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Abstract: We present a filter design formalism for the synthesis of coupled-

resonator optical waveguide (CROW) filters. This formalism leads to 

expressions and a methodology for deriving the coupling coefficients of 

CROWs for the desired filter responses and is based on coupled-mode 

theory as well as the recursive properties of the coupling matrix. The 

coupling coefficients are universal and can be applied to various types of 

resonators. We describe a method for the conversion of the coupling 

coefficients to the parameters based on ring resonators and grating defect 

resonators. The designs of Butterworth and Bessel CROW filters are 

demonstrated as examples. 
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1. Introduction 

A coupled-resonator optical waveguide (CROW) consists of a chain of weakly coupled 

resonators in which light propagates by virtue of the coupling between adjacent resonators [1]. 

Such a waveguiding mechanism is unique and can be realized in various types of resonators, 

such as ring resonators [2,3], grating resonators [4], and 2D photonic crystal resonators [5]. 

One of the key features of CROWs is that optical pulses can propagate at a significantly 

reduced group velocity, dictated by the inter-resonator coupling. This ability to “slow” down 

light may find applications such as optical delay lines, optical buffers, interferometers, and 

nonlinear optics [3,6,7]. 

The first proposal and analysis of CROWs was based on infinite-length chains whose 

dispersion properties can be derived and are controlled by essentially a single parameter, the 

coupling coefficient κ [1]. In practice, an infinite-length CROW has to be terminated and 

coupled to the outside world. The resulting finite-length CROW requires a proper design 

because the reflection at the two boundaries leads to Fabry-Perot-type oscillations and 

therefore ripples in the passband of the transmission spectra, resulting in signal distortion. To 

minimize the reflection, the boundary coupling coefficients should be properly chosen [8]. 

The coupling coefficients near the boundary can also be apodized to adiabatically transform 

between the CROW mode and the waveguide modes [9,10]. 

A further optimization of CROW delay lines consists of a judicious choice of all the 

coupling coefficients. Each resonator in a CROW can be considered as a feed-back loop 

which contributes a pole to the transfer function of the CROW. Therefore, the transfer 

function of an N-resonator CROW is an N-pole optical filter. The coupling coefficients of 

CROWs can be chosen to achieve desired properties such as maximally flat transmission 

(Butterworth filters) or maximally flat group delay (Bessel filters) over a prescribed 

bandwidth. Optical bandpass filters are important elements in optical signal processing, 

especially for wavelength-division-multiplexed (WDM) systems [11]. High-order bandpass 

filters based on coupled ring resonators have been extensively studied and experimentally 

demonstrated [12–16]. Filters based on coupled-resonator systems can also be realized on 

grating resonators [4,17] and photonic crystal defect resonators [5,18]. 

A prerequisite for the synthesis of high-order optical filters is a robust and systematic 

approach to directly relate the desired filter transfer function to the parameters of the CROWs. 

Several methods have been proposed. For ring or Fabry-Perot resonators, the transfer matrix 

method (TMM) can be applied to analyze the forward and backward fields inside the 
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resonators. If the cavity lengths are nearly identical, each delay is an integer multiple of a unit 

delay, and the CROW can be considered as a digital optical filter and analyzed by the Z-

transform formalism [11]. and [19] derived extraction procedures to convert digital filter 

responses to the field coupling coefficients between ring resonators. A simpler method for the 

analysis of CROWs is the time-domain coupled-mode theory (CMT), which considers the 

whole field as a superposition of individual resonator modes and is independent of the type of 

resonators. The derived coupling coefficients are more general but have to be converted to the 

parameters of the type of resonators used. In [20], coupling coefficients were extracted by 

direct comparison of the transfer function derived from CMT and the desired filter response. 

The approach becomes impractical for high-order filters. Another filter design approach is 

based on equivalent circuits and the techniques of microwave filters. Circuit-based methods 

for the synthesis of high-order filters have been proposed in [21] and [22]. 

In this paper, we present a filter design formalism based on CMT and the recursive 

properties of the coupling matrix. Coupling coefficients are extracted using recursive 

relations. In contrast to [20], this formalism does not need a direct comparison and is robust 

for high-order filters. These universal coupling coefficients can then be converted to the 

parameters of the specific type of resonators comprising the CROWs. We propose a method 

for the conversion of the coupling coefficients. This method utilizes the resonance splitting of 

two coupled resonators for inter-resonator coupling and the transmission of 2-resonator 

CROWs for waveguide-resonator coupling. It is more accurate than the approaches proposed 

in [20]. Another interesting property of this formalism is that the time-domain coupling 

coefficients are proportional to the bandwidth of the filters. For the same kind of filters, the 

bandwidth can be changed easily without having to rederive the coupling coefficients. We 

will first describe the formalism for lossless resonators. In the presence of uniform loss or 

gain, a predistortion technique is applied. We demonstrate the designs of Butterworth and 

Bessel CROW filters on ring resonators and grating defect resonators. 

