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ABSTRACT 

Coagulation, in the physical context, Is looked upon here first 

from the fundamental perspective of col I Ision and coalescence of 

individual particles. A Monte Carlo technique Is used to investigate 

the particle size distribution in a suspension of coagulating particles 

when one or more collision mechanisms operate. The effect of 

interparticle forces - hydrodynamic, van der Waals' and electrostatic -

on the col Iision probability of the particles is examined. The results 

obtained are used to evaluate the wei I-known dynamic equll ibrlum 

hypothesis according to which an equll ibrlum particle size distribution 

Is assumed to exist under the action of a given col I Islon mechanism. It 

Is shown that dimensional analysis cannot, in general, be used to 

predict steady state particle size distributions, mainly because of the 

strong dependence of the interparticle forces on the sizes of the 

interacting particles. 

The Insight Into particle kinetics thus gained from the Monte Carlo 

simulation of col Iision processes is used to develop a numerical 

simulation of a rectangular settling basin. The computer model fol lows 

the spatial and temporal development of the Influent particle size 

distribution towards the outlet of the tank, accounting for al I of the 

basic kinetics of particle collision and coalescence processes and 

including transport processes such as particle settl lng, advection, 

resuspenslon and turbulent mixing. The influence of the particle 

size-density relationship and floc deaggregation by turbulent shearing 

are also modeled. Of necessity, model ing of some of these processes has 

been somewhat empirical since the physical and biochemical nature of the 
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flocs are unique to a particular suspension and their determination 

requires experimental work. The results of the simulations performed 

indicate that the particle size-density relationship, the collision 

efficiencies between flocs and the influent particle size distribution 

are of major importance to the performance of the sedimentation basin. 

Clearly, further modifications, Improvements and trials are needed in 

order to use the model for the design of new facil itles. Nevertheless, 

the computer model may serve as a guide for selection of several design 

and operation variables for the successful treatment of a particular 

waste or the selective removal of pollutants whose concentration depends 

on the shape of the effluent particle size distribution. 
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INTRODUCTION 

Suspended particles are ubiquitous In most environmental or 

Industrial flows. They affect both the bulk properties of the fluid and 

the surfaces with which the suspension Is In contact. Information on 

the physical characteristics of the Individual particles and the 

properties of the flow Is required In order to predict the behavior of 

the suspension. The knowledge of the fluid-particle Interactions, 

however, Is not sufficient for successful modeling of flows In which 

particles interact with each other. Coagulation, the process of 

col Iision and coalescence of particles, modifies the distribution of 

suspended mass In the particle size space. Particle-particle 

InTeractions become thus Important In quantifying the fate of suspended 

maTter In flows In which coagulation occurs. 

More specifically, the coagulation process In dispersive systems 

has applications In colloid chemistry (precipitation of colloidal 

particles from liquids), In atmospheric physics (coalescence of cloud 

particles In a vapour-air medium), In Industrial processes (deposition 

of particles In heat-exchangers) and Is of major Importance In air and 

waTer pollution practice (fate of particulates discharged In water or 

air, mass-fluid separation processes). This work Is primarily concerned 

with solid particles suspended In water, but the techniques used and the 

conclusions reached have general applications. In Chapter I a physical 

simulation Is used to provide a better understanding of the mechanisms 

thaT cause col Iision and coalescence of particles In fluids. The 

dynamics of a population of coagulating particles are examined when one 

or more coagulation mechanisms operate. A review of the Interparticle 
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forces Is carried out, Including a comprehensive evaluation of their 

effect on the col I Islon probability of the particles. The information 

obtained Is used In Chapter I I to develop a numerical model simulating 

the operation of a rectangular sedimentation basin. The computer model 

Is based on the fundamental mechanisms which govern particle motion and 

growth and Includes transport processes such as particle advection, 

turbulent mixing and particle resuspenslon. The model fol lows the 

spatial and temporal development of the particle size distribution In 

the tank and, from the local development of the particle size spectrum, 

predicts the overal I performance of the settling tank. 
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CHAPTER I: MONTE CARLO SIMULATION OF PARTICLE COLLISIONS 

1. THE DYNAMIC EQUILIBRIUM HYPOTHESIS 

Reasoning on dimensional grounds, Friedlander (1960a,b) and Hunt 

(1980) derived expressions for the dynamic steady state size 

distribution n(v) of coagulating particles. n(v) Is defined by 

dN = n(v)dv (1.1) 

where dN Is the number of particles with volumes in the range v to v+dv 

per unit volume of fluid, so that n(v) Is the number density of 

particles In v-space. 

The underlying Idea was Inspired by Kolmogorov's (see Monln and 

Yaglom, 1975) equll ibrlum theory of turbulence. Friedlander assumed 

that a state of dynamic equl I Ibrium would exist between production, 

coagulation and loss through sedimentation of particles In atmospheric 

aerosols. He hoped that the particle size distribution would reach a 

dynamic steady state (I.e. would remain Invariant with time), sustained 

by a flux of particle volume through the size-space. If It Is further 

assumed that there exist size ranges where only one of the coagulation 

mechanisms listed In Table 1 Is Important, then the size distribution In 

some subrange wll I depend only on the particle volume v, the constant 

particle volume flux E through the size distribution and a dimensional 
1/2 

parameter (K b ' Ksh=G or Ksh=(s/v) and Kds ) characterizing the dominant 

coagulation mechanism (Table 1). Hunt extended Friedlander's Ideas to 

hydrosols, Included a shearing and differential settling dominated 



Table 1. Various mechanisms for particle collisions. 

Mechanism 

Brownian Motion 

Laminar Shear 

Pure Strain 
(extension) 

Isotropic Turbulent 
Shear 

Turbulent Inertia 

Differential 
Sedimentation 

Collision Function 
S 

2kT (r/r.)2 
-3- J = 41T (D.+D.)(r/r.) 

Il rir j 1 J J 

l.33G (r.+r.)3 
1 J 

4.89Y (ri+r.) 3 
.l 

2.3*(r
i
+r

j
)3(c/v)1/2 

1.27(p -Pf) 3 1/ ~ 
E (~) (ri+rj)2Iri2-rj 21 

Il 

O.7g(p -P
f

) 
p (r.+r.)2Ir. 2_r. 21 

Il 1 J 1 J 

------- -------- ------ ... 

,', corrected from original, see Pearson et al. (1983) 

Source 

Smoluchowski 
(1916) 

Smo1uchowski 
(1917) 

Zeichner and 
Schowalter (1977) 

Saffman and 
Turner (1956) 

Saffman and 
Turner (1956) 

Findheisen 
(1939) 

Dimensional 
Paramt!ter 

K = kT 
b IJ 

r; 

y 

( ~ )1 / 2 

(p -p) 3 1/ ~ 
Ell f (~) 

g(p -Pf) 
K = P 

ds Il 

J 
I 
I 

-

.J::-
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subrange and used dimensional analysis to derive the fol lowing 

expressions for n(v): 

v 

n (v) A (ElK ) 1/2 
sh sh 

-3/2 

-2 
v 

n(v) = A (ElK ) 1/2 v- 13/6 
ds ds 

where Ab ,Ash,Adsare dimensionless constants. 

(1 .2) 

(1 .3) 

(1. 4) 

Jeffrey (1981) offered a new derivation of Hunt's results which 

clarifies the assumptions Involved In the dimensional arguments. The 

change with time of the particle size distribution n(v) Is given by the 

General Dynamic Equation (GDE) 

an (v) 
at 

1 fV = I(v) +"2 S(vl,v-vl)n(vl)n(v-vl)dvl 
o 

f oo ( ) an(v) - j3(v,v l )n(v)n{v l )dv l + w v az 
o 

(1. 5) 

where j3(v,v) Is the collision function which represents the geometry 

and dynamics of the col I Islon mechanism, I(v) Is a source of particles 

(through condensation, for example) and w(v) a~~v) is a particle sink 

resulting from particles sedlmentlng In the z direction at their Stokes' 

settling velocity, w(v). For homogeneous particle systems and for size 

ranges where the source term is negligible the steady state form of 

Eq. 1.5 Is 

1 v 
"2 f B (v I , v-v I ) n (v I ) n (v-v I) dv I 

o 

00 

f j3(v,v l )n(v)n(v 1 )dv 
o 

(1 .6) 

The Integral on the I.h.s. of Eq. 1.6 represents the rate of gain of 

particles of volume v by coagulation of pairs of smaller particles, 
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conserving volume; the Integral on the r.h.s. represents the flux of 

particles out of the size range (v,v+dv) due to their coagulation with 

particles of al I sizes. Derivation of Hunt's expressions proceeds 

(Jeffrey, 1981) under the assumption that col I islons between particles 

of simi lar size contribute mostly to the r.h.s. term of Eq. 1.6. 

Jeffrey approximates 

00 

~ S(v,v')n(v)n(v')dv' ~ S(v,v)n 2 (v)v 
o 

(1. n 

which, if multlpl ied by v2 to convert from number density flux to volume 

flux is precisely the flux E of particle volume through the size-space. 

The general expression then fol lows 

n(v) ~ (~) 1/2 v 
-3/2 

(1 .8) 

The collision function S(v,v') Is the probability that two 

particles of sizes v and v' wi I I col I ide in unit time. This probabi I ity 

Is equal to the common volume two particles sweep per unit time under 

the Influence of one or more physical mechanisms in a unit volume of 

fluid. If non-Interference of the different coagulation mechanisms Is 

assumed, then subranges exist where a sale mechanism dominates and 

S (v,v') Is given by the expressions I isted In Table 1; from Eq. 1.8 

Hunt's expressions then fol low. 

It is clear that two assumptions are needed for the dynamic 

equl I Ibrium hypothesis to be valid: 

1. Col I Islons between particles of similar size are more 

Important, or, equivalently, there Is non-Interference of particles of a 

size characteristic of one col I Islon mechanism with those of another. 

2. An equilibrium size distribution Is established. 
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The latter assumption can be justified from the regularities 

observed In the size distributions of both atmospheric aerosols 

(Friedlander, 1960a,b) and hydrosols (Falsst, 1976). 

2. VERIFICATION OF THE THEORY 

Hunt (1980) studied the coagulation of solid particles (three types 

of smal I clay particles and finely divided crystal line silica) In 

artificial sea-water In the laminar shear generated between two rotating 

coaxial cylinders when the outer one was rotated. Some of his results 

support the predictions of the theory for Brownian motion and laminar 

shear Induced coagulation, but none of the steady state size 

distributions attained In the experiments had size regimes exhibiting 

the power law behavior of both the coagulation mechanisms. Settling of 

particles caused Hunt's systems to be In a quasi-dynamic steady state; 

the size-distributions obtained were decreasing In magnitude while 

remaining similar In shape as the time progressed. Also, the 

dimensionless parameters Ab and ASh appearing In Eqs. 1.2 and 1.3 were 

not the same for the different suspensions studied. Hunt attributed 

this variation to properties of the suspensions which modified the 

coagulation rate. 

Pearson, Val loul Is and List (1983) developed a method for Monte 

Carlo simulation of the evolution of a coagulating suspension. The 

logical sequence of their simulation Is given In Figure 2.1. Spherical 

particles move In a cubical box or 'control' volume (shown In Figure 

2.2) under the Influence of Brownian motion and/or fluid shear. 
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START 

OLD 
>-----t 

READ 
REQUIRED 

PARAMETERS 
I 
I 

INITIALISE 
PARTICLE 

POSITIONS 
AND RADII 

I 
CHECK FOR 
OVERLAPS 

J 
J 

GENERATE 
DISPLACEMENT 

READ DATA 
FROM FILE 

~ 
YES COAGULATE PARTICLE 

COLL I S I ONS ?~----I AND RH10VE 
OVERSIZED PARTICLE 

UPDATE CHECK FOR 
POSITIONS OVERLAPS 

I 
UPDATE 

STATISTICS OF 
SIZE DISTRIBUTION 

I 

STOP 

I--

-

OPTIONAL 
OUTPUT 

I 

Fig. 2.1. Schematic representation of the logical sequence of 
the simulation. 
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L ........ 
.... -........ -.... -........ 

Fig. 2.2. Schematic representation of the 'control' volume and 
definition of the coordinate system used in the simulation. 
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Hydrodynamic and colloidal forces are Ignored so that particles move on 

straight paths. Particles In suspension have unit volume, v , or 
o 

Integral multiples, v. =i'v of the unit volume. Col I Idlng particles 
I 0 

coagulate to form a larger, sti I I spherical particle, conserving volume. 

The model employs periodic boundary conditions which al Iowan Infinite 

homogeneous system to be simulated approximately by a finite volume. A 

system In dynamic equi I Ibrlum Is successfully modeled by using the 

fol lowing technique. A fixed number NA of particles of unit volume are 

added to the population at random each time step, and any particles 

which have reached a preset maximum volume, v , are removed. The max 

addition of smal I particles Is a crude representation of the flux of 

particle volume into the size range from coagulation of particles 

smaller than v. The removal of particles larger than v represents 
o max 

the physical loss of large particles from the box by sedimentation or 

vertical concentration gradients. This procedure Is consistent with the 

first hypothesis of the theory and Is Justified a posteriori by the 

success of the simulation In reproducing Hunt's (1980) dimensional 

results for Brownian motion, laminar shear and isotropic turbulent shear 

induced coagulation. Pearson, Val ioul is and List (1983) concluded that 

the final steady state size distributions attained In their computer 

'experiments' were insensitive to the size range covered by the 

simulation. However, as in Hunt's experiments, no one single simulation 

gave a size distribution having both Brownian motion and shear 

coagulation dominated regimes. 

Their computer program, operating In a different mode, al lows also 

the direct measurement of the col I ision function. On collision, 

particles are not coagulated but one of them simply repositioned so as 
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to avoid repeated collisions of the same particle pair. In this manner 

the analytic estimates for the col I ision function for Brownian motion, 

laminar shear and isotropic turbulent shear were verified. 

The present study Is a sequel to the work by Pearson, Val loul Is and 

List (1983) and Is an attempt to Improve the real Ism of their results by 

accounting for the modifications to the coagulation rate caused by 

hydrodynamic, van der Waals' and electrostatic forces acting between the 

approaching particles. Differential sedimentation induced coagulation 

Is also modeled and the validity of Hunt's (1980) dimensional arguments 

are reexamined In the light of the results of the simulations performed 

in this study. 

3. BROWNIAN DIFFUSION 

3.a. Hydrodynamic Interactions 

Smoluchowskl's (1916) classical model for Brownian motion Induced 

coagulation applies to extremely dilute systems where only binary 

particle encounters are considered. The two particles are treated as 

rigid spheres describing Brownian motions independently of each other 

with a constant relative diffusion coefficient 

(3. 1 ) 



'2 
where the single particle diffusion coefficients 

(3.2) 

are functions of the particle mobilities b, and b2 which are determined 

by Stokes' law. For a particle of radius r the mobility Is b=1/(6TI~r), 

where ~ Is the fluid dynamic viscosity. In Eqs. 3.2 k is Boltzmann's 

constant and T Is the absolute temperature. However, this formulation 

Ignores hydrodynamic forces which tend to correlate the particle motions 

as the particle separation decreases. The motion of one particle 

-2 generates a velocity gradient of order s at distance s In the 

surrounding fluid. This velocity gradient causes a particle located at 

that distance to act as a force dipole which Induces a velocity of order 

s-4 at the location of the first particle (Batchelor, 1976). Thus, 

Eq. 3.' becomes Increasingly Invalid as the particle separation 

decreases. 

Spielman (1970) modified the relative diffusion coefficient to 

account for such particle Interactions by extending Einstein's (1926) 

Ingenious argument. In an unbounded system of particles a hypothetical 

dynamic equl I Ibrlum Is assumed: at any point In space, the mean radial 

number density flux J D of particles 2 relative to particle 1 due to 

Brownian diffusion Is balanced by an advectlve flux J F • The latter 

arises from the action of an arbitrary steady conservative force F 

derivable from a potential V and acting between the particles: 

J +J =0 
D F 

J D =-D'2(dN/dr) J = N u F 
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where N Is the number density of particles 2 and u the relative radial 

velocity Imparted to the particles by the conservative force F 

u = bF F = -dV/dr 

Here b Is the relative particle mobility which Is a function of 

separation. 

Under equilibrium the number density of particles 2 must be 

Boltzmann distributed 

N = Noo expC-V/CkT» (3.6) 

where Noo Is the number density of particles 2 at Infinite interparticle 

distance. Then the relative particle diffusion flux Is 

and the flux Induced by the conservative force F 

J F =-N bCdV/dr) (3.8) 

The hypothetical equilibrium situation CEq. 3.3) Is Invoked then to 

deduce from Eqs. 3.7 and 3.8 the relative particle dlffuslvlty 

which Is a function of Interparticle separation. Fol lowing Einstein 
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(1926) It Is now assumed that Eq. 3.9 Is valid even when the force F is 

removed. This Is only Justified If Inertial effects are Ignored so that 

the two fluxes become superposable (Batchelor, 1976). The relative 

mobility b can be computed from the exact solution of Stokes equations 

for two spheres moving along their line of centers obtained by Stimson 

and Jeffery (1926). Both the rotational motion, and the motion 

perpendicular to the line of centers of the particles, are Irrelevant 

when spherical particles are considered, since al I motions are then 

hydrodynamically uncoupled through Stokes' equations (Brenner,1964). 

The hydrodynamic force between two approaching particles determined 

from the I Inearlsed equations of motion becomes singular at zero 

separation. This unphysical behavior Is explained by the breakdown of 

continuum flow at distances of the order of the fluid molecular mean 

free path. Van der Waals' short range forces which diverge at particle 

contact can be considered to overcome this difficulty In the col Iision 

problem. 

3.b Van der Waals' Forces 

The attractive London-van der Waals' forces arise from the 

synchronized dipoles created by fluctuating charges In the electron 

clouds of the Interacting bodies. Hamaker (1937) assumed additivity of 

the pairwise Interactions of the constituent atoms and molecules and 

derived his wei I-known formula for the van der Waals' Interaction energy 

VA between spherical particles 



, 5 

(3. , 0) 

Here r Is the distance between particle centers and A Is the Hamaker 

constant. Schenkel and Kitchener (1960) Incorporated retardation 

effects In Hamaker's formula and recommended the best-fit approximation 

to their numerical integrations 

a < p < 0.57 

(3. " ) 

where p =2n h/a and a = AIr,; h is the dimensionless minimum 

distance between the particles, h=(r-rz-r, )/r, and A =100nm Is the 

London wave length; A Introduces another length In the problem, so the 

col I Islon efficiencies become a function of the absolute size of the 

particles. 

Langbein (1971) used Lifshitz's continuum theory which considers 

the bulk electrodynamic response of particle 1 to al I electrodynamic 

fluctuations In particle 2 (and vice versa) to obtain an expression for 

the van der Waals' potential which avoids al I approximations Inherent In 

Hamaker's expression. According to Lifshitz's theory the van der Waals' 

attractive energy A Is separated to three frequency regimes: 

ultraviolet, Infrared and microwave frequencies contribute to A, each 

one possessing a characteristic wavelenth (Parseglan and Nlgham, 1970). 

Electromagnetic retardation occurs when the Interparticle distance Is 

larger than the characteristic wavelength and Is due to the finite time 
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of propagation of electromagnetic waves which causes a phase difference 

between the fluctuating charges In the electron clouds of the 

Interacting particles. Langbein's (1971) solution Is In terms of a 

multiply Infinite series and Is difficult to evaluate. Smith et 

al. (1973) and Kiefer et al. (1978) compared Langbein's formulation with 

Hamaker's expression. They concluded that the latter represents wei I 

the ultraviolet and infrared contributions to the frequency spectrum; 

the microwave radiation Is represented poorly when the dielectric 

permlttlvlties of the particles and the medium are very different. This 

Is the case of solid particles In water where only the microwave 

contribution Is retarded (Smith et al., 1973). This suggests that 

Eq. 3.11, which accounts for the microwave retardation only, Is a good 

appoxlmatlon to Langbein's (1971) exact formulation provided that the 

Hamaker constant is determined experimentally or calculated from 

Lifshitz's theory (Zeichner and Schowalter, 1979). 

The generalized Smoluchowskl equation for the diffusing particles 

under the action of Interparticle conservative forces Is given by 

Spielman (1970) 

oN d· J 1 0 8t = - IV 12 = 72ar 
with boundary conditions 

N = 0 and V = - 00 

A 

N = N and V = 0 
00 A 

r 2 (. oN dV A)~ L D12 ar + Nb Ci""r~ 

when r = r +r 
1 2 

when r = 00 

The steady state solution of this equation gives the diffusive flux 

J12 of parti c I es 2 I nto a sphere of rad I us r1 +r2 



~ .;~) l (:,:) expG~) ~ 
1+2 

r 1 

(3.14) 

where 000 Is the relative particle diffusion coefficient in the absence 

of any Interparticle forces and s the dimensionless separation s=r/r1 • 

The col I Islon rate depends on the Integral of the particle Interactions 

over al I separations. A col I Islon efficiency can be defined 

as the enhancement of the col Iision rate over the col I islon rate In the 

absence of any Interactions between the particles. Eb(r1,r2) Is the 

Inverse of Fuchs' (1964) stab I I Ity factor. 

3.c. Col I Ision Efficiencies for Brownian Diffusion 

Accounting for Hydrodynamic and van der Waal~ Forces. 

The relative diffusion coefficients, 012 , were determined as a 

function of particle separation by summing the series solution to 

Stokes' equations obtained by Stimson and Jeffery (1926) (as corrected 

by Spielman, 1970). A single convergence criterion c=O.OOOl was used 

for each series, which were assumed to converge when the condition 

S Is the nth-partial sum of a series. 
n 

AI I the numerical calculations were performed to a precision of thirteen 

significant figures. For dimensionless separations s <0.001 the 

asymptotic formula 

(3.16) 
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developed by Brenner (1966) was used; this speeds up the calculations 

since the series converges slowly at smal I separations. The results 

(first obtained by Spielman) are shown in Figure 3.1. 

The integration in Eq. 3.15 was performed numerically using 

Simpson's formula. A successively decreasing integration step was used 

to account for the more rapid variatIon of the integrand with decreasing 

particle separation. The integration ranged over a dimensionless 

separation 10-6 <r/r
2

<500, where r
2 

is the larger of the two particles; 

extending the integration range did not alter the results. 

To assess the significance of retardation, both the retarded 

CEq. 3.11) and the unretarded CEq. 3.10) potential were used to compute 

col I ision efficiencies for particles of equal size and for various 

values of A/CkT). Figure 3.2 is a comparison between the unretarded and 

retarded potential for different values of the retardation parameter 

a • The curves col lapse for dimensionless separations s less than 

about 0.001; for larger Interparticle distances electromagnetic 

retardation reduces the attractive potential significantly. The curve 

for the retarded potential in Figure 3.2 approaches the curve for the 

unretarded potential as r
1 

decreases Cor as a increases); the limit 

a 7 00 corresponds to the unretarded case. (a =0.1 with A =100nm 

corresponds to a particle radius r 1 =l~m). 

In the calculations represented by the curves marked with W in 

Figure 3.3 hydrodynamic interactions are ignored; the curves marked 

with H represent col I ision efficiencies when both van der Waals' and 

hydrodynamic forces operate. Retardation assumes increasing importance 

as the van der Waals' energy of attraction increases. The hydrodynamic 

forces tend to dominate the col I ision process as the van der Waals' 
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Fig. 3.1. Normalised particle diffusivity vs. dimensionless particle separa­
tion. D12 is the relative diffusion coefficient of particles 
with radii r1 and r2 in Stokes' flow; Doo=D1+D2' where D1 and D2 
are the undisturbed particle diffusivities. 
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forces become of shorter range. 

The efficiencies computed with the un retarded potential for equal 

size particles agreed very wei I with Spielman's results; this provided 

a check for the validity of the calculations. 

The effect of the relative size of the Interacting particles on the 

collision efficiency when only van der Waals' forces are considered Is 

shown In Figure 3.4. For these and al I subsequently described 

calculations the retarded potential with a =0.1 Is used. The 

enhancement of the col I Is Ion rate decreases as the Interacting particles 

become of Increasingly different size. The computed efficiencies are 

lower than the ones calculated by Twomey (1977), who did not Include 

retardation, and are In agreement with the results obtained by 

Schmidt-Ott and Burtscher (1982). 

Hydrodynamic forces reduce the col I Islon efficiency of Interacting 

particles (Figures 3.5 and 3.6). The effect Is more pronounced for 

particles of similar size and for smal I A/(kT). This is Illustrated In 

Figure 3.6 where the reduction In the col I Is Ion efficiency due to 

hydrodynamic forces for different particle pairs and at various A/(kT) 

Is shown. EH stands for the col Iision efficiency when both 

hydrodynamic and van der Waals/forces operate; Ew is the col Iision 

efficiency when only van der Waals· forces act. The curves shown 

approach zero as the Interparticle attractive energy decreases. In the 

limit A ~ 0 col I Islons are theoretically impossible since In Stokes' 

flow the hydrodynamic repulsive force between the particles grows 

without bound as the particle separation decreases. 

Reported experimental col I Islon efficiencies range from 0.35 to 0.7 

for equal size particles (see Zeichner and Schowalter, 1979, for a 
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recent survey a result which accordIng to Figure 3.3 impl ies a maximum 

-19 value for the Hamaker constant of about 2·10 Joules (at 3000 K) for the 

retarded potential. According to Lyklema (1968) the Hamaker constant of 

-19 most hydrophobic colloids in water ranges from about 10 Joules to 
-22 

about 2·10 Joules corresponding to Hamaker groups (at 300 0 K) of about 

25 and 0.06 respectively (according to Stumm and Morgan (1981) A ranges 

from about 10- 19 Joules to 10- 21 Joules). According to Figure 3.3 these 

correspond to a col I ision efficiency of about 0.65 and 0.35 respectively 

(for the retarded potential), which are In the range of col I ision 

efficiencies determIned experimentally. 

Theoretical estimation of the van der Waals' attractive energy 

(Hamaker constant A) is carried out by Lifshitz's (1956) method. This 

requires knowledge of the frequency w dependent dielectric 

permittivities s(w) of the particles and the dispersive medium. Apart 

from the difficulty of estImating s(w) (Smith et al., 1973), it has 

been shown (Parsegian and Nigham, 1970) that considerable dumping of the 

microwave radiation takes place In dispersions of high ionic strength. 

This compl icates the theoretical determination of A and suggests that 

its experimental determination may be more promising for practical 

appl ications. Experimental determination of the col I Islon efficiency 

and subsequent estimation of the Hamaker constant Is carried out 

directly from optical data (Gregory, 1969) or indirectly in rapid 

coagulation experiments of monodisperse systems In which double layer 

forces are assumed to be negl igible. In the latter case the coagulation 

rate Is determined by means of the half-life of the dispersion assuming 

a monodlsperse system of particles (Zeichner and Schowalter, 1979). 

Then numerical calculations (or Figure 3.3) give the value of the 
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Hamaker constant. Large scale model ing via the General Dynamic Equation 

can be accompl ished then, since the col I ision efficiencies between 

particles of unl ike sizes can be obtained readily from Figure 3.5. 

3.d. Double Layer Forces 

Dispersed particles In natural waters carry an electric charge. 

Since the dispersion Is electrically neutral, the aqueous phase carries 

an equal charge of opposite sign. Close to the particle surface a 

compact layer of specifically adsorbed Ions Is formed (Stern layer). 

The outer (Gouy) layer consists of the excess of oppositely charged Ions 

(counter Ions) of the dispersing medium. According to the Gouy-Chapman 

model (Verwey and Overbeek, 1948) an equilibrium Is established In the 

outer (diffuse) layer between electrostatic forces and forces due to the 

thermal motion of the Ions. This causes the diffuse layer to extend 

outwards from the particle surface Into the solution, the concentration 

of counter Ions diminishing with distance. 

This local distribution of charges In an electrically neutral 

solution Induces double layer Interaction forces between approaching 

particles. Significant simplifications are needed In order to describe 

quantitatively the Interparticle double layer forces. A sufficiently 

dilute system of negatively charged spherical particles Is assumed so 

that only binary particle encounters are considered. The particles can 

have different sizes but carry the same charge. The realistic 

assumption of thin double layers and smal I surface potentials Is 

applicable to particles suspended In most natural waters (Lyklema, 



26 

1968). Then two types of particle encounters are subject to approximate 

analytical description: a) the particle surface potential remains 

constant during the interaction, and b) their surface charge density 

remains constant. According to the Gouy-Chapman model of the electrical 

double layer the electrostatic potential ~ (s) at any point around a 

spherical particle satisfies 

8TTcez 
E 

. h(ze~) sin 2kT (3.17) 

where s is the distance from the surface of the particle, z is the 

valence of the Ionic species In solution, e=1.6 1cr19 Cb, the charge of 

the electron, E the dielectric constant of the suspending medium 

(E=89'10-12 Cb/(Vcm) for water), c the number of Ion pairs (ions/cm 3 ), 

k=1.38·10- 23 VCb/oK Boltzmanns' constant and T the absolute temperature. 

The double layer surface charge density 0 Is related to ~ by 

0=- 4E (d~) (3.18) 
TT ds 5=0 

According to the Gouy-Chapman model Eq. 3.18 gives 

(
2 )1/2 

o = iT EkTc (ze~s=o) 5 j nh kT (3.19) 

Traditionally the constant potential assumption has been used to 

evaluate the double layer forces. Then the Debye-Huckel linearized form 

of Eq. 3.17 (Verwey and Overbeek, 1948), applicable to smal I potentials, 

can be used. The constant potential assumption Is equivalent to 

assuming equilibrium between the adsorbed Ions and the bulk solution 
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during the time of the Interparticle Interaction. Frens and Overbeek 

(1971) and Bel I and Peterson (1972) showed that the time scale of the 
-7 

Brownian Interaction between particles (of the order of 10 sec) Is too 

short for electrochemical equilibrium to be restored. Thus the surface 

charge density rather than the surface potential remains constant during 

the time scale of the Brownian Interaction. The particle surface 

potential Increases then Infinitely (Bel I and Peterson, 1972) as the 

Interparticle distance decreases Invalidating the convenient assumption 

of smal I potentials. This Increase In the surface potential causes the 

repulsion at smal I distances to be stronger at constant charge density 

than at constant potential. 

For thin double layers, symmetrical electrolytes (one electrolyte 

only with Ions of charge number +z and -z) and for dimensionless 

Interparticle separations KS greater than about 4 (where K-
1 Is the 

Debye-Huckel length, a measure of the double layer thickness) the linear 

superposition approximation to the diffuse layer Interaction between 

spheres obtained by Bel I et al.(1970) can be used. It Is assumed that 

the potential of one particle remains undisturbed due to the presence of 

the other. Then the Interparticle force f Is given by 

f (3.20) 

where r 1,r2 are the radii of the particles and r the center-te-center 

distance between them. The 'effective' reduced potential Y Is 

approximated by (Bel I et al., 1970) 

Y = 4tanh( <P /4) (3.21 ) 
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valid for K r > 10 and ¢ < 8. The reduced (dimensionless) potential 

¢ is given by 

¢ =ze If' /(kT) 
o (3.22) 

where If' is the surface potential of a single particle alone in the 
o 

fluid. Eq. 3.20 is equally val id for the constant surface potential and 

constant charge density case for large interparticle distances. The 

energy of interaction V of the two spherical particles at separation s 
p 

is then 

(3.23 ) 

At smal I separations Derjaguin's (1954) approximation can be used. 

It states that the double-layer force between a pair of spheres can be 

derived from the interaction energy of two flat double layers. Frens 

a and Overbeek (1971) obtained the Interaction energy V
F 

at constant 

surface charge density of two approaching flat double layers in terms of 

the interaction energy V~ at constant surface potential 

(3.24 ) 

Here ¢H is the reduced electrostatic potential half-way between the 

flat double layers. ¢H can be computed from the impl icit relation 

(Verwey and Overbeek, 1948) 

Ks ~ exp (- <P2H) !F(eXP(-<J>H), ~) 

-(F exp(-¢H)' arcs;n exp [-(0 -<PH)])l 

(3.25) 

where F(a, ¢) is the el I iptlc integral of the first kind. Hogg et al. 
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(1965) used Oerjagulnls approximation to obtain the potential energy 

v~ of two approaching flat double layers at constant surface potential 

vFq; = ~ [(q;2 + q;2 ) (1 - coth(KS)) + 21J1 q; /Sinh(KS)] 
on 01 02 01 02 

(3.26 ) 

valid for q; . < 25mv. Here q; and q; are the surface electrostatic 
01 01 02 

potentials of the undisturbed flat double layers. Given the surface 

charge density a of the particles, ¢ (or q; ) Is computed from Eq. 3.19; 
o 

Eqs. 3.25 and 3.26 give ¢H and vi respectively, so v~ can be computed 

from Eq. 3.24. The Interaction energy v~ between two spherical double 

layers at smal I separations Is then given In terms of the potential 

energy v~ of two flat double layers by 

(3.27) 

The electric potential drop q;d across the diffuse part of the 

double layer (Gouy layer) Is approximated customarily by the 

electrokinetic (zeta) potential q;s obtained from the electrophoretic 

mobility of the particle. The corresponding electrokinetic charge a Is s 
then approximately equal to the charge density ad In the diffuse layer. 

For thin double layers the latter Is set equal to the particle surface 

charge density a. 

Natural waters and wastewater are the dispersions of concern here. 

Water of Ionic strength (molarity) I Is treated as a monovalent 

symmetrical electrolyte with the same Ionic strength (Stumm and Morgan, 

1981). The double layer thickness K-
1 (ln cm) Is associated to I 
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according to (Stumm and Morgan, 1981) 

For natural waters and sea-water I is 0.01 and 0.65 respectively. 

K-
1 ranges typically from 5 to 20nm in fresh water and is about 0.4nm in 

sea-water (Stumm and Morgan, 1981). For simpl icity the interacting 

particles are assumed here to carry the same negative charge. This Is a 

first approximation to the wide spectrum of positively and negatively 

charged surfaces existing in natural waters. 

3.e. Col I islon Efficiencies of Spherical Particles in Brownian 

Diffusion Accounting for Hydrodynamic, van der Waals' and 

Double Layer Forces. 

The col I ision efficiency of spherical particles subject to Brownian 

diffusion and accounting for hydrodynamic, van der Waals' and double 

layer forces can be computed from Eq. 3.15. The interaction energy of 

two approaching particles Is the sum of the attractive van der Waals 

potential VA and the repulsive electrostatic potential V~ at constant 

surface charge 

v =V +V0 
PAR 

The sal lent features of the curve of the Interaction energy ~agalnst 

separation are shown In Figure 3.7. At smal I and large particle 

separations the van der Waals energy outweighs the repulsion. At 
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repulsion 
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~ V: energy barrier 

Fig. 3.7. Schematic illustration of the potential energy 
as a function of particle surface separation. 
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Intermediate separations the electrostatic repulsion predominates 

creating a maximum In the potential energy curve (energy barrier). This 

energy barrier reduces the coagulation rate between two particles and 

can even prevent them from col Ildlng. Since the col I Islon efficiency 

(Eq. 3.15) Involves Vp as an exponential factor the height of the energy 

barrier Is the most significant factor governing the behaviour of the 

col I Islon efficiency; the rest of the curve In Figure 3.7 Is of little 

Importance. 

For large dimensionless Interparticle distances KS, V~ Is 

determined from Eqs. 3.20 and 3.23. For smal I values of KS, Eq. 3.27 

Is used. The transition from Eq. 3.23 to 3.27 Is such that the curve of 

V
o 
R vs. KS Is as smooth as possible. The van der Waals' energy of 

attraction VA is given by Eq. 3.10. 

For the near-field computation the potential half-way between two 

approaching flat double layers Is needed (see Eqs. 3.24 and 3.25). The 

el I Iptlc Integral In Eq. 3.25 was numerically evaluated using Simpson's 

formula. The half-way potential ~H Is plotted In Figure 3.8 against the 

dimensionless double layer separation KS for five dimensionless 

undisturbed potentials In the range of Interest. A second-order 

polynomial can be fitted to the numerical results obtained from the 

Integration to an accuracy of better than 0.998; the resulting equation 

Is used In al I subsequent calculations. 

Figure 3.9 shows the effect of the van der Waals' energy of 

attraction on the col I Is Ion efficiency 'of the Interacting pairs. The 

Ionic strength 1=0.05 and both particles have the same (negative) 

dimensionless undisturbed surface potential ~ = 0.5. corresponding to a 

surface charge density 0=0.67 10- 6 Cb/cm 2 • The sequence of Figures 
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3.9, 3.10 and 3.11 Illustrate the effect of the Ionic strength on the 

col I Islon efficiency. The horizontal parts of the curves shown are 

Identical In the range of A/(6kT) they overlap. This Is the regime of 

'rapid' coagulation where the particle behavior Is not Influenced by 

electrostatic Interactions. The transition from kinetically stable (no 

significant change In the number density of the particles during the 

observation time) to unstable state of the dispersion shifts to smaller 

A/(6kT) as the Ionic strength of the solution Increases. The transition 

Is abrupt, so a quantitative criterion of coagulation (or stability) can 

exist. 

The rapid variation of the col I Islon efficiency with the van der 

Waals energy of attraction occurs In the 'slow' coagulation regime. 

According to Figures 3.9, 3.10 and 3.11 the transition from slow to 

rapid coagulation Is Independent of particle size. This Is consistent 

with experimental results (Ottewll I and Show, 1966) and theoretical 

calculations (Honig et al., 1971). Col I Islon efficiencies are very 

smal I here, so the dispersion Is stable for the time scales of most 

practical applications. The half-life time t~/2 In which the number N 

of particles In an initially monodisperse system Is reduced to one-half 

the original value by Brownian motion Is (Smoluchowskl, 1916) 

Here any particle Interactions are ignored (Eq. 3.30 Is approximate 

since only col I islons between primary particles of radius rare 

considered). The col I Islon efficiency as defined In Eq. 3.15 Is 

equivalent to 
(3.31) 
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where In t 1/2 hydrodynamic, van der Waals' and electrostatic Interactions 

between the particles are considered. For water at ambient temperature 

Eq. 3.30 reduces to (Verwey and Overbeek, 1948) 

(3.32) 

where N is the number of particles per cm 3 and tl/2 Is In seconds. 

The number density of particles In primary sewage sludge Is, for 

example, of order 10 9 cm- 3 (Falsst, 1976) corresponding to a half-life 

time of t1/2=Ee55 hrs. Natural waters have particle number densities of 

order lOs -10 7 cm- 3 (O'Mella, 1980). A collision efficiency smaller than 

0.001 Implies a stable dispersion for al I practical purposes. 

Consequently, only the transition from slow to rapid coagulation, given 

by the bend In the curves In Figures 3.9, 3.10 and 3.11 Is of Interest. 

For the computations presented the unretarded potential (Eq. 3.10) 

Is used. Practically there Is no change In the transition from slow to 

rapid coagulation when the retarded potential (Eq. 3.11) Is used. This 

Is so because the energy barrier for coagulation Is typically at a 

dimensionless particle separation of order 1 where retardation effects 

are not Important. 

Honig and Mull (1971) derived an expression for the critical 

electrolyte concentration at the onset of coagulation In a monodlsperse 

system of particles with constant charge surfaces. The transition from 

slow to rapid coagulation Is assumed to occur when the energy of 

Interaction Vp and its derivative with respect to Interparticle 

separation are both zero 
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VP=VA +V~ =0 

dVp/ds =0 

For particles of different sizes the analysis by Honig and Mull (1971) Is 

equally valid. At smal I separations s the van der Waals' energy of 

attraction between two spherical particles reduces to (Hamaker, 1937) 

The repulsive energy due to surface charge at smal I Interparticle 

distances Is obtained from Eq. 3.27. The conditions expressed by 

Eqs. 3.33 reduce then to 

and 

A 1 
b S -

and are Independent of particle size. Honig and Mul I (1971) solved 

Eqs. 3.35 and 3.36 numerically. For the smal I surface charges of 

Interest here their criterion for the onset of coagulation becomes (in 

our notation) 

:;: 2355 (3.37) 

- 2 6 
valid for Ao < 2·10 • In Eq. 3.37 N =6.03 ·1023 mole- 1 is Avogadro's 

v 

number. For water at 20°C Eq. 3.37 reduces to 

-6 
:;; 1.29 10 (3.38) 
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val id for Ao < 2 0 10-
26 (if this restriction is violated the plotted 

results of Honig and Mul I (1971) can be used); here the ionic strength 

is in moles/I iter (molarity), 0 in Cb/cm 2 and A in Joules. Any 

combination of I, 0 and A that do not satisfy Eq. 3.38 impl ies a stable 

dispersion for al I practical purposes. 

3.f. Summary 

The aim of the work described in Sections 3.a through 3.e has been 

to improve the col I islon rate given by Smoluchowski's (1916) classical 

theory for Brownian diffusion. The computed col I islon efficiencies take 

Into account hydrodynamic, van der Waals' and double layer Interactions 

between two approaching particles. 

The short-range van der Waals' potential and the long-range 

hydrodynamic forces tend to affect both the col I Islon rate and the 

functional dependence of the col Iision rate on the relative sizes of the 

interacting particles. For practical applications only rapid 

coagulation Is Important. Double layer forces determine the onset of 

coagulation. Once collisions occur, the coagulation rate Is determined 

solely from the relative mobility of the particles (modified to account 

for hydrodynamic forces) and the Hamaker constant. 

The col Iision efficiencies obtained above wll I be used next to 

provide support or otherwise for Hunt's (1980) dimensional arguments. 

In the form presented here, however, the col I Islon efficiencies can also 

be Incorporated into the General Dynamic Equation (GDE) to obtain 

realistic results In large-scale modeling. Table 2, where several 
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Table 2: Collision efficiencies for Brownian diffusion 

Retardation parameter a = 0.1 

Van der Waals' forces 

1 3 5 10 20 50 

1.0040 1. 0027 1. 0024 1.0022 1.0021 1.0021 

1. 0042 1. 0028 1.0028 1. 0023 1. 0022 1. 0021 

1. 0053 1. 0035 1. 0030 1. 0025 1.0023 1. 0021 

1.0098 1.0064 1.0040 1. 0037 1. 0029 1.0024 

1. 0248 1. 0157 1.0116 1. 0075 1. 0049 1. 0032 

1. 0691 1.0435 1. 0251 1. 0189 1. 0120 1. 0059 

1.1983 1.1255 1.0905 1.0540 1. 0300 1.0142 

Van der Waals' and hydrodynamic forces 

1 3 5 10 20 50 

0.2409 0.2971 0.3615 0.9810 0.6198 0.7875 

0.2791 0.3401 0.4079 0.5287 0.6620 0.8154 

0.3286 0.3931 0.4628 0.5824 0.7060 0.8425 

0.3867 0.4512 0.5207 0.6338 0.7468 0.8659 

0.4546 0.5150 0.5806 0.6841 0.7838 0.8862 

0.5477 0.5981 0.6562 0.7430 0.8245 0.9070 

0.7194 0./335 0.7700 0.8266 0.8796 0.9341 

100 

1.0020 

1.0020 

1.0020 

1. 0022 

1.0026 

1.0040 

1.0082 

100 

0.8763 

0.8936 

0.9101 

0.9237 

0.9354 

0.9471 

0.9620 
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Table 3. Approximations for collision efficiences in 
Brownian diffusion. Retardation parameter a = 0.1. 
(valid for 1 ~ r 2/r1 ~ 20) 

a + bx + cx 2 
, 

A/(kT) a b x 102 b x 10" 

10-'+ 0.20476 3.4380 -6.8101 

10- 3 0.24189 3.6450 -7.7214 

10-2 0.29092 3.7830 -8.5445 

10-1 0.35031 3.7367 -8.7799 

10 0 0.42068 3.5065 -8.4639 

10 0.51820 3.0145 -7.4242 

102 0.69756 1. 6075 -3.4718 
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computed col I Islon efficiencies are listed, and Figure 3.5 serve this 

purpose. In the latter the col Iision efficiency Is given as a function 

of the ratio of the radl I of the Interacting particles for various 

energies of attraction. The curves In Figure 3.5 are given In 

parametric form In Table 3. Interpolation can be used for Intermediate 

values of the Hamaker constant. Experimental Information on the Hamaker 

constant, the charge on the particles and the Ionic strength of the 

dispersive medium are then needed to predict the time evolution of the 

particle size distribution In a coagulating dispersion. 

3.g. Computer Simulation 

For Brownian Induced coagulation In the presence of van der Waals' 

forces and hydrodynamic Interactions, the functional dependence of the 

col Iision efficiency on the relative size of the Interacting particles 

(see Figure 3.5) suggests that the first assumption In the theory Is 

Invalid. 

The computer simUlation of Pearson et al. (1983) Is used to 

Investigate the dependence of the steady state size distribution on the 

externally Imposed conditions, In particular the particle size range 

covered In any computer run. The collision function S depends only on 

the relative size of the Interacting particles; the col Iision 

efficiency Eb depends both on the relative and the absolute size of the 

Interacting particles. The col Iision rate of particles ~ and r2 , per 

unit time and per volume V of fluid, under the Influence of hydrodynamic 

and van der Waals' forces can be set equal to the col I Islon rate of the 
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same number of non-Interacting particles t and t , per volume V
t 

of 
1 2 

fluid and per unit time 

(3.39) 

Solving Eq. 3.39 for t 2/t 1 we obtain 

-1 + ~ (1 + ~~y Eb 
2 r2 E1 

(3.40) 

where we have put V
t 

=E1'V; E1 is the col Iision efficiency for 

r 2 /r 1 =1 and Is Introduced so that Eq. 3.39 has real roots. For 

r 2/r 1=1 Eq. 3.40 gives t 2/t1=1. Thus, the col Iision rate In a 

monodlsperse non-Interacting system of particles, per volume V of fluid, 

Is equal to the col I Islon rate, per volume (V.E 1 ) of fluid, In a system 

of the same number of particles of equal size between which hydrodynamic 

and van der Waals' forces act (hereupon referred to as the realistic 

system). Eq. 3.40 maps the realistic system of particles of al I sizes 

onto a non-Interacting particle system; the latter Is simulated In the 

model and the evolution of the size distribution of the real istic system 

is fol lowed using Eq. 3.39. The method for generating the particle 

displacements at each step and updating their positions is described in 

detail in Pearson et al. (1983). The initial volume concentration of 

suspended particles used in the simulations ranges from 0.1% to 1%; 

such a high concentration is necessary in order to achieve results in 

reasonable computation times. 
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Figure 3.12 shows the time development of the normalised particle 

size distribution of a population of particles undergoing Brownian 

Induced coagulation. The suspension Is Initially monodlsperse and has a 

volume concentration of 0.57%. The curves shown are smoothed 

approximations to ensemble averages of actual data points from five 

simulation runs. The data In the smal I size range attain a slope of 

about -3/2 once particles ten-fold In volume are created. The level of 

the distribution declines then gradually until, after about 1200 

time-steps, a dynamic equilibrium Is reached; this occurs when the 

first large particle Is physically removed from the 'control' volume. 

AI I lengths in the computer model are non-dimensional ised with the 

radius of the unit particle and the time-scale used depends only on the 

magnitude of the diffusion coefficient of the unit particle. An aerosol 

particle of 1 ~m radius has a dlffuslvlty of about 

13 10-8 cm 2 /sec (Pruppacher and Klett, 1978). For a micron-size 

particle then, 1 sec of real time corresponds to about 15 time steps in 

the simulation. Similarly, for a particle of radius 0.1 ~m, 1 sec of 

real time Is equivalent to 264 time steps. Thus, for the volume 

concentrations used here the growth of the population of suspended 

particles examined Is very rapid. 

The series of simulation runs shown in Figures 3.13, 3.14 and 3.15 

illustrate the effect that the ratio v /v (i.e. the size range 
max 0 

covered by the simulation) has on the final steady state size 

distributions; v is the unit particle volume and v the volume of 
o max 

the largest particle al lowed to remain In the system. AI I simulation 

runs were started with a monodisperse population of particles. In al I 

figures three runs with v /v =27,125 and 512 are shown. The points 
max 0 
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plotted In Figure 3.13 are numerical data obtained by Pearson et al. who 

did not account for Interparticle forces. The data shown are averaged 

over 1000 time steps; this Is necessary because of the smal I number of 

particles Involved In the simulation (typically about 200 to 400 

particles). The data points, when non-dimensional Ised according to 

Eq. 1.2 and plotted logarithmically against particle volume 

(non-dimensional Ised with the unit particle volume), col lapse onto a 

slope of -3/2. 

Pearson et al., based on the results shown In Figure 3.13, suggest 

that the final steady state distribution of a system of particles 

undergoing Brownian coagulation Is Insensitive to the size range covered 

by the simulation. 

The next two fIgures show how the steady state size distribution Is 

modified when hydrodynamic and van der Waals' forces between the 

particles are considered. For the simulations In Figure 3.14 the 

Hamaker group A/(kT) is 1 and for those In Figure 3.15 It Is 0.01 (It 

thus covers the range of Hamaker constants found in natural waters). 

The data shown are averaged over 2000 time steps; because of the 

decreased coagulatIon rate the sIze dIstrIbution evolves slower, so a 

longer tIme average Is requIred to obtain meaningful results. AgaIn the 

data poInts when normalIsed accordIng to Eq. 1.2 exhibit the -3/2 power 

law. The level of the distributions as determined by the Intercept of 

the best fit line of slope -3/2 wIth the axIs v/v Is considerably above 
o 

the simulatIon runs of Pearson et al. ThIs Is shown In FIgure 3.16 

where the results of two computer sImulations at different A/(kT) are 

compared with the non-InteractIng system of Pearson et al., al I other 

parameters being the same. 
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At the upper end of the size range the results of al I three 

simulation runs In both Figures 3.14 and 3.15 are statistically 

identical. It seems that the constant addition of unit particles, which 

clearly cannot represent properly the creation of unit particles by 

coagulation of smaller ones, covers the Influence of v on the max 

smal lest particles of the simulation. For the largest part of the size 

range a consistent decline In level of the size distribution with 

Increasing vmax/vo occurs in both Figures 3.14 and 3.15. Contrary to 

the 'non-Interacting' particle system of Pearson et al. the size range 

Influences the final steady state size distribution. 

4. LAMINAR SHEAR 

Adler (1981) used the rigorous theory for the hydrodynamic 

Interaction of two unequal spheres in simple shear flow (Batchelor and 

Green, 1972, Arp and Mason, 1976) to correct Smoluchowski's (1917) 

expression for the col Iision rate of spherical particles with radii 

r1 and rzand number concentrations Nl and Nz' per unit volume of fluid. 

Adler's (1981) formulation for the col Iision rate Is 

(4.1) 

where Esh (r 1,rZ) Is Adler's (1981) correction factor (or col Iision 

efficiency) to Smoluchowskl's (1917) expression for the col Iision rate, 

which considers only binary particle encounters and assumes that 
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particles move on straight paths (recti I Inear approach). Geometrical 

exclusion determines the col I Islon cross-section of the two particles. 

Hydrodynamic forces Induce curvature In the particle trajectories which 

can be open or closed (Adler, 1981). Between the two kinds of 

trajectories a separation surface exists whose cross-section at Infinite 

Interparticle distance defines a 'curvilinear' col I Islon cross-section 

(Adler, 1981). In the absence of other forces the cross-section of the 

separation surface tends to zero at large distances (Batchelor and 

Green, 1972), the singular behavior of the interparticle hydrodynamic 

force In Stokes' flow at particle contact. When, In addition, van der 

Waals' or other external forces act between the particles a non-zero 

curvilinear cross-section may exist (Adler, 1981). 

The correction Esh (r 1,r2) to the recti I inear col Iision rate is 

equivalent to defining a curvilinear collision cross-section a 2 

(4.2) 

For two unequal spherical particles In simple shear flow In the presence 

of van der Waals' forces E (r,r) Is a function of the relative size 
sh 1 2 

of the Interacting particles and the dimensionless parameter 

H = AI ( 1 44 TI]J r; G) (4.2) 

where A Is the van der Waals' energy of attraction, G the rate of strain 

and r 2 the radius of the large particle. H represents the relative 

strength of the shear and the attractive van der Waals' forces. The 
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col Iision efficiency Esh (r1,r2) Is plotted In Figure 4.1 against the 

relative size of the Interacting particles for various values of H. 

Adler (1981) reports corrections to the recti I Inear col Iision rate for 

four different relative particle sizes r 2/r1=1, 2, 5, 10 and for H 
-2 -5 

ranging from 10 to 10 • Interpolation was used to obtain the 

col I ision rate corrections for Intermediate values of r 2/r1• Figure 

4.1 indicates that homocoagulatlon (coagulation between particles of 

simi lar size) Is favored over heterocoagulatlon. The first requirement 

for the existence of a quasi-stationary size distribution In a 

coagulating system of particles Is, thus, fulfil led. 

The computer simulation model of Pearson et a/. Is used to study 

the evolution of the size distribution of a coagulating population of 

particles subjected to laminar shear and accounting for van der Waals' 

forces. The correction to the curvilinear col Iision cross-section 

obtained from Eq. 4.2 Is used In the simulation to check for particle 

col I Islons. 

Figure 4.2 Illustrates the evolution In time of an Initially 

monodlsperse suspension of particles with an Initial volume 

concentration of 0.57% col Ildlng under the Influence of simple shear. 

The data of six simulation runs with Identical Initial conditions are 

averaged and normalised according to the dimensional arguments (see 

Eq. 1.3) to give the plotted curves. The temporal development of the 

size distribution fol lows a pattern similar to the Brownian system, that 

Is, the upper portion of the size spectrum attains a slope of -2 once a 

range of about one decade In volume Is reached. Notice that the size 

distribution approaches Its steady state value long before a dynamic 

equilibrium Is attained. If ~ represents an aerosol particle with 
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radius l~m, then the strain rate used corresponds to G=125sec- 1 and the 

time step to 1/125 seconds; If ro is set equivalent to a micron-size 

hydrosol particle, G=2sec- 1 and the time step corresponds to 0.5 

seconds. 

Figure 4.3 Is a comparison of the steady state size distribution of 

three coagulating populations of particles when the maximum size of 

particle, vmax ' al lowed to stay In the 'control' volume varies. For 
-2 

the three sets of data shown H=10 and v Iv =27,125 and 512. The max 0 

numerical results, non-dimensional ised according to Eq. 1.3 and averaged 

over 2000 time steps col lapse onto a slope of -2. The three populations 

of particles are statistically identical: the size range does not 

influence the final steady state size distribution. 

The effect of the hydrodynamic Interactions In decreasing the 

coagulation rate Is illustrated in Figure 4.4. The final steady state 

size distribution of two populations of particles at H=10- 2 and 10- 4 are 

compared with the non-interacting system of Pearson et al. The size 

distribution shifts upwards as the strength of the shear (I.e. rate of 

strain) decreases. 

5. DIFFERENTIAL SEDIMENTATION 

5.a. Hydrodynamic Interactions and Computer Simulation 

In contrast to Brownian diffusion and fluid shearing, differential 
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sedimentation induced coagulation Involves a physical property of the 
Pp - Pf particles: their density excess ratio, over that of the fluid. 

Pf 
Col I isions and subsequent coagulation may occur when larger or heavier 

particles overtake smaller ones. 

The presence of a particle moving with velocity u induces a 

velocity gradient of order ur/s2 at a distance s in the surrounding 

fluid (Batchelor, 1976). This velocity gradient modifies the trajectory 

of an approaching particle as if a force dipole were located at the 

position of the particle. The col I Islon rate, per unit volume of fluid 

and unit time, of particles with sizes r, and r 2 is given by the 

recti I inear col I Ision function for differential settl ing (Table 1) 

multlpl led by the number densities N, and N2 of the particles and the 

col I islon efficiency Eds (r"r2) 

Theoretical computations of the col I Islon efficiency are based on 

(5. , ) 

several assumptions (see Pruppacher and Klett, 1978) and yield 

approximately the same values for Eds as given by Eq. 5.2. Experimental 

difficulties have not al lowed verification of the computed col I Ision 

efficiencies in the laboratory, mainly because of the critical role 

which molecular or other short range forces play In coalescing two 

particles which are brought into contact by their relative motion (Tag, 

1974). Nelburger et al. (1974) obtained an analytic expression for 

theoretical col I ision efficiencies, computed assuming Stokes flow (with 

the sl ip-flow correction) and modified to be consistent with 
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experimental results: 

Eds E + El + E2 + E3 + E4 
0 

where E 0.95 - (0.7 - 0.005 r2)4 (7.92-0.12r2 +0.001 r~) 
0 

El = _ (~~ _ 0.5)2 

E2 -1.5 exP[-(0.001 5 r~+8) ~~J (5.2 ) 

E3 - (1 - O. 007 r 2) ex P [- 0 . 65 1 r 2 ( 1 - ~ ~ ) ] 

E4 I :XP[-30(1 - ~:)J 
r 2 < 20].lm 

= 
r 2 ~ 20].lm 

Eds Is plotted in Figure 5.2 as a function of the particle ratio 

p=rl/r2(r2> rl) for different rl. For fixed relative particle size the 

col I Islon efficiency Eds increases with increasing particle size since 

the deflecting hydrodynamic forces become less Important as particle 

Inertia Increases. For the same reason Eds decreases with p when p« 1, 

for fixed r 2• For p near unity 'wake' capture occurs when the two 

particles are large enough for Inertial effects to become appreciable. 

The coagulation process was simulated by Imposing on each spherical 

particle Its StokesO terminal settling velocity w 

val id for time scales greater than the particle viscous relaxation time 
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2 r2 
t = 9 \Y. AI I particles have the same density and are moving in a 

'control volume' of variable dimensions. Particles reaching the bottom 

are reintroduced at the top at a random cross-sectional position. This 

is necessary in order to prevent the simulation from becoming 

deterministic after a certain time: col I islons would cease after each 

particle had swept out Its own path through the control volume. 

Particles move in straight paths during the time step ~t. Eq. 5.1 

suggests that hydrodynamic interactions can be incorporated in the 

simulation by using an effective col I Islon cross-section 

to check for particle col I islons. Notice, however, that this 

formulation assumes that col I Islons between particles of equal size do 

not occur even when their col I Islon efficiency is non-zero, ignoring 

thus wake capture. 

The algorithm was verified using a non-coagulating version of the 

simulation with two particle sizes. The col I Islon rates computed from 

the simulation were In agreement with the prediction of the theoretical 

model (see Figure 6.1 in Section 6). 

An Initially monodlsperse system of spherical particles was 

subjected to gravity settling. Weak Brownian diffusion or weak fluid 

shearing operated at the same time to initiate the coagulation process. 

When uniform shearing motion u =G·x Is Imposed In the presence of 

settl lng, the particle crosses the stream I ines perpendicular to the 
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dIrectIon of the shearIng durIng the tIme step 6t. The partIcle 

dIsplacement Y(I) In any tIme step Is then 

Y(I) = (Y,(I),0,Y3(1» ~.6) 

Y,(I) = Go(P
3

(1)+0.5Y
3
(1»o6t, Y

3
(1) = (2/9)Kdsr 26t 

where P(I)=(P,(I),P2(1),P
3

(1» Is the posItion of the particle I at the 

begInnIng of the tIme step. It Is necessary to take Into account the 

'average' vertIcal posItion of the particle durIng any tIme step 6t to 

predIct correctly the collIsIon rates. 

5.b. SImulation Results 

Figure 5.2 shows the steady state sIze dIstributIons of two 

InItIally monodlsperse systems subjected to weak BrownIan motIon and 

weak laminar shearIng, respectIvely, and gravIty settlIng. HydrodynamIc 

InteractIons such as discussed in SectIons 3 and 4, are InItIally 

Ignored but wll I be dIscussed later. The sIze dIstrIbutions are 

col lapsed when non-dImensIonal ised according to Eq. 1.4 and plotted 

agaInst partIcle volume, non-dImensIonal Ised wIth the unit partIcle 

volume. A constant -13/6 slope lIne is drawn for comparIson. The data 

shown In FIgure 5.2 are results of the simulation averaged over 1600 

time steps. A long-tIme average is needed to reduce the scatterIng of 

the data at the long tall of the dIstributIon caused by the hIgh 

col I islon probability of the large particles. 

The next figure Illustrates how weak Brownian motion modifIes the 
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Fig. 5.2. Non-dimensional steady state particle size distributions for differ­
ential sedimentation and weak Brownian motion or weak laminar shear. 
Non-interacting suspensions. 0 Kds=50, G=2, V~125, r o=O.075, 
Dt=O.25, NA=l, r max=O.375; X Kds=50, Do=O.005, V=128, r o=O.075, 
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Fig. 5.3. Comparison of the steady state normalised size distribution for 
differential settling and Brownian motion with differential 
settling. Kds=50, r o=O.075, Dt=O.25, NA=l, r max=O.375; 
o Do=O; X Do~O.005. 
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size distribution at the smal I size range. The steady state size 

distribution of the population of particles subjected to weak Brownian 

motion and gravity settling (Figure 5.3) Is al lowed to evolve In the 

presence of settling only. The steady state size distribution attained 

and averaged over 1000 time-steps, Is compared with the Initial one In 

Figure 5.3. The numerical results are statistically identical In the 

largest part of the size spectrum. When only differential settling 

operates as a volume-transferring mechanism through the size spectrum, 

the shape of the size distribution near the smal I size range reflects 

the Ineffectiveness of differential settling to coagulate particles of 

similar size. Particles of equal size subjected to gravity settling do 

not col I Ide. However, since the flux of particle volume Into the size 

range from coagulation of particles smaller than v is represented in 
o 

the simulation by a constant addition of unit particles it is apparent 

that this scheme cannot represent properly the collisions of particles 

larger than v wIth particles smaller than v ; hence the awkwardly 
o 0 

high number of unit particles In the size dIstribution shown in FIgure 

5.3. 

Figures 5.4 and 5.5 show two stages In the development of the size 

distribution of an Initially monodisperse system of particles undergoing 

Brownian diffusion and settling. The relative strength of the two 

coagulation mechanisms can be assessed from the ratio of their 

respective rectilinear coil islon functions Sb and Sds (see Table 1) 

where p Is the particle radius non-dimensional ised with the radius roof 
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the unit particle and Do the diffuslvlty of the unit particle. The 

transition In dominance of the two mechanisms In the particle system 

shown in Figures 5.4 and 5.5 is at v/vo=24: the col Iision rates of 

particles of volume (24-vo ) with particles of volume Vo due to Brownian 

motion and differential settl ing are equal. Figure 5.4 shows the 

particle size distibutlon after 1200 time steps, only about 200 time 

steps before a steady state Is attained. The -3/2 and -13/6 slopes are 

clearly distinguishable, but the transition point Is shifted from 

vivo =24 Indicating that the Influence of the large particles undergoing 

differential settling Induced coagulation tends to propagate to smaller 

size ranges In the size spectrum. The statistically steady state 

attained Is shown In Figure 5.5, where the data points are averaged over 

3000 time steps. The dominance of differential settling Is evident. 

So far hydrodynamic Interactions were Ignored. We turn now to more 

realistic particle systems In which hydrodynamic forces between two 

approaching particles exist. The tIme-evolutIon of the normalised size 

distribution of an Initially mono-disperse suspension subjected to 

gravity settling and weak Brownian diffusion Is shown In Figure 5.6. 

The data of five simulation runs, for a r corresponding to an actual o 

particle radius of 40~m, are averaged and smoothed to give the curves 

shown. For a unit particle with radius 40~m and a density excess ratio 
Pp - Pf 
~----=0.1 the time step used In the simulation corresponds to about 

Pf 
0.05 seconds. The development pattern Is strikingly similar to the 

Brownian and shear systems, but the change In the number of unit 

particles Is more significant. This Indicates that large particles 

formed at progressively later times Influence significantly the particle 

size distribution at the smal I end of the spectrum. 
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The functional dependence of the effective col I Is Ion cross-section 

on r,(Figure 5.' ) suggests that the shape of the size distribution wll I 

depend on the absolute size of the particles. This Is Illustrated In 

Figure 5.7 where the normalised size distributions of two particle 

systems differing In the size of the unit particles are compared. The 

two sets of data correspond ,to actual unit particle sizes of 20~m and 

40~m, al I other parameters being equal. The plotted points are 

numerical data averaged over 1000 time steps and normalised as suggested 

by Eq. 1.4. Weak Brownian diffusion Is al lowed to operate In order to 

smooth the size distribution at the smaller particle size range. The 

smaller the size of the unit particles the steeper the final steady 

state size distribution becomes. In Figure 5.8 two 'Interacting' 

populations of particles with r =20~m and 80~m are compared with a 

'non-Interacting' system. Note that for the latter the absolute size of 

the particles Is irrelevant. The size distribution with r =80~m levels 
o 

off at v/v =15 where the cutoff In the respective efficiency curve 
o 

occurs (see Figure 5.1>. From Figures 5.7 and 5.8 we conclude that 

the slope of the size distribution of a coagulating system of suspended 

particles subjected to differential settling depends on the size of the 

particles. When the radius of the smal lest particles Involved In the 

simulation Is less than about 40~m, the steady state size distribution 

has a slope steeper than -13/6; In simulations with larger ro the size 

spectrum Is flatter. 

In simulations performed with ro less than 15~m a steady state size 

distribution was not attained. Irrespective of the shape of the Initial 

particle spectrum the number of unit particles In the control volume 

constantly Increased. This Is due to the shape of the efficiency curve 
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66 

for r 1 less than about 15~: col Iisions simply do not occur for 

particles close In size and widely different In size. However, for 

particles less than 15~ shearing motion Is more effective In Inducing 

collisions (Hunt, 1980). 

Simulations performed for a non-Interacting system of particles 

gave 

for the dimensionless constant Adsln Eq. 1.4. Hydrodynamic Interactions 

between the approaching particles steepen or flatten the steady state 

size distribution, depending on the particle size range considered. 

However, computational cost effectively prohibited the direct simulation 

of a more extended particle size range. The simulations performed 

therefore Involve overlapping sections of the size spectrum. The 

numerical results Indicate that the size dlstibutlon becomes the steeper 

the smaller the size of the particles considered; for unit particles 

smaller than about 15 ~m the computer model suggests that no steady 

state can exist as a result of the shape of the efficiency curve for 

such particles. Thus, no power-law expression of the form of Eq. 1.4 

with a unique exponent can represent the particle size distribution In 

the size range where differential settling dominates. Unl Ike shearing 

Induced coagulation (see Section 4) hydrodynamic Interactions cannot be 

Incorporated solely In the dimensionless coefficient Ads. 
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6. CONCLUSIONS AND DISCUSSION 

The direct simulation of the physical processes of particle 

col Iision and coalescence was undertaken In order to Investigate 

Friedlander's (1960a,b) and Hunt's (1980) theory regarding the existence 

of a quasi-stationary particle size distribution In aerosols and 

hydrosols. Observations In the atmosphere (Friedlander, 1960ab) and in 

oceanic waters and wastewater sludges (Hunt, 1980) and Hunt's 

experiments partly support the theory. The numerical simulations of 

Pearson, Val loul Is and List (1983) showed that, provided hydrodynamic 

and other Interparticle forces are Ignored, a population of coagulating 

particles can reach a state of dynamic equilibrium sustained by the flux 

of mass through the size space, when the col I Islon mechanism Is Brownian 

motion, simple shear or Isotropic turbulent shear. The steady state 

size distributions obtained by Pearson et al. were In agreement with 

Hunt's dimensional results. 

This study reexamined the kinetics of a population of coagulating 

particles accounting for the Influence of Interparticle forces on the 

col Iision rate. Such forces can arise from the disturbance the presence 

of the particle causes In the fluid (hydrodynamic forces), from the 

cloud of Ions which surround an electrically charged particle (double 

layer forces), or they can be of molecular origin (van der Waals' 

forces). These forces modify the trajectory of two approaching 

particles, Increasing or decreasing the probability of col I islon and 

subsequent coalescence. The significance of these Interactions for the 

validity of the theory lies In the functional dependence of the 
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col I Islon efficiency - which multiplies the recti I Inear col Iision rate 

and Incorporates the effect of al I Interparticle forces on the col Iision 

process - on the relative size of the Interacting particles. For 

underlying Hunt's dimensional arguments Is the notion that the 

coagulation process Is mainly 'local' In size space. 

For Brownian motion Induced coagulation col I Islon efficiencies were 

computed for two spherical particles of different size assuming Stokes' 

flow and taken Into account the attractive van der Waals' and the double 

layer forces. The latter are assumed dispersive, since suspended 

particles In natural waters usually carry a negative charge. The 

results suggest that double layer electrostatic forces determine the 

onset of coagulation, but, once col I Islons occur, the coagulation rate 

depends only on the hydrodynamic and the van der Waals' forces. The 

onset of coagulation Is abrupt, and so a quantitative criterion of 

stability was derived. The combined action of hydrodynamic and van der 

Waals' forces reduces the col I Islon rate of al I particle pairs, but It 

decreases the col Iision rate more between particles of similar size. As 

a result, contrary to the 'non-Interacting' system of Pearson et al., 

the simulations performed here showed that the size range covered 

Influences the final steady state size distribution. In Brownian 

diffusion the recti I Inear col I Islon rate Increases with the ratio of the 

Interacting particles; for the 'non-Interacting' system of Pearson et 

al. this effect Is counterbalanced by the relatively smal I number of 

large particles. Hydrodynamic and van der Waals' forces tend to reduce 

the col I Islon efficiency relatively more between particles of equal 

size. Col I Islons between particles widely different In size therefore 
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become Important In determining the evolution of the size distribution. 

The coagulation process Is no longer 'local' In size space, external 

parameters I Ike the particle size range do become Important and so 

dimensional analysis cannot be used to describe the development of the 

size distribution. 

Adler (1981) computed the col I Islon efficiency for two unequal 

spheres In simple shear flow under the action of van der Waals' 

attractive forces. For particles very different In size the col Iision 

rate Is negligible. As a result, the dynamic equl I Ibrlum obtained in 

the simulated population of coagulating particles does not depend on the 

size range considered. The power law expression for the steady state 

size distribution suggested by dimensional analysis is verified In the 

simulations, but the level of the equilibrium size distribution depends 

on the relative strength of the shear and the van der Waals' energy of 

attraction. 

Simulations for turbulent Induced coagulation were not performed. 

Pearson et al. showed that, for particles much smaller than the 

Kolmogorov mlcroscale, Isotropic turbulent shear Is equivalent In 

coagulating power to a recti linear laminar shear of magnitude 1.72 times 

the characteristic turbulent strain rate (E/V)l/~ Adler's (1981) 

col I Islon efficiencies then can be used for Isotropic turbulent shear 

Induced coagulation. The equivalence with the simple shear Is apparent 

and the same conclusions hold. 

The recti I Inear col I Islon function for differential sedimentation 

Induced coagulation was verified In this study using the non-coagulating 
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version of the model. This Is Illustrated In Figure 6.1 where the 

computed number of collisions, for several col I Islon mechanisms, Is 

plotted against the number of col Iisions predicted by the theoretical 

models. The data points shown are results from simulations Involving a 

variety of different situations, such as monodlsperse systems or 

suspensions with two particