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To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an

equation is first derived for it. This equation is considerably more complex than its equivalent for

atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS)

database of transitional states obtained for binary-species systems in the context of temporal

mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these

new terms have magnitude comparable to that of governing terms in the classical equation. Most

prominent among these new terms are those expressing the variation of diffusivity with

thermodynamic variables and Soret terms having dissipative effects. Since models are not available

for these new terms that would enable solving the SGS scalar variance equation, the adopted

strategy is to directly model the SGS scalar variance. Two models are investigated for this

quantity, both developed in the context of compressible flows. The first one is based on an

approximate deconvolution approach and the second one is a gradient-like model which relies on a

dynamic procedure using the Leonard term expansion. Both models are successful in reproducing

the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the

framework of a probability density function (PDF) approach in conjunction with the b-PDF, they

excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model,

the proportionality coefficient spans a small range of values through the layer cross-stream

coordinate, boding well for the stability of large eddy simulations using this model.
VC 2011 American Institute of Physics. [doi:10.1063/1.3609282]

I. INTRODUCTION

One of the most useful concepts in turbulent combustion

is that of a “flamelet.”1 Its usefulness stems from the fact

that the flamelet model is applicable in conjunction with fi-

nite rate chemistry, and it is the only turbulent combustion

model which contains the essential coupling between classi-

cally computed molecular mass-diffusion and chemical reac-

tion rate. This model is applicable when the chemical

reactions have a relatively short characteristic time with

respect to the flow, so that the flame is thin and turbulent

eddies move it and distort it as an entity rather then penetrat-

ing into the flame and affecting there the reaction. When the

flame is not penetrated by turbulence, the interior of the

flame is akin to a laminar flame, and turbulence modeling is

only needed for the flow external to the flame; this is a sub-

stantial advantage for modeling of turbulent reactive flows.

Finding the evolution of the flame is then reduced to obtain-

ing its statistical position. For non-premixed combustion,

several assumptions and mathematical manipulations of the

governing equations lead to an equation devoid of chemical

sources for a quantity which is thus a conserved scalar. This

quantity is called “the mixture fraction,” Z, and the statistics

of the stoichiometric value of Z, Zs, determines the flame

location; whereas, the temporal solution of the species mass

fraction, Y, and temperature, T, in the Z coordinate system

determines the internal flame structure. In the species and

energy equations written in the Z coordinate system, the sca-

lar dissipation, v, acts as a diffusion coefficient. This scalar

dissipation is that within the flamelet and thus is at a scale

smaller than the solution of the flow field; it is thus the sub-

grid-scale (SGS) scalar dissipation. Generally, it is hypothe-

sized that Z assumes the form of a b probability density

function (PDF),2,3 and thus finding this distribution reduces

to obtaining its mean and variance. Summarizing, in order to

utilize the flamelet model, one must have available the mean

and variance of Z and the SGS v. In the context of large eddy

simulation (LES) in which the filtered governing equations

are solved subject to models included to introduce palliatives

for the filtered-out SGS effects, the mean Z value is known

from the LES solution. However, neither the SGS Z variance

nor the SGS dissipation of Z can be found from the LES so-

lution, and thus they must be modeled. For example, several

investigators4,5 modeled the SGS scalar variance as propor-

tional to the resolved (i.e., LES) scalar dissipation, a model

which follows from the classical mixing length assumption

considering that the scalar variance is a measure of the level

of scalar fluctuations.

Given the aforementioned importance of the SGS scalar

variance in modeling combustion and the numerous studies

devoted to solving the SGS scalar variance equation by mod-

eling those of its terms that are not computable from the LES

solution (e.g., Refs. 6 and 7), we are here investigating the

modeling of the SGS scalar variance under supercritical

pressure conditions and use a previously created direct

a)Telephone: 1-818-354-6959. FAX: 1-818-393-6682. Electronic mail:

josette.bellan@jpl.nasa.gov.

1070-6631/2011/23(8)/085101/22/$30.00 VC 2011 American Institute of Physics23, 085101-1

PHYSICS OF FLUIDS 23, 085101 (2011)

Downloaded 20 Sep 2011 to 131.215.220.186. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3609282
http://dx.doi.org/10.1063/1.3609282


numerical simulations (DNS) database for examining the

capability of several models. The difference between this sit-

uation and the much studied atmospheric-pressure conditions

is that here the species mass fluxes include Soret effects, that

real gas equations of state (EOSs) instead of the perfect gas

EOS are used and that the transport properties are all com-

plex functions of the thermodynamic quantities. In Sec. II

we derive the SGS scalar variance equation and show that it

includes a large number of subgrid terms the modeling of

which is uncertain. Considering this uncertainty, we next

examine in Sec. III the conserved scalar extracted from the

DNS database and explore whether it can be represented in

LES by a presumed PDF for which the SGS scalar variance

would be needed. Further, in Sec. IV, we assess the ability of

two models to accurately portray the SGS scalar variance.

The databases are summarized in Sec. V. Model assessments

are here performed on these databases representing transi-

tional states obtained from simulating mixing of two chemi-

cal species under supercritical pressure. The database

consists of three sets of species and was created in the con-

text of a temporal mixing layer. The mixing situation has

been here selected rather than a chemically reacting case

because the former represents a conservative choice in that

the scalar could have a considerably more complex distribu-

tion in a reactive flow due to coupling among thermody-

namic variables that would introduce increased flow

structure, so that if a model is not accurate for the mixing sit-

uation, it will certainly be even less accurate for a reactive

flow. On the other hand, an acceptable model describing the

conserved scalar only during mixing may not be acceptable

for reactive flows, but it represents the departing point for

constructing such a model. Additionally, one commonality

among the evolution of the flow for all layers was the

formation of high density-gradient magnitude (HDGM)

regions populating the entire flow, which originate from the

combination of the distortion of the original boundary sepa-

rating the two fluids and the mixing of species having dispar-

ate molar masses. These HDGM regions are the sites where

mixing between species occurs. Thus, the conserved scalar,

which is any of the two species in a layer, displays high non-

uniformities and the HDGM regions resemble in geometry

the flamelets much studied in reactive flows; this resem-

blance adds relevance to the databases utilized in this study.

Results are presented in Sec. VI. A summary and conclu-

sions are offered in Sec. VII.

II. THE SGS SCALAR VARIANCE TRANSPORT
EQUATION

Considering Z to be one of the species, the SGS scalar

variance is

rZ ¼ Z2
� �

� Zf g2; (1)

where the operator f*g denotes Favre-filtered quantities (we

depart in this section from the typical eZ notation given the

complex expressions in the SGS scalar variance equation

below), i.e.,

Zf g ¼ qZ

�q
; (2)

where q is the mixture density, and for any function g(x) the

filtered value is expressed in physical space by

�gðxÞ ¼
ð

X
gðx0ÞGðx� x0Þdx0; (3)

where G is the filter function associated with the characteris-

tic filter size �D and X is the entire spatial domain. According

to the scalar equation under supercritical conditions,8–12 the

transport equation of the SGS scalar variance is

�q
DrZ

Dt
¼ r � �q DaDf grrZ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 1

þ2�q DaDf gr Zf g � r Zf g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 2

�2�q DaDf g rZ � rZf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 3

�r � ð�qx|fflfflfflfflfflffl{zfflfflfflfflfflffl}Þ
term 4

þ2 Zf gr � ð�qgÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
term 5

�2�q DaDrZ � rZf g � DaDf g rZ � rZf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 6

þ2r � �q DaDZrZf g � �q DaDf g ZrZf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 7

�2 Zf gr � �q DaDrZf g � �q DaDf gr Zf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 8

þ2r � �q aBKð1� ZÞZ2 D

T
rT

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 9

�2�q aBKð1� ZÞZ D

T
rT � rZ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 10

þ2r � �q D
ð1� ZÞZ2

RuT

m1m2

m
Krp

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 11

�2�q D
ð1� ZÞZ

RuT

m1m2

m
Krp � rZ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 12

�2 Zf gr � �q aBKð1� ZÞZ D

T
rT

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 13

�2 Zf gr � �q D
ð1� ZÞZ

RuT

m1m2

m
Krp

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 14

;

(4)

085101-2 E. Masi and J. Bellan Phys. Fluids 23, 085101 (2011)

Downloaded 20 Sep 2011 to 131.215.220.186. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



where DrZ

Dt ¼
@rZ

@t þ uf g � rrZ is the material derivative, t is

time, u denotes the velocity, p is the pressure, T is the tem-

perature, Ru is the universal gas constant, D and aD are the

variable diffusion coefficient and mass diffusion factor,

respectively, aBK is the Bearman-Kirkwood form of the ther-

mal diffusion factor, and K is defined as

K ¼ 1

m2

@ðm=qÞ
@X2

� 1

m1

@ðm=qÞ
@X1

	 

; (5)

with m denoting the molar mass and X labeling the molar

fraction (for both m and X, subscript 2 refers to Z and sub-

script 1 refers to the complement of Z in the mixture, (1–Z)).