2. Finite-length CROWs 

We start with the theory of CROWs using coupled-mode theory. Figure 1(a) illustrates a 

CROW with an infinite number of identical resonators. The resonant frequency of each 

resonator is ω0, and the inter-resonator coupling coefficient is κ. For an input frequency ω, the 

mode amplitude of the k-th resonator can be written as ak(t)exp[iωt], where ak(t) is the slowly-

varying amplitude. 
2

( )ka t  represents the energy stored in the resonator. Since the resonators 

are coupled only to their neighbors, the coupled-mode equation of each resonator, assumed 

lossless in this section, can be written as [20,23] 

 
1 1, ,k

k k k

da
i a i a i a k

dt
          (1) 

where Δω  ω  ω0 and κ is a real number. At steady state, dak / dt = 0, and Eq. (1) becomes a 

recursive formula for ak, 1 1 0.k k ka a a       The general solution of this recursive 

formula is 
1 ,k ka a   where γ is the solution of 2 ( ) 0.        For a propagating 

mode (CROW mode), exp[ ],iK     where K is a wave number and Λ is the distance 

between adjacent resonators. When 2 ,    

 21 ( ) ,
2 2

iKi e
 


 

  
      (2) 
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Fig. 1. (a) Schematic drawing of an infinite-length CROW. (b) The dispersion curve of an 
infinite-length CROW. (c) Schematic drawing of a finite-length CROW. (d) Comparison of a 

finite-length and an infinite-length CROW at the boundary. (e) Transmission spectra of 10-

resonator CROWs with 1/ e   and 1/ 0.1e   respectively. 

where 1cos ( / 2 ).K       The relation between Δω and K represents the dispersion 

curve of the CROW (shown in Fig. 1(b)), which defines the CROW band within which light 

can propagate. Frequencies outside the CROW band are forbidden since K is complex and 

1.   

In practice, an infinite-length CROW has to be terminated and coupled to the outside 

world. Shown in Fig. 1(c), the first and last resonators of a CROW are coupled to the input 

and output waveguides. The coupling to the waveguides can be modeled as external losses, 

1/τe, of the end resonators. When a CROW mode propagates to the boundary, the 

discontinuity between the CROW and the waveguide causes reflection, leading to Fabry-

Perot-type oscillations. The reflection can be minimized by choosing 1/τe properly. Figure 

1(d) illustrates the difference between a finite-length and an infinite-length CROW at the 

boundary. In the case of a finite CROW, the N-th resonator is coupled to the output 

waveguide, while in the case of an infinite CROW, it is coupled to the next resonator. The 

differential equations for these two cases are respectively 

 1

1N

N N N

e

da
i a i a a

dt
 


      (3a) 

and 

 
1 1.

N

N N N

da
i a i a i a

dt
         (3b) 

To match the boundary, the right-hand sides of Eqs. (3)a) and (3b) should be equal so that 

the N-th resonator cannot tell the termination of the CROW. Since 1N Na a   for a CROW 

mode, the equality of Eqs. (3)a) and (3b) requires 

 
1

.
e

i


  (4) 
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For CROW modes, 1  . Equation (4) requires 1/τe = κ and γ = i, which corresponds to 

the center of the CROW band (Δω = 0). Figure 1(e) compares the transmission spectra of 10-

resonator CROWs with 1/τe = κ and 1/τe = 0.1κ respectively. For 1/τe = κ, the spectrum is flat 

at the band center. The ripple amplitudes increase at frequencies close to the band edge since 

the boundary is only matched for Δω = 0. For 1/τe = 0.1κ, the ripples are large over the whole 

bandwidth. The optimal boundary condition 1/τe = κ leads to maximally-flat transmission 

spectrum for finite-size CROWs with uniform coupling coefficients. To further reduce the 

Fabry-Perot oscillations over the whole CROW band, one can taper the coupling coefficients 

to adiabatically transform between the CROW mode and the waveguide modes [9,10]. The 

spectra of transmission and group delay can be further improved by choosing all the coupling 

coefficients so that the transfer function of the CROW is equal to the transfer function of a 

desired filter, which will be described in the next section. 

3. Synthesis of bandpass filters based on CROWs 

Consider a CROW which consists of N identical resonators and is coupled to input and output 

waveguides (Fig. 2). All the N + 1 coupling coefficients are allowed to take on different 

values. The coupled-mode equations obeyed by the complex amplitudes of the N resonators 

are 

 

1
1 1 2 1

1

2
2 1 1 2 3

1
1 2 2 1

1 1

2

1
( ) ,

,

                             

,

1
( ) .

in

e

N
N N N N N

N
N N N

e

da
i a i a i s

dt

da
i a i a i a

dt

da
i a i a i a

dt

da
i a i a

dt

  


  

  

 



   

 

     

    

    

    

 (5) 

The right-hand side of each equation consists of a detuning term (iΔωak for each k) and 

two coupling terms to the neighboring resonators, except for the first and last resonators 

which have only one neighbor. 1/τe1 and 1/τe2 are external losses of the first and last resonators 

due to coupling into the waveguides. The input mode with power 
2

ins  is coupled into the first 

resonator via a coupling coefficient μ1. It can be shown from conservation of energy and time 

reversal symmetry that 1 12 e   [20,24]. At steady state, the left-hand sides of Eq. (5) are 

all 0. By replacing iΔω with the Laplace variable s, Eq. (5) can be rewritten as 

 

1

1 1 1

21 2

2

1

1

2

1
0 0 0

0 0 0

0
A .

1 0

e in

N

N
N

e

s i
a i s

ai s i

i s

s i

a
i s


 

 












 
      

    
    
                       
        
               

  

a  (6) 

The N N  coupling matrix A is a tridiagonal matrix. The vector a which contains all the 

mode amplitudes can be solved by inverting A. The transmitted and reflected amplitude, sout 

and sr are given respectively by 
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Fig. 2. Schematic drawing of a CROW filter. 

 1

2 1 2 ,1
Aout N inN

s i a s           (7a) 

and 

 2 1

1 1 1 1,1
(1 A ) ,r in ins s i a s          (7b) 

where 
2 22 e  . The amplitude transmission, which is defined as /out inT s s , can be 

shown as 

 
1

1 2 1 2 1( )
( ) ,

det(A)

N

Ni
T s

    


   (8) 

where det(A) is the determinant of A and is a polynomial in s with a leading term s
N
. 

Therefore, ( )T s is an all-pole function with N poles. 

3.1 N-th order all-pole bandpass filters 

The transfer function of an all-pole lowpass filter with N poles can be written as 

 
1

1 1 0

( ) ,
N N

N

k
T s

s b s b s b




   

 (9) 

where k,bN-1,…,b0 are constants. Typical examples of all-pole filters are Butterworth, 

Chebyshev, and Bessel filters. We substitute s with i(ωω0)/B, where B is a bandwidth 

parameter, T(s) then describes a bandpass filter which is centered at ω0 and of bandwidth 

scaled by B. Figure 3(a) shows the transmission and group delay spectra of a Butterworth 

filter and a Bessel filter which feature maximally flat transmission and maximally flat group 

delay, respectively. 

Since the amplitude transmission of an N-resonator CROW (Eq. (8)) and the transfer 

function of an N-th-order all-pole lowpass filter (Eq. (9)) are both all-pole functions with N 

poles, we present in what follows a formalism for designing the coupling coefficients of 

CROWs so that the amplitude transmission of the CROW is equal to the desired T(s). 
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Fig. 3. Spectra of transmission and group delay of (a) a tenth-order Butterworth filter and (b) a 
tenth-order Bessel filter. 
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3.2 Extraction of coupling coefficients for a desired filter response 

The tridiagonal matrix A in Eq. (6) has the following recursive properties of the polynomials 

p1 through pN: 

 

2

1 1 2

1

2

1 2 2 3

2

3 2 2 1

2

2 1 1

1

2

1
( ) ,

,

                         

,

,

1
,

N N N

e

N N N

N

N

e

p s p p

p sp p

p sp p

p sp

p s












 

  





  

 

 

 

 

, (10) 

where pk is the determinant of the buttom-right k × k submatrix of A (a principal minor of A). 

For example, pN is the determinant of A, and 1 ,= AN Np . Each pk is a polynomial in s with a 

leading term s
k
. Once we know both pN and pN-1, all the coupling coefficients 

1 1 2 1 2(1 , , , , ,1 )e N e    
 can be extracted step by step, using Eq. (10). For example, when 

dividing pN by pN-1, the quotient is 
11 es  , and the remainder is 2

1 2Np 
. Then we can 

continue to divide pN-1 by pN-2. 

pN and pN-1 can be obtained from the transmission and reflection of the CROW. The 

amplitude transmission /out inT s s  and reflection /r inR s s  can be shown from Eqs. (7)a) 

and (7b) as 

 ( )
N

k
T s

p
  (11a) 

and 

 
2

1 1( ) ,N N

N

p p
R s

p

 
  (11b) 

where k is a constant. Given a desired ( )T s , pN is already known. To find pN-1, R(s) is also 

required and can be related to T(s) using conservation of energy, 
2 2

( ) ( ) 1T i R i   , for a 

lossless system. Power spectral factorization is performed to obtain R(s) from 
2

( )R i . In the 

power spectral factorization, there are at most 2
N
 choices of the numerator of R(s), each of 

which will correspond to different coupling coefficients. We choose the R(s) whose 

coefficients are real and whose distribution of the zeros is the most symmetric around 0. If 

R(s) is complex, the resonant frequencies have to be detuned from ω0, and the resonators are 

not identical. The details of finding R(s) are described in the appendix. 

