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SUMMARY

The purpose of this report is to identify the time scales involved in

slowing down the rate of growth of primary energy consumption in the

U. S., as one component of an overall energy/environment strategy

designed to limit the required volume of energy imports from overseas.

Two important energy-consuming sectors of the economy are chosen as

illt'rstrative examples: (1) the "automobile" as a total system (25%); (2)
space heating, air conditioning and water heating in the residential sector

(22%). Efficient, light-weight vehicles are introduced into the automobile

population by allocating an increasing percentage of new car production to

such vehicles year by year until some fixed percentage is attained.

Parametric calculations show that significant reductions in the annual rate

of energy consumption by automobiles can be achieved if (a) the fuel

consumption of efficient vehicles is 60% or less of "standard" vehicles; (b)

the increment in percentage of new car production devoted to efficient

vehicles is not less than 8% per year; (c) the efficient vehicles are "frozen"

at not less than 80% or more of all new car production at the end of an
eight to ten year period. In the residential sector the "turnover" rate is

comparatively low, and the calculated reduction in annual energy growth

rate produced by energy-conserving measures is modest, as expected,

unless a "retrofit" rate of older living units of at least 2% per year can be

attained.

These two components of an energy-conserving policy taken

together would bring the growth rate in U. S. primary energy demand

down from its present rate of 4.2% per year to about 2.8% per year by

1985. Reductions in the annual growth rate of the remaining 50% of U. S.

primary energy consumption that seem quite feasible would bring the

overall growth rate down to about 2.5% per year by 1985. If reductions in

growth rate of this magnitude could in fact be achieved, energy imports

would peak in the mid-1980s at a level no higher than about 60% above

the present (1973) volume of imports. Incentives and disincentives

designed to bring about this slowdown in the rate of U. S. energy

consumption are discussed briefly.
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1. Introduction

Until quite recently it was generally assumed that the rate of

supply of primary energy from domestic sources would always be

adequate to meet the steadily rising rate of demand for energy in the U. S.

The "energy crunch" of the 1970s shows that this assumption is no longer

valid. During the decade from 1960 to 1970 total U. S. primary energy

consumption grew at an annual rate of 4.3%,1 * corresponding to a

"doubling time" of about 16 years. In this same period domestic energy

production grew at an annual rate of 2.6%, corresponding to a doubling

time of about 27 years. The inevitable consequence of these mismatched

time scales of domestic energy supply and demand was that the U. S.

shifted its position from a net exporter to a net importer of energy in the

late 1960s.

Any viable energy strategy for the next 25 years must contain a

"mix" of the following sets of measures:

(a) increasing the rate of imports of oil and liquefied natural
gas (LNG);

(b) increasing the rates of supply of primary energy from

domestic sources, especially uranium and coal (including

coal gasification and liquefaction), and, to a lesser extent,
oil and natural gas;

(c) developing new sources of energy, such as geothermal and

solar energy (esp. solarlthermal conversion);

(d) slowing down the rate of growth of energy consumption by

improving efficiency, reducing "wasteful" practices, and

shifting to less energy-intensive activities.

Each of these sets of measures has its own characteristic time scale,

or doubling time, and these competing time scales will determine the

nature of the "mix". These characteristic time scales are governed in :turn

by a complex set of logistical, technical, economic, environmental, land

use, institutional and political-legal constraints. The authoritative study by

the National Petroleum Council has already examined in detail the range
of possibilities under option (b) above. 1,2 The purpose of the present

report is to identify the time scales and magnitudes of option (d) ­

slowing down the rate of growth of energy consumption - by means of a
few highly-simplified but typical illustrative examples. The results obtained

are then examined for their impact on the required rate of energy imports

and the required rate of domestic energy supply over the next 25 years.

* Superscripts denote references listed at the end of this report.
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The question as to whether reductions of significant magnitude in

the annual rate of growth in the demand for energy can actually be

achieved over the next 10-15 years was addressed in the NPC demand
projections2 for 1985. In these projections the "low" estimate lies about

10% below the "intermediate" estimate. The recent Office of Emergency

Preparedness report3 on energy conservation projects a decrease of about
15% in energy demand by 1985 if all "mid-term" conservation measures

are employed, and a decrease of about 22% if all "long-term" measures
are utilized (Fig. IX-1, p. 59 of Reference 3). Beyond 1985 the various

estimates of energy demand diverge somewhat, as expected, because of the
difficulties involved in making such projections. For example, in 1995 the
NPC ,,'low" demand estimate is only 13% lower than the intermediate

estimate, while the OEP estimated demand (extrapolated) is reduced by
about 17% if "mid-term" conservation measures are employed, and by about
27% if all "long-term" measures are used.

In order to examine this question more carefully two important
energy-consuming sectors of the economy are chosen in this report for

purposes of illustration: (1) transportation (25%); (2) space heating, air
conditioning and water heating in the residential sector (22%). The 25% of

U. S. primary energy consumed in transportation is fuel alone, of which
automobiles consume somewhat more than one-half, or about 14% of

U. S. primary enregy. However the "automobile" considered as a total

system all the way from raw materials through production, distribution,
road-building, servicing and repair consumes 25% of all U. S. primary

energy,4 so the automobile is singled out for special attention in Section

2. "Efficient", light-weight vehicles are introduced into the automobile

population by devoting an increasing percentage of new car production to

such vehicles year by year until some fixed percentage is attained. The
effect of this shift on the rate of growth of energy consumption is
calculated over a 20-year period.

In Section 3 a similar study is carried out for the residential sector.
Energy-conserving living units are introduced by increasing their percentage

of new unit construciton year by year until some fixed percentage is
attained.
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These two sectors differ in one important respect: the annual

"birth" and "death" rates of automobiles are relatively high (11 % and 7%
of the existing car population, resp.), so the time scale for making changes

in the rate of growth of energy-consumption of automobiles is relatively

short (of the order of 6-10 years), and the magnitude of the reductions in
growth rate is significant. On the other hand the annual "birth" and
"death" rates of residential units are relatively low (3% and 1% of the

existing living units, resp.), so changes in the annual rate of growth in
energy-consumption are correspondingly slower, and of smaller magnitude,

unless a significant percentage of older structures can be "retrofitted" to

conserve energy. These points are brought out by means of some simple

illustrative examples in Section 3.

Finally, Section 4 examines the implications of the results obtained
In Section 2 and 3 for energy imports, domestic energy supplies, and U. S.

energy policy alternatives.
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2. Slowing the Rate of Growth of Energy Consumption by Automobiles

At any given time the automobile population is characterized by

a wide "performance" spectrum in terms of miles per gallon, ranging at

present from values as low as 7 miles per gallon to a high of around 28
miles per gallon. In order to bring out the importance of time scales in

reducing the rate of energy consumption as simply as possible, we will
work with a population consisting of only two classes of vehicles: (1)

"standard" vehicles, all of which require gl (t) gallons per mile; (2)

"efficient" vehicles, all using g2 (t) gallons per mile, where g2 < gl' In
this case the annual energy consumption rate, E, is given by the

following expression:,

=
m

m o
+ ~J (1)no

Here m IS the average annual mileage per vehicle, nl and n2 are the
number of standard and efficient vehicles, resp., and n = nl + n2 is the
total number of automobiles at any given time. The subscript zero refers
to the "base" year (say 1973) that is selected as the starting point for

calculating the time history of the annual rate of energy consumption.

Suppose that all vehicles are standard vehicles at the beginning of
the base year, i.e., n l = no and n2 = O. In this simple example the
process of introducing efficient vehicles into the automobile population

is divided into two stages: In the first stage a steadily increasing

percentage of new car production is assigned to such vehicles, e.g., 10%
of all new cars during the first year, 20% the second year, etc., until

the jth year (j < 10 in this example). After the jth year the percentage
of new car production taken up by efficient vehicles is fixed at (10j)%.

For simplicity the death rate of efficient vehicles is taken to be zero

during the first j years, while the death rate of standard vehicles is some
function d(t). Beyond the jth year the death rates of the two classes of

vehicles are assumed to be the same. *

* This approach is easily generalized by allowing the percentage of new cars that are
efficient vehicles to be equal to p the first year, 2 p the second year, etc., up to the jth
year Up < 100), where a< p < 100. Beyond the jth year efficient vehicles are a fixed
percen tage jp of all new car production (Appendix).
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At the present time the birth rate, b, and the death rate, d, of

the total automobile population are 11% and 7% per year, respectively,

so the. total population is growing at an equivalent exponential rate of

4% per year. Taking these rates as fixed for the present, and considering

the process as a continuous one, the differential equations describing the

time history of the automobile population in this simple illustrative
example can be written down and readily integrated to give the time

histories of standard n l (t) and efficient vehicles nz (t). (See Appendix)

Actually the first and simplest case analyzed turned out to
contain most of the "message". In this case the percentage of new car
production allocated to efficient automobiles increases by 10% each year

up to the tenth year, when these vehicles constitute 100% of new car
production (Case 1, j = 10, P = 10%). No new standard automobiles are

produced thereafter. The automobile population history for Case 1 is
shown in Figure 1. The population of standard vehicles peaks between

the third and fourth years, when the birth rate of this class of vehicle is
equal to its death rate. Beyond this point the population n l declines

more and more rapidly, and, in fact, for t > 10, n1 declines
exponentially with time, because no new standard vehicles are being

produced. The population of efficient vehicles builds up quite slowly at
first (Figure 1), but increases rapidly beyond t :::: 4. By about the tenth

year efficient vehicles account for one-half the total car population

(Figure 1). If this process were to continue indefinitely with time, the
build-up of efficient vehicles would approach the equivalent exponential

rate of 4% per year.

At present the average mileage driven per automobile IS

increasing by 1% per year, i.e., ~o = eo.OIt
, By adopting this rate m

our calculations, and by utilizing the results for n1 and n2 in [Eq. (1)],
the time history of the energy-consumption rate is calculated for various

values of the fuel economy parameter* between 0.50 and 1.0; the
results are illustrated in Figure 2. For comparison the growth in~ is

also shown for a car population consisting only of standard vehicles (n2 = 0),
. E °05t * A h I' . fl.e.,~ = e' . t present t e average gaso me consumptIOn or U.S.
automobiles is about 15 miles per gallon,4 so values of gl of 0.750,0.625

and 0.50 correspond to 20, 24 and 30 miles per gallon, respectively.

* According to Eq. (1) for various values of gg2 between 0.50 and 1.0 the value oflLE at
. 1 0

any given time can be found by means of a linear interpolation,
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Values of1i- in the neighborhood of 0,5 to 0.6 are required for

this particular pop~lation time history in order to produce a substantial

reduction in the annual rate of growth of E. During the first three or

four years the influence of the efficient vehicles is small (as expected),

but by about the sixth year the annual rate of growth would be

brought down from 5% per year to about 1% per year if*= 0.625,

and to virtually zero ifk = 0.50, and it would remain at these low values
until about the tenth yg,ir. If these results are applied to the automobile

as a total system (25% of all U. S. primary energy demand), this

reduction amounts to a decrease of about 1% per year in the overall
energy growth rate (e.g., from 4.2% to 3.2% per year), if gl = 0.625.

Beyond t = 10 the annual rate of energy consumption increases again

(Figure 2), and gradually approaches the equivalent exponential rate of 5%

per year, although even at t = 20 the level of energy consumption rate for

~~ = 0.50 is still only 60% of the projected value for an all-standard vehicle

population. This interim period of slow annual growth rates provides a

"breathing space", or an equivalent time shift of at least ten years.

During this time period new factors and new measures can be

introduced to slow the overall rate of growth of the automobile

population. (See Section 4)

The question naturally arises as to the SenSItIvIty of the
magnitude of the slowdown in the rate of energy-consumption to the

introduction of certain exhaust emission controls ~, ; to the yearly

increment in percentage of new car production a1fogated to efficient

vehicles (p), and to the "frozen" level of new car production for such

vehicles [(pj)%]. In order to answer this question three additional

illustrative cases were considered.

In Case 2, j = 10 and p = 10% as before, but~· is allowed
"f (]lToto Increase at a um arm rate from 1.0 to 1.15 during the first three

years in order to take into account the effect of certain exhaust

emission controls on the performance of present-day engines. Beyond
the third year -&. = 1.15. The values ofk for Cases 2a - 2c are the

\gl)o gi
same as for Cases 1a - 1c. Based on the projected 15% increase in fuel

consumption imposed by new exhaust emission controls, the "standard"

vehicle would obtain about 12 miles per gallon and values ofk, of

0.750, 0.625 and 0.50 would correspond to 16, 19 and 24 mife~ per

gallon, resp.
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Figure 3 shows the energy-consumption history for Case 2, and

Figure 4 compares Cases 1c and 2c in order to illustrate the effects on

the rate of energy-consumption of exhaust emission controls installed on

both new and old vehicles. Clearly the situation is going to get worse

before it gets better. Even with the introduction of the new, efficient

vehicles the annual rate of energy consumption is higher up to the

seventh year than the level reached by a 5% per year projected increase.

However, the rate of growth of the annual energy-consumption rate is

again reduced to about 1% per year between the sixth and tenth years

if £- = 0.625.

Figures 5 and 6 show the effect of "freezing" the percentage of

new car production devoted to efficient vehicles at 50% after the fifth

year (j = 5), at 60% after the sixth year (j = 6), etc., for the particular

casek = 0.50, ~ = 1.0, P = 10% (Case 3). These results show thatgI ~o
signifIcant reductions in the annual rate of growth of energy-

consumption are achieved only if j ;;;;. 8, i.e., if the efficient vehicles are

"frozen" at not less than 80% of all new car production after the

eighth year.

Suppose that the process of introducing these efficient vehicles is

slowed down so that some yearly incremental percentage of new car

production less than 10% is employed (p < 10%). The effects of this

"stretchout" are shown in Figures 7 and 8 (Case 4, j = 10,.£L = 0.50,
gI

.£1. = 1.0). Evidently significant reductions in the annual rate of
\gil'"o
growth of energy-consumption are attained only if the incremental

percentage of new car production devoted to efficient vehicles is not

less than about 8% per year over an eight to ten year period.
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3. Slowing the Rate of Growth of Energy Consumption in the Residential Sector

As in the case of automobiles, for simplicity we are going to work

with a "bimodal" population of dwellings consisting of only two classes:

(l) "standard" dwellings that consume e I units of primary energy

annually on the average; (2) "energy-conserving" structures that consume

ez units of primary energy annually on the average. With this simple

model the annual rate of energy consumption E is given by the following
expressIOn:

E ~ [~ ~ ~J (2a)+
Eo (e l )0 no el no

or,

E ~ n ~ .. (1 - ~: ) ~}2b)
Eo (e l )0 no

where nl and nz are the number of standard and energy-conserving

dwellings or living units, resp., and n = nl + nz. The subscript zero again

refers to the "base" year.

Suppose that all structures are standard in the base year, and that

10% of all new living units built in the first year are energy-conserving,

20% the second year, etc., up to the tenth year, after which time all new

dwellings are energy-conserving. During the same period suppose that a

certain percentage (100 R)% of standard living units are "retrofitted"

annually so that they consume only ez units of primary energy per year. *

At present the annual rate of construction of new living units is

about 3% of the existing population, and the demolition rate is about 1%

per year. Considering all these processes as continuous the differential

equations describing the time history of the population of living units can

be formulated and integrated to obtain the time history of the living unit

"population" (Appendix). In this simple example the assumption is made

that no energy-conserving structures are demolished during the first ten

years, but that after that time the demolition rate for these units is the

same as for "standard" units.

* If more detail is warranted in the calculation, one could consider three classes of
structures: (1) standard; (2) energy-conserving; (3) standard structures that are
retra fitied.
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In Figure 9 the population history of standard and energy­

conserving living units is shown for retrofit rates of zero, 1%, 2%, and 3%

per year, resp. (Also shown is the growth of the total population, n = no

eO.02t ). For R = 0 the population of standard dwelling places peaks

between the sixth and seventh years, and then decays very slowly with
time. The population of energy-conserving dwellings builds up very slowly,
and even after 14 years, these units comprise only about 23% of the total
population. On the other hand if the retrofit rate is 2% per year
the build up of energy-conserving units is much faster, and these dwelling

places amount to about 40% of the population after 14 years.

At present the annual consumption of primary energy per
residential unit is growing at about 3% per year, or~_ = e O.03t . Taking

\t:1JO
this growth rate as fixed for the present, the effects of introducing new

energy-conserving structures and retrofitting old ones on total residential

energy consumption rates can be calculated from Eq. (2a) or (2b); the

results are shown in Figure 10 for {} = 0.50. * As expected, with a zero

retrofit rate the reduction in annual energy growth rate is modest, from

5% per year to about 4% per year for t > 6. Since the residential sector

consumes about 22% of all primary energy, this reduction amounts to a
reduction of about 0.22% per year in total primary energy growth rate.

However, if a retrofit rate of 2% per year could be achieved (for

example), a reduction in growth rate in annual energy consumption in the

residential sector from 5% per year to about 3% per year would occur,

and this slowdown would account for a corresponding reduciton of about

0.4% per year in the growth rate for total primary energy. When combined

with the introduction of efficient vehicles utilizing about 60% of the

gasoline per mile that standard vehicles require (Section 2), the two

components of an energy-conserving strategy taken together would bring
the growth rate in the U.S. primary energy down from 4.2% per year to

about 2.8% per year in the crucial time period 6 ,;;;; t ,;;;; 12.

* According to Reference 3 values of~ = 0.50 are achievable even with the application
el

of present technology.
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4. Implications of a Slowdown in the Rate of Growth of U. S. Energy Demand

4.1 Implications for Energy Imports and Domestic Energy Supplies

As shown by the highly simplified examples discussed· in Sections

2 and 3, a reduction of 1.2% ~ 1.4% per year in the annual growth rate

of U. S. energy demand is achievable by 1985, considering only space

heating and the "automobile" as a total system. Judging by the OEP
report 3 an additional reduction of about 0.4% per year in the annual rate

of growth of the remaining 50% of U. S. primary energy is attainable by

1985. Thus the overall reduction lies in the range of 1.6% ~ 1.8% per

year; in other words a growth rate in primary energy demand of about

2.5% per year by 1985 is indeed feasible.

The importance of such a slowdown m the rate of growth of

energy consumption is graphically illustrated in Figures 11 and 12. * The
demand projection labelled Q) represents the NPC "intermediate demand"

estimate,2 based on an annual growth rate of 4.2% in the period

1971-1985, and an annual growth rate of 3.2% in the period 1985-2000.t

The domestic energy supply projection labelled ® follows the NPC's

"initial appraisal" of the annual rate of growth of about 2.6% through

1995.+ Obviously imports of primary energy would have to increase very
rapidly if the combination <D - ® were actually to occur, as shown in

Figure 12 by the curve so labelled. However, if the annual rate of growth

in energy demand were to decrease from 4.2% in 1970 to about 3.5% by

1975, to 2.9% by 1980, to 2.5% by 1985, and to about 2% by 1990
(curve labelled ® in Fig. 11), the predicted time history of U. S. primary

energy imports would be fundamentally different, as shown by the curve

labelled ® - ® in Figure 12.+ Projected energy imports peak in 1985 at a

level of about 15% of total U. S. primary energy requirements at that

*For readers accustomed to thinking about energy in other units, please note that 5.9
quadrillion BTU (5.9 x 1015 BTU) are equivalent to one billion (l09) barrels of oil; or
3.6 x 1015 BTU are equivalent to 1012 kilowatt hours.

t These figures are qualitatively similar to Figs. 1 and 2 contained in a previous
publication by the senior author,s except that in Reference 5 the NPC "initial appraisal"
demand projection based on an annual growth ra te of 4.2% in the period 1971-1985 was
extended without change through the period 1985-1995.

+ In the NPC Summary Report2 this projection lies midway between Case IV
(continuation of the present trends) and Intermediate Case HI.

+Numbers in parenthesis shown in Fig. 12 (e.g., (36» represent the percentage of total
primary energy supplied by imports.
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time, or at a level about 60% higher than the current (1973) volume of

energy imports. Moreover, increases in the rate of domestic supply of

energy (curve labelled ® in Figs. 11 and 12) have a much larger relative

effect than if the demand curve CD is followed. This simple illustration

reminds us once again that a small difference between two large numbers

is very sensitive to modest changes in either of these two numbers. *

Although strenous efforts and important policy changes are needed

m order to increase domestic energy supplies, the annual rate of increase

required by curves ® or ® in Figure 11 is close to the intermediate supply

Case III analyzed in the NPC study,2 rather than the "high" supply Case

I. In view of environmental, land use, capital investment and technical and

logistical constraints, Case III is regarded by the authors of the NPC report

as much more realistic than the "high" supply Case I. For example, the

cumulative capital investment required by Case III is about 265 billion

dollars (exclusive of electricity generation and transmission) in the period

1971-1985, as compared to 311 billion dollars required by Case I.

However the domestic energy supply "mix" may be somewhat

different than that envisioned in the NPC study. Even the lowest NPC

projection of installed nuclear power electric generating capacity for 1985

of about 240,000 MW(e) is probably too high by at least 20%, and the

"intermediate" estimate of 300,000 MW(e) is too high by about a factor

of 1.5. The deficit of about 4 quadrillion BTU's in annual energy supply

would have to be made up by a much more rapid build-up of synthetic

gas production (for example), as shown in Figure 3 of Reference 5. Such

unavoidable uncertainties in estimated demand and domestic supply have

large relative effects on required energy imports. Thus it would seem

desirable to encourage diversity in domestic energy sources. The cost of

this diversity may be less than the cost of increased imports that would be

incurred if the available range of domestic energy sources were too

narrow, and some of these sources failed to come up to expectation.

* The energy demand projection labelled ® in Fig. II lies about 12% below the NPC
intermediate estimate 2 for 1985, and about 25% below the NPC intermediate estimate for
1995. Thus, curve ® lies about midway between the OEP demand estimates3

corresponding to the use of all "mid-term" and all "long-term" energy conservation
measures, resp.
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4.2 Policy Implications

So much has been written recently about U. S. energy policy that

only a few salient points are worth emphasizing here, pertaining especially

to a slowdown in the rate of growth of energy demand. These points are

concerned mainly with the complementary roles of pricing, taxation,

incentives and regulations. These remarks are not meant to be difinitive,

but are designed to stimulate discussion of policy alternatives.

Almost all recent energy studies agree that the unit price of energy

m all forms is bound to increase substantially (in fixed 1973 dollars) over

the next decade or two. But increases in unit prices may not be sufficient
to reduce the rate of growth in energy demand in a timely fashion,

because they affect operating costs much more strongly than "first costs",

and because of well-known time lags in response to price changes. For
example, the introduction of "efficient" automobiles at the desired rate
(Section 2) might be encouraged not only by the predicted increases in

the price of gasoline, but also by a "purchase tax" on passenger

automo biles in proportion to their performance in gallons/mile, * and/or

by specifications on fuel consumption in conjunciton with regulations on

pollutant concentrations in automobile exhaust emissions. A "bonus" or

"negative purchase tax" might be awarded to those makes of automobiles

that do better than these standards.

Similarly, the desired rate of introduction of energy-conservmg

living units (Section 3) could be encouraged not only by the predicted

increase in unit energy prices, but also by regulations adopted at local

state and federal levels on the amounts of building insulation required. As

our understanding of energy consumption levels of various building designs

improves, these crude regulations might be replaced by regulations and

incentives based on overall annual energy consumption in BTU per square

foot, leaving the design details up to the ingenuity of architects and

builders.

* EPA studies show that an automobile weighing 5000 pounds consumes about twice as
much gasoline per mile on the average as an automobile weighing 2500 pounds.
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In the next decade, however, even more difficult questions arise, as

shown by Figure 2. If the growth rates of 4% per year in total automobile

population and 1% per year in average mileage driven per vehicle persist,

then the annual rate of energy consumption by automobiles begins to
increase again after the tenth year, even if no new "standard" vehicles are

produced after that year. The recent rapid growth in the number of

"recreational vehicles" in the U. S. shows that a reliance on "saturation"

to reduce these growth rates may prove to be illusory. In addition to

pricing, taxation and regulation, it will probably be necessary to plan in

the long run (t > 10-12 years) for cities and towns in which

energy-consumption is a primary consideration. Distances from home to

work, shopping and recreation would be minimized, multi-passenger

vehicles utilized wherever possible, and all structures would be designed to

certain energy consumption specifications.
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Figure 9
RESIDENTIAL UNIT POPULATION HISTORY
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Figure 11
ANNUAL U.S. PRIMARY ENERGY DEMAND AND
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Figure 12
ANNUAL U.S. PRIMARY ENERGY IMPORTS AND TOTAL NUMBER
OF TANKERS REQUIRED (250,000 DWT) THREE PROJECTIONS

NUMBER OF
TANKERS

10 15 BTU OIL LNG

70 630 105

75

540 90

90 15

360 60

450

(36)

30 270 45

@0
.c::::- -'--- .(15)---.

20 00
................... 180 30

""-
'. (10)

60

50

40

(12.4)

1975 1980 1985 1990 1995

YEAR



- 29 -

APPENDIX

A.1 Automobile Population History

Phase 1: o~ t ~j

During this phase the differential equations describing the time
history of the automobile population are as follows:

BIRTH RATE DEATH RATE

~~1 = b(l - p/t)n d· n

~~2 = (bp/t)n 0

and
dn = (b - d)nat

where p' = 10-2 P

(A-1)

(A-2)

According to the last of this set of equations, when band dare
taken as constants

n = noe rt = n l + nz, where r = b - d

By utilizing this expression for n in the differential equation for nz, and
integrating, one obtains

nz (t) = p'b [tert (e",-I) J (A-3)
no r

Also, ~ = ert h z (A-4)
no no

Phase 2:

In Phase 2, t > j, and the birth and death rates of standard and
efficient vehicles are "frozen" at their values for t = j.
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The differential equations for this phase are as follows:

~~1 = b(l - p'j)n d • n 1

(A-5)

~~2 ." (bp'j)n d • n2

By integrating the differential equation for n2 (t) one finds that for t > j:

n2 (t) = p'j [ert -e (bi-dt) ] + n2 (j) e --d(t-j)

no no (A-6)

Also, nl (t) ert n2 (t) (A-7)
no no

In all the calculations for automobiles made in this report b = 0.11

and d = 0.07.

When the birth and death rates are taken as constants, as in the

present analysis, the governing parameters in Phase 1 (0 ~ t ~ j) are t5~d

(b-d) and j itself, while in Phase 2 the situation is more complicated and

the parameters j, p, (b-d) and b, d all enter into the determination of the
population history.
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d • n Rnl

A.2 Population History of Residential Units

Phase 1: o ~ t ~ 10

In this first period,

dnl b(l - p't)n
<It

dn2 = (bp't)nat

dn = (b - d)n<It

o +

(A-7)

(A-8)

where 100R is the percentage of existing houses retrofitted each

year. Again,.E.... = ert , where r = (b - d), provided that band d are assumed
no

to be constants.

By integrating the differential equation for n2 (t) one gets

(A-9)

and =
r (A--4-10)

Phase 2:

strative sample, so

=

and

=

For t < 10, (l - lOp') = 0 m this simple illu-

- (d + R) n l

e-(d+R) (t-lO)

(A-ll)

In this report b = 0.03 and d = 0.01.