Vectors x and g are the SGS fluxes

x ¼ Z2u
� �

� Z2
� �

uf g; (6)

g ¼ Zuf g � Zf g uf g: (7)

Equation (4) clearly differs from the classical SGS-scalar-

variance transport equation under atmospheric conditions

(e.g., Jiménez et al.6). On the right hand side (r.h.s.) of

Eq. (4), one recognizes familiar terms such as the molecular

diffusion (term 1), the Fick-issued resolved part of the fil-

tered scalar dissipation and filtered scalar dissipation rate

(terms 2 and 3, respectively), and the transport of the square

of the scalar and of the scalar by the SGS turbulence (terms

4 and 5, respectively); however, new terms appear as a con-

sequence of the spatial variation of DaD under supercritical

conditions and also because of filtering the nonlinear pres-

sure-gradient and Soret terms. We distinguish here between

the total dissipation, which is the irreversible entropy

production13

v / Ja � Ja (8)

and which is the sum of six terms (since the species mass-

diffusion flux, Ja, is the sum of three terms8,9,13), and the

Fick-issued dissipation which represents only one of these

six terms.

Whereas the form of Eq. (4) highlights the new terms

due to the supercritical-pressure aspect, another form of the

SGS scalar variance equation can highlight new SGS contri-

butions to the SGS scalar variance; this latter form is similar

to that of Pera et al.7

�q
DrZ

Dt
¼ r � �q DaDf grrZ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Resolved Molecular Diffusion

�r � �q x� 2 Zf ggð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SGS Turbulent Fluxes

�2�q DaDf g rZ � rZf g � r Zf g � r Zf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fick�issued SGS Dissipation

�2�qg � r Zf g|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
SGS Production

þ2r � �q DaDZrZf g � �q DaDf g ZrZf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SGS Diffusivity 1

�2r � �q Zf g DaDrZf g � DaDf gr Zf gð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SGS Diffusivity 2

þ2 �q DaDrZf g � �q DaDf gr Zf g½ � � r Zf g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SGS Diffusivity 3

�2�q DaDrZ � rZf g � DaDf g rZ � rZf g½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SGS Diffusivity 4

þ2r � �q aBKð1� ZÞZ2 D

T
rT

� �
� aBKð1� ZÞZ D

T
rT

� �
Zf g

	 
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SGS Soret 1

�2�q aBKð1� ZÞZ D

T
rT � rZ

� �
� aBKð1� ZÞZ D

T
rT

� �
� r Zf g

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SGS Soret 2

þ2r � �q D
ð1� ZÞZ2

RuT

m1m2

m
Krp

� �
� D

ð1� ZÞZ
RuT

m1m2

m
Krp

� �
Zf g

	 
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SGS Pressure 1

�2�q D
ð1� ZÞZ

RuT

m1m2

m
Krp � rZ

� �
� D

ð1� ZÞZ
RuT

m1m2

m
Krp

� �
� r Zf g

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SGS Pressure 2

;

(9)

where term 5 in Eq. (4) was split into the classical turbulent-

flux form and SGS production, the turbulent fluxes were

combined and only SGS-type terms emphasized. The mean-

ing of the new SGS terms is not obvious and must be

investigated.

It will be shown in Sec. VI A that the additional SGS

terms in Eq. (4) have significant activity and thus are impor-

tant to model. Moreover, the root mean square (rms) activity

and the mean values of the SGS terms in Eq. (9) will be

examined to understand their influence on the SGS variance
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evolution. Models for the new SGS terms in either Eq. (4) or

Eq. (9) are not currently available, a fact which motivated

investigating whether the conserved scalar conforms to a

PDF having a known mathematical expression. If this is the

case, the PDF could be used in a presumed-PDF approach,

and therefore the SGS scalar variance could be useful for

constructing the PDF, a fact which would motivate finding a

model for it. The investigation of the SGS PDF shape is

described next. In the remaining part of this study, we revert

to the usual notation, eZ, for the Favre filtered quantities.

III. THE PDF OF THE CONSERVED SCALAR

The scalar statistics is the important information desired

for flamelet modeling (e.g., Ref. 14). However, if the PDF is

complex, it has the drawback that it can only be approxi-

mately reconstructed by a large number of its moments.15 It

is certainly computationally easier if it can be shown that the

PDF of the scalar conforms to a PDF having a simple mathe-

matical form for which only a small number of moments is

necessary for its reconstruction. Such simple PDFs are, for

example, the Dirac, the Gaussian, and the b functions

for which one needs a maximum number of two moments for

reconstruction. As stated above, the first moment of the local

(SGS) PDF is always computable from LES, so that the focus

is on computing the second moment, i.e., the SGS scalar var-

iance. An extensive literature exists on the topic of the SGS

scalar variance computation2,4,5,7,16,17 but not for supercritical

turbulent flows for which, as seen in Sec. II, the variance

equation is considerably more complex than in the already

studied flows, indicating possible departures from previous

findings, as implied by previous results.8 To inquire about the

form of the SGS PDF, we recall here its definition and discuss

a practical way to calculate it under compressible conditions.

The instantaneous SGS PDF (fsgs) of a scalar quantity

Z may be defined using the fine-grained density c[n,Z(x)]

: d [Z(x)–n], by weighting it with the filter function G
(Refs. 18 and 19) as

fsgsðn; xÞ ¼
ð

X
d½Zðx0Þ � n�Gðx� x0Þdx0; (10)

where d is the Dirac delta function and n is the scalar-space

variable representing Z. If G is a positive filter kernel, fsgs

has the property of a PDF. As every PDF, it is constrained by

the normalization condition stating that the integral over the

scalar space is unity. For Z 2 ½0; 1�, the instantaneous filtered

value of any quantity g(Z(x)) may be obtained by integration

over the scalar space as17

�gðxÞ ¼
ð1

0

gðnÞfsgsðn; xÞdn: (11)

In the same spirit, for obtaining the Favre-filtered value of

every quantity g(Z(x)) by using a PDF, a mass-weighted

SGS PDF must be defined20

fsgsc
ðn; xÞ ¼ 1

�qðxÞ

ð
X

qðx0Þd½Zðx0Þ � n�Gðx� x0Þdx0; (12)

where the subscript c denotes the compressible situation, and

then

~gðxÞ ¼
ð1

0

gðnÞfsgsc
ðn; xÞdn: (13)

The mass-weighted SGS PDF (referred to as filtered mass

density function (FMDF)) is defined by Jaberi et al.21 and

Raman et al.22 in a probabilistic manner using the property

that the integral of fsgsc
over the sample space gives the fil-

tered density value. This definition is then used in the frame-

work of a PDF approach where a transport equation for the

PDF is solved. Here, instead, a PDF normalized by �qðxÞ, i.e.,

Eq. (12), is needed as we wish to satisfy the classical defini-

tion of the PDF integrating to unity. The SGS PDF, as

defined by Eqs. (10) and (12), is not a statistical quantity as

it is a one-point distribution conditioned to a given flow real-

ization. Following Jiménez et al.,3 Fox23 and Pitsch,24 an

appropriate SGS PDF utilizable for modeling purposes

should instead be understood as a statistical quantity arising

from a statistical sample of equivalent grid elements. Since

in the a priori analysis using the DNS database the exact sta-

tistical quantity is not available, we will instead use, as an

approximation of the statistical SGS PDF for evaluating the

accuracy of models, statistics computed employing the one-

point SGS PDF defined above. The expectation of this PDF

over homogeneous directions and the conditional (on

moments) expectation are used to assess presumed PDF

shapes against the DNS-extracted ones, as described below.

Assuming the filter width to be smaller than the varia-

tion scale of mean quantities and that filtering and averaging

operators commute, a Favre mean (i.e., expectation) of the

filtered local value may be obtained

< ~gðxÞ >c¼
ð1

0

gðnÞ < fsgsc
ðn; xÞ >c dn; (14)

where the operator< � >c denotes planar averages weighted

by the filtered density. The quantity <fsgsc
>c is equivalent to

a filtered PDF of the scalar as defined by Jiménez et al.3 for

incompressible flows and it is given by the mass-weighted

PDF of the scalar over planes of height equal to the filter

width (coarsened-grid planes). The filtered PDF may be

computed as

< fsgsc
ðn; ~n; rnÞ >c¼

ð
fcð~n; rnÞfsgsc

ðn; ~n; rnÞd ~ndrn (15)

by using the mass-weighted joint-moment PDF fc in conjunc-

tion with the PDF fsgsc
, defined as a function of couples of

moments ð~n; rnÞ instead of x where rn is the moment-space

variable representing rZ, and integrating over the LES-

moment space ð~n; rnÞ. The definition of Eq. (15) may be

computationally practical since any assumed PDF model

may be evaluated by replacing in Eq. (15) the presumed

PDF, fsgsc
ðn; ~n; rnÞ, computed from any couple of mapped

values ð~n; rnÞ, and fcð~n; rnÞ as obtained from the filtered

DNS database over homogeneous (coarsened-grid) direc-

tions. The fsgsc
expectation, <fsgsc

>c, is used to evaluate the

presumed-PDF shapes against the DNS-extracted ones.

