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Recent results of N-body simulations have shown that current theoretical models are not able to

correctly predict the amplitude of the scale-dependent halo bias induced by primordial non-Gaussianity,

for models going beyond the simplest, local quadratic case. Motivated by these discrepancies, we

carefully examine three theoretical approaches based on (1) the statistics of thresholded regions, (2) a

peak-background split method based on separation of scales, and (3) a peak-background split method

using the conditional mass function. We first demonstrate that the statistics of thresholded regions, which

is shown to be equivalent at leading order to a local bias expansion, cannot explain the mass-dependent

deviation between theory and N-body simulations. In the two formulations of the peak-background split

on the other hand, we identify an important, but previously overlooked, correction to the non-Gaussian

bias that strongly depends on halo mass. This new term is in general significant for any primordial non-

Gaussianity going beyond the simplest local fNL model. In a separate paper (to be published in PRD rapid

communication), the authors compare these new theoretical predictions with N-body simulations, showing

good agreement for all simulated types of non-Gaussianity.
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I. INTRODUCTION

Ongoing and future galaxy surveys will provide a large
amount of data that can be exploited to constrain the
physics of inflation and the very early Universe, in particu-
lar, through a measurement of the shape and amplitude of
primordial non-Gaussianity (NG). Over the past few years,
galaxy clustering has emerged as the most powerful large-
scale structure probe of primordial NG (e.g., [1–3]; for a
review, see [4]). In particular, references [3,5–7] have
shown that the local quadratic coupling fNL�

2 induces a
scale-dependent bias

�bIðk; zÞ ¼ 2fNLðbE1 � 1Þ�c

Mðk; zÞ (1)

in the large-scale power spectrum of biased tracers.
Here, bE1 is the (Eulerian) linear bias factor, �c � 1:69 is
the linear critical density contrast for spherical collapse,
andMðk; zÞ / DðzÞk2TðkÞ is the transfer function between
density and the gravitational (Bardeen) potential pertur-
bations. Numerical studies have confirmed the scaling
�bI / k�2 and the redshift-dependence �bI / DðzÞ�1

[3,8–12], even though the exact amplitude of the effect
remains somewhat debatable (at the �10� 20% level;
presumably related to the choice of halo finder [4]).

However, for other non-Gaussian models such as a local
fNL�

2 model with k-dependent fNL, the local cubic cou-
pling gNL�

3, or the orthogonal type, there is a much larger

discrepancy between the analytical predictions based
on the statistics of high-threshold regions [5] and the
non-Gaussian bias measured from simulations [13–15].
In the gNL�

3 case, the magnitude of the non-Gaussian
scale-dependent bias �bI is significantly suppressed
relative to the theoretical expectation on large scales
(k & 0:01 hMpc�1), even for highly biased halos. The
ratio of the measured to the predicted non-Gaussian bias
strongly depends on the halo mass M: it decreases to-
wards low mass halos, and even reverses sign for halos
with bE1 & 2 [13]. For the quadratic coupling with
k-dependent fNLðkÞ / knf , the discrepancy between the
simulated bias and the high-peak expectation also becomes
more severe as the halo mass decreases. Furthermore, the
deviation depends on the sign and amplitude of the spectral
index nf [14]. Recent numerical simulations implementing

the orthogonal bispectrum shape also show systematic
deviations in the measured halo bias from the high-peak
expectation, in a way that the deviation becomes larger
towards lower halo masses [15].
In this paper, we present a careful (re-)derivation of the

effect of local and nonlocal primordial NG on the large-
scale clustering of tracers (such as galaxies and clusters of
galaxies) using the thresholding approach [5,16,17], as
well as two distinct albeit related formulations of the
peak-background split (PBS). For all three approaches,
we present general expressions for the non-Gaussian
scale-dependent bias and apply them to models for which
N-body simulations have been performed.
In the thresholding approach, we directly calculate the

two-point correlation function of halos from the prob-
ability of finding a single smoothed region above some
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threshold, and the probability of finding two separate re-
gions above the same threshold. This approach has the
advantage that the thresholding process is a well-defined
mathematical operation so that we can in principle calcu-
late the correlation functions without any further approxi-
mation. We derive a general expression for the amplitude
of the non-Gaussian bias in terms of the primordialN-point
functions and the Gaussian bias parameters of the thresh-
olded regions, without relying on the high-peak assump-
tion usually assumed in previous studies (e.g., [5]). As the
deviation between N-body simulations and the theoretical
expectation is stronger for lower mass halos, such an
extension of the high-peak formulation could be seen as
a possible resolution. We also show that to leading order in
fNL; gNL; . . . , the thresholding approach is equivalent to a
local bias expansion.

In the first PBS approach [3,6,18], we decompose the
non-Gaussian perturbations into parts that are linear, qua-
dratic, and cubic in Gaussian fields. We separate long-
wavelength from short-wavelength perturbations (the two
are uncorrelated for Gaussian fields, but correlated in the
non-Gaussian case), and calculate the bias as the response
of the halo number density to a long-wavelength density
perturbation. This approach is conceptually simple and
offers a clear physical picture of the impact of primordial
NG on the clustering of biased tracers, by isolating the
effect of the mode-coupling induced by NG. For example,
for a generic primordial bispectrum, the variance of the
small-scale density field is locally rescaled by long-
wavelength potential fluctuations. Depending on the exact
shape of the bispectrum, this rescaling can be scale-
independent (local model of NG), which then leads to a
scale-dependent bias as in Eq. (1); or scale-dependent
(e.g., orthogonal and equilateral models), generally soft-
ening the 1=k2-dependence. We will see that for cubic-
order NG, long-wavelength perturbations not only rescale
the local variance of the density field, but also induce a
local skewness. Since the abundance of halos also depends
on the skewness of the small-scale density field (a fact
exploited when searching for NG using the mass function
of e.g., galaxy clusters), this effect contributes to the non-
Gaussian halo bias. This first PBS approach has the advan-
tage that it can be generically applied to any prescription
for the average halo abundance (mass function). On the
other hand, it assumes a clear separation between long- and
short-wavelength modes, which breaks down when mea-
suring the clustering on sufficiently small scales.

Our second PBS approach is inspired by a calculation
of the scale-dependent bias factors in the Gaussian
peaks model [19] (e.g., the first-order bias is bIðkÞ ¼
b10 þ b01k

2). In this approach, we apply the peak-
background split directly to the non-Gaussian density field.
This is done by calculating the non-Gaussian conditional
mass function using an Edgeworth expansion of its
Gaussian counterpart. The halo density contrast is then

obtained by taking the ratio of the unconditional to condi-
tional mass function, and expanding with respect to the
large-scale density contrast. This allows us to determine
the linear bias as the lowest-order coefficient in this series.
This approach can in principle be applied to any excursion-
set mass function. As a first step, we will here formulate it
under the assumption that the Press-Schechter multiplicity
function describes halo abundances. On the other hand, this
approach does not rely on a separation of scales. Thus, the
two PBS approaches presented here make complementary
assumptions.
The paper is organized as follows: we begin by review-

ing the models of primordial NG considered here and
spelling out our notation in Sec. II. We discuss the thresh-
olding approach to non-Gaussian bias and point out its
limitations in Sec. III. Section IV introduces the first PBS
approach based on a separation of scales, while Sec. V
presents the second PBS approach based on conditional
mass functions. Section VI presents a comparison of the
PBS and thresholding approaches. The comparison of our
predictions with the results of N-body simulations is the
subject of a companion Letter [20]. We conclude in
Sec. VII.

II. PRELIMINARIES

A. Four types of primordial NG

Throughout the paper, we will apply our results to the
following four models of primordial NG. We parameterize
primordial NG via the N-point functions (N > 3) of
the Bardeen potential �ðxÞ, a relativistic generalization
of the Newtonian gravitational potential, in the matter-
dominated era. Note that �ðxÞ has the opposite sign rela-
tive to the usual Newtonian gravitational potential. Since
our goal is to compare analytic predictions with the out-
come of N-body simulations, our set of models includes all
the templates for which simulations have been performed.
Our main theoretical results, however, will always be given
in terms of general N-point functions and can be straight-
forwardly applied to any given model of NG.

1. Local NG

In local primordial NG, the non-Gaussian field � is
defined by a local Taylor expansion around a Gaussian
random field � as [21–24]

�ðxÞ ¼ �ðxÞ þ fNL�
2ðxÞ þ gNL�

3ðxÞ: (2)

Here, fNL and gNL are dimensionless, phenomeno-
logical parameters which we seek to constrain using cos-
mic microwave background (CMB) or large-scale structure
(LSS) observations. This type of NG is typically pro-
duced in inflationary models with more than one scalar
field. Since the primeval curvature perturbations are
of magnitude Oð10�5Þ, the cubic-order correction is
negligibly small compared to the quadratic one when
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OðfNLÞ �OðgNLÞ. However, this condition is not satisfied
by somemultifield models such as the curvaton scenario, in
which a large gNL and a small fNL can be simultaneously
produced [25–29]. At leading order, the quadratic term
generates a 3-point function or bispectrum,

�ð3Þ
� ðk1;k2;k3Þ ¼ 2fNL½P�ðk1ÞP�ðk2Þ þ ð2 cyc:Þ�; (3)

where (cyc.) denotes cyclic permutations of the indices,
P�ðkÞ / kns�4 is the power spectrum of the Gaussian field

�ðxÞ, and ns is its logarithmic slope. On the other hand,
the cubic-order terms generate a 4-point function or tri-
spectrum,

�ð4Þ
� ðk1;k2;k3;k4Þ¼6gNL½P�ðk1ÞP�ðk2ÞP�ðk3Þþð3cyc:Þ�:

(4)

Both bispectrum and trispectrum are peaked on squeezed
triangle or quadrilateral configurations, i.e., configurations
where one side jkij is much shorter than the other sides.

2. Scale-dependent fNL

Next, we will consider a model in which the quadratic
coupling dominates but fNL is k-dependent. The primor-
dial bispectrum takes the form [14]

�ð3Þ
� ðk1;k2;k3Þ ¼ fNLðk1ÞP�ðk2ÞP�ðk3Þ þ ð5 perm:Þ

with fNLðkÞ ¼ fNLðkpÞ
�
k

kp

�
nf
; (5)

where kp is some arbitrary fixed scale, and nf is a spectral

index.

3. Folded and orthogonal NG

As a third template, we will consider the folded or
flattened shape, for which the primordial bispectrum reads
[30]

�ð3Þ
� ðk1;k2;k3Þ ¼ 6fNL½ðP�ðk1ÞP�ðk2Þ þ ð2cyc:ÞÞ

þ 3ðP�ðk1ÞP�ðk2ÞP�ðk3ÞÞ2=3
� ðP�ðk1Þ1=3P�ðk2Þ2=3P�ðk3Þ
þ ð5 perm:ÞÞ�: (6)

The folded shape approximates the NG due to modification
of the initial Bunch-Davies vacuum in canonical single-
field inflation (the actual 3-point function is not factoriz-
able). This template induces a scale-dependent bias on
large scales with somewhat weaker k-dependence than
the local model. [18,31]. The orthogonal template intro-
duced by [32],

�ð3Þ
� ðk1;k2;k3Þ ¼ 6fNL½�3ðP�ðk1ÞP�ðk2Þ þ ðcyc:ÞÞ

� 8ðP�ðk1ÞP�ðk2ÞP�ðk3ÞÞ2=3
þ 3ðP�ðk1Þ1=3P�ðk2Þ2=3P�ðk3Þ
þ ð5 perm:ÞÞ�; (7)

gives rise to a similar non-Gaussian halo bias [18], but
roughly twice as large in magnitude and opposite in sign
(for fixed fNL) [33].

