Kutta and
GEAR [25]

DISPL Finite element; Gal- Modified version of 2 Rectangular [22]
erkin with tensor GEAR [25]
products of B-spli-
nes for the basis
function

2DEPEP Finite element; Gal- Crank-Nicolson or an 2 Irregular [23]
erkin with quad- implicit method
ratic basis functions
on triangular ele-
ments; curved
boundaries incor-
porated by isopara-
metric method
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p = fluid density

Po - PL .
L = pressure gradIent

J1. = fluid viscosity

V = axial fluid velocity

The situation is pictured in Figure 5.14. Let

x
X=B

y=L
w

V

J1.!
T=-

pB2 (5.80)

Substitution of (5.80) into (5.79) gives

aT] a 2T]
-=2+-+aT a2x

The subsidiary conditions for (5.81) are

(B)2 a2T]

w a2y
(5.81)

T] = 0 at T = 0 (fluid initially at rest)

T] = 0 at y=O (no slip at the wall)

T] = 0 at X=1 (no slip at the wall)

aT] = 0 at X = 0 (symmetry)ax

aT] = 0 at Y = 1 (symmetry)aY

Equation (5.81) was solved using DISPL (finite element discretization) and
PDETWO (finite difference discretization). First let us discuss the numerical
results form these codes. Table 5.2 shows the affect of the mesh spacing
(klY = klX = h) when solving (5.81) with PDETWO. Since the spatial discre­
tization is accomplished using finite differences, the error associated with this
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fiGURE 5.14 flow In a rectangular duct.

discretization is 0(h2 ). As h is decreased, the values of 'Y] shown in Table 5.2
increase slightly. For mesh spacings less than 0.05, the same results were obtained
as those shown for h = 0.05. Notice that the tolerance on the time integration
is 10-7 , so the error is dominated by the spatial discretization. When solving
(5.81) with DISPL (cubic basis functions), a mesh spacing of h = 0.25 produced
the same solution as that shown in Table 5.2 (h = 0.05). This is an expected
result since the finite element discretization is 0(h4 ).

Figure 5.15 shows the results of (5.81) for various X, Y, and 'I". In Figure
5.15a the affect at the Y-position upon the velocity profile in the X-direction is
illustrated. Since Y = 0 is a wall where no slip occurs, the magnitude of the
velocity at a given X-position will increase as one moves away from the wall.
Figure 5.15b shows the transient behavior of the velocity profile at Y = 1.0. As
one would expect, the velocity increases for 0 ~ X < 1 as ,. increases. This trend
would continue until steady state is reached. An interesting question can now
be asked. That is, how large must the magnitude of W be in comparison to the
magnitude of B to consider the duct as two infinite parallel plates. If the duct
in Figure 5.14 represents two infinite parallel plates at X = ±1, then the

B
TABLE 5.2 Results of (5.81) Using PDETWO: ,. = 0.5, W= 1, Y = 1, TOL = 10- 7

'Y]

X h = 0.2 h = 0.1 h = 0.05

0.0 0.5284 0.5323 0.5333
0.2 0.5112 0.5149 0.5159
0.4 0.4575 0.4608 0.4617
0.6 0.3614 0.3640 0.3646
0.8 0.2132 0.2146 0.2150
1.0 0 0 0
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fiGURE 5.15

momentum balance becomes

(5.82)

with

T) = 0 at 'T = 0

T) = 0 at X= 1

aT) = 0 at X = 0ax
Equation (5.82) possesses an analytic solution that can be used in answering the
posed question. Figure 5.16 shows the affect of the ratio B/W on the velocity
profile at various 'T. Notice that at low 'T, a B/W ratio of ~ approximates the
analytical solution of (5.82). At larger 'T this behavior is not observed. To match
the analytical solution (five significant figures) at all 'T, it was found that the
value of B/W must be i or less.
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FIGURE. 5.16 further results of (5.81).