To approximate the statistical SGS PDF, we also consider

as an alternate to the above method, the optimal estimator
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method of Moreau et al.25 which uses the conditional expecta-

tion. The latter is obtained by averaging the PDF

fsgsc
ðn; ~n; rnÞ, over a sample of PDFs having the same couples

of exact moments ð~n; rnÞ. Practically, the computation is per-

formed by averaging over SGS volumes having couples of

moments ð~n; rnÞ very close to a selected one, according with

a fixed standard deviation chosen such as to have accurate sta-

tistics. The conditional expectation of the DNS-extracted

quantity fsgsc
ðn; ~n; rnÞ is then compared to the assumed PDFs

computed using the exact moments. Here, the Favre-condi-

tional expectation is obtained by mass-weighted averaging

using the filtered local density, and statistics are computed

over a slab of the mixing layer in order to increase the

sample size.

In this study, three local PDFs will be assessed: the b
PDF, the Gaussian, and the Dirac ones. These PDFs are here

briefly recalled:

• The b PDF:

fsgsc
n; að~n; rnÞ; bð~n; rnÞ
� �

¼ Cðaþ bÞ
CðaÞCðbÞ n

a�1ð1� nÞb�1;

(16)

where C is the Gamma function and parameters a and b
are defined by

a ¼ ~n
~nð1� ~nÞ

rn
� 1

 !
; b ¼ ð1� ~nÞ

~nð1� ~nÞ
rn

� 1

 !
:

(17)

• The Gaussian PDF:

fsgsc
ðn; ~n; rnÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2prn

p e
�ðn�~nÞ2

2rn

1

2
1þ erf

b� ~nffiffiffiffiffiffiffi
2rn

p !
� 1

2
1þ erf

a� ~nffiffiffiffiffiffiffi
2rn

p ! :
(18)

As the scalar n is bounded between 0 and 1, the Gaussian

distribution is truncated and the resulting PDF is thus re-

normalized using the difference between the cumulative

distribution functions evaluated at b¼ 1 and a¼ 0. This

computed distribution has no longer the same mean and

variance as the original distribution. As an alternate, a

clipped Gaussian is also considered.26

• The Dirac PDF:

fsgsc
ðn; ~nÞ ¼ dðn� ~nÞ: (19)

The Dirac PDF is utilized when the scalar n is only mod-

eled through its mean, ~n.

In Sec. VI B we present results from computations with

these PDFs using both methods to approximate the statisti-

cal SGS PDF, and particularly we show that whereas the

Dirac and Gaussian PDF are generally deficient, the b-

PDF typically yields a good approximation, a fact which

provided the incentive to directly model the scalar var-

iance, as described in the following.

IV. DIRECT MODELING OF THE SGS SCALAR
VARIANCE

Two types of models appear to be promising candidates

for modeling small-scale effects removed through filtering.

The first model is of a structural type27 based on the approxi-

mate deconvolution model (ADM)28 while the second one is

of a functional type using a gradient-based scaling law.4 The

two models are conceptually different as the first one arises

from a mathematical derivation with no assumption regard-

ing the nature of scale interactions, while the second one

uses a mixing-length hypothesis in conjunction with an equi-

librium assumption. The original contribution of our work is

the investigation of the ADM capability for computing rZ in

variable density flows, and the extension of a recent dynamic

gradient-based formulation5 to compressible conditions for

modeling rZ.

A. The approximate deconvolution model

The deconvolution procedure28 relies on the assumption

that there exists an inverse operator G
�1 ¼

P1
l¼0 ðI � GÞl

such as

Z� ¼
XN

l¼0

ðI � GÞl
" #

� �Z; (20)

where I is the identity operator and Z* represents an approxi-

mation of the original field Z, on the LES mesh grid, at the

series truncation order N. The series is known to converge

for I � G
�� �� < 1, and written using de van Cittert method29

based on the Neumann series leads to

Z� ¼ Z þ Z � Z
� �

þ Z � 2Z þ Z
� �

þ…; (21)

where the accuracy of Z* depends on N. In practice, due to

the numerical discretization (projection on a coarse mesh

grid), only the recoverable part of the original field Z may be

obtained by a deconvolution procedure.30 Furthermore, the

deconvolution relies on the form of the convolution-filter

kernel and on the shape of the spectrum of the field.17

The series’ rate of convergence is situation dependent.

For example, it has been found31 that N¼ 3 is sufficient to

bring an improvement in that for a quantity /, /� � �/
� �

is

not null showing that the expansion is indeed effective, and

for N � 5 the value of /� � �/
� �

did not change appreciably

from that obtained with N< 5. In other studies specifically

directed at Z, it was found that the series converges very

slowly. Pantano and Sarkar16 tested the deconvolution proce-

dure in an a priori analysis using the DNS of a temporal mix-

ing layer; they showed that even with N¼ 5 (i.e., fourth-

order approximation) and a small filter size (�D=DxDNS ¼ 4,

where DxDNS is the grid spacing for a simulation where all

scales relevant to most of the dissipation are resolved, as in

DNS), no more than 88% of the total SGS scalar-variance

amount (in the peak zone) was recovered. The rate of conver-

gence of the series and the recoverable amount of the field

are thus the main issues of the method. In order to recover all

effects of the smallest scales, Stolz et al.28 suggested a
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secondary filtering through the use of a relaxation parameter

in the Navier-Stokes (NS) equations. To mitigate both these

issues, Pantano and Sarkar16 and Mellado et al.17 proposed

an approximate reconstruction using moments (ARM)

method which, based on the definition of an intermediate

field, leads to computing the SGS scalar variance by impos-

ing equality between the real moment and that of the inter-

mediate field. This procedure results in an expression for a

parameter c0, characterizing the model, that is obtained by

finding the real and positive solution of a second-order poly-

nomial equation. The polynomial coefficients a0,a1,a2 are

computed using the presumed shape of the spectrum of the

scalar quantity. Once the shape of the spectrum is selected,

c0 may be precomputed and stored in a two-dimensional ta-

ble of coordinates represented by two dimensionless quanti-

ties: the Péclet number and the ratio between the filter width

and a large scale of the scalar fluctuations. That approach

was developed for incompressible flows. Under compressible

conditions, that model requires rewriting for the conservative

quantities for which the governing equations are solved in

LES of compressible flows; but then, equality between

moments would not lead to an explicit expression for the

SGS scalar variance unless additional assumptions are

invoked. Moreover, when in presence of variable density, the

shape of the spectrum cannot be built using calibrated con-

stants computed either by using the Reynolds-averaged sca-

lar variance or by employing the Favre-averaged one. This is

why, considering the practical utilization in LES, we opt to

explore a classical deconvolution procedure.

Since in LES it is the conservative rather than primitive

quantities which are calculated, we are legitimately inquiring

as to whether the SGS scalar variance could be accurately

reconstructed employing a deconvolution procedure for these

quantities. Indeed, for reconstructing the approximated scalar

field and building the SGS (Favre) scalar variance, we must

reconstruct q and Z through

q� ¼ qþ q� q
� �

þ q� 2qþ q
� �

þ…; (22)

qZð Þ�¼ qZ þ qZ � qZ
� �

þ qZ � 2qZ þ qZ
� �

þ…; (23)

which then permits writing

Z�� ¼ qZð Þ�=q�; (24)

invoking the assumption

Z�� ’ Z�: (25)

Equation (25) implies equality between second-order

moments of Z** and Z*. The nonlinear function of the ap-

proximate field, the Favre SGS scalar variance, is then built,

for consistency,16 by using the deconvoluted fields as

rZ ¼
q�Z��Z��

q�
� q�Z��

q�
q�Z��

q�
: (26)

The assumption of Eq. (25) is exact if both q and qZ fields

are totally recovered and an infinite expansion is used. Oth-

erwise, there is no proof that ratio between series (23) and

(22) converges to the recoverable part of the quantity Z,

which is Z* at a given truncation order N. Such an assump-

tion, although not trivial, has already been used by Stolz

et al.32 while reconstructing flux terms of the compressible

NS equations and by Dubois et al.33 in the first of a two-step

procedure for estimating the SGS stress tensor. The differ-

ence between the previous studies and our investigation is

that ADM is here used in the context of a soft-deconvolution

problem27 in which no additional models for recovering the

deficient SGS part are provided. In Sec. VI C 1 we evaluate

the assumption of Eq. (25) and the equality between

moments of Z** and Z* for several truncation orders. We also

assess the ADM model using the series Eqs. (22) and (23),

with, consistently, both series truncated at same order.

B. The dynamic model

A Smagorinsky-type model for predicting the SGS scalar

variance of compressible flows was proposed by Pierce and

Moin4 using a dynamic procedure.34 This model was similar

to that of Moin et al.35 for modeling the SGS stress tensor and

heat flux under compressible conditions. The model of Pierce

and Moin4 has been extensively used over the years7,20,36,37 as

an alternate to the scale-similarity model suggested by Cook

and Riley2 based on the idea of Bardina et al.38 The scale-sim-

ilarity model has been explored in several different configura-

tions.3,7,39,40 Recently, Balarac et al.,5 using the optimal

estimator concept of Moreau et al.,25 showed that the irreduci-

ble error associated with a Smagorinsky-type model is

relatively small if compared to that evaluated for a scale-

similarity model, meaning that the functional form of a gradi-

ent-based model has significant potential in LES for reproduc-

ing the SGS scalar variance. This has also been observed by

Wall et al.36 when studying the performance of the two mod-

els used in that study in conjunction with a presumed PDF

approach. On the other hand, Balarac et al.5 showed that the

quadratic error associated with the gradient-based model nota-

bly increases with filter width when a classical dynamic pro-

cedure is used for computing the model coefficient. In the

present study, the Balarac et al.5 model, which is for incom-

pressible flow, is reformulated under compressible conditions

and evaluated for compressible supercritical turbulent mixing

layers in Sec. VI C 2.

For completeness, the Pierce and Moin4 dynamic model

is briefly recalled and for consistency we use their notation,

where bðÞ is the unweighted test filter at test-filter level bG cor-

responding to the filter width bD and

eZ^ ¼ c�qeZ=b�q: (27)

In the classical dynamic model,4 first the variance is related

to the gradient of the resolved scalar field as

�qrZ ¼ �qðfZZ � eZeZÞ ¼ Cd
�D2 �q reZ�� ��2; (28)

which, when filtered, yields the following expression:

d
�qfZZ �d�qeZ eZ ¼ C0d

�D2
� �

: (29)

085101-6 E. Masi and J. Bellan Phys. Fluids 23, 085101 (2011)

Downloaded 20 Sep 2011 to 131.215.220.186. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



A similar model is then proposed at the filter level corre-

sponding to the convolution of G and bG, i.e., bG ¼ G � bG,

associated to the filter width
bD

d
�qfZZ � b�qeZ^ eZ^ ¼ C00d

b�D2b�q reZ^���� ����2: (30)

Finally, subtracting Eq. (29) from Eq. (30) and assuming

C0d ¼ C00d ¼ Cd (implying either that the flow variation is

such that filtering with the grid or test filter produces analo-

gous fields or that the coefficients have a slow variation)

yields

d�qeZ eZ � b�qeZ^ eZ^ ¼ Cd
�̂D

2b�q reZ^���� ����2��D2
� �" #

; (31)

which may be generically written as

L ¼ CdM; (32)

where L � ðd�qeZ eZ � b�qeZ^ eZ^Þ is the generalized Leonard term

andM is defined as

M¼ b�D2b�q reZ^���� ����2��D2
� �

: (33)

Since both L and M are computable from the LES solution,

Cd may be dynamically computed over homogeneous direc-

tions either as the ratio between averaged L andM or through

the least-square averaging (Lilly41) which optimizes the local

value by minimizing the quadratic error. This dynamic proce-

dure uses a compressible version of the Germano identity,42

originally written for the SGS stress tensor35,43

Lij ¼ b�qTij � c�qsij; (34)

where

b�qTij � d�qguiuj � b�q�eui
�euj; c�qsij �

� �
�
� �

: (35)

When Eq. (34) is adapted to the scalar variance, it may be

written as

L ¼ b�qRZ �d�qrZ; (36)

where

b�qRZ � d
�qfZZ � b�qeZ^ eZ^	 


: (37)

Equation (30) was questioned by Balarac et al.5 who empha-

sized that in the classical model4 a generic filtered quantity �̂f
is not directly obtained through a single convolution but

rather from two sequential filterings. Using the Bedford and

Yeo44 expansion (which provides a power series for the non-

linear filtered generic term fg as a function of the resolved

quantities �f and �g) applied twice to the filtered quantities,

Balarac et al.5 pointed out a missing leading-order term in

Eq. (30) and provided an alternative model for M that

involves the use of the Leonard term expansion. The same

reasoning is possible for compressible flows using an appro-

priate Taylor expansion. Such an approximate expansion

was suggested by Vreman43 for modeling the SGS stress ten-

sor and is adapted here for isotropic filter to the scalar var-

iance as

�qrZ ¼ qZZ � qZ qZ=�q

¼ qZZ þ
�D2

24
r2 qZZð Þ � qZ þ

�D2

24
r2 qZð Þ

	 

� qZ þ

�D2

24
r2 qZð Þ

	 
�
qþ

�D2

24
r2q

	 

þ Oð�D4Þ

¼
�D2

12
q rZj j2þOð�D4Þ

(38)

where the approximation

qþ
�D2

24
r2q

	 
�1

¼ 1

q
�

�D2

24q2
r2qþ Oð�D4Þ (39)

has been made to obtain the final result. A similar expansion

q ¼ �qþ Oð�D2Þ; Z ¼ eZþ Oð�D2Þ (40)

used in Eq. (38) leads to

�qfZZ ¼ �qeZeZ þ �D2

12
�q reZ�� ��2þOð�D4Þ: (41)

Equation (41) is conceptually similar to that used by Balarac

et al.5 for incompressible conditions, and in the same way it

may be used for obtaining b�qRZ, i.e., the left hand side (l.h.s.)

term of Eq. (30). First, the test filter bG, is applied to Eq. (41)

d
�qfZZ ¼d�qeZ eZ þ �D2

12

� �
þ Oð�D4Þ; (42)

then the first term on the r.h.s. is expanded at the filter level

Ĝ based on �q and eZ using the approximate expansion of Eqs.

(38)–(40) applied to these variables, leading to

d
�qfZZ ¼ b�q eZ^ eZ^ þ D̂2

12
�̂q r eZ^���� ����2þ �D2

12

� �
þ OðD̂4; �D4Þ:

(43)

The above equation, reformulated using a constant to

account for the truncation error, leads to

d
�qfZZ � b�q eZ^ eZ^ ¼ C000d D̂2 �̂q r eZ^���� ����2þ�D2

� �" #
; (44)

which represents another form for the l.h.s. term in Eq. (30).

Subtracting Eq. (29) from Eq. (44) and assuming

C0d ¼ C000d ¼ Cd (under the same implications as when adopt-

ing C0d ¼ C00d ¼ Cd) leads to a new formulation ofM,Mn

Mn ¼ D̂2 �̂q r eZ^���� ����2; (45)

representing the leading order of the Leonard term expansion

when Cd palliates for the truncated terms in the Taylor series
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expansion. Balarac et al.5 pointed out that Eq. (43) contains

a new leading order term with respect to Eq. (30) which,

when taken into account, yields the new formulation of M,

Mn. Although we obtain the same result as Balarac et al.,5

Mn for compressible conditions, Eq. (30) is different from

the corresponding equation of Balarac et al.5 as far as filter

width used. Balarac et al.5 did not discuss the disparity

between the filter width used in the classical formulation and

the filter width needed in the Leonard term expansion, and it

appears that the same filter width was used. However, when

the correct filter width is used, the issue of the new leading

order term in the formulation of Eq. (30) is moot, and the

result is that only an alternative formulation for b�qRZ is

derived. According to Eq. (45), it is clear that the new formu-

lation uses D̂. For the classical formulation, according to Eq.

(33), the filter is though b�D. This finding is in agreement with

the study of Brun and Friedrich.45 Using the Vreman et al.46

estimate, the filter width associated with the filter level bG isb�D2 ¼ bD2 þ �D2; (46)

representing an approximation for double top-hat filtering. In

order to explore the impact of the filter width used in the

classical formulation and thus to asses the correctness of the

results, we present in Sec. VI C 2 an a priori analysis using

the classical formulation in conjunction with each of the

approximations for the filter width b�D at the filter level bG: (1)b�D2 ¼ bD2 þ �D2 (correct approximation) and (2) b�D ¼ bD (incor-

rect with a top-hat filter) and then compare the results from

these two computations with those from the new formulation

based on the Leonard term expansion for which the filter is

demonstrated to be bD.

We can thus evaluate the gradient-based model for rZ

using two different formulations. The first formulation is the

classical one employing

Cd ¼
LMh i
MMh i ; (47)

where hi denotes averages over homogeneous planes. The

second formulation, which we call the “new model,” is the

present one and uses

Cd ¼
LMnh i
MnMnh i : (48)

Since the evaluation of the correct filter width at filter-levelbG represents the main issue for computing Cd using a

dynamic procedure, the model based on the Leonard term

expansion represents a solution to this quandary, as shown in

Sec. VI C 2.

V. DESCRIPTION OF THE DNS DATABASE

A complete and detailed description of the DNS database

has already been provided in Refs. 8–12. Out of the complete

database consisting of three sets of species heptane=nitrogen

(HN), oxygen=hydrogen (OH), and oxygen=helium (OHe) for

which several simulations were conducted, we select here

three simulations, HN600, OH750, and OHe600 for examina-

tion so as to enhance the generality of the results. The DNS

were conducted for a temporal mixing layer and initiated with

(vorticity-thickness based) Reynolds number of 600 (HN600,

OHe600) and 750 (OH750) where dx;0 ¼ DU0= @u1=@x2h i is

the initial vorticity thickness, hi is here performed over (x1,

x3) planes, and DU0 is the initial velocity difference across

the layer. In all cases, the DNS grid, DxDNS, was fine enough

to resolve the scales overwhelmingly responsible for the dissi-

pation. Transitional states were achieved for all of these

layers at t�tr ¼ 135 for HN600, t�tr ¼ 150 for OH750, t�tr ¼ 220

for OHe600, where t� � tDU0=dx;0; the corresponding transi-

tional Reynolds numbers were 1452, 1507, and 2004. Selle

et al.9 showed that this database is relevant for fully-turbulent

flow modeling.

VI. RESULTS

In all computations, the results of which are presented

below, we use a top-hat filter and a trapezoidal integration

method.

A. Activity of terms in the scalar variance equation

All terms in Eqs. (4) and (9) were a priori evaluated

using the three DNS realizations discussed above. The goal

of this evaluation is: (1) to assess the magnitude of the fil-

tered terms with respect to that of the resolved terms for

modeling purposes (Eq. (4)) and (2) to assess the magnitude

of the SGS terms with respect to that of the resolved terms in

order to identify which SGS quantities are important to

model (Eq. (9)). A cubic top-hat filter and several filter

widths, �D, were used in the evaluation, but only the analysis

corresponding to the ratio �D=DxDNS ¼ 8 is here presented,

being representative of all ratio values.

Depicted in the Figure 1 is the activity of terms in Eq.

(4) as measured by the rms magnitude of each term. The

results indicate that terms 4 and 5, which involve the classi-

cal subgrid fluxes, dominate showing that our transitional

databases have indeed the turbulent characteristics that

make them relevant to this study. The importance of the ad-

vective term increases with the strength of the HDGM at

transition11 (compare OH750 with HN600) and with increas-

ing Reynolds number value at transition9 (compare HN600

and OHe600). The diffusion term (term 1) is of same order

of magnitude as the advection term only for OH750, because

the hydrogen diffusivity is very large. Terms 2 and 3 are

somewhat smaller than the advection term for HN600 and

OHe600 but significantly larger for OH750. For both

HN600 and OHe600 and less so for OH750, term 3 is larger

than term 2, which is a manifestation of the SGS magnitude

associated with the Fick-issued dissipation. Term 6, repre-

senting SGS effects, could be neglected in all cases. Evalua-

tion of term 7, expressing the diffusivity spatial variation,

shows that it is of the same order of magnitude as the

resolved diffusion (term 1) for HN600 and OHe600 simula-

tions and even larger for the OH750. Thus, term 7 is non

negligible in Eq. (4) under all circumstances. Similarly, term

8 representing the effect of spatially varying diffusivity is

comparable to term 1 for all cases and should be included

when modeling Eq. (4), particularly when diffusion plays an
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important role during mixing (i.e., OH750). In contrast, the

terms arising from filtering of the Soret contribution, i.e.,

terms 9, 10, and 13 are only substantial for the HN600 case,

while those stemming from filtering of the term proportional

to the pressure gradient, namely terms 11 and 14, only play

a minor role in the OH750 and OHe600 layers and are unim-

portant for the HN600 case. Term 12 is found negligible

everywhere.

Figure 2 shows the results from the a priori assessment

of the terms in Eq. (9). Both the planar average and the rms

activity are computed in order to evaluate not only the im-

portance but also the nature (i.e., diffusive, dissipative, etc.)

FIG. 1. Planar rms activity of terms in Eq. (4) as extracted from the filtered DNS databases at t�tr . Top: HN600; center: OH750; bottom: OHe600.
�D=DxDNS ¼ 8. Units are kg=(m3 s).
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of each term. Considering the planar averages, in all cases,

the magnitude of transport terms is small, and the produc-

tion term is comparable in magnitude to the Fick-issued

SGS dissipation term. Due to the difficulty of entraining the

lower-stream heavy fluid, the mixing layer growth is moder-

ate which explains the small value of the advection term

compared to that of the SGS production and SGS Fick-

issued dissipation. Additionally, for the HN600 layer the

term denoted by SGS Soret 2 has considerable negative

magnitude, adding to the Fick-issued dissipation. This ob-

servation is consistent with the definition of the total scalar

dissipation13

FIG. 2. Planar averages (left) and planar rms activity (right) of terms in Eq. (9). Extracted from the filtered DNS databases at t�tr . Top: HN600; center: OH750;

bottom: OHe600. �D=DxDNS ¼ 8. Units are kg=(m3 s).
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vT ¼
1

qDaD
Ja � Ja (49)

that is here contrasted to the Fick-issued dissipation

vF ¼ qDaDrZ � rZ; (50)

which is only one of the six terms of Eq. (49). Obviously, the

Soret contribution plays an important role for the HN600

layer in the destruction of the scalar fluctuations at the small-

est scales, but clearly its importance is binary-species de-

pendent as it has no impact on the mixing of the oxygen with

hydrogen or helium. In order to understand the behavior of

vF with respect to vT, we illustrate in Fig. 3 the average of vT

conditioned on vF in two planes of the HN600 mixing layer

(x2=dx,0¼ 0.44 which is in the central part of the layer and

x2=dx,0¼ 5.11 which away from the center but still in a sig-

nificant mixing region). The results indicate that vT is larger

FIG. 3. Conditional average of vT on vF extracted from the HN600 DNS database over planes of coordinates x2=dx,0¼ 0.44 (left) and x2=dx,0¼ 5.11 (right) at t�tr .

FIG. 4. Filtered PDFs <fsgsc
>c, from the HN600 DNS at t�tr over planes of

coordinates x2=dx,0¼ 0.44 (left) and x2=dx,0¼ 5.11 (right). Exact SGS: solid

lines. Assumed PDFs are the Dirac (top), the Gaussian (center), and the Beta

(bottom) functions. �D=DxDNS ¼ 4, dashed lines; �D=DxDNS ¼ 8, dotted lines;
�D=DxDNS ¼ 12, dot-dashed lines.

FIG. 5. Filtered PDFs <fsgsc
>c, from the OH750 database at t�tr over planes

of coordinates x2=dx,0¼ 0.44 (left) and x2=dx,0¼ 5.11 (right). Exact SGS:

solid lines. Assumed PDFs are the Dirac (top), the Gaussian (center), and

the Beta (bottom) functions. �D=DxDNS ¼ 4, dashed lines; �D=DxDNS ¼ 8, dot-

ted lines; �D=DxDNS ¼ 12, dot-dashed lines.
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than vF, particularly at the periphery of the layer. Notewor-

thy, the linear dependency between vT and vF in Fig. 3 justi-

fies the use of the scaling law based on the eZ gradient for

modeling the SGS scalar variance (see Section VI C 2) since

the behavior of vT and vF is similar.

Considering the rms activity, in concert with the find-

ings from analysis of Eq. (4), the effect of the DaD varia-

tion at small scales cannot be underestimated. For HN600

and OHe600 the SGS turbulent fluxes are larger in magni-

tude than the molecular diffusion flux, meaning that the

scalar fluctuations contribute to the mixing at the SGS

scales. Among the four SGS diffusivity terms, the second

one assumes large values when compared to the other diffu-

sion-like terms or advection term, indicating that it must be

retained and modeled in the SGS scalar variance equation;

the third and fourth SGS diffusivity terms have smaller

magnitudes and their nature is dissipative; finally, the first

one compares in magnitude to the resolved diffusion in

HN600 and OHe600 but is much larger than the resolved

diffusion for OH750. The conclusion is that particular

attention should be devoted to SGS diffusivity 1 and SGS

diffusivity 2 terms because they have a dominant contribu-

tion to the mixing of oxygen with hydrogen at the SGS

scales. The Soret contribution, labeled SGS Soret 1, has a

diffusion-like behavior and is non negligible only in the

HN600 mixing layer. Also, the SGS contributions stem-

ming from filtering of the pressure-gradient terms are negli-

gible in all cases.

B. Assessment of the presumed-PDF approach for
computing filtered non-linear scalar-dependent
quantities

An a priori evaluation of the statistical SGS PDF for the

HN600 layer is illustrated in Fig. 4 for the same two (x1, x3)

homogeneous planes of coordinates x2=dx,0¼ 0.44 and

x2=dx,0¼ 5.11 as in Fig. 3. The DNS-extracted filtered PDF

<fsgsc
>c is evaluated using the mass-weighted PDF of Z over

coarsened-grid planes. The presumed averaged SGS PDFs

are computed employing mapped LES moments ð~n; rnÞ and

using Eq. (15). As expected, the figure displays the best pre-

diction when a b PDF is used. The difference between one-

moment and two-moment distributions is evident both in the

central part of the mixing layer (x2=dx,0¼ 0.44) and away

from it (x2=dx,0¼ 5.11). The difference between the two-

moment distributions, Gaussian, and b, is also clear, particu-

larly in zones of poor mixing where a Gaussian distribution

is not appropriate.