3.3 Coupling coefficients of Butterworth and Bessel CROWs 

Here we use an N = 4 Butterworth filter to demonstrate the extraction of coupling coefficients. 

The transfer function 4 3 2( ) 1/ ( 2.613 3.414 2.613 1)T s s s s s     . The steps are listed in 

Table 1. For Butterworth filters, the power spectral factorization for solving R(s) is unique and 

simple. The numerator of R(s) is s
N
. Table 2 lists the extracted coupling coefficients for 

Butterworth and Bessel filters of N = 6 and 10. Note that the extracted coefficients are 
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normalized by the bandwidth parameter B, which can be selected to control the bandwidth of 

the CROW filter. 

The coupling coefficients of Butterworth CROWs are symmetric. At the center of the 

CROW, the coupling coefficient is about 0.5, which corresponds to a CROW band from Δω = 

1 to 1. The coupling coefficients gradually increase toward the two ends of the CROW. This 

adiabatic transition of the coupling coefficients reduces the reflection at the boundary, and 

Butterworth CROWs are one of the optimal designs which remove the oscillations in the 

transmission spectra. Bessel CROWs, which possess maximally flat delay, do not have 

symmetric coupling coefficients. With the proper choice of R(s) in the power spectral 

factorization (see Appendix), the coefficients are nearly symmetric. 

Figure 4(a) compares Butterworth CROWs comprising N = 6, 10 and 20. As the order 

increases, the transmission spectra become flatter in the passband and the roll-off at the band 

edges is steeper. To see how tolerant the Butterworth CROWs are under random change of the 

coupling coefficients, Fig. 4(b) shows the transmission spectra of N = 10 Butterworth CROWs 

whose coupling coefficients are multiplied by a random variable which is uniformly 

distributed between 0.9 and 1.1. In other words, the standard deviation of the coupling 

coefficient is 5.8% of its original value. From the transmission spectra of 10 different 

simulations, the transmission is above 94% over most of the bandwidth. 

Table 1. Extraction of Coupling Coefficients for N = 4 Butterworth Filter 

8
2 2

4 3 2 8 8
4

24
3 24 1 3

34 3 2
4

2
4 3 2 1

1

3

1 1 1
( )  ( ) ( )

2.613 3.414 2.613 1 1 1

( ) 1.307 0.383
2.613 3.414 2.613 1

1
Divide  by 1.307 0.707,  1.307,  0.841

Divide  b

e

T s T i R i
ps s s s

p ps
R s p s s s

ps s s s

p p p s s

p


 

 






     
     


       

   

     

2 1 2 2 1 3
2

1
y 1.307,  0.541.     Divide  by 0.841,  1.307

e

p p s p p 


      

 

Table 2. Extracted Coupling Coefficients of Butterworth and Bessel CROW Filters 

Filter type 1 1 2 1 2(1 , , , , ,1 ) /e N e B    
 

N = 6 Butterworth (1.932, 1.169, 0.605, 0.518, 0.605, 1.169, 1.932) 

N = 10 Butterworth (3.196, 1.876, 0.883, 0.630, 0.533, 0.506, 0.533, 0.630, 0.883, 1.876, 3.196) 

N = 6 Bessel (2.068, 1.198, 0.393, 0.397, 0.803, 1.486, 2.427) 

N = 10 Bessel (3.478, 2.030, 0.932, 0.613, 0.305, 0.333, 0.652, 0.772, 1.056, 2.209, 3.745) 

N = 10 Butterworth  1 0.05i B   (2.597, 1.575, 0.787, 0.637, 0.412, 0.674, 0.467, 0.588, 0.873, 1.912, 3.296) 

N = 10 Butterworth  1 0.05i B    (3.403, 1.988, 0.921, 0.635, 0.452, 0.474, 0.605, 0.679, 0.955, 2.044, 3.490) 

3.4 CROWs with the presence of loss or gain 

The filter design formalism described above assumes that the resonators are lossless. In 

practice, there are loss mechanisms, including intrinsic radiation loss of the resonator design, 

absorption loss of the material, and scattering loss due to imperfection of the fabrication. The 

modal loss can be modeled by the loss rate of the resonators, 1/τi, which is related to the 

quality factor Q of the resonators by 2iQ  . The differential equation of the k-th 

resonator in Eq. (5) can be rewritten as 

 1 1 1

1
( ) .k

k k k k k

i

da
i a i a i a

dt
  


         (12) 
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Fig. 4. (a) Transmission spectra of Butterworth CROWs with 6, 10, and 20 resonators. (b) 

Transmission spectra of N = 10 Butterworth CROWs under random change of coupling 

coefficients. 