4. Equilateral NG

Finally, the equilateral type of NG, which arises in
inflationary models with higher-derivative operators such
as the DBI model, is well described by the factorizable
form [34]

�ð3Þ
� ðk1;k2;k3Þ ¼ 6fNL½�ðP�ðk1ÞP�ðk2Þ þ ðcyc:ÞÞ

� 2ðP�ðk1ÞP�ðk2ÞP�ðk3ÞÞ2=3
þ ðP�ðk1Þ1=3P�ðk2Þ2=3P�ðk3Þ
þ ð5 perm:ÞÞ�: (8)

It can easily be verified that the signal is largest in the
equilateral configurations k1 � k2 � k3, and suppressed in
the squeezed limit k3 � k1 � k2.

B. From primordial perturbations to galaxies

In standard CDM cosmologies, galaxies form inside
dark matter halos and this introduces a bias between the
mass and the galaxy distributions [35]. In what follows,
we shall adopt a Lagrangian picture. Namely, we express
the clustering of biased tracers, such as dark matter halos of
massM collapsing at redshift z, in terms of the statistics of
the initial density perturbation �Rðk; zÞ smoothed on a
scale R and linearly evolved to redshift z, where R is
related to M via M ¼ ð4�=3Þ ��R3. More precisely, � is
the fractional density perturbation in synchronous gauge.
Thus, the Poisson equation provides a relationship between
�Rðk; zÞ and the Bardeen potential �ðxÞ via

�Rðk; zÞ ¼ MRðk; zÞ�ðkÞ; (9)

where

M Rðk; zÞ ¼ Mðk; zÞWRðkÞ ¼ 2

3

k2TðkÞgðzÞ
�mH

2
0ð1þ zÞWRðkÞ:

(10)

Here, TðkÞ is the matter transfer function normalized to
unity as k ! 0, gðzÞ is the linear growth rate of the gravi-
tational potential normalized to unity during the matter-
dominated epoch, and WRðkÞ is a (spherically symmetric)
window function with characteristic radius R. We will
assume a spherical top-hat filter throughout. Note also
that the matter power spectrum at redshift z is related to
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the primordial curvature power spectrum through
Pmðk; zÞ ¼ M2ðk; zÞP�ðkÞ.

Regardless of the initial conditions, we shall denote the
Lagrangian bias factors of dark matter halos by bI; bII; . . . ,
while Eulerian bias parameters are denoted as bEI , etc. Note
that these bias parameters are generally scale-dependent.
The notation b1, b2, b

E
1 , etc. will exclusively designate

the Gaussian, scale-independent peak-background split
biases. In the next section, we will also use the notation
c1; c2; . . . for the mass-weighted, cumulative Gaussian bias
parameters which appear in the thresholding approach.

We will describe the abundance of halos through their
mass function nh � dn=dM which we will assume to be of
the universal form, i.e.,

�n h ¼ ��

M2
fð�Þ

��������@ ln�0M

@ lnM

��������; (11)

where fð�Þ is the multiplicity function and�0M is the RMS
density fluctuation on scale M.

Unless otherwise specified, we shall adopt in all illus-
trations a flat �CDM cosmology with �m ¼ 0:279,
h ¼ 0:7, and an adiabatic initial perturbations with spectral
index ns ¼ 0:96 and amplitude As ¼ 7:96� 10�10 at the
pivot point k0 ¼ 0:02 Mpc�1 (corresponding to a normal-
ization �8 � 0:81). These values are consistent with the
latest CMB constraints from WMAP7 [36].

III. STATISTICS OF THRESHOLDED REGIONS

In this section, we shall present the derivation of the
scale-dependent non-Gaussian bias using the statistics of
regions above threshold [16,17], without invoking the
high-threshold (high-peak) approximation. Several con-
cepts and results introduced in this section will be em-
ployed later in the paper.

A. Probability densities

In the Press-Schechter approach [37], virialized objects
are identified with high-density regions in the linear den-
sity field. The two-point correlation function of thresh-
olded regions, �>�ðrÞ, can be calculated once the
probability P1 of finding a region whose overdensity
is above the threshold �c � 1:69 [38], and the probability
P2 of finding two such regions separated by a distance
r � jx2 � x1j, are known. It is convenient to express
the results in terms of the significance (peak height)
� � �c=�0s, where �0s is the r.m.s. variance of the density
field smoothed on scale Rs. The correlation function is then
given by [35]:

�>�ðrÞ ¼ P2ð>�; rÞ
½P1ð>�Þ�2 � 1: (12)

�>�ðrÞ is commonly interpreted as describing the 2-point
correlation of halos above mass M corresponding to the
smoothing length Rs. For any non-Gaussian initial density

field, P1 and P2 can be expressed in terms of the N-point
connected correlation functions as follows [39]:

P1ð>�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�
dy exp

�X1
N¼3

ð�1ÞN wðN;0Þ
s

N!

dN

dyN

�
e�y2=2

(13)

P2ð>�; rÞ ¼ 1

2�

Z 1

�
dy1

Z 1

�
dy2 exp

�X1
N¼2

XN
m¼0

ð�1ÞN

� wðN;mÞ
s ðrÞ

m!ðN �mÞ!
@N

@ym1 @y
N�m
2

�
e�ð1=2Þðy2

1
þy2

2
Þ:

(14)

For shorthand convenience, we will hereafter omit
the explicit z-dependence of �sðxÞ � �Rs

ðxÞ and

MsðkÞ � MRs
ðkÞ. We have also defined

wðN;mÞ
s ðrÞ�

8><
>:
wð2;mÞ

s ¼�ð2;mÞ
s ðrÞ=�2

0s ðm¼1Þ
wð2;mÞ

s ¼0 ðm¼1or2Þ
wðN;mÞ

s ¼�ðN;mÞ
s ðrÞ=�N

0s ðN>2Þ
; (15)

where

�ðN;mÞ
s ðrÞ �

D
�sðx1Þ � � ��sðx1Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

m times

�sðx2Þ � � ��sðx2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N�m times

E
c

(16)

is the N-point connected correlation function evaluated at
two different locations x1 and x2. Note that the correlation

wðN;0Þ
s ¼ wðN;NÞ

s is evaluated at zero lag, and that the proba-
bility densities P1 and P2 depend explicitly on the smooth-

ing scale Rs through the functions wðN;mÞ
s and the peak

height � � �c=�0s.

B. Bias parameters for a Gaussian density field

It is instructive to first perform the calculation for
Gaussian initial conditions. Later, we shall use the
Gaussian bias derived in this Section to identify the coef-
ficients of the non-Gaussian scale-dependent bias.

1. Gaussian bias factors from a peak-background split

When the underlying smoothed density field obeys the
Gaussian statistics, the probability P1 of exceeding the
threshold � is given by

P1ð>�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�
dxe�x2=2 ¼ 1

2
erfc

�
�ffiffiffi
2

p
�
: (17)

In the peak-background split approach, one considers
the effect of adding a long-wavelength (background) per-
turbation �l of characteristic wavelength Rl 	 Rs to the
small-scale density field (peak) �s. Assuming that �l is
independent of �s, it is clear that adding �l is equivalent
to reducing the threshold � ! ð�c � �lÞ=�0s; thus,
P1ð>�; �lÞ, the probability P1 in the large-scale over-
density �l is given by
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P1ð>�; �lÞ ¼ P1

�
>�� �l

�0s

�
: (18)

We define the peak-background split bias factors cN as the
fractional change of P1 with �l via

cN � 1

P1ð>�Þ
dNP1ð>�; �lÞ

d�N
l

; (19)

so that

cNð�Þ ¼
�
� 1

�0s

�
N 1

P1ð>�Þ
dN½P1ð>�Þ�

d�N

¼
ffiffiffiffi
2

�

s �
erfc

�
�ffiffiffi
2

p
���1 e��2=2

�N
0s

HN�1ð�Þ: (20)

Here, HN is the Hermite polynomial defined by

HNðxÞ � ð�1ÞNex2=2 dN

dxN
ðe�x2=2Þ: (21)

Note that we adopt the so-called probabilists’ convention
for the Hermite polynomials. It is related to the so-called
physicists’ convention by

H
phys
N ðxÞ ¼ 2N=2HNð

ffiffiffi
2

p
xÞ: (22)

Explicit expressions for the first five Hermite polynomials
are

H0ðxÞ ¼ 1;

H1ðxÞ ¼ x;

H2ðxÞ ¼ x2 � 1;

H3ðxÞ ¼ x3 � 3x;

H4ðxÞ ¼ x4 � 6x2 þ 3:

(23)

Since HN ! �N for large �, we see that in the high-peak
limit (� 	 1),

cN � �HN�1ð�Þ=�N
0s � �N=�N

0s: (24)

The one-point probability Eq. (17) and bias parameters
Eq. (20) are cumulative. They describe the number density
and bias of all peaks above the threshold � at fixed smooth-
ing scale Rs. To relate these quantities to the mass function
and bias of dark matter halos, we follow Press & Schechter
[37] and interpret P1 as the fraction of the Lagrangian
volume occupied by halos of mass exceeding M.
Therefore, the halo number density follows upon dividing
the derivative of P1 w.r.t. mass by M= ��,

�n hðMÞ ¼ �2
��

M

d

dM
P1ð>�Þ

¼ 2
��

M2

�e��2=2ffiffiffiffiffiffiffi
2�

p
��������d ln�0s

d lnM

��������; (25)

where the factor of 2 is introduced to account for the fact
that regions with � < �c may be embedded in regions with

� > �c on scale >Rs (clouds-in-clouds). Thus, Eq. (25) is

of the form Eq. (11) with fð�Þ ¼ ffiffiffiffiffiffiffiffiffi
2=�

p
� expð��2=2Þ.

Conversely, integrating Eq. (25) yields

P1ð>�Þ ¼ 1

2 ��

Z 1

M
dM0M0 �nhðM0Þ: (26)

Inserting this into Eq. (16), we find that the cN are mass-
weighted cumulative bias factors,

cN ¼
�Z 1

M
dM0M0 �nhðM0Þ

��1 Z 1

M
dM0M0 �nhðM0ÞbNðM0Þ;

(27)

where

bNðMÞ ¼ 1

�M

HNþ1ð�MÞ
�N

0M

(28)

are the peak-background split biases derived from the
Press-Schechter mass function. Here, �M and �0M denote
the significance and r.m.s. density fluctuation on the mass
scale M. It is only in the high-peak limit (� 	 1) that the
mass-weighted cumulative bias cN and the bias bNðMÞ
asymptote to the same values [Eq. (24)].
So far, we have not yet specified any prescription for

how to go from the bias parameter cN to the clustering of
tracers. This will be elucidated in the next section, where
we calculate the correlation function of thresholded re-
gions directly.

2. Gaussian bias factors from the correlation
of thresholded regions

In this section, we present the calculation of the two-
point correlation function �>�ðrÞ of thresholded regions
assuming Gaussian initial conditions, and show that the
cumulative mass-weighted biases cN obtained with the
peak-background split coincide with the bias parameters
arising in �>�ðrÞ.
Observing that, for Gaussian initial conditions, all the

connected correlation functions �ðN;mÞ
s with N > 2 vanish,

we can express �>�ðrÞ as

�>�ðrÞ � P2ð>�; rÞ
½P1ð>�Þ�2 � 1

¼ 2

�

�
erfc

�
�ffiffiffi
2

p
���2 Z 1

�
dy1

Z 1

�
dy2

� exp

�
�sðrÞ
�2

0s

@2

@y1@y2

�
e�ð1=2Þðy2

1
þy2

2
Þ � 1:

Here, �sðrÞ � �ð2;1Þ
s is the 2-point density correlation

smoothed on scale Rs. On employing the definition of
HNðxÞ, we can further simplify the double integration as
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Z 1

�
dy1

Z 1

�
dy2 exp

�
�sðrÞ
�2

0s

@2

@y1@y2

�
e�ð1=2Þðy2

1
þy2

2
Þ

¼ �

2

�
erfc

�
�ffiffiffi
2

p
��

2 þ X1
N¼1

½�sðrÞ�N
N!�2N

0s

½HN�1ð�Þ�2e��2=2:

(29)

Therefore, we find that the 2-point correlation function of
thresholded regions is given by [41]

�>�ðrÞ¼ 2

�

�
erfc

�
�ffiffiffi
2

p
���2 X1

N¼1

½�sðrÞ�N
N!�2N

0s

½HN�1ð�Þ�2e��2=2:

(30)

Next, on substituting the expression of the cumulative
peak-background split bias factors Eq. (17), we can recast
the peak correlation function into the series

�>�ðrÞ ¼
X1
N¼1

c2N
N!