Figure 5 portrays the corresponding OH750 results over

the same x2 planes as for the HN600 layer. In the OH750

case, no large difference between PDF models is visible

which is conjectured to result from the high hydrogen diffu-

sivity which promotes good mixing. Finally, OHe600 layer

results are shown in Figure 6. For OHe mixing, the two-

moment PDFs increase the model accuracy compared to the

single-moment one, and a b PDF gives slightly better results

than the Gaussian PDF, as expected.

FIG. 6. Filtered PDFs <fsgsc
>c, from the OHe600 database at t�tr over planes

of coordinates x2=dx,0¼ 0.44 (left) and x2=dx,0¼ 5.11 (right). Exact SGS:

solid lines. Assumed PDFs are the Dirac (top), the Gaussian (center), and

the Beta (bottom) functions. �D=DxDNS ¼ 4, dashed lines; �D=DxDNS ¼ 8, dot-

ted lines; �D=DxDNS ¼ 12, dot-dashed lines.

FIG. 7. Conditional expectation of fsgsc
ðn; ~n;rnÞ over ð~n; rnÞ and over the

slab at x2=dx,0¼65.3. Top: HN600, ~n ¼ 0:805 6 0:005, rn ¼ 0:0505

60:0005 (left) and ~n ¼ 0:505 6 0:005, rn ¼ 0:0105 6 0:0005 (right). Cen-

ter: OH750, ~n ¼ 0:905 6 0:005, rn ¼ 0:00505 6 0:00005 (left) and
~n ¼ 0:505 6 0:005, rn ¼ 0:00505 6 000005 (right). Bottom: OHe600,
~n ¼ 0:905 60:005, rn ¼ 0:0105 60:0005 (left) and ~n ¼ 0:505 60:005,

rn ¼ 0:0105 6 0:0005 (right). The exact result extracted from DNS is shown

in solid lines, the Gaussian distribution is represented by squares and the

Beta distribution is portrayed by circles. �D=DxDNS ¼ 8.
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Results from the optimal estimators are displayed in

Fig. 7. Because this methodology is based on conditioning

over a couple of moments, the Dirac presumed PDF is not

considered. In order to increase the sample size, the condi-

tional expectations are computed over a slab of the mixing

layer of coordinates x2=dx,0¼65.3. As expected, in regions

of well-mixed species, the b PDF and the Gaussian PDF give

similar predictions while the b PDF is more appropriate for

unmixed situations.

Thus, we have shown that two methodologies are in

agreement regarding the appropriateness of the presumed b
PDF shape. However, it is known that for atmospheric condi-

tions17 good agreement with a template for averaged distri-

butions (as given by both methodologies) does not

necessarily imply similar pointwise agreement, so it is im-

portant to test the capabilities of the three distributions of

Eqs. (16), (18), and (19) to provide local agreement (as

needed in reactive flows) in computations where they would

be used to reproduce filtered non-linear terms (e.g., reaction

rates). For this purpose, we select a simple non-linear Z-

function

FðnÞ ¼ exp �2 erf�1 2n� 1ð Þ
� �2n o

; (51)

representing the v functional form in a one-dimensional

unsteady laminar subcritical mixing layer.47 Then, the fil-

tered value of F(n) may be estimated by integration over the

scalar space using Eq. (13) as

gFðxÞ ¼ ð1

0

FðnÞfsgsc
ðn; xÞdn: (52)

Figure 8 illustrates scatter plots of the modeled quantitygFðZÞmod (superscript mod labels a modeled quantity) versus

the exact quantity gFðZÞ extracted from the filtered DNS data-

base HN600, over two planes, in the central part and at the

periphery of the layer. The modeled functions are computed

by replacing fsgsc
(n; x) in Eq. (52) with the presumed SGS

PDF (Dirac, Gaussian, or b) constructed from the exact

moments extracted from the filtered DNS database at t�tr. The

local results are in accord with the assessment of the statisti-

cal SGS PDFs presented in Figs. 4 and 7. A drastic improve-

ment in predictions is obtained by using the b-PDF in the

mixing of heptane and nitrogen. An improvement is also

obtained for the oxygen=helium system (not shown) while in

the oxygen=hydrogen mixing layer the differences are minor

(not shown).

As mentioned in Sec. III, a clipped Gaussian was also

considered. For the filtered PDF, results using the clipped

Gaussian exhibited small differences from those obtained

with the truncated Gaussian for the HN600 mixing layer (not

shown), and imperceptible differences for the OH750 and

OHe600 mixing layers (not shown). The clipped Gaussian

also provided slightly more accurate results when used to

model the non-linear Z-function (not shown).

FIG. 8. Scatter plot of the modeled function gFðZÞmod versus the exact quan-

tity gFðZÞ computed over planes x2=dx,0¼ 0.44 (left) and x2=dx,0¼ 5.11

(right). The exact quantity is the filtered HN600 DNS at t�tr , and the models

are the Dirac PDF (top), Gaussian PDF (center), and b PDF (bottom).
�D=DxDNS ¼ 8.

FIG. 9. Predictions of the SGS scalar variance using the deconvoluted field

Z�. Several orders of approximation are shown for different filter widths at t�tr
for the HN600 mixing layer. Exact SGS scalar variance: solid line. Dotted

lines are the first to fifth order approximations, the third order being distin-

guished by a dash-dotted line. Variances are non-dimensionalized by the exact

value at the center of the mixing layer. Computation performed using Eq. (21).
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Whereas the Z-function of Eq. (51) is here used only to

test the ability of the models to reproduce nonlinearities, the

function is not necessarily expected to represent the real v
for three-dimensional supercritical flows. This topic is

addressed in Appendix A.

C. Evaluation of direct models for the SGS scalar
variance

Having shown in Sec. VI A that under supercritical p
conditions modeling of new terms in the rZ equation is nec-

essary (but uncertain), and shown in Sec. VI B that well-

known assumed b PDFs may be used in modeling nonlinear

scalar-dependent functions, the next step is to assess models

for computing rZ from the filtered DNS solution to enable

the construction of the presumed SGS PDFs. Results from

two such models are presented below.

1. Evaluation of the approximate deconvolution model

All presented results were computed on the DNS (rather

than LES) grid. In all figures, the information is shown for

several D=DxDNS values and for each D=DxDNS value for five

orders of reconstruction.

Since Eq. (24) is at the core of the compressible ADM

procedure, we first inquired about the convergence of Z** to

FIG. 10. Predictions of the SGS scalar variance using the deconvoluted field

Z��. Several orders of approximation are shown for different filter widths at

t�tr for the HN600 mixing layer. Exact SGS scalar variance: solid line. Dotted

lines are the first to fifth order approximations, the third order being distin-

guished by a dash-dotted line. Variances are non-dimensionalized by the

exact value at the center of the mixing layer. Computation performed using

Z�� extracted from DNS.

FIG. 11. Planar rms activity of the field ðZ�� � Z�Þ for several orders of

ADM approximation and different filter widths at t�tr for the HN600 mixing

layer. Thin solid line: first order of approximation; thick solid line: fifth order

of approximation. Dotted lines are the second to fourth order approximations.

FIG. 12. Predictions of the Favre SGS scalar variance using ADM applied

to the primitive quantity. Several orders of approximation are shown for dif-

ferent filter widths at t�tr for the HN600 mixing layer. Exact SGS scalar var-

iance: solid line. Dotted lines are the first to fifth order approximations, the

third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.
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FIG. 13. Predictions of the Favre SGS scalar variance using ADM applied

to conservative quantities. Several orders of approximation are shown for

different filter widths at t�tr for the HN600 mixing layer. Exact SGS scalar

variance: solid line. Dotted lines are the first to fifth order approximations,

the third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.

FIG. 14. Predictions of the Favre SGS scalar variance using ADM applied

to conservative quantities. Several orders of approximation are shown for

different filter widths at t�tr for the OH750 mixing layer. Exact SGS scalar

variance: solid line. Dotted lines are the first to fifth order approximations,

the third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.

FIG. 15. Predictions of the Favre SGS scalar variance using ADM applied

to conservative quantities. Several orders of approximation are shown for

different filter widths at t�tr for the OHe600 mixing layer. Exact SGS scalar

variance: solid line. Dotted lines are the first to fifth order approximations,

the third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.

FIG. 16. Planar averages of modeled SGS scalar variances conditioned on the

exact ones, evaluated using the filtered HN600 DNS at t�tr, over the plane

x2=dx,0¼ 0.44. Coefficients are computed using the new model (Eq. (48))

(squares), and the classical model (Eq. (47)) with either b�D2 ¼ bD2 þ �D2 (empty

circles) or b�D ¼ bD (filled circles). The arrow indicates the mean quantity �qrZh i.
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Z according to the approximation of Eq. (25). To explore this

issue, we first computed the local second-order moment of

Z* and compared it to the exact moment extracted from the

filtered DNS database of the HN600 mixing layer at t�tr; the

results are illustrated in Fig. 9. Then, we calculated the local

second-order moment of Z** and compared it to the exact

moment extracted from the filtered DNS database of the

HN600 mixing layer at t�tr; the results are illustrated in

Fig. 10. Whereas the moment of Z* converges to that of Z as

N increases, the observations are that the moment of the

deconvoluted approximate field Z** does not converge to

that of Z and that in some zones this second-order moment is

overestimated. This overestimate occurs for a filter width as

small as 6DxDNS, and the situation deteriorates with increas-

ing values of D=DxDNS. The rms activity of the difference

between Z** and Z* is presented in Fig. 11. Clearly, this dif-

ference increases with the filter width, and it also globally

increases with N. In order to inquire about the impact of the

Z�� ’ Z� approximation on the SGS-scalar-variance predic-

tions for compressible flows, the ADM procedure is tested

using the Favre SGS scalar variance.

The results of Fig. 12 portray the ADM procedure

applied to the primitive variable �Z as in Eq. (21), and

the SGS scalar variance is computed using the exact

local density and the approximate field Z* as rZ ¼
qZ�Z�=�q
� �

� qZ�=�q
� �

qZ�=�q
� �

. The results of Fig. 13 differ

from those of Fig. 12 in that the ADM procedure is applied

to both conservative variables �q and qZ, as one would do in

a practical case, and the reconstructed density q* with the

approximate field Z** are used to compute the SGS scalar

variance according to Eq. (26). Comparing Figs. 12 and 13

at same D=DxDNS value, it is clear that using the ADM on the

conservative variables improves the model predictions. For

example, for D=DxDNS ¼ 8, a third-order approximation is

sufficient for reproducing �qrZh i at the center of the mixing

layer, while by using the primitive quantities only 90% of its

FIG. 17. (Color) Scatter plot of modeled

against exact SGS scalar variance evaluated

using the filtered HN600 DNS at t�tr , over

the plane x2=dx,0¼ 5.11. Coefficients are

computed using the new model (Eq. (48))

(blue symbols), and the classical model (Eq.

(47)) with either b�D2 ¼ bD2 þ �D2 (black sym-

bols) or b�D ¼ bD (red symbols). R � �D=
DxDNS.
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value is recovered. The difference between the ADM based

on primitive variables and that based on conservative varia-

bles becomes enlarged as the filter width increases. For small

filter widths D=DxDNS ¼ 2; 4; 6
� �

, a second-order reconstruc-

tion (3 terms) gives very good agreement compared to the

exact value. Similarly to the observation of Pantano and Sar-

kar16 for incompressible flows, the ADM accuracy depends

at least on the level of turbulence, i.e., the Reynolds number,

and on the filter width; here, there is the additional complica-

tion of variable density which introduces Eq. (24). Figures

14 and 15 show corresponding results for OH750 and

OHe600, respectively, when the ADM is performed using

the conservative variables.

Despite the better performance of the ADM conserva-

tive-variable based model compared to the primitive-variable

based one for the third-order approximation, the convergence

issue discussed above is still an item of concern when using

the approximation Eq. (25). One conclusion from the pre-

sented assessment is that users of the ADM should be cau-

tious when employing this methodology for conservative

variables in the context of compressible flows, and results

should be carefully verified. Here, because the overestimate

of the SGS second-order moment of Z** is combined with an

underestimate of q*, the global result is a satisfactory predic-

tion of the SGS (Favre) scalar variance. However, ADM

should only be considered here as an approximation rather

than an asymptotically convergent expansion.

2. Evaluation of the dynamic gradient-based model

The ratio of the test-filter width to grid-filter width used

in this study is D̂=D ¼ 2.

Figure 16 depicts planar averages of the modeled SGS

scalar variance conditioned on the exact one extracted from

the filtered HN600 DNS database. The plots represent aver-

ages at t�tr over a plane close to the center of the mixing layer

(x2=dx,0¼ 0.44) as a function of �qrZ, for several filter

widths; the vertical arrow represents �qrZh i and provides an

indication of the model fidelity at that particular value. For

D=DxDNS ¼ 2, filtering is clearly performed in the dissipation

range, whereas, as an example, for D=DxDNS ¼ 14; 16 test-

filtering is performed close to the production range, and thus

neither of these values are in concert with SGS modeling

assumptions, but they are here presented for illustrative pur-

poses. At D=DxDNS ¼ 2, the model based on the Leonard

term expansion agrees with the classical model used in con-

junction with the correct filter width, but neither one of the

models reproduces the exact value, which is better rendered

by the classical model utilized in conjunction with an incor-

rect filter width; this result should serve as a warning that if

SGS modeling is tested in the incorrect wavenumber range,

results from this test are not necessarily reliable. Over the

D=DxDNS ¼ 4 to 8 range, the new model and the classical

model using the correct filter width agree and additionally

FIG. 18. Profiles of modeled and exact SGS scalar variances, evaluated

using the filtered HN600 DNS at t�tr . Exact values: solid line. New model:

dash-dotted line. Classical model using b�D2 ¼ bD2 þ �D2: dotted line. Classical

model using b�D ¼ bD: dashed line. Variances are non-dimensionalized by the

exact value at the center of the mixing layer.

FIG. 19. Model coefficients Cd evaluated using the filtered HN600 DNS at

t�tr . New model: dash-dotted line. Classical model using with b�D2 ¼ bD2 þ �D2:

dotted line. Classical model using b�D ¼ bD: dashed line.
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reproduce the DNS-extracted value, whereas the classical

model utilized with the incorrect filter width overpredicts it;

however, the �qrZh i value is equally well predicted by all

models. For D=DxDNS ¼ 10; 12, the fidelity of the new model

to predict the exact �qrZh i is maintained, but that of the clas-

sical model with the correct filter deteriorates by underpre-

dicting the template, and for D=DxDNS ¼ 12 severe

underpredictions are obtained with the classical model in

conjunction with the incorrect filter width. Most important,

the classical model used with either filter widths produces

incorrect values even for �qrZh i, whereas the new model

maintains high fidelity for this quantity. The robustness of

the new model is highlighted by the D=DxDNS ¼ 14; 16

results where its predictions are still excellent, whereas those

with the classical model used with the correct filter width

display severe deteriorations and those of the classical model

using the incorrect filter width are totally compromised by

producing negative values of the SGS scalar variance. Simi-

lar to the D=DxDNS ¼ 10; 12 situation, �qrZh i is correctly only

predicted by the new model, and negative values of the SGS

scalar variance are exhibited by the classical model in con-

junction with the incorrect filter width. To show that these

comparisons are not x2-plane dependent, scatter plots at t�tr
of modeled SGS scalar variances against actual values for

several filter widths, over a plane close to the periphery of

the mixing layer (x2=dx,0¼ 5.11) are illustrated in Fig. 17.

Only for D=DxDNS ¼ 8 do the scatter plots overlap for all

three models, and predicted negative variances by the classi-

cal model using the incorrect filter width appear for a filter

ratio of D=DxDNS ¼ 12 which is smaller than the 14 and 16

where we found negative values in the x2=dx,0¼ 0.44 plane.

The Figs. 16 and 17 results were for two selected x2

planes. To further evaluate the potential of the various models

we illustrate in Fig. 18 comparisons of the modeled �qrZh i
with the exact one for the same D=DxDNS values and for the

entire x2 significant range. The advantage of the new model

over the classical model using the correct filter width is evi-

dent for as small value as D=DxDNS ¼ 8, and comparing with

the classical model using the incorrect filter width for as small

value as D=DxDNS ¼ 4. The high fidelity of the new model

persists at large D=DxDNS whereas it substantially deteriorates

for the other two models with increasing D=DxDNS values.

The model coefficients computed with the three models are

depicted in Fig. 19. The indications are that over all x2-planes

of the mixing layer, the use of the Leonard term expansion for

the dynamic model yields model coefficient values which

span a smaller range at fixed D=DxDNS value than those of the

classical model, thereby showing greater potential in main-

taining stability of a LES computation.

FIG. 20. Planar averages of modeled SGS scalar variances conditioned on

the exact ones evaluated using the filtered OH750 DNS at t�tr over the plane

x2=dx,0¼ 0.44. Coefficients are computed using the new model (Eq. (48))

(squares) and the classical model (Eq. (47)) with either b�D2 ¼ bD2 þ �D2

(empty circles) or b�D ¼ bD (filled circles). The arrow indicates the mean quan-

tity �qrZh i.

FIG. 21. Profiles of modeled and exact SGS scalar variances evaluated

using the filtered OH750 DNS at t�tr . Exact values: solid line. New model:

dash-dotted line. Classical model using b�D2 ¼ bD2 þ �D2: dotted line. Classical

model using b�D ¼ bD: dashed line. Variances are non-dimensionalized by the

exact value at the center of the mixing layer.
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FIG. 22. Model coefficients Cd evaluated using the filtered OH750 DNS at

t�tr . New model: dash-dotted line. Classical model using b�D2 ¼ bD2 þ �D2: dot-

ted line. Classical model using b�D ¼ bD: dashed line.

FIG. 23. Planar averages of modeled SGS scalar variances conditional to

exact ones evaluated using the OHe600 DNS at t�tr over the plane

x2=dx,0¼ 0.44. Coefficients are computed using the new model (Eq. (48))

(squares) and the classical model (Eq. (47)) with either b�D2 ¼ bD2 þ �D2

(empty circles) or b�D ¼ bD (filled circles). The arrow indicates the mean quan-

tity �qrZh i.

FIG. 24. Profiles of modeled and exact SGS scalar variances evaluated

using the filtered OHe600 DNS at t�tr . Exact values: solid line. New model:

dash-dotted line. Classical model using b�D2 ¼ bD2 þ �D2: dotted line. Classical

model using b�D ¼ bD: dashed line. Variances are non-dimensionalized by the

exact value at the center of the mixing layer.

FIG. 25. Model coefficients Cd evaluated by using the filtered OHe600

DNS at t�tr . New model: dash-dotted line. Classical model usingb�D2 ¼ bD2 þ �D2: dotted line. Classical model using b�D ¼ bD: dashed line.
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Corresponding results for the OH750 database are dis-

played in Figs. 20, 21, and 22, and for the OHe600 database

are depicted in Figs. 23, 24, and 25. For the OH750 condi-

tional averages and mean profiles, the advantage of the new

model predictions are less drastic when compared to the clas-

sical model than for the HN600 database. The new model

and the classical one with the correct filter width are in close

agreement, while their results differ from those using the

classical procedure with the incorrect filter width
bD ¼ bD. For

the OHe600 database which has the highest Retr value

among the three examined, the results at small to moderate

D=DxDNS values are the same as for HN600 for the

x2=dx,0¼ 0.44 conditional averages; however, for large

D=DxDNS values close to the production range the predictions

from all three models at this particular x2-coordinate con-

verge and underestimate the exact value. The advantage of

the new model is though evident for predicting the mean

SGS variance value (Fig. 24) over all x2-planes of the mixing

layer even at large D=DxDNS values.

D. Modeled scalar variance in conjunction with the
presumed-PDF approach

As a recall, the results of Fig. 8 were obtained with the

exact moments of the SGS PDF, as extracted from the fil-

tered DNS database. It is thus important to explore the poten-

tial of the two SGS-scalar-variance models examined in Sec.

VI C, namely the ADM using a third-order approximation

and the new dynamic gradient-like model. To this end, we

use each of these models to construct the b-PDF and assess

their performance in reproducing the same filtered non-linear

Z-function of Eq. (51), as in Sec. VI B. Predictions are

illustrated in Fig. 26 for HN600 at D=DxDNS ¼ 8 and

x2=dx,0¼ 0.44, as an example. Each of the models is eval-

uated through scatter plots. Independent of the SGS-scalar-

variance model used, the predictions are excellent, showing

a priori the potential of the new rZ models combined with a

PDF approach to reproduce filtered non-linear functions of

the scalar, as would be models of the dissipation rate, reac-

tion rates, etc. (non-linear functions that include strong

derivatives with respect to the scalar were not tested). Exam-

ining the scatter plots, the ADM results show a smaller dis-

persion than the gradient-based model. On the other hand,

the former is more expensive than the latter and the ADM

exhibits convergence problems of the deconvolution series

for compressible flow, casting uncertainty on success at high

Reynolds numbers where convergence will be further influ-

enced by turbulence-dependent aspects.

VII. SUMMARY AND CONCLUSIONS

The goal of this study was to investigate the modeling

of the SGS scalar variance under supercritical-pressure con-

ditions where the real-gas equation of state, the full (3-term)

expression for the species mass diffusion flux and transport

properties varying with the thermodynamic variables, all pre-

clude assuming that the same models as those at atmos-

pheric-pressure conditions are valid. To this end, we

followed the classical approach whereby the SGS scalar var-

iance equation is derived and terms non-computable from

the LES solution are modeled, with the intent of providing

closure and solving the equation. Thus, we first developed

the equation describing the evolution of the SGS scalar var-

iance under supercritical-pressure conditions and highlighted

its complexity, particularly recognizing terms not present

under atmospheric-pressure conditions. We also presented a

second form of the equation which was more adept at high-

lighting the nature of the new SGS terms and their contribu-

tions. The activity of terms in the first form of the equation

was examined using a filtered DNS database represented by

transitional states describing the mixing of binary species,

for three systems of species, under supercritical pressure

conditions. The findings were that the activity of some of

FIG. 26. Scatter plot of the modeled function gFðZÞmod versus the exact

quantity gFðZÞ computed over the plane x2=dx,0¼ 0.44. The evaluation is

made for the filtered HN600 DNS at t�tr , using the scalar variance rZ mod-

eled employing a third-order ADM (left), and the new dynamic model

(right). �D=DxDNS ¼ 8.

FIG. 27. Conditional average of vT (circles) and vF (stars) on F(Z) given by

Eq. (51). The computations used the HN600 (first row), OH750 (second

row), and OHe600 (third row) DNS at t�tr over planes corresponding to

x2=dx,0¼ 0.44 (left) and x2=dx,0¼ 5.11 (right).
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these new terms is of same magnitude as that of classical

terms, meaning that they cannot be neglected. Most impor-

tant among these new terms were those expressing subgrid

activity due to spatially variable diffusion coefficients. The

second form of the equation confirmed the importance of the

SGS diffusivity and identified for this equation a new dissi-

pation contribution arising from the Soret term. Recognizing

that no SGS models are available to model these terms, and

thus to close the SGS scalar variance equation, the attention

was instead refocused on a second method, that is, the direct

modeling of the SGS scalar variance.

This second route first involved examining the SGS PDF

of the scalar by assuming the form of the PDF and using the

same filtered DNS database to extract the exact moments of

the PDF. Three PDF forms were investigated – the Dirac,

Gaussian, and b PDF – and the results showed that they

ranked in increasing success in the order cited. This encourag-

ing ability of the b PDF motivated the development of two

direct models for the SGS scalar variance. The first SGS-sca-

lar-variance model was based on the ADM procedure refor-

mulated for application to compressible flows. The second

SGS-scalar-variance model was based on a gradient-like

dynamic model using the Leonard term expansion. Success

with these two models motivated a reassessment of the ability

to model a filtered non-linear function of the scalar by using

the b PDF in conjunction with either one of these models

for the SGS scalar variance and with the mean computed from

the filtered DNS. The findings were that either one of

the direct SGS scalar variance models provided a high-fidelity

duplication of the DNS-extracted SGS PDF, which is mani-

fested by the excellent reproduction of a filtered non-linear

function of the scalar. Although the ADM was generally more

accurate than the gradient-based model, it was shown that

the ADM procedure is not necessarily convergent for com-

pressible flows; thus, the results could be interpreted as an

approximation rather than a model the accuracy of which

asymptotically increases with series higher truncation order.

Therefore, although supercritical-pressure conditions entail

new challenges in the modeling of the SGS scalar variance,

these challenges were met for describing the mixing of several

binary-species systems. Further a posteriori studies should

reveal the true potential of these models, and applications to

reacting flows would represent the ultimate test.
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APPENDIX: ASSESSMENT OF THE ONE-
DIMENSIONAL LAMINAR SCALAR DISSIPATION
FOR TRANSITIONAL SUPERCRITICAL-PRESSURE
MIXING LAYERS

The dissipation rate in the context of the flamelet model

is often modeled in the framework of a one-dimensional

counterflow.48 Under this assumption, an analytical solution

for the dissipation rate is available under subcritical condi-

tions1 which is the functional form of Eq. (51). In order to

evaluate whether this form still holds in the present case, the

averages of both vT and vF of Eqs. (49) and (50) are com-

puted from the DNS conditioned on F(Z) (Eq. (51)). The

results are illustrated in Fig. 27. For both vT and vF, there is

a linear dependency on F(Z) in zones corresponding to small

values of F(Z) but not elsewhere (e.g., for HN600 the linear

relationship approximately holds from the smallest F(Z)

location where the conditional average is non-null up to

approximately 0.38 for x2=dx,0¼ 0.44 and 0.2 for

x2=dx,0¼ 5.11). As a preamble to interpreting Fig. 27, we

note that F(Z) has a bell shape with the maximum corre-

sponding to Z¼ 0.5 which indicates perfect mixing, and the

minima at either Z¼ 0 or Z¼ 1 both of which correspond to

the pure species. Considering Figs. 4, 5, and 6, it is clear that

small values of F(Z) correspond to large Z. Thus, for both vT

and vF, there is a linear dependency on F(Z) in zones corre-

sponding to either small or large values of Z, while depar-

tures are observed for intermediary values of Z. This

indicates that F(Z) is unreliable since it cannot handle

regions of fluid mixing where the gradients would be largest.
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