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Experimental configuration. The sensors are placed four sites from the actuator and at 

the end of the crystal. The sensor located four sites away from the actuator is used to 

measure the localized vibrations within the vicinity of the defect (without being in direct 

contact with it, so as to avoid affecting its dynamics). The sensor at the end of the crystal 

is used to measure the transmission through the crystal. For our rectifier geometry, the 

bifurcation-based rectification mechanism is only clearly evident with a defect placed 

two particles away from the actuator. For defect particles placed three or more particles 

away from the actuator, the high attenuation of the signal (with frequency within the band 

gap1) does not allow sufficient energy from the actuator to arrive to the defect particle. 

For defect particles placed next to the actuator, we observe that the effect of the boundary 

is dominant, and the dynamics of the system becomes more chaotic. The chain length of 

19 particles was selected as a balance between having high enough attenuation (arising 

from the band gap) to demonstrate the rectification effect, and having a small enough 

dissipation of the signal to maximize the experimental tractability. In our numerical 

simulations, we observe that decreasing the dissipation in the system can increase the 

transmission efficiency in the forward configuration.    
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Experimental measurement of linear spectra. To measure the linear spectrum of the 

system, we apply broadband noise via the actuator to the granular crystal2,3 statically 

compressed at F0 = 8 N. We calculate the transfer functions, shown in Fig. S1, by 

dividing the averaged (over 16 runs) PSD of the force-time history measured at each 

sensor, by the mean (over all runs) PSD amplitude in the acoustic band (1 kHz to fc). In 

the reverse configuration (Fig. S1a), frequencies above the acoustic cutoff are attenuated. 

Alternatively, in the forward configuration (Fig. S1b) the actuator is placed close to the 

defect and excites the defect mode, as can be seen in the spectrum of the sensor two sites 

from the defect (blue curve). The localized nature of this mode is revealed, as this peak is 

not present at the end of the chain (red curve). The frequency peak observed here agrees 

closely with the analytically predicted defect mode frequency fd (vertical dashed line).  

 

Figure S1. Experimentally measured PSD transfer functions.  PSD transfer function 

for the granular crystal rectifiers of Figs. 1-4 (F0 = 8 N) in the (a) reverse and (b) forward 

configurations. Blue (dark grey) curve is the sensor located four particles from the 

actuator, red (light grey) is the sensor 19 particles from the actuator (corresponding to the 

sensors of the same color in Fig. 1a,b, respectively). The vertical black line is the acoustic 

band upper cutoff frequency fc, and the vertical black dashed line is the defect mode 

frequency fd. 

 

Quasiperiodic vibrations. To understand the fundamental mechanism that leads to 

quasiperiodic vibrations, we apply the Newton’s method in phase space2 to Eq. 1.  This 

method is utilized for obtaining periodic solutions and their Floquet multipliers λj, which 

can be used to study the linear stability of the solutions. If all |λj| < 1, the periodic solution 

is stable as small perturbations decay exponentially in time. In Fig. S2a, we show the 

Floquet spectrum of the periodic solution corresponding to the forward configuration 

with F0 = 8 N, τ = 1.75 ms, fdr = 10.5 kHz, and δ(+) = 0.6 µm. Here all Floquet multipliers 

lie on a circle of radius  except four—two which lie outside the unit circle. Because 

of these two, the periodic solution corresponding to these parameters is linearly unstable. 

From a bifurcation point of view, this picture is known as a Naimark-Sacker bifurcation4.  

In this case, the unstable periodic solution decays into a stable two-frequency 

quasiperiodic solution. In Fig. S2b, we show the time evolution (force-time history of the 

fourth particle) of the unstable periodic solution of Fig. S2a. We numerically integrate the 

equations of motion (Eq.1) using a fourth-order Runge-Kutta scheme with the unstable 

periodic solution found by Newton’s method as the initial condition. After a short 

transient period, we see the unstable periodic solution decays into a stable quasiperiodic 

solution. Multiple frequency peaks based on the linear combinations of two dominant 

frequencies (fdr and fN), characteristic of a quasiperiodic solution, can be seen in the PSD 

(calculated for times 100 < t < 200 ms, blue region) shown in Fig. S2c, where the 

frequency peaks corresponding to higher order linear combinations have lower 

amplitude5. Similarly, to obtain the quasiperiodic branch of solutions of Fig. 2, we 

calculate the dynamic force amplitude by using the unstable periodic solution of the same 
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driving amplitude as an initial condition for the numerical integrator. Here we integrate 

for 50 ms and take the maximum amplitude from 40-50 ms.  

 

Figure S2. Quasiperiodic vibrations. (a) Floquet spectrum of the periodic solution 

corresponding to fdr =10.5 kHz and δ(+) = 0.6 µm. (b) Numerically calculated force-time 

history of the fourth particle away from the actuator in the forward configuration, using 

as an initial condition the periodic solution of panel (a). (c) PSD of the blue (dark grey) 

time region of panel (b). 

 

Route to chaos. In this section, we study the transition of the system from quasiperiodic 

to chaotic dynamics. Using the same method as described for Fig. S2, we take the PSD of 

the force-time history (four particles from the actuator) of the time integrated solution 

using the unstable periodic solutions found by Newton’s method, at increasing 

amplitudes, as the initial conditions. For the smallest amplitude δ(+) = 0.60 µm we observe 

a quasiperiodic solution (Fig. S3a) with a discrete set of frequencies based on the linear 

combinations of fdr and fN. As we increase the amplitude (δ(+) = 1.0 µm, Fig. S3b), we 

observe the appearance of additional peaks at frequencies based on linear combinations 

of fdr/2 and fN/2, which is a sign of double period bifurcation. Increasing the amplitude 

further (δ(+) = 1.03 µm, Fig. S3c) we see peaks based on fdr/4 and fN/4 (second double 

period bifurcation). Further increasing the amplitude, a continued cascade of double 

period bifurcations results in the merging of distinct frequency peaks and the formation 

of continuous bands, as shown in Fig. S3d.  

 

Figure S3. The period doubling cascade route to chaos.  PSD of the numerically 

calculated force-time history, corresponding to driving amplitudes δ(+) = 0.6 µm (a), δ(+) = 

1 µm (b), δ(+) = 1.03 µm (c) and δ(+) = 1.2 µm (d) for the fourth particle from the actuator 

in the forward configuration. 
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Logic. By configuring the tunable frequency mechanical rectifiers to have multiple 

inputs, we propose tunable frequency logic devices. We present concepts for two types of 

logic devices: the AND gate (Fig. S4a) and the OR gate (Fig. S4b). We assume incident 

harmonic signals from A and B are in phase. For the AND gate, a large signal will pass 

only if the sum of the signals from A and B are greater than the critical amplitude δc 

where the jump phenomenon occurs. Otherwise, if either A or B is off, the signal will be 

attenuated and not pass. This configuration can also be used in bifurcation-based sensors. 

For instance, if the signal from A is set near the critical jump phenomena amplitude, a 

small deviation in B will result in the transmission of a large signal. For the OR gate, a 

rectifier is placed in each of the A and B branches. If the signal coming from each 

respective branch is greater than the critical amplitude, this signal will pass and combine 

with the other signal. Thus a large amplitude signal will pass in all cases except when 

there is no large signal coming from either A or B.  

 

Figure S4. Mechanical logic devices based on the tunable rectifier. Incident signals 

are applied through A and B, and received in C. (a) AND gate. Signals will only pass 

when combined amplitudes of A and B are greater than the critical rectifier amplitude δc. 

(b) OR gate. Signals will pass when either the amplitude of A or B are greater than the 

critical rectifier amplitude.  

System scalability. The proposed system is tunable with changes in static load, and 

scalable with geometric and material properties. For instance, by reducing the rectifier 

particle size (see analytical expressions in Methods), assuming F0 = 0.1 N and the same 

configuration and ratio m/M as in Figs. 1-3, we predict the rectifier has a defect 

frequency of fd ≈ 1 MHz (characteristic of medical ultrasound) and an overall system 

length of 6.7 mm. 
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