If the loss rates of all the resonators are identical, the coupling matrix in Eq. (6) is 

modified by replacing s with s + 1/τi. Therefore, for an all-pole filter response T(s) designed 

for lossless resonators, the transmission in the presence of loss is given by '( ) ( 1 )iT s T s   , 

whose poles are shifted to the left by 1/τi. 

To obtain the desired filter response in the presence of loss, the poles can be shifted to the 

right by 1/τi in the design to pre-compensate for the left shift due to the loss. This technique is 

called predistortion of the filters [25]. First, the poles of the desired function T(s) in Eq. (9) 

are shifted to the right by 1/τi. The constant in the numerator has to be decreased so that the 

magnitude of the new transfer function T0(s) is always smaller than or equal to 1. As a result, 

0 ( ) ( 1 )iT s T s   , where α is a constant and is smaller than 1. In the presence of loss 1/τi, 

the transfer function is 
0'( ) ( 1 ) ( )iT s T s T s    , which is recovered to the desired 

response except for the attenuation factor α. 

If the CROW is pumped with uniform gain, the amplifying CROW can be modeled with a 

negative 1/τi. The factor α is greater than 1 and is an amplification factor. Table 2 lists the 

predistorted design for N = 10 Butterworth CROWs with 1/τi = 0.05B (lossy) and 0.05B 

(amplifying) respectively. Their transmission spectra with and without loss/gain are plotted in 

Figs. 5(a) and 5(b) respectively. Since the group delay is greater at the band edge, frequencies 

near the band edge experience larger loss and gain. Consequently, the amplitude responses are 

predistorted accordingly before the loss or gain, as can be seen in Fig. 5. For Bessel filters, 

since the group delay is almost constant over the bandwidth, the characteristics of the filters 

remain the same in the presence of small gain or loss. 
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Fig. 5. Transmission spectra of predistorted N = 10 Butterworth CROWs with and without 

loss/gain for (a) 1 0.05i B   (loss) and (b) 1 0.05i B    (gain). 
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4. CROW filters based on microring resonators 

A microring CROW consists of a chain of coupled ring resonators (Fig. 6(a)). Light is coupled 

in and out of the CROW via the input and output waveguides. Assuming the coupling region 

is sufficiently long compared to the wavelength, only light circulating in one direction in 

thering is phase-matched to the input and is excited. The coupling between two adjacent rings 

can be analyzed, using the notation in Fig. 6(b), by 

 
1 1

2 2

,
c bt i

c bi t





    
    
    

 (13) 

where η and t are respectively the dimensionless coupling and transmission coefficients over 

the coupling region. Assuming the coupling is lossless, 2 2 1t   . The transmission and 

reflection of microring CROWs can be analyzed using transfer matrix formalism [26]. 

The field coupling coefficient η at the coupling region is related to the time-domain 

coupling coefficient κ between two rings. In [20], these relations were derived: 
FSRf  for 

inter-resonator coupling and 
, 2 ( )in out e FSRf   for waveguide-resonator coupling, where 

2FSR gf v R  is the free spectral range of the ring resonators. However, these formulas are 

only valid when the coupling is sufficiently weak, because the field inside the ring is not 

uniform when η is not much smaller than 1 [15]. In what follows, we describe a method which 

is valid for any reasonable coupling. 

Inter-resonator coupling: Consider two identical resonators coupled to each other with a 

coupling coefficient κ (Fig. 7(a)). The resonant frequencies of the two eigenmodes are ω0 ± κ. 

Figure 7(b) illustrates the corresponding case for ring resonators. The field coupling 

coefficient is η. The fields b1,2 and c1,2 are related by the coupling (Eq. (13)), and propagation 

along the rings leads to 
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Fig. 6. Schematic drawings of (a) a microring CROW filter and (b) the coupling of two 

adjacent rings. 
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Fig. 7. Schematic drawings of the coupled-resonator structures and the corresponding 
microring resonators for the derivation of (a,b) inter-resonator coupling and (c,d) waveguide-

resonator coupling. 
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1 1( )

2 2

,i
b c

e
b c

    
   

   
 (14) 

where θ (Δω) is the round-trip phase of the rings at ω = ω0 + Δω and is equal to Δω /fFSR. 

Combining Eqs. (13) and (14), exp[iθ (Δω)] is the eigenvalue of the coupling matrix in Eq. 

(13), which leads to 1( ) sin     . Therefore, the frequency splitting, which is equal to 

the coupling coefficient κ, is 1sin ( )FSRf    . As a result, 

 sin( ).
FSRf


   (15) 

Waveguide-resonator coupling: In Fig. 7(c), the two resonators in Fig. 7(a) are both 

coupled to an output waveguide with an external loss, 1/τe. By writing down the coupled-

mode equations of the two resonators and solving for the steady-state solution at ω = ω0, the 

amplitude transmission 
out ins s  is given by 2 2(2 ) / (1 )e e    , which equals 1 only when 

the boundary condition 1 e   is satisfied. We can use this structure to derive the 

conversion of 1/τe. Figure 7(d) illustrates the corresponding structure for ring resonators. The 

condition that the transmission is unity at ω = ω0 can be derived as 

 
2

.
1

i








 (16) 

For a given 1/τe, we first use Eq. (15) to find an inter-resonator coupling η which 

corresponds to a coupling coefficient 1 e  , and then use Eq. (16) to obtain ηi. 

With Eqs. (15) and (16), we are ready to convert the coupling coefficients κ in Table 2 to 

the microring couplings η. The only constraint is that κ does not exceed (π /2)fFSR, or ωFSR/4, 

the maximal coupling which ring resonators with a free spectral range fFSR can achieve (see 

Eq. (15)). We consider examples of silicon microring CROWs. The mode index and group 

index of the silicon waveguides are respectively 2.4 and 4. The ring radius is 30 μm so that 

one resonant wavelength is at 1570.8 nm, and the free spectral range fFSR is 398 GHz. The 

bandwidth of the filters can be chosen by setting the bandwidth parameter B. For example, the 

bandwidth of Butterworth filters is 2B (Fig. 3(a)). If we choose B = ωFSR·0.005, where 

2FSR FSRf  , the bandwidth is 2·398GHz·0.005 = 3.98GHz. The converted η for 

Butterworth and Bessel filters with B = ωFSR·0.005 and B = ωFSR·0.05 are listed in Table 3. 

The transmission spectra of the microring CROWs in Table 3 were calculated using the 

transfer matrix formalism and were compared with the original transmission spectra based on 

the κ in Table 2, calculated using CMT. Figure 8(a) shows the transmission spectra of 

Butterworth filters with B = ωFSR·0.005. Since η are sufficiently weak (the largest η is 0.338), 

the two spectra are nearly identical. Figure 8(b) shows the spectra for B = ωFSR·0.05, where 

the coupling is stronger. Although there are small passband ripples whose amplitude is about 

0.0002, the spectrum still closely agrees with the desired response. Therefore, the conversion 

is valid even when η is as high as 0.852, whereas the same κ would be converted to η = 1.102 

using the formula proposed in [20]. Note that for a bigger bandwidth or higher filter order, κ 

at the boundary will increase and might exceed the upper limit of κ, (π /2)fFSR. Therefore, 

resonators with large fFSR are beneficial. However, for ring resonators with very small radii, 

say less than 5 μm, the assumption of the transfer matrix formalism that the coupling region is 

sufficiently long compared to the wavelength is no long valid, and the coupling of modes will 

be complicated since modes in the opposite direction will also be excited. Figure 8(c) shows 

the spectra of transmission and group delay for an N = 6 Bessel CROW with B = ωFSR·0.05. 

Figure 8(d) compares the transmission spectra of Butterworth CROWs with 6 and 20 rings. 
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Table 3. Coupling Coefficients of Microring CROW Filters 

Filter type Bandwidth 1 2 5( , , , , , )in out      

N = 6 Butterworth 
0.005FSRB    (0.338, 0.0367, 0.0190, 0.0163, 0.0190, 0.0367, 0.338) 

0.05FSRB    (0.852, 0.359, 0.189, 0.162, 0.189, 0.359, 0.852) 

N = 6 Bessel 
0.005FSRB    (0.349, 0.0376, 0.0123, 0.0125, 0.0252, 0.0467, 0.376) 

0.05FSRB    (0.868, 0.368, 0.123, 0.124, 0.250, 0.450, 0.904) 
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Fig. 8. (a,b) Transmission spectra and their enlarged passband spectra of N = 6 Butterworth 

microring CROW filters with (a) B = ωFSR·0.005 and (b) B = ωFSR·0.05. (c) Transmission and 
group delay of an N = 6 Bessel microring CROW. (d) Transmission spectra of Butterworth 

microring CROWs with 6 and 20 resonators respectively. 

5. CROW filters based on grating defect resonators 

CROWs can be realized on a waveguide grating with multiple “defects”. A Bragg grating is a 

periodic perturbation to the waveguide. When an artificial defect is introduced in a grating, a 

defect mode is created with a resonant frequency inside the grating band gap. If the defect 

length corresponds to a quarter wavelength (a quarter-wave-shifted defect), the mode 

resonates at the Bragg frequency of the grating. This defect mode consists of a forward and a 

backward waveguide mode. The envelope of the field distribution is centered at the defect and  

decays exponentially in the grating, as shown in Fig. 9(a). If the grating consists of multiple 

defects (Fig. 9(b)), each defect mode interacts with its neighbors via their evanescent tails. 

The coupling between adjacent defects can be controlled by the spacing between the defects 

(L1,L2,…,LN+1 in Fig. 9(b)). These defect resonators form a grating CROW. 
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Fig. 9. Distribution of refractive index, coupling coefficient, and the envelope of intensity 

along z of (a) a defect resonator, (b) a grating CROW, (c) two coupled defect resonators, and 
(d) two coupled defect resonators with external coupling to the waveguide. 

CROWs based on waveguide gratings are attractive because the coupling between 

CROWs and waveguides is natural and easy to implement. For strong gratings, the size of 

grating resonators can be as small as several microns, which is much smaller compared to ring 

resonators [4]. However, the defect resonators in a strong grating require a proper design to 

reduce the radiation losses due to spatial Fourier components which are coupled to the 

radiation modes of the waveguide [27]. 

CROWs based on weak gratings can be analyzed by coupled-mode equations [17,28]: 

 

*( )
( ) ( ) ( ),

( )
( ) ( ) ( ),

g

g

da z
i a z i z b z

dz

db z
i b z i z a z

dz

 

 

  

 

 (17) 

where a and b are the amplitudes of the forward and backward waveguide modes, δ is the 

detuning of the propagation constant from the Bragg condition of the grating, and κg(z) is the 

coupling coefficient of the grating. In a grating CROW, the phase of κg(z) is shifted by π at 

each quarter-wave-shifted defect, as shown in Fig. 9(b), while the amplitude remains the 

same. For an input mode a() from the left, the field distribution and the transmission of a 

grating CROW with a given κg(z) can be solved using Eq. (17) with the boundary condition 

b() = 0. 

The conversion from the coupling coefficients κ in Table 2 to the lengths L1,L2,…,LN+1 in 

grating CROWs applies methods similar to those employed in Section 4. 

Inter-resonator coupling: Fig. 9(c) shows the case of two defects which are separated by a 

distance L in an infinitely long grating. It was shown in [17] that under the assumption of 

exp( ) 1g L , the resonance splitting due to the coupling is exp( )g g gv L      , where 

vg is the group velocity of the waveguide mode. Since the Δω is equal to the coupling 

coefficient   of the two resonators, 

 
1

ln( ),
g g

L


 
   (18) 

where ωg  κgvg. 
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Waveguide-resonator coupling: Fig. 9(d) shows a finite grating with two defects. The 

external loss 1/τe of the defect modes into the waveguides is controlled by the length Li. The 

amplitude transmission of this grating at Bragg frequency can be solved, using Eq. (17), as 

1/ cosh[ (2 )]g iL L  . The transmission is unity if / 2iL L , which corresponds to the 

boundary condition κ = 1/τe. Therefore, 

 
11

ln( ).
2

e

i

g g

L


 
   (19) 

Using Eqs. (18) and (19), the coupling coefficients in Table 2 are converted to the lengths 

of the grating sections, which are listed in Table 4. We consider Si waveguides whose group 

index is 4 at the wavelength of 1570 nm. The grating strength κg is 0.1/μm, so ωg/(2π) is 1.19 

THz. The transmission and group delay spectra of N = 6 Butterworth and Bessel filters with B 

= ωFSR·0.05 are plotted in Fig. 10. 

Table 4. Lengths of Grating Sections for Grating CROW Filters 

Filter type Bandwidth 1 2 1( , , , )NL L L 
 

N = 6 Butterworth 
0.05gB    (11.7, 28.4, 35.0, 36.5, 35.0, 28.4, 11.7) μm 

0.005gB    (23.2, 51.4, 58.0, 59.6, 58.0, 51.4, 23.2) μm 

N = 6 Bessel 
0.05gB    (11.3, 28.1, 39.3, 39.2, 32.1, 26.0, 10.5) μm 

0.005gB    (22.9, 51.2, 62.3, 62.2, 55.2, 49.0, 22.1) μm 
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Fig. 10. Transmission and group delay spectra of (a) an N = 6 Butterworth grating CROW filter 

and (b) an N = 6 Bessel grating CROW filter. 

6. Conclusion 

We have demonstrated a formalism for choosing the coupling coefficients of CROWs to 

achieve desired filter responses such as maximally flat transmission (Butterworth filters) and 

maximally flat group delay (Bessel filters). The formalism uses CMT and the recursive 

relations of the coupling matrix to extract the coupling coefficients. Compared to TMM, the 

design using CMT is simpler since the field in each resonator is represented by only one 

variable. The universal coupling coefficients can be applied to any type of resonators or even 

the coupling of different types of resonators. The bandwidth of the filters can be changed 

easily by selecting the bandwidth parameter B. Furthermore, predistortion techniques can be 

applied for the design of lossy or amplifying CROW filters. 

The disadvantage of CMT is that it assumes weak coupling between resonators and that 

the field distribution in each resonator remains unchanged. It is less accurate than TMM, 

which directly analyzes the fields inside the resonators. The time-domain coupling 

coefficients of CMT have to be converted to the parameters of the type of resonators 

comprising the CROWs. We have demonstrated the conversion to the field coupling 
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coefficients for microring resonators and the lengths of grating sections for grating defect 

resonators. The formulas for the conversion are valid for any reasonable coupling. 

Appendix 

In what follows we describe the details of finding pN-1 for the purpose of using Eq. (10) to 

extract the coupling coefficients of CROWs. The formalism is similar to the z-domain digital 

filter design described in [11,19]. 

Assuming the CROW is lossless, T(s) and R(s) are related by ... For an all-pole filter of 

order N, T(s) can be written as 

 
1 2

( ) ,
( )( ) ( )N
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T s

s q s q s q


  
 (20) 

where q1 through qN are the poles and k is a constant. All the filter responses T(s) we consider 

in this paper are real functions, so the poles come in complex conjugate pairs. Therefore, 
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and 
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The denominators of T(s) and R(s) are identical, as can be seen in Eqs. (11)a) and (11b). 

We assume that the numerator of R(s) is 
1 2( ) ( )( ) ( )Np s s z s z s z    , where z1 through zN 

are the zeros of R(s). The goal of power spectral factorization is to find z1 through zN so that 
2 2 2 2 2 2 2 2

1 2( ) ( )( ) ( )Np i q q q k        . Each zero zi is selected from a pair (z, z*), 

where z is a complex number, so there are at most 2
N
 combinations of zeros. In general, p(s), 

and thus pN-1, are not real. For a filter with a complex pN-1, the resonant frequencies of the 

resonators have to be detuned, and Eq. (6) is modified as 
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where 
0i i     is the frequency detuning of each resonator from ω0. Equation (10) is also 

modified by replacing s with sδi, so δi can be extracted during the extracting process. 

The zeros of R(s) can be chosen so that pN-1 is real. Figure 11 shows three different choices 

of zeros for an N = 7 Bessel filter. They correspond to different coupling coefficients κ and 

frequency detuning δ, as listed in Table 5. The first one is often referred to as “minimum 

phase”, where all zeros are located inside the left-half s-plane (Fig. 11(a)). It corresponds to 

zero frequency detuning and monotonically increasing κ. In the second one, the zeros are all 

located at the first and third quadrants (Fig. 11(b)). The resulting values of κ are symmetric, 

but the frequency detuning is nonzero since pN-1 is complex. In our CROW filter design, we 
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prefer a nearly symmetric κ without frequency detuning. Consequently, we choose the zeros 

that are the most uniformly distributed around the origin and are complex conjugate pairs, as 

shown in Fig. 11(c). Note that although the three CROW filters in Table 5 look very different, 

they have the same T(s) and 
2

( )R i , except that the phase of R(s) is different. 
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Fig. 11. Choices of zeros for R(s). (a) Minimum phase. (b) 1st and 3rd quadrants. (c) Nearly 
uniform distribution. 

Table 5. Coupling Coefficients and Frequency Detuning of N = 7 Bessel CROW Filters 

with Different Choices of Zeros 

Choice of zeros 1 1 2 1 2 1 2(1 , , , , ,1 ) / ,  ( , , , ) /e N e NB B            

Minimum phase 
  = (0.241, 0.345, 0.557, 0.699, 0.899, 1.320, 2.876, 4.937) 

  = (0, 0, 0, 0, 0, 0, 0) 

1st and 3rd quadrants 
  = (2.589, 1.460, 0.619, 0.486, 0.486, 0.619, 1.460, 2.589) 

  = (0.495, 0.514, 0.461, 0.000, 0.461, 0.514, 0.495) 

Nearly uniform distribution 
  = (1.898, 1.174, 0.390, 0.357, 0.684, 0.932, 1.926, 3.280) 

  = (0, 0, 0, 0, 0, 0, 0) 
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