BIW
(1) 1
(2) 1/z
(3) 1/4 and analytical solution of (5.82)

x

Ellipties

Table 5.3 lists the elliptic PDE software and outlines several features of each
code. Notice that the NAG library does contain elliptic PDE software, but this
routine is not very robust. Besides the software shown in Table 5.3, DISPL and
2DEPEP contain options to solve elliptic PDEs. Next we consider a practical
problem involving elliptic PDEs and illustrate the solution and physical impli­
cations through the use of DISPL.

The most common geometry of catalyst pellets is the finite cylinder with
length to diameter, LID, ratios from about 0.5 to 4, since they are produced by
either pelleting or by extrusion. The governing transport equations for a finite
cylindrical catalyst pellet in which a first-order chemical reaction is occurring
are [34]:

where

(Mass)

(Energy)

( )
2 []

(Pf 1 af D a2f 'Y- + - - + - - = <p 2f exp - (t - 1)
ar 2 r ar L az2 t

( )
2 []

a2t 1 at D a2t 2 'Y- + - - - - = -!3<P f exp - (t - 1)
ar 2 r ar L az2 t

(5.83)

r = dimensionless radial coordinate, 0 ~ r ~ 1
z = dimensionless axial coordinate, 0 ~ z ~ 1
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f=
t =

'Y
<P
13

Partial Differential Equations in Two Space Variables

dimensionless concentration
dimensionless temperature
Arrhenius number (dimensionless)
Thiele modulus (dimensionless)
Prater number (dimensionless)

with the boundary conditions

af at
= 0 at r = 0ar ar

af at
0 0- at zaz az

(symmetry)

(symmetry)

f = t = 1 at z = 1 and r 1 (concentration and
temperature specified at
the surface of the pellet)

Using the Prater relationship [35], which is

t = 1 + (1 - f)l3

TABLE 5.3 Elliptic POE Codes

Nonlinear
Equations Reference

No

No [26]
No [27]
No [28]
No [29]
No [30]

No [31]

Code

NAG
(D03 chapter)

FISPACK
EPDE1
ITPACK/REGION
FFf9
HLMHLZ/HEL-

MIT/HELSIXI
HELSYM

PLTMG

ELIPTI

ELLPACK

Discretization

Finite difference
(Laplace's equation

in two dimensions)
Finite difference
Finite difference
Finite difference
Finite difference
Finite difference

Finite element; Ga­
lerkin with linear
basis functions on
triangular elements

ADI with finite dif­
ferences; integrate
to steady state

Finite difference; fi­
nite element (collo­
cation and Ga­
lerkin)

Region

Rectangular

Rectangular
Irregular
Irregular
Irregular
Irregular

Irregular

Irregular

Rectangular

Yes

Yes

[32]

[33]
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TABlE. 5.4 Results of (5.84) Using DlSPL
D

Jl = 0.25,13 = 0.1, 'Y = 30, - =
L

221

$=1

r h = 0.5 h = 0.25

0 0.728 0.728
0.25 0.745 0.745
0.50 0.797 0.797
0.75 0.882 0.882
1.0 1.000 1.000

h = 0.5
0.724( -3)
0.384( -1)
0.109
0.414
1.000

$ = 2

h = 0.25

0.240( -1)
0.377( -1)
0.115
0.404
1.000

h = 0.125

0.227( -1)
0.365( -1)
0.115
0.404
1.000

reduces the system (5.83) to the single elliptic PDE:

( )
2 [ ]

a2f 1 af D a2f 2 'Y13(1 - f)
ar 2 + -;. ar + L az2 = <P J exp 1 + 13(1 - f)

af = 0 at r = 0
ar

(5.84)

af = 0 at z = 0
az

f = 1 at r = 1 and z = 1

DISPL (using cubic basis functions) produced the results given in Tables
5.4 and 5.5 and Figure 5.17. In Table 5.4 the affect of the mesh spacing
(h = fJ.r = fJ.z) is shown. With $ = 1 a coarse mesh spacing (h = 0.5) is
sufficient to give three-significant-figure accuracy. At larger values of <p a finer
mesh is required for a similar accuracy. As <p increases, the gradient in f be­
comes larger, especially near the surface of the pellet. This behavior is shown
in Figure 5.17. Because of this gradient, a finer mesh is required to obtain an
accurate solution over the entire region. Alternatively, one could refine the
mesh in the region of the steep gradient. Finally, in Table 5.5 the isothermal
results (13 = 0) are compared with those published elsewhere [34]. As shown,
DISPL produced accurate results with h = 0.25.