½�sðrÞ�N: (31)

If we compare the expression for �>�ðrÞ to that obtained
from a local bias expansion [42] of the density �>� of
regions above threshold,

�>�ðxÞ ¼
X1
N¼1

~cN
N!

½�sðxÞ�N; (32)

we see that the coefficient ~cN is different from the cN
appearing in the correlation function: when calculating

�>� ¼ h�>�ðx1Þ��ð>x2Þi, the coefficient of ½�sðrÞ�N in-
cludes not only ~c2N , but also terms such as ~cN~cNþ2m�

2m
0s for

all positive integers m 
 N=2. This clearly shows that the
bias parameters cN from the peak-background split are to
be seen as ‘‘renormalized’’ bias parameters [43] which take
all the higher-order moments into account, and thus truly
are the coefficients of the observed correlation function of
(in this case) thresholded regions.

C. Two-point correlation function of thresholded
regions with NG

In the presence of primordial NG, all the correlation

functions �ðN;mÞ
s are in principle necessary to determine

P1ð>�Þ and P2ð>�; rÞ. Here, we will restrict ourselves to
the leading-order corrections linear in the correlations

�ðN;mÞ
s . We derive a general expression for the scale-

dependent non-Gaussian bias induced by a primordial

N-point function �ðNÞ
� .

1. Relation to local deterministic bias

First, we show that the leading order contribution to the
two-point correlation function of thresholded regions,
which includes terms linear in the connected correlations

functions �ðN;mÞ
s only, is consistent with the result from a

local deterministic bias ansatz. Linearizing the exponential
factors in Eqs. (13) and (14), we obtain

P1ð>�Þ � 1

2
erfc

�
�ffiffiffi
2

p
�
þ X1

N¼3

1ffiffiffiffiffiffiffi
2�

p wðN;0Þ
s

N!
HN�1ð�Þe��2=2 (33)

P2ð>�; rÞ �
�
1

2
erfc

�
�ffiffiffi
2

p
��

2 þ
ffiffiffiffiffiffiffi
1

2�

s
erfc

�
�ffiffiffi
2

p
� X1
N¼3

wðN;0Þ
s

N!
HN�1ð�Þe��2=2

þ 1

2�

X1
N¼2

XN�1

m¼1

wðN;mÞ
s

m!ðN �mÞ!Hm�1ð�ÞHN�m�1ð�Þe��2
; (34)

where we have neglected terms beyond linear order. Thus, the two-point correlation function of thresholded regions reads

�>�ðrÞ ¼ 2

�

�
erfc

�
�ffiffiffi
2

p
���2 X1

N¼2

XN�1

m¼1

wðN;mÞ
s

m!ðN �mÞ!Hm�1ð�ÞHN�m�1ð�Þe��2 ¼ X1
N¼2

XN�1

m¼1

cmcN�m

m!ðN �mÞ!�
ðN;mÞ
s ðrÞ: (35)

As can easily be seen, a local deterministic mapping

�>�ðxÞ ¼
X1
N¼0

cN
N!

½�sðxÞ�N; (36)

yields the same result at leading order (the renormalization
of the bias parameters cN discussed in the previous section

for the Gaussian case will apply at second and higher-
order). This shows that, at first order in �ðN;mÞ

s , the corre-
lation of thresholded regions with primordial NG is
equivalent to a local deterministic bias relation. Note
that, for non-Gaussian initial conditions, an effective
first-order bias defined through c1;eff �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�>�ðrÞ=�sðrÞ

p
is

generally scale-dependent.
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2. Power spectrum of thresholded regions

We now Fourier-transform Eq. (30), and investigate the
separate terms. For simplicity and without loss of general-
ity, we will assume that a single non-Gaussian N-point
function (N > 3) dominates. We then have

P>�ðkÞ ¼ c21PsðkÞ þ
XN�1

m¼1

cmcN�m

m!ðN �mÞ!
~�ðN;mÞ
s ðkÞ: (37)

Here, PsðkÞ ¼ W2
Rs
ðkÞPðkÞ is the matter power spec-

trum smoothed on scale Rs. Let us consider the term
m ¼ 1 first. It is in fact identical to the term m ¼ N � 1.
We have

~� ðN;1Þ
s ðkÞ ¼ YN�1

i¼1

�Z d3ki
ð2�Þ3

�
�ðNÞ
s ðk;k1; . . . ;kN�1Þ

� ð2�Þ3�Dðkþ k1 þ . . .þ kN�1Þ

¼ MsðkÞ
YN�2

i¼1

�Z d3ki
ð2�Þ3 MsðkiÞ

�
MsðqÞ

� �ðNÞ
� ðk;k1; . . . ;kN�2; q;X

�
: (38)

Here, q ¼ �k1 � . . .� kN�2 � k and X are a set of var-
iables characterizing the primordial N-point function such
as fNL; gNL; nf, depending on the details of the model of

NG. In the second line, we have used the fact that the
matter N-point function is related to the N-point function
of the potential � through

�ðNÞ
s ðk1; . . . ;kNÞ¼

�YN
i¼1

MsðkiÞ
�
�ðNÞ
� ðk1; . . . ;kN;XÞ: (39)

Note that the scaling of ~�ðN;1Þ
s in the large-scale limit

(k ! 0) depends on the scaling of �ðNÞ
� in the squeezed

limit, where one argument (k) is much smaller than the
others (k1; . . . ; kN�2; q).

Next, consider the term with m ¼ 2 (again, it is equal to
the term m ¼ N � 2). A similar calculation leads to

~�ðN;2Þ
s ðkÞ ¼ YN�1

i¼1

�Z d3ki
ð2�Þ3

�
�ðNÞ
s ðk� k1;k1; . . . ;kN�1Þ

� ð2�Þ3�Dðkþ k2 þ . . .þ kN�1Þ

¼ YN�2

i¼1

�Z d3ki
ð2�Þ3 MsðkiÞ

�
Msðjk� k1jÞMsðqÞ

� �ðNÞ
� ðk� k1;k1; . . . ;kN�2; q;XÞ; (40)

where now q ¼ �k� k2 � . . .� kN�2. In the large-scale

(small-k) limit, jk� k1j 	 k, so that ~�ðN;2Þ
s approaches a

constant. One can easily verify that this also holds for all
m � 3 terms. On large scales, these terms thus all add
white-noise contributions to the power spectrum of thresh-
olded regions, and only the terms with m ¼ 1, N � 1

contribute to the scale-dependent bias. Note, however,
that the white-noise corrections which appear for NG of
order N � 4 can be quite significant [13].
A general feature of the non-Gaussian power spectrum

of tracers in the thresholding approach is now clear: the
presence of a primordial N-point function generates a

dependence of P>�ðkÞ on the bias cN�1 through ~�ðN;1Þ
s ðkÞ,

which depends on the scaling of �ðNÞ
� in the squeezed limit.

The former has also been pointed out by [44–46], who
studied the non-Gaussian bias in the local, constant-fNL
model. As shown here, this conclusion also holds if we
were to consider any local bias mapping of the form
Eq. (36) (at leading order in the non-Gaussian N-point
function). We can then rewrite Eq. (37) as

P>�ðkÞ¼c21PsðkÞþ2
c1cN�1

ðN�1Þ!
~�ðN;1Þ
s ðkÞ

¼
�
c21þ2

4

ðN�1Þ!c1cN�1�
2
0s

�M�1
s ðkÞF ðNÞ

s ðk;XÞ
�
PsðkÞ: (41)

The factor of 2 comes from the sum of the m ¼ 1; N � 1
terms, and we have introduced the shape factor

F ðNÞ
R ðk; XÞ � M�1

R ðkÞ
4�2

0RP�ðkÞ
~�ðN;1Þ
R ðkÞ

¼ 1

4�2
0RP�ðkÞ

�YN�2

i¼1

Z d3ki
ð2�Þ3 MRðkiÞ

	

�MRðqÞ�ðNÞ
� ðk1; � � � ; kN�2; q; kẑ;XÞ; (42)

where ẑ is some arbitrary unit vector. Noting that P>� ¼
ðc21 þ 2c1�c1ÞPs to leading order in the non-Gaussian
corrections, we can identify the scale-dependent correction
to the linear bias as

�c1ðkÞ ¼ 4cN�1

ðN � 1Þ!�
2
0s

F ðNÞ
s ðkÞ

MsðkÞ : (43)

In the rest of this section, we derive the non-Gaussian
correction to the clustering of thresholded regions for the
four models of primordial NG we consider in this paper.
It will prove useful to define general spectral moments
through

�2
�R � 1

2�2

Z 1

0
dkk2ð�þ1ÞP�ðkÞM2

RðkÞ: (44)

3. Local NG

For the cubic local model, described by primordial
three- and four-point functions [Sec. II A 1], Eq. (41) be-
comes
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P>�ðkÞ ¼
�
c21 þ 4c1c2�

2
0sM

�1
s ðkÞF ð3Þ

s ðk; XÞ

þ 4c1c3
3

�2
0sM

�1
s ðkÞF ð4Þ

s ðk; XÞ
�
PsðkÞ; (45)

where F ð3Þ
s ðk; fNLÞ is precisely equal to the form factor

introduced by [5,31]. Focusing on the quadratic case first,

note that on large scales, F ð3Þ
s ’ fNL and the power spec-

trum for gNL ¼ 0 becomes

P>�ðkÞ ¼ ½c21 þ 4fNLc1c2�
2
0sM

�1
s ðkÞ�PsðkÞ: (46)

From the above equation, it is clear that the scale-
dependence of the non-Gaussian bias is �bðkÞ /
M�1

s ðkÞ / k�2. For high thresholds, � 	 1 in particular,
the Gaussian bias parameters cN approach �N=�N

0s so that

we can approximate the coefficient of the non-Gaussian
correction as c2�

2
0s ’ c1�c. Therefore, we recover the

expression of [5],

P>�ðkÞ ¼�	1
b21

�
1þ 4fNL

�c

MsðkÞ
�
PsðkÞ; (47)

upon replacing c1 with b1 (i.e., assuming a narrow mass
bin).

For the local gNL�
3 model, note that

PsðkÞ ¼ M2
sðkÞ½1þ 6gNL�

2
��P�ðkÞ (48)

The matter power spectrum PsðkÞ thus contains�2
��h�2i,

which has a logarithmic divergence for both large and
small scales [47]. In reality, the finite survey size and the
free-streaming scale of dark matter provide low- and
high-k cut-offs. In simulations, the finite box size and the
resolution provide such cutoffs [13].

On large scales, the shape factor F ð4Þ
s generated

by the local trispectrum rapidly converges towards

ð3=4ÞgNL�2
0sS

ð3Þ
s;loc, where

Sð3Þs;loc �
6

�4
0s

Z d3k1
ð2�Þ3 Msðk1ÞP�ðk1Þ

�
Z d3k2

ð2�Þ3 Msðk2ÞP�ðk2ÞMsðjk1 þ k2jÞ; (49)

is the skewness parameter of the density field smoothed on
scale Rs, h�3

si=h�2
si2, in a local fNL model with fNL ¼ 1.

Therefore, the non-Gaussian contribution to the power
spectrum in a pure gNL model becomes

�P>�ðkÞ ¼k!0
c1c3gNL�

4
0sS

ð3Þ
s;locMsðkÞP�ðkÞ: (50)

Note that the non-Gaussian bias also has a scale-dependence
of k�2. For high peaks �	1, c1c3�

4
0s¼c21�

2
c, and we

recover Eq. (21) of [13] upon replacing c1 by b1. In general
however, the correct coefficient in the thresholding calcula-
tion is the third-order bias c3.

4. Scale-dependent and nonlocal NG

For the k-dependent local bispectrum Eq. (5), the power
spectrum of thresholded regions is

P>�ðkÞ ¼ ½c21 þ 4c1c2�
2
0sM

�1
s ðkÞF ð3Þ

s ðk; fNL; nfÞ�PsðkÞ;
(51)

where the redshift independent function F ð3Þ
s ðk; fNL; nfÞ is

computed from Eq. (42) on inserting Eq. (5):

F ð3Þ
s ðk; fNL; nfÞ ¼ 1

2�2
0s

fNLðkpÞ
k
nf
p

Z d3q

ð2�Þ3 MsðqÞ

�Msðjk� qjÞP�ðqÞ

�
�
knf

P�ðjk� qjÞ
P�ðkÞ þ 2qnf

�
: (52)

On large scales, the shape factor converges towards

F ð3Þ
s ðk; fNL; nfÞ ¼k!0 1

�2
0s

fNLðkpÞ
k
nf
p

Z d3q

ð2�Þ3 M
2
sðqÞP�ðqÞqnf

¼ 1

�2
0s

fNLðkpÞ
k
nf
p

�2
�s; (53)

where ��s is the spectral moment evaluated for � ¼ nf=2.

Therefore, the non-Gaussian correction to the peak power
spectrum becomes

�P>�ðkÞ ¼k!0
4c1c2fNLðkpÞk�nf

p �2
�sM�1

s ðkÞPsðkÞ: (54)

This result agrees with that of [14,18] in the high-peak
limit only, for which c1c2 � ð�=�0sÞ3.
Finally, for the folded, orthogonal, and equilateral bis-

pectrum shapes, the power spectrum of thresholded regions

is also given by Eq. (51), with F ð3Þ
s obtained from an

integration over Eqs. (6) and (8), respectively [31]. In the
limit k � 1, we can setMsðqÞ � Msðk1Þ and, on expand-
ing P�ðqÞ at second-order in k=k1, we arrive at

�P>�ðkÞ ¼k!0
6Ac1c2fNL�

2
�sk

�2�MsðkÞP�ðkÞ; (55)

with A ¼ 1, � ¼ ðns � 4Þ=6 � �1=2 (folded shape),
A¼�2, �¼ðns�4Þ=6��1=2 (orthogonal shape), and
A ¼ 2, � ¼ ðns � 4Þ=3 � �1 (equilateral shape). Again,
we recover the high-peak expression [4] if we take the limit
� ! 1.
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5. Beyond the high-peak limit

Figure 1 shows the ratio of the non-Gaussian linear bias
correction arising from the statistics of thresholded regions
to that obtained in the high-peak approximation. In the
literature, cN is conventionally replaced with bN , so that
this ratio becomes b2�

2
0s=ðb1�cÞ for a primordial bispec-

trum, and b3�
4
0s=ðb1�2

cÞ for a primordial trispectrum. Note

that these quantities do not depend on the shape of the
polyspectrum considered. The results are shown at z ¼ 0
using the Gaussian bias factors bN derived from the Sheth-
Tormen mass function [48,49] with p ¼ 0:3 and q ¼ 0:75,
via the PBS approach. These predictions are clearly at odds
with the simulation results: first, for the local bispectrum
shape with constant fNL, there is no evidence of a large
suppression relative to the high-peak expression [8–10,50]
(the correction factor of �0:8 advocated by [9,10] likely
applies for friends-of-friends halo finders solely; see [4] for
a discussion). Second, the simulation studies of [14,15]
unambiguously show that the correction to the high-peak

expression depends on the shape of the bispectrum. Third,
while the suppression seen in Fig. 1 forM * 1014 M�=h is
qualitatively consistent with that measured for the gNL�

3

model for highly biased halos [13], the sharp upturn below
�1013M�=h is inconsistent with the findings of [13] at
high significance. This appears to exclude the statistics of
thresholded regions and, more generally, local bias expan-
sions of the form Eq. (31) as a viable framework to
calculate non-Gaussian bias corrections, at least for real-
istic halo masses (& 1015M�). We return to these issues in
Sec. VI.

IV. PEAK-BACKGROUND SPLIT:
SEPARATION OF SCALES

In this section, we present our second derivation of
the non-Gaussian, scale-dependent halo bias, based on
the peak-background split argument. We show that the
fact that the cumulants of the density field depend on
the smoothing scale Rs induces an important and previ-
ously overlooked contribution to the non-Gaussian bias
correction.
In this approach, we make a separation of scales and

split all perturbations �,�, etc., into their long-wavelength
(subscript ‘‘L’’) and short-wavelength (subscript ‘‘S’’)
pieces, e.g.,

� ¼ �L þ �S; � ¼ �L þ�S; . . . (56)

Here, short wavelengths signify the scales which impact
halo formation (&10� 100 Mpc=h), while long wave-
lengths correspond to the scales on which we would like
to measure the clustering of halos (*100 Mpc=h). For a
Gaussian density field with independent Fourier modes,
the L and S pieces are statistically independent. In the
presence of NG, this is no longer the case. As we will
see shortly, it will be convenient to apply the peak-
background split to the Gaussian primordial curvature
perturbation �. This approach isolates the effect of
mode-coupling introduced by primordial NG, allowing
for direct physical insights. To avoid confusion, we shall

denote the physical, non-Gaussian density field by �̂, to
distinguish it from the Gaussian density field � related to
the Gaussian potential �.

A. General cubic NG

Consider the case of weakly non-Gaussian potential
perturbations described via nonzero three- and four-point
functions. We can capture the non-Gaussian corrections by
generalizing the cubic local ansatz Eq. (2) in Fourier space:

�ðkÞ ¼ �ðkÞ þ fNL
Z d3k1

ð2�Þ3
Z d3k2

ð2�Þ3 !
ð2Þðk1;k2Þ�ðk1Þ�ðk2Þ�Dðk� k12Þ

þ gNL
Z d3k1

ð2�Þ3
Z d3k2

ð2�Þ3
Z d3k3

ð2�Þ3 !
ð3Þðk1;k2;k3Þ�ðk1Þ�ðk2Þ�ðk3Þ�Dðk� k123Þ; (57)

FIG. 1 (color online). Ratio of the non-Gaussian correction to
the linear bias predicted by the statistics of thresholded regions
to that obtained in the high-peak limit. For a nonzero primordial
bispectrum (N ¼ 3) and trispectrum (N ¼ 4), this ratio is equal
to b2�

2
0s=ðb1�cÞ and b3�

4
0s=ðb1�2

cÞ, respectively. Note that it

depends on the order N but not on the specific shape of the
primordial correlation function. Results are shown at z ¼ 0 as a
function of halo mass M. The Gaussian bias parameters bN are
computed from a Sheth-Tormen mass function.
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where k12... ¼ k1 þ k2 þ . . . , and the two kernels !ð2Þ,
!ð3Þ, are related to the three- and four-point function,
respectively [18]. The relation is in general ambiguous,
i.e., different kernels can yield the same three- and four-
point functions. However, the large-scale limit of the non-
Gaussian bias depends on the squeezed limit of theN-point
functions, as we have seen in Sec. III. In this limit, the
kernels !ð2Þ, !ð3Þ are unique [51].

One possible choice of kernels, which has the nice
property (for analytical calculations) of being fully sym-
metric, is

!ð2Þðk1;k2Þ ¼ 1

2fNL

�ð3Þ
� ðk1;k2;k3Þ

P1P2 þ 2 perm:
(58)

!ð3Þðk1;k2;k3Þ ¼ 1

6gNL

�ð4Þ
� ðk1;k2;k3;k4Þ

P1P2P3 þ 3 perm:
; (59)

where in the first line, k3 ¼ jk12j, while in the second line,
k4 ¼ jk123j, and Pi � P�ðkiÞ. We have left out the coef-

ficients fNL and gNL for convenience. Note that, in general,
the four-point function also contains terms of order f2NL,

which we assume to be included in �ð4Þ
� even though we

parameterize the amplitude by a single coefficient gNL.
Equation (58) is analogous to the kernel ~Wðk1;k2Þ

defined in [18], and Eq. (59) is the straightforward general-
ization to the cubic case. Note that we define the kernels
in terms of � here, while they are defined in terms of
�0ðkÞ � TðkÞ�ðkÞ in [18]. The final result (in the large-
scale limit) is independent of this choice of kernel, which

yields !ð2Þ ¼ !ð3Þ ¼ 1 for the local model.
In the next subsection, we first calculate the effect of

long-wavelength perturbations �L; �L on the statistics of
the small-scale density field �S. We then derive expres-
sions for the non-Gaussian halo bias for general cubic NG.

1. Effect of long-wavelength perturbations
on the density field

We begin by applying the separation of scales, Eq. (56),
to Eq. (57). Clearly, for the quadratic part we will obtain
the combinations ðSSÞ, ðSLÞ, and ðLLÞ, while the cubic part
yields ðSSSÞ, ðSSLÞ, ðSLLÞ, and ðLLLÞ. The terms involv-
ing L solely do not influence halo abundance (since they do
not contribute significantly to the moments of the small-
scale density field). The terms involving S-perturbations
only increase the variance, skewness, and kurtosis of the
small-scale density field. They may thus affect the abun-
dance of halos. However, they do so in a scale-independent
way and, thereby, induce at most a scale-independent bias
correction. Hence, in order to derive the (scale-dependent)
effect of NG on halo clustering, we only need to retain the
mixed terms.
We now want to derive an expression for the non-

Gaussian small-scale density field �̂SðkÞ ¼ MðkÞ�S. We
obtain it by multiplying the short-wavelength part of
Eq. (57) by MðkÞ. Next, we apply a trick, noting that
MðkÞ / k2, and k2 ¼ ½k1 þ ðk� k1Þ�2. Thus,
M ðkÞ ¼ Mðk1Þ þMðjk� k1jÞ þOðk1 � ½k� k1�Þ:

(60)

When inserting Eq. (60) into the first line of Eq. (57), we

see that for the local model, where !ð2Þ ¼ 1, the last term
in Eq. (60) corresponds to the Fourier transform of r�L �
r�S (recall that we are only dealing with mixed terms).
When averaging over a region where r�L is approxi-
mately a constant gradient, this term vanishes since �S is
uncorrelated with�L (see also [7] for a different procedure
in the local case). Below we will perform precisely such an
averaging procedure. A similar reasoning can be applied to
the nonlocal case. Hence, we will drop this term and its
analogs in the cubic part of Eq. (57). Note that we have
neglected the k-dependence of the transfer function here.
One can circumvent this by defining the kernel in terms of
�0, as done in [18]. Equation (60) and its generalization to
several kis then lead to

�̂SðkÞ ¼ �SðkÞ þ 2fNL
Z d3k1

ð2�Þ3 !
ð2Þðk1;k� k1Þ½�Lðk1Þ�Sðk� k1Þ þ �Sðk1Þ�Lðk� k1Þ�

þ 3gNL
Z d3k1

ð2�Þ3
Z d3k2

ð2�3Þ!
ð3Þðk1;k2;k� k12Þ½2�L�L�S þ�L�L�S þ 2�L�S�S þ �L�S�S�: (61)

In the second line, we have omitted the arguments of �, �
for brevity (the factors in each product are evaluated at k1,
k2, and k� k12, respectively).

In the presence of NG, the statistical properties of �̂S

can be derived straightforwardly from Eq. (61) by taking
advantage of the fact that �S; �S are Gaussian fields.
We will consider a region of ‘‘intermediate’’ size R 	 Rs

over which the long-wavelength perturbations can be

considered constant. This approximation will break down
when predicting the clustering on scales which contribute
significantly to �0s (see the discussion below and in [18]).

We then calculate the variance and skewness of �̂S in the
presence of ‘‘external’’ perturbations �L, �L. To compute

the variance, for instance, we calculate h�̂SðkÞ�̂Sðk0Þi and
integrate over k. It is sufficient to consider a single (for the
quadratic terms) or two independent (for the cubic terms)
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long-wavelength Fourier modes and, hence, omit the inte-
grals over k1, k2. This is because we will eventually take
derivatives with respect to single long-wavelength Fourier
modes in order to derive the non-Gaussian scale-dependent
bias. The variance on scale Rs reads

�̂2
0s�h�̂S;Rs

�̂S;Rs
iR

¼�2
0sþ4fNL½�LðkÞ�2

!sðkÞþ�LðkÞ�2
!�sðkÞ�

þ6gNL�Lðk1Þ�Lðk2Þ�2
!sðk1;k2Þ

þ6gNL½�Lðk1Þ�Lðk2Þþ�Lðk2Þ�Lðk1Þ��2
!�sðk1;k2Þ;

(62)

where h�iR indicates an average over a given intermediate
region of size R. Note that the terms from quadratic NG are
linear in �L; �L, while those from cubic NG are quadratic
in �L; �L. For Eq. (62), we have defined the following
k-dependent spectral moments (not to be confounded with
Eq. (44), which does not depend on k):

�2
!sðkÞ �

Z d3ks
ð2�Þ3 !

ð2Þðk;ksÞM2
sðksÞP�ðksÞ (63)

�2
!�sðkÞ �

Z d3ks
ð2�Þ3 !

ð2Þðk;ksÞMsðksÞP�ðksÞ (64)

�2
!sðk1;k2Þ�

Z d3ks
ð2�Þ3!

ð3Þðk1;k2;ksÞM2
sðksÞP�ðksÞ

(65)

�2
!�sðk1;k2Þ �

Z d3ks
ð2�Þ3 !

ð3Þðk1;k2;ksÞMsðksÞP�ðksÞ:
(66)

In the following, we will ignore the term 4fNL�L�
2
!�s

since it only generates a very small (& 10�4fNL) scale-
independent correction to the halo bias.

At cubic-order in Eq. (61), there are two terms of the
type ðLSSÞ. These terms indicate that the small-scale den-
sity acquires a skewness (third moment) which is modu-
lated by long-wavelength perturbations. We will only
include the effect of the first term, 6gNL�L�S�S, as the
second term proportional to �L�

2
S only produces a scale-

independent correction to the halo bias. The three-point
function of the small-scale density field induced by a single
long-wavelength perturbation �LðklÞ is given by

h�ðkÞ�ðk0Þ�ðk00ÞiR
¼3gNL�LðklÞð2�Þ3�Dðkþk0þk00ÞMðkÞMðk0ÞMðk00Þ

�f½!ð3Þðkl;k
0;k00Þþ!ð3Þðkl;k

00;k0Þ�
�P�ðk0ÞP�ðk00Þþ2permg; (67)

where ‘‘2 perm’’ indicates the two cyclic permutations of
ðk; k;0 k00Þ. Recall that the subscript R on the expectation

value indicates averaging over a region where �L is ap-
proximately constant. In deriving Eq. (67), we have used
that k ¼ jk0 þ k00j, so that Mðk0Þ þMðk00Þ � MðkÞ on
large scales. Thus, the three-point function of the small-
scale density field induced by a long-wavelength perturba-
tion in cubic NG is equivalent to that arising in a quadratic
model of NG described by the effective three-point
function

�ð3Þ
�;effðk;k0;k00Þ
¼ fNL;effðklÞf½!ð3Þðkl;k

0;k00Þ þ!ð3Þðkl;k
00;k0Þ�

� P�ðk0ÞP�ðk00Þ þ 2permg; (68)

where fNL;eff ¼ 3gNL�LðklÞ. Note that �ð3Þ
�;eff generally

depends on the scale kl of the long-wavelength perturba-
tion. We can now calculate the skewness parameter of the
small-scale non-Gaussian density field, taking out the
scaling with the long-wavelength mode �L:

Ŝ
ð3Þ
s � h�̂3

s;Rs
iR

h�̂2
s;Rs

i2R
¼ 3gNL�LðklÞSð3Þ!sðklÞ; (69)

Sð3Þ!sðklÞ� 6

�4
0s

Z d3k1
ð2�3ÞMsðk1ÞP�ðk1Þ

�
Z d3k2
ð2�3

Msðk2ÞP�ðk2Þ

�!ð3Þðkl;k1;k2ÞMsðjk1þk2jÞ: (70)

Here, we have noted that h�̂3
si is already linear in gNL, so

that we can set h�̂2
si ¼ �2

0s.

Summarizing, the effect of long-wavelength modes in
general cubic NG is to rescale the local small-scale vari-
ance of the density field [Eq. (61)], as was discussed for the
quadratic case in [3,6,18]. This rescaling is linear in the
long-wavelength modes for the quadratic (fNL) term, and
quadratic in �L;�L for the cubic (gNL) term. The terms
quadratic in the L-modes induce a non-Gaussian correction
to the second-order bias bII. We will not consider this
correction here as it does not significantly impact the
halo power spectrum. Furthermore, a long-wavelength
mode in a cubic model also induces a local three-point
function (skewness) in the density field [Eq. (67)]: observ-
ers in a region with �L � 0 see a local Universe with an
effective quadratic NG described by the ‘‘primordial’’

three-point function �ð3Þ
�;eff [Eq. (68)].

2. Non-Gaussian corrections to the linear bias

Let us now consider the halo abundance n̂hðxÞ in some
region of size R, with Rs � R � Rl, and Rs being the
Lagrangian scale associated with a halo mass M.
Throughout, we will assume that n̂h depends only on the
matter density �R averaged over R, and the moments of

the small-scale fluctuations: �̂2
0s, Ŝ

ð3Þ
s , and � � � . While, in
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the Gaussian case, a perturbation �L only changes the
average density [�R ! �Rð1þ �LÞ], it also affects all the
cumulants of the density field when the initial conditions
are non-Gaussian. Applying the chain rule, we find

b IðkÞ� 1

�̂nh

d �̂nh
d�LðkÞ

���������L¼0

¼ @ln �̂nh
@ln�R

þ @ln �̂nh
@ln�̂0s

@ln�̂0s

@�LðkÞþ
@ln �̂nh

@Ŝð3Þs

@Ŝð3Þs

@�LðkÞþ��� :
(71)

Here, �̂nh is the average number density of halos of massM
with non-Gaussian initial conditions, and all derivatives are
evaluated at �L ¼ 0. Owing to isotropy, bIðkÞ only depends
on the magnitude of the k-vector. The first term in Eq. (71)
is the usual Gaussian bias b1, while the second and third
terms yield the non-Gaussian corrections. Thus, the non-
Gaussian contribution �bIðkÞ to the linear bias bIðkÞ arises
from the dependence of the halo abundance on the variance
and skewness of the density field.

Let us deal with the variance first. As we have seen in the
last section, the change in the variance from cubic NG is
Oð�2

LÞ. Hence, these terms do not contribute to the linear
bias and Eq. (61) gives

@ ln�̂0s

@�LðkÞ
���������L¼0

¼ 2fNL
�2

!sðkÞ
�2

0s

M�1ðkÞ: (72)

Note that this expression in general depends on the
smoothing scale Rs or, equivalently, the halo mass M.

To proceed further, we will restrict ourselves to the case
of a universal mass function for Gaussian initial conditions.
Therefore, the Gaussian halo number density is given by
Eq. (11). Throughout this section, we will not need to
specify fð�Þ explicitly. The non-Gaussian halo abundance

�̂nh will thus depend on �̂0s through the significance � ¼
�c=�̂0s and the Jacobian @�̂0s=@ lnM. Noting that the
Gaussian bias is b1 ¼ ���1

c d lnfð�Þ=d ln�, and taking
the derivative of Eq. (72) with respect to lnM, we obtain

@ ln �̂nh
@ ln�0s

@ ln�̂0s

@�LðkÞ
���������L¼0

¼ 2fNLM�1ðkÞ�
2
!sðkÞ
�2

0s

� ½b1�c þ 2"!sðkÞ�; (73)

"!sðkÞ � @ ln�2
!sðkÞ

@ ln�2
0s

� 1: (74)

The second term in the square brackets, 2"!sðkÞ, has
previously been neglected [14,18]. It vanishes in the

scale-independent local model, for which !ð2Þ ¼ 1 and
�!s ¼ �0s, but is nonzero and generally significant for
other bispectrum shapes. Physically, this term comes
about because a scale-dependent rescaling of the variance
[Eq. (72)] also changes the significance interval d� that
corresponds to a fixed mass interval dM. This in turn
affects the abundance of halos at a fixed mass and thus
contributes to the non-Gaussian bias. The term is absent in
the results of the thresholding approach (Sec. III), since the
cumulative two-point correlation �>�ðrÞ is computed at a
fixed smoothing scale Rs. We return to this point in Sec. VI.
In order to derive the effect of cubic NG, we need to

determine the dependence of �̂nh on Ŝ
ð3Þ
s , i.e., the effect of a

primordial three-point function on the average abundance
of halos. Different (albeit related) expressions have been
proposed for the change in the halo abundance induced by
primordial NG [52–59]. For definiteness, we will adopt the
prescription of [53] derived from an Edgeworth expansion
of P1ð>�Þ (see also Sec. V),

�̂nhð�; �̂0s; Ŝ
ð3Þ
s Þ ¼ �nhð�; �̂0s; 0Þ

�
1þ 1

6
�̂0sŜ

ð3Þ
s ð�3 � 3�Þ þ 1

6

@ð�̂0sŜ
ð3Þ
s Þ

@ ln�̂0s

�
�� 1

�

��

¼ �nhð�; �̂0s; 0Þ
�
1þ 1

6
�̂0sŜ

ð3Þ
s

�
ð�3 � 3�Þ þ

�
1þ @ lnŜð3Þs

@ ln�̂0s

��
�� 1

�

��	
: (75)

In principle however, any other prescription for the response of halo number counts to a small-scale skewness of the density
field could be employed here. From Eq. (75), we derive

6

�2
0s

@ ln �̂nh

@Ŝð3Þs

���������L¼0
¼ 1

�0s

�
ð�3 � 3�Þ þ

�
1þ @ lnŜð3Þs

@ ln�̂0s

����������L¼0

�
�� 1

�

��
¼ b2�c þ

�
1þ @ lnŜð3Þs

@ ln�0s

�
b1: (76)

In the last equality, we have identified the �-polynomials
with the Gaussian peak-background split biases
derived from the multiplicity function fð�Þ ¼ffiffiffiffiffiffiffiffiffi
2=�

p
� expð��2=2Þ, since our parameterization of �̂nh in

terms of Ŝð3Þ was derived within the Press-Schechter for-
malism [53]. While for high peaks � 	 1, the first term in
the last equality will dominate, for more abundant halos

the second term can contribute significantly. The latter
again arises because of the dependence of Sð3Þ!s on the
smoothing scale Rs.
Finally, using Eq. (69) we find

@Ŝð3Þs

@�LðkÞ
���������L¼0

¼ 3gNLM�1ðkÞSð3Þ!sðkÞ: (77)
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Then, using Eq. (71) together with Eqs. (73) and (76), we
can assemble the expression for the scale-dependent halo
bias in a general, cubic-order model of NG:

�bð	ÞI ðkÞ ¼ 2fNLM�1ðkÞ�
2
!sðkÞ
�2

0s

½b1�c þ 2"!sðkÞ�

þ 1

2
gNLM�1ðkÞ�2

0sS
ð3Þ
!sðkÞ

�
�
b2�c þ

�
1þ @ lnSð3Þ!sðkÞ

@ ln�0s

�
b1

�
: (78)

The superscript ð	Þ emphasizes that this correction is
k-dependent, and distinguishes it from a k-independent
non-Gaussian bias which we shall denote with a super-
script ð
Þ. Note that the terms in the first line of Eq. (78)
apply for any universal mass function prescription. On the
other hand, the coefficients in the square brackets of the
second line will change if a different prescription for

@ ln �̂nh=@Ŝ
ð3Þ
s is adopted.

B. Application to models of NG

1. Local NG

In the local model [Eq. (2)], the kernels Eqs. (58) and

(59) are simply !ð2Þ ¼ !ð3Þ ¼ 1. Thus, �!s ! �0s, and

the skewness Sð3Þ!s induced by a long-wavelength perturba-

tion becomes Sð3Þs;loc, i.e., the skewness in a local quadratic

model with fNL ¼ 1 [Eq. (49)]. A more direct way to
derive this result is to note that the ðLSSÞ terms in the
second line of Eq. (61) are obtained by applying the
Poisson equation to an effective non-Gaussian potential

�̂ S ¼ �S þ ð3gNL�LÞ�2
S: (79)

This relation tells us that, in the presence of cubic local NG,
a region with a long-wavelength perturbation�L looks like
a Universe with a local quadratic fNL ¼ 3gNL�L.

Since "!s ¼ 0, the correction to the first-order bias
Eq. (78) then simplifies to

�bð	ÞI ðkÞ ¼
�
2fNLb1�c þ 1

2
gNL�

2
0sS

ð3Þ
s;loc�S

�
M�1ðkÞ;

(80)

where we have defined

�S � b2�c þ
�
1þ @ lnSð3Þs;loc

@ ln�0s

�
b1: (81)

The term linear in fNL recovers the well-known result for
the local quadratic model (this is due to the fact that
�̂0s=�0s ¼ 1þ 2fNL�L is scale-independent). However,
the term linear in gNL departs from the high-peak expres-
sion derived in [13] as it includes a correction involving the

logarithmic slope of Sð3Þs;loc on �0s. We will return to this

point in Sec. VI. In the range Rs � 1� 10 h�1 Mpc, the

scale-dependence of Sð3Þs;loc is accurately reproduced by an

empirical power-law relation, Sð3Þs;loc � 3:08� 10�4�̂�0:855
0s

for our fiducial cosmology (this agrees with the findings of
[60,61]). Hence, the second term in Eq. (81) is approxi-
mately 0:145b1 and, therefore, not negligible.
The ratio of the peak-background split prediction to the

high-peak result is given by �̂2
0s�S=ðb1�2

cÞ. In Fig. 2, the

value of this ratio in the limit k ! 0 is shown as the solid
curve. We assume a critical collapse density �c ¼ 1:69
and, in the calculation of the Gaussian biases bN , we
employ again a Sheth-Tormen multiplicity function with
p ¼ 0:3 and q ¼ 0:75. As can be seen, the ratio depends
strongly on the halo mass M. At the redshift assumed here
(z ¼ 0), it reverses sign around M ’ 7� 1013 M�=h.

2. Scale-dependent and nonlocal NG

We now turn to the other models of primordial NG
introduced in Sec. II. Since these are all quadratic models,
we can ignore the term linear in gNL in Eq. (78). The
dependence of �bIðkÞ on the shape of NG enters through
the moment �!sðkÞ [Eq. (63)] and through the new correc-
tion proportional to @ ln�!sðkÞ=@ ln�0s. Since we are in-
terested in the large-scale limit, we can use the scaling of

the kernel!ð2Þ in the squeezed limit in order to simplify the
analytical expressions. For the local quadratic model with

FIG. 2 (color online). Ratio of the non-Gaussian correction to
the linear bias predicted by the peak-background split approach
to that obtained in the high-peak limit. Results are shown at
z¼0 as a function of the halo mass M for a local trispectrum
with cubic parameter gNL (solid curve), a local bispectrum with
k-dependent quadratic parameter fNL and index nf ¼ 
0:6

(dashed and dot-dashed curve), the folded and orthogonal tem-
plate (long-dashed curve) and the equilateral bispectrum shape
(dotted curve). In contrast to Fig. 1, the ratio sensitively depends
on the shape of the primordial N-point function.
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k-dependent fNL [see Eq. (5)], the kernel in this limit
reduces to

!ðk;ks � kÞ ¼k!0
�
ks
kp

�
nf
: (82)

As a result,

�2
!sðkÞ ¼ �2

�s

k
nf
p

; (83)

where � � nf=2 and the spectral moment��s is defined in

Eq. (44) with R ¼ Rs. Using the first line of Eq. (78), the
non-Gaussian, scale-dependent bias correction is then
given by

�bð	ÞI;sc:loc:ðkÞ
¼2fNLðkpÞk�nf

p

�
��s

�0s

�
2
�
b1�cþ2

�
@ln��s

@ln�0s

�1

��
M�1ðkÞ;

�¼nf=2: (84)

The logarithmic derivative of��s w.r.t.�0s is always larger
(smaller) than unity for �> 0 (�< 0), and reaches unity
for � � 0 only in the limit �0s ! 0. For the folded and
orthogonal bispectrum shapes [Eq. (6) and (7)], the kernel
asymptotes to [18]

!ðk;ks � kÞ ¼k!0 3

2
A

�
ks
k

�
2�
; (85)

with 2�¼ðns�1Þ=3�1¼ðns�4Þ=3��1, and A ¼ 1
(folded) or A ¼ �2 (orthogonal). Note that we have ne-
glected corrections of order ðk=ksÞ2 and higher here
(although they are easy to include in a numerical calcu-
lation). Inserting this result into Eq. (78), we arrive at

�bð	ÞI;fol=ortðkÞ

¼3AfNL

�
��s

�0s

�
2
�
b1�cþ2

�
@ln��s

@ln�0s

�1

��
k�2�M�1

s ðkÞ;
�¼ðns�4Þ=6: (86)

Finally, for the equilateral bispectrum, we have

!ðk;ks � kÞ ¼k!0
3

�
ks
k

�
2�
; (87)

with 2� ¼ 2ðns � 4Þ=3 � �2, which in close analogy
with the folded case leads to

�bð	ÞI;eqlðkÞ

¼ 6fNL

�
��s

�0s

�
2
�
b1�c þ 2

�
@ ln��s

@ ln�0s

� 1

��
k�2�M�1

s ðkÞ;
� ¼ ðns � 4Þ=3: (88)

Our results agree with those of [14] (for the k-dependent
fNL) and [4,18] (for the folded and equilateral shapes)
apart from a factor ��=ðb1�cÞ, where

�� � b1�c þ 2

�
@ ln��s

@ ln�0s

� 1

�
: (89)

This quantity clearly depends on the shape of primordial
NG through the slope �. The ratio ��=ðb1�cÞ, which
quantifies the deviation from the high-peak approximation,
is shown in Fig. 2 for two k-dependent fNL models with
nf ¼ 
0:6 (dashed and dot-dashed curve), for the folded

and orthogonal templates (long-dashed curve), and for the
equilateral (dotted curve) bispectrum shapes. As can be
seen, the ratio of the PBS to the high-peak prediction
depends strongly on bE1 and the value of �. It is larger
(smaller) than unity when �> 0 (�< 0). The suppression
relative to the high-peak prediction is strongest for the
equilateral bispectrum shape, for which � � �1, but sig-
nificant for all bispectrum shapes we considered. Clearly,
this strong mass-dependence could be exploited to help
constrain the shape of the primordial NG. As shown in
[20], the results of N-body simulations match the predic-
tions derived in this section well.

V. PEAK-BACKGROUND SPLIT:
CONDITIONAL MASS FUNCTION

In this section, we consider the third derivation of the
non-Gaussian bias based on the conditional halo mass
function. This is essentially a peak-background split ap-
proach since we again consider the effect of adding a
background perturbation �l of characteristic wavelength
Rl 	 Rs on the number density �nh of biased tracers.
However, in contrast to the previous formulation, we con-
sider a background density perturbation �l which is statis-
tically correlated with small-scale density fluctuations. As
shown in [19], such a peak-background split approach can
be applied to obtain the scale-dependent bias factors of
(Gaussian) density peaks at all orders. Here, we demon-
strate that the implementation of [19] can be generalized to
derive the non-Gaussian bias corrections.

In what follows, �̂nh and P̂i will denote non-Gaussian
number densities and probability distributions, whereas �nh
and Pi will designate the Gaussian quantities. Since we
will hereafter deal with the non-Gaussian density field,
we shall revert to the notation of Sec. III and simply denote
the latter as �s, �l (and �s, �l). For simplicity, and since we
are interested in the behavior on large scales, we shall
ignore the peak constraint, which leads to corrections
scaling as k2 and higher powers. In other words, we will
assume that, for Gaussian initial conditions, the number
density of virialized objects �nhð�; RsÞ identified on the
scale Rs follows a Press-Schechter mass function.

A. Cumulants and conditional mass function

Extending the derivation of the Press-Schechter mass
function to the non-Gaussian case, we start from
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�̂n hð�; RsÞ ¼ �2
��

M

dP̂1ð>�;MÞ
dM

¼ �2
��

M

d

dM

Z 1

�
dxP̂1ðx; RsÞ; (90)

where P̂1ð�; RsÞ is the probability that the linear density
contrast of a Lagrangian region of mass M / R3

s equals

�c ¼ ��0s, and P̂1ð>�;MÞ is the probability that the same
density contrast exceeds �c. In this section, we shall use the
parameter � � �c=�0s exclusively for the significance
corresponding to the critical density with smoothing Rs.
On the other hand, �s � �s=�0s and �l � �l=�0l stand for
Nð0; 1Þ-distributed stochastic variables corresponding to
density perturbations on small and large scales, respec-
tively. As in Sec. III, we express the non-Gaussian joint
probability density PðyÞ for the N-dimensional vector of
variables y in terms of the corresponding Gaussian proba-
bility density, by using the following general expansion:

P̂ðyÞ ¼ exp

�X1
m¼3

ð�1Þm
m!

XN
�1����m

hy�1
� � � y�m

ic

� @m

@y�1
� � �@y�m

�
PðyÞ; (91)

where hy�1
� � � y�m

ic are connected cumulants and PðyÞ is
the multivariate Gaussian distribution characterized by
the covariances hy�1

y�2
i, e.g.,[62]. On inserting this

expression into Eq. (90), the non-Gaussian mass function
becomes

�̂nhð�;RsÞ¼�
ffiffiffiffi
2

�

s
��

M

d

dM

Z 1

�ðRsÞ
dx

�exp

�X1
m¼3

ð�1Þm
m!

h�m
s ic @

m

@xm

�
e�x2=2

�
ffiffiffiffi
2

�

s
�e��2=2

�
1þ X1

m¼3

h�m
s ic
m!

Hmð�Þ
�

��

M2

dln�

dlnM

�
ffiffiffiffi
2

�

s
��

M

Z 1

�
dxe�x2=2 d

dM

�
1þ X1

m¼3

h�m
s ic
m!

HmðxÞ
�
:

(92)

In the second line, we have assumed that all the cumulants
are much smaller than unity. This formula agrees with that
obtained by [53] at first-order. Note that the excursion-set
approach yields additional, albeit small corrections to the
Press-Schechter expressions [54]. However, we will ignore
them in what follows.