TABlE. 5.5 Further Results of (5.84) Using DISPL
L

13 = 0.0, 'Y = 30, $ = 3, D = 1

(r, z)

(0.394, 0.285)
(0.394, 0.765)
(0.803, 0.285)
(0.803, 0.765)

DISPL,
h = 0.25

0.337
0.585
0.648
0.756

From
Reference [34]

0.337
0.585
0.648
0.759
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fiGURE. 5.17 Results of (5.84): p = 0.1, 'Y = 30, <I> = 2, DIL = 1.

!
(1) 0.75
(2) 0.50
(3) 0.00

PROBLEMS

1. Show that the finite difference discretization of

a2 w a2 w
(x + 1) - + (y2 + 1) - - w = 1ax 2 ay 2

o :%; x:%; 1, 0 :%; Y :%; 1, Lix = Liy = ~

with

w(O, y) = Y

w(l, y) = y2

w(x,O) = 0

w(x, 1) = 1

is given by [36]:
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2.* Consider a rectangular plate with an initial temperature distribution of

w(x, y, 0) = T - To = 0, °~ x ~ 2, °~ y ~ 1

°~ r ~ 1, °~ z ~ 1

3.*

If the edges x = 2, y = 0, and y = 1 are held at T = To and on the edge
x = °we impose the following temperature distribution:

() {
2tY for °~ Y ~ ~

w 0, Y, t = T - To = 2t(1' _ y), f 1 1or 2: ~ Y ~

solve the heat conduction equation

aw a2w a2w
-=-+-at ax2 ay 2

for the temperature distribution in the plate. The analytical solution to
this problem is [22]:

w = ± i i ~ \ (e-O"! + at - 1) sin (WIT) sin (m'Trx) sin (n'TrY)
'Trm~ln=ln a 2 2

where

a = 'Tr2 (:2 + n2 )

Calculate the error in the numerical solution at the mesh points.

An axially dispersed isothermal chemical reactor can be described by the
following material balance equation:

at = _1 [a2t + ! at] + _1_ a2t + D
az Per ar2 r ar Pea az2 at,

with

1 - t = _1_ at at z
Pea az

0, at = ° at r = °and r = 1ar

at
az ° a. z = 1

where
t = dimensionless concentration

r = dimensionless radial coordinate

z = dimensionless axial coordinate

Per = radial Peclet number

Pea = axial Peclet number

D a = Damkohler number (first-order reaction rate)
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The boundary conditions in the axial direction arise from continuity of
flux as discussed in Chapter 1 of [34]. Let Da = 0.5 and Per = 10. Solve
the material balance equation using various values of Pea' Compare your
results to plug flow (Pea -? (0) and discuss the effects of axial dispersion.

4.* Solve Eq. (5.84) with D/L = 1, <p = 1, "y = 30, and let -0.2 ~ 13 ~ 0.2.
Comment on the affect of varying 13 [13 < 0 (endothermic), 13 > 0 (exo­
thermic)].

5.* Consider transient flow in a rectangular duct, which can be described by:

a'Y] = a + a
2

'Y] + (B) 2 a
2

'Y]
aT aX2 w ay2

using the same notation as with Eq. (5.81) where a: is a constant. Solve
the above equation with

-
(l( Comment

(a) 2
(b) 4
(c) 1

Eq. (5.81)
Twice the pressure gradient as Eq. (5.81)
Half the pressure gradient as Eq. (5.81)

How does the pressure gradient affect the time required to reach steady
state?
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