We now calculate the conditional mass function
�̂nhð�; Rsj�l; RlÞ. By definition, the conditional probability
for having a small-scale overdensity �s on scale Rs given a
large-scale overdensity �l on scale Rl is

P̂ð�s; Rsj�l; RlÞ ¼ P̂2ð�s; Rs; �l; RlÞ
P̂1ð�l; RlÞ

: (93)

The resulting conditional mass function thus is

�̂nhð�; Rsj�l; RlÞ ¼ �2
��

M

d

dM

Z 1

�
d�sP̂ð�s; Rsj�l; RlÞ

¼ �2
��

M
½P̂1ð�l; RlÞ��1

� d

dM

Z 1

�
dxP̂2ðx; Rs; �l; RlÞ: (94)

The joint probability distribution P̂2ð�; Rs; �l; RlÞ is readily
obtained from Eq. (91),

P̂2ð�; Rs; �l; RlÞ

�
�
1þ X1

N¼3

XN
m¼0

h�m
s �

N�m
l ic

m!ðN �mÞ!Hm;N�mð�; �l; �Þ
�

� fð�; �l; �Þ
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p : (95)

Here, the correlator stands for

h�m
s �

N�m
l ic ¼ ��m

0s �N�m
0l h�m

s ðxÞ�N�m
l ðxÞic; (96)

where x is an arbitrary spatial location. The function
fð�; �l; �Þ is the exponential piece of the Gaussian bivari-
ate distribution, whereas Hmnð�; �l; �Þ are bivariate
Hermite polynomials. They can be computed by taking
derivatives of fð�; �l; �Þ. Namely,

ð�1Þmþn dm

d�m

dn

d�n
l

fð�; �l; �Þ ¼ fð�; �l; �ÞHmnð�; �l; �Þ;

fð�; �l; �Þ � exp

�
��2 þ �2

l � 2���l

2ð1� �2Þ
�
:

(97)

We define mixed spectral moments via

�2
n� � 1

2�2

Z 1

0
dkk2ðnþ1ÞP�ðkÞMsðkÞMlðkÞ; (98)

quantifying the cross-correlation between small and large
scales (the� denotes the splitting of smoothing scales: one
filter is of size Rs, the other of size Rl). Further, we define
the quantity �2� as

�2� � 1

2�2

Z 1

0
dkk2P�ðkÞMsðkÞMlðkÞSðk; Rs; RlÞ;

(99)

where the form factor S generally is a function of k, Rs and
Rl. This definition is broad enough to describe all the
spectral moments and the cumulants of the density field.
For instance, setting Sðk; Rs; RlÞ ¼ k2 yields �2� ¼ �2

1�.
In the following, we will use the following kernel for �2�:

S ðk; RsÞ � 4�2
0sF

ðNÞ
s ðk; XÞM�1

s ðkÞ: (100)
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Inserting the expression for the form factor Eq. (42), we see
that �2� becomes

�2� ¼ �N�1
0s �0lh�N�1

s �lic; (101)

i.e., a mixed N-th order moment of the density field in-
duced by the primordial N-point function.

B. Relative overabundance of rare objects

The non-Gaussian corrections to the N-th order
Gaussian bias parameters bN can be calculated by ex-
panding the relative overabundance of biased tracers
�̂nhð�;Rsj�l;RlÞ= �̂nhð�;RsÞ�1 at order �N

l . However,

throughout the remainder of this section, we will consider
only the correction to the linear bias. Taking the ratio of the
conditional mass function to the universal one yields

�hð�lÞ � �̂nhð�; Rsj�l; RlÞ
�̂nhð�; RsÞ

� 1

¼
d
dM

R1
� dxP̂2ðx; Rs; �l; RlÞ

P̂1ð�l; RlÞ d
dM

R1
� dxP̂1ðx; RsÞ

� 1: (102)

Now comes a crucial step in the calculation. As Rl in-
creases, the ratio h�m

s �
N�m
l i=�2

0l (which is the analog of

�2
n�=�2

0l in the calculation of the peak bias factors) re-

mains finite only if the corresponding form factor
Sðk; Rs; RlÞ does not depend on Rl (again, this applies
when expanding to linear order in �l). This implies that,
in Eq. (102), only the terms involving the cumulants h�N

s ic
or h�N�1

s �lic will survive. Therefore, upon taking the limit
Rl ! 1, we arrive at

�hð�lÞ ¼
d
dM

R1
� dx

�
1þP1

N¼3
1
N! ½h�N

s icHN;0ðx; �l; �Þ þ Nh�N�1
s �licHN�1;1ðx; �l; �Þ�

	
exp½�ðx���lÞ2

2ð1��2Þ �ffiffiffiffiffiffiffiffiffi
1��2

p

d
dM

R1
� dx

�
1þP1

N¼3
h�N

s ic
N! HNðxÞ

�
e�x2=2

� 1: (103)

In order to calculate the non-Gaussian contribution to b1, it is sufficient to expand the right-hand side of Eq. (103) at order
�l. The first term appearing in the square brackets can be re-expressed as

1

N!
h�N

s icHN;0ðx; �l; �Þ ¼ 1

N!
h�N

s icð1� �2Þ�N=2HN

�
x� ��lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�
� 1

N!
h�N

s ic½HNðxÞ � N��lHN�1ðxÞ� þOð�2
l Þ: (104)

In the second line, we successively set � ! 0 (we can ignore terms involving �2) and employed the relation
H0

NðxÞ ¼ NHN�1ðxÞ to expand the result at first order in �l. To simplify the second term in the curly brackets of
Eq. (103), we use the fact that fð�; �l; �Þ in Eq. (97) satisfies the following identity

�
@

@�l

þ �
@

@x

�
fðx; �l; �Þ ¼ ��lfðx; �l; �Þ: (105)

Therefore,

HN�1;1ðx; �l; �Þ � ð�1ÞN
fðx; �l; �Þ

@N�1

@xN�1

@

@�l

fðx; �l; �Þ

¼ ��
ð�1ÞN

fðx; �l; �Þ
@N

@xN
fðx; �l; �Þ þ �l

ð�1ÞN�1

fðx; �l; �Þ
@N�1

@xN�1
fðx; �l; �Þ

¼ � �

ð1� �2ÞN=2
HN

�
x� ��lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�
þ �l

ð1� �2ÞðN�1Þ=2 HN�1

�
x� ��lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�
� �lHN�1ðxÞ: (106)

We thus obtain

1

ðN � 1Þ! h�
N�1
s �licHN�1;1ðx; �l; �Þ

� �l

ðN � 1Þ! h�
N�1
s �licHN�1ðxÞ þOð�2

l Þ: (107)

On expanding the numerator of Eq. (103) at first order in
�l, we can isolate the Gaussian contribution, which is

d
dM

R1
� dx��lxe

�x2=2

d
dM

R1
� dxe�x2=2

¼ ��l

�
�� 1

�

�
¼

�
�2

0�
�2

0l

�
b1�l;

(108)

in agreement with the linear PBS bias for the Press-
Schechter mass function derived in Sec. III. We now retain
all the terms linear in the higher-order cumulants (N � 3Þ
in the linear expansion of Eqs. (92) and (95) and obtain
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�hð�lÞ �
�
�2

0�
�2

0l

�
b1�l þ

�
�2

0�
�2

0l

�
b1e

�2=2

�X1
N¼3

d

dM

Z 1

�
dx

h�N
s ic
N!

HNðxÞe�x2=2

�
dM

d�
�l

� e�
2=2

�X1
N¼3

d

dM

Z 1

�
dx��l

h�N
s ic
N!

HNðxÞxe�x2=2

�
dM

d�

� e�
2=2

�X1
N¼3

d

dM

Z 1

�
dx

�
� h�N

s ic
ðN � 1Þ! ��l þ h�N�1

s �lic
ðN � 1Þ! �l

�
HN�1ðxÞe�x2=2

	
dM

d�
: (109)

Using the generating function expðxt� t2=2Þ ¼ P
NHNðxÞtN=N!, we can easily evaluate the integrals over the Hermite

polynomials. In particular, we find for N � 2:Z 1

�
dxxHNðxÞe�x2=2 ¼ ½�HN�1ð�Þ þHN�2ð�Þ�e��2=2: (110)

On inserting this expression into Eq. (109), taking the derivative with respect to M and employing the recurrence relation
HNþ1ðxÞ ¼ xHNðxÞ � NHN�1ðxÞ, the conditional overabundance of halos simplifies to

�hð�lÞ �
�
�2

0�
�2

0l

�
b1�l �

�
�2

0�
�2

0l

�
b1

X1
N¼3

1

N!

�
�2

0s�
�1
c h�N

s i0cHN�1ð�Þ þ h�N
s icHNð�Þ

�
�l (111)

�
�
�2

0�
�2

0l

� X1
N¼3

1

N!
½��2

0s�
�1
c h�N

s i0cHNð�Þ þ h�N
s ic

�
�HNþ1ð�Þ þHNð�Þ

�

��
�l

�0s

þ X1
N¼3

1

ðN � 1Þ! ½�
2
0s�

�1
c h�N�1

s �li0cHN�2ð�Þ þ h�N�1
s �licHN�1ð�Þ� �l

�0l

;

where a primed variable X0 now designates @X=@�0s (we have used the fact that d� ¼ ��cd�0s=�
2
0s).

C. Non-Gaussian bias corrections

In order to calculate the non-Gaussian bias corrections, we have to compute the derivative of the N-point cumulants

h�N
s ic ¼ �N�2

0s SðNÞ
s and h�N�1

s �lic � �2�=ð�N�1
0s �0lÞ with respect to �0s. These are

h�N
s i0c ¼ �N�3

0s SðNÞ
s

"
ðN � 2Þ þ @ lnSðNÞ

s

@ ln�0s

#
;

h�N�1
s �li0c ¼ 1

�N
0s�0l

"
�0s

@ð�2�Þ
@�0s

� ðN � 1Þ�2�

#
:

(112)

Replacing the Hermite polynomials with the Gaussian peak-background split biases inferred from the Press-Schechter
multiplicity function [Eq. (28)],

bNð�Þ ¼ 1

�N
0s

HNþ1ð�Þ
�

; (113)

the conditional overabundance of halos can be recast into

�hð�lÞ �
�
�2

0�
�2

0l

�
b1�l �

�
�2

0�
�2

0l

� X1
N¼3

SðNÞ
s

N!

�
ðN � 2Þ þ @ lnSðNÞ

s

@ ln�0s

�
�2ðN�2Þ

0s ðb1bN�2 � bN�1Þ�l

�
�
�2

0�
�2

0l

� X1
N¼3

SðNÞ
s

N!
�2ðN�2Þ

0s ð�cb1bN�1 þ bN�1 � �cbNÞ�l

þ X1
N¼3

��2
0s

ðN � 1Þ!
��ð�2�Þ0

�2
0l

�
�0sbN�3 �

�
�2�
�2

0l

�
ðN � 1ÞbN�3 þ

�
�2�
�2

0l

�
�cbN�2

�
�l: (114)

We can now read off the scale-independent correction �bð
ÞI (involving the terms proportional to �2
0�=�

2
0l) and

a scale-dependent correction �bð	ÞI (involving the terms �2�=�2
0l and ð�2�Þ0=�2

0l) to the first-order Gaussian bias b1. The
non-Gaussian bias contribution thus is �bI¼�bð
ÞI þ�bð	ÞI . After some manipulation, the scale-independent non-Gaussian
bias correction reads
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�bð
ÞI ðRs;XÞ

¼�SðNÞ
s ðXÞ
N!

�2ðN�2Þ
0s

��
ðN�2Þþ@ lnSðNÞ

s ðXÞ
@ ln�0s

�

�ðb1bN�2�bN�1Þ�ð�cb1bN�1þbN�1��cbNÞ
	
;

(115)

where X is again a vector of variables describing the
amplitude and shape of the primordial N-point function.

In order to write down an explicit expression for the
scale-dependent, non-Gaussian bias correction, we use
the definition of the kernel Sðk; RsÞ [Eq. (100)], yielding

�2� ¼ 4�2
0s

Z d3k

ð2�Þ3 P�ðkÞMlðkÞF ðNÞ
s ðk; XÞ: (116)

Then, by definition of the linear halo bias, �hðkÞ ¼
bðkÞ�sðkÞ, correlating the last line of Eq. (98) with �l

yields

Z d3k

ð2�Þ3 �b
ð	Þ
I P�ðkÞMsðkÞMlðkÞ ¼

X1
N¼3

��2
0s

ðN � 1Þ! fð�
2�Þ0�0sbN�3 � �2�½ðN � 1ÞbN�3 � �cbN�2�g

¼
Z d3k

ð2�Þ3 P�ðkÞMlðkÞ
X1
N¼3

4

ðN � 1Þ!

�
�
dð�2

0sF
ðNÞ
s Þ

d�0s

��1
0s bN�3 �F ðNÞ

s ½ðN � 1ÞbN�3 � �cbN�2�
	
; (117)

from which we can read off the scale-dependent non-Gaussian bias correction as

�bð	ÞI ðk; Rs; XÞ ¼ 4

ðN � 1Þ!
�
bN�2�c þ bN�3

�
3� N þ @ lnF ðNÞ

s ðk; XÞ
@ ln�0s

�	
F ðNÞ

s ðk; XÞM�1
s ðkÞ: (118)

This is the main result of this section. In the high-peak
limit, bN�2 	 bN�3 and the first term in the curly bracket
dominates. Therefore, we exactly recover the results of
[5,13,14,31] for the constant fNL, constant gNL, folded
shape and k-dependent fNL, respectively. The second
term in the curly brackets arises owing to the mass-
dependence of the reduced cumulants SðNÞ

s . As we will
see shortly, this term agrees with the correction derived
in Sec. IV in the limit k ! 0.

Note that [63] also employed the bivariate Edgeworth
expansion to explore the effect of a local primordial tris-
pectrum on the (configuration space) bias of tracers.
However, they did not derive any explicit expression for
the non-Gaussian bias.

D. Comparison of the PBS approaches

Interestingly, if we ignore the mass-dependence of the
cumulants, then the k-dependence of Eq. (118) is exactly
the same as that predicted by the correlation of thresholded
regions (see Sec. III). This follows from expanding the
non-Gaussian density field in cumulants, which is also
done in the expansion of the correlation function of thresh-
olded regions. By contrast, our first formulation of the
peak-background split (see Sec. IV) leads to a different
k-dependence on smaller scales. This difference arises
because we have assumed that the long-wavelength per-
turbation is constant over some intermediate scale R over
which the halo abundance is averaged. This is a sen-
sible assumption as long as the scale ‘‘L’’ over which we

measure the clustering of halos is much larger than the
scales that contribute to �0s. Then, the kernel! in Eq. (63)
is indeed evaluated in the squeezed limit, ks 	 k, and both
PBS formulations agree exactly. To see this explicitly, we
write Eq. (118) for the cases of N ¼ 3 and N ¼ 4:

�bð	ÞI ðk; Rs; N ¼ 3Þ

¼ 2

�
b1�c þ @ lnF ð3Þ

s ðkÞ
@ ln�0s

	
F ð3Þ

s ðkÞM�1
s ðkÞ (119)

�bð	ÞI ðk; Rs; N ¼ 4Þ

¼ 4

6

�
b2�c þ b1

�
1þ @ lnF ð4Þ

s ðkÞ
@ ln�0s

�	
F ð4Þ

s ðkÞM�1
s ðkÞ:

(120)

In the large-scale limit, we can use the same approxima-
tions made in Sec. IV, i.e., assume that k is much smaller
than the scales which contribute significantly to the
integrand in Eq. (42). On inserting the definition of the

kernels !ð2Þ; !ð3Þ [Eqs. (58) and (59)], we obtain

F ð3Þ
s ðkÞ ¼k!0

fNL
�2

!sðkÞ
�2

0s

(121)

F ð4Þ
s ðkÞ ¼k!0 3

4
gNL�

2
0sS

ð3Þ
!sðkÞ: (122)

Substituting these expressions into Eqs. (119) and (120),
we eventually recover Eq. (78) in Sec. IV.
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On smaller scales k * 0:02 h=Mpc around which the
matter power spectrum peaks, the separation of scales ‘‘L’’
and ‘‘S’’ is no longer accurate and the predictions of
Eq. (118) diverge from the k ! 0 limit. In Fig. 3, the exact
k-dependence of the non-Gaussian bias correction pre-
dicted by the correlated PBS approach, Eq. (118), is com-
pared to that predicted by the low-k expression, Eq. (78).
We can see that the latter is accurate to a few percent
at wave number k & 0:01 hMpc�1. Only for the folded
and equilateral shape does the low-k expression yield a
noticeably larger non-Gaussian bias correction on scales
k * 0:01 hMpc�1. This is also true for the orthogonal
template (not shown in the figure since it is essentially
equal to the folded case). The exact difference, however,
depends somewhat on halo mass and redshift. A quantita-
tive comparison of the scale-dependent bias predicted by
the uncorrelated PBS approach with that obtained from the
statistics of thresholded regions can also be found in [18]
(note however that the new term derived in this work is not
included there).

Finally, while in the limit k ! 0 Eq. (118) reproduces
the well-known result for the local scale-independent
fNL model [3,5], at finite k, this expression receives a
negative correction from the second term proportional to

@ lnF ð3Þ
s =@ ln�0s that increases with wave number. At k¼

0:05 hMpc�1 for instance, the suppression is �1% and
�4% for biased tracers with bE1 � 2 and 3.5, respectively.

VI. PEAK-BACKGROUND SPLIT
VS THRESHOLDING

We now compare our final result Eq. (118), with the
result from thresholding in the high-peak limit,

�b
ðhpÞ
I ðkÞ ¼ 4bN�1

ðN � 1Þ!�
2
0s

F ðNÞ
s ðkÞ

MsðkÞ ; (123)

obtained from Eq. (43) by replacing cN with bN . We
see two important differences. Firstly, in the thresholding
approach (which is equivalent to local biasing), the correc-
tion to the halo power spectrum induced by a primordial
N-point function is proportional to bN�1. In the PBS
approach on the other hand, the correction comes in
through the dependence of the halo mass function on the

(N � 1)-th moment SðN�1Þ
s of the small-scale density field.

The latter is proportional to bN�2 when the Edgeworth
approximation method is applied to the halo mass function.
The simulation results for all types of primordial NG
simulated so far clearly follow the dependence on bN�2

rather than bN�1, thus favoring the interpretation provided
by the PBS approach.

Secondly, the term proportional to @ lnF ð3Þ
s =@ ln�0s in

the PBS prediction [Eq. (118)] is absent in the thresholding
approach. In [20], we show that the inclusion of this term
yields a good match to the simulated halo bias in non-
Gaussian models beyond the simplest, local quadratic
NG with scale-independent fNL. In the thresholding
approach on the other hand, we associate the correlation
of regions above a threshold �cðzÞ in the linear density
field smoothed at a fixed scale Rs with that of halos above
a mass threshold MðRsÞ at redshift z. However, halos
spanning some mass interval should be identified with
Lagrangian regions spanning a range of smoothing scales.
Consequently, the abundance of halos in a mass interval

½M;Mþ dM� not only depends on the cumulants SðN�1Þ
s of

the density field smoothed on scale Rs, but also on the
variation of these cumulants with Rs (parameterized

through @ lnSðN�1Þ
s =@ ln�0s).

An alternative way of seeing this is to describe the
abundance of halos in a non-Gaussian density field through

an effective significance �̂ð�; SðmÞ
s Þ, which is defined upon

requiring

�̂n h ¼ ��

M2
fNGð�Þ d ln�d lnM

¼ ��

M2
fGð�̂Þ d ln�̂d lnM

: (124)

In the case of a Press-Schechter mass function [Eq. (92)], �̂
is given by

�̂ ¼ �

�
1� X1

m¼3

1

m!
SðmÞ
s �2ðm�2Þ

0s bm�2

�
(125)

The Jacobian d ln�̂=d lnM in Eq. (124) involves

@ lnSðmÞ
s =@ ln�, showing that �̂nh depends on the scale-

dependence of the cumulants.

FIG. 3 (color online). A comparison between the non-
Gaussian scale-dependent bias correction Eq. (118) and its
low-k limit Eq. (78) for some of the bispectrum shapes and
the local trispectrum considered in this work. In all cases, a
dotted curve represents the low-k limit. Results are shown
as a function of k for halos of mass M ¼ 5:3� 1013 M�=h at
z ¼ 0:5, assuming fNL ¼ 100 (for the bispectra) and gNL ¼ 106

(for the local trispectrum).
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VII. CONCLUSION

Wehave carefully reexamined the derivation of the effect
of primordial NG on the large-scale clustering of tracers
(such as galaxies and clusters) beyond the local fNL model,
using the statistics of thresholded regions as well as two
formulations of the peak-background split (PBS). We
have shown that the thresholding approach is equivalent
to local biasing, when considering the leading order con-
tributions from NG. This approach predicts the same scale-
dependence as the PBS approach in the limit k ! 0, in
agreement with the findings of [18]. However, unless we
consider the high-peak limit (which is never attained by
real tracers), PBS and thresholding predict different ampli-
tudes for the non-Gaussian contribution to the linear bias.

We have presented two complementary peak-
background split derivations of the effect of NG. In the
first approach, the separation of scales is invoked to split the
Gaussian density field into uncorrelated short- and long-
wavelength perturbations. This allows us to isolate the
mode-coupling effect responsible for the scale-dependent
bias induced by NG. In the second approach, the separation
of scales is invoked to expand the ratio of the unconditional
to conditional mass function in terms of large-scale pertur-
bations in the non-Gaussian density field. Notice that no
assumption of separation of scales is made in the thresh-
olding approach, where biasing is a function of the local
density only. While in the second PBS approach we have
restricted ourselves to the case of a Press-Schechter mass
function, we have nonetheless been able to identify the non-
Gaussian bias correction to the linear bias. Both PBS
approaches predict exactly the same correction in the limit
k ! 0 (once the Press-Schechter expressions for the
Gaussian biases are identified with bN). While they depart
at higher wavenumbers (k * 0:02 h=Mpc), this deviation is
not very significant for the local or folded type of NGwhere
the non-Gaussian bias correction is strongly suppressed at
small scales.

In both approaches, we uncover a new term depending
on the scale-dependence of the small-scale moments of the
density field induced by NG. Physically, this term is in-
duced by the mapping from local significance � ¼ �c=�0s

to mass M: a scale-dependent modulation of �0s changes
the interval d� corresponding to a fixed mass interval dM.
This correction to the high-peak expression of the linear

non-Gaussian bias has not been pointed out in any previous
work. It can be very large for all the models consi-
dered here, except for the local bispectrum with constant
(i.e., k-independent) fNL. Moreover, we have found very
good overall agreement between the PBS predictions and
the simulated non-Gaussian halo bias [13–15] for the local
gNL�

3 model, the local fNL�
2 model with k-dependent

fNL, and the orthogonal bispectrum. This comparison is
detailed in a companion Letter to this paper [20].
Consequently, the simulation results rule out thresholding,
and more generally local biasing, as a viable approach to
predicting the impact of primordial NG on halo clustering.
These new accurate predictions can be combined with
optimal weighting schemes [64–69] in order to extract
information on the scale-dependent bias from numerical
simulations and forthcoming galaxy surveys.
In order to further test the PBS approach with numerical

simulations, it will be important to take into account the

scale-independent correction �bð
ÞI induced by NG through

its impact on the abundance of halos. In the case of local
cubic NG, it will also be necessary to measure the Gaussian
second-order bias factor b2 directly from the simulations,
as the effect on the linear bias scales with b2.
Finally, a natural generalization of the conditional mass

function approach discussed in Sec. V is a derivation of the
non-Gaussian bias factors within the excursion-set formal-
ism, for generic moving barriers and non-Gaussian initial
conditions [54,55,70,71]. We leave these issues for more
detailed future treatments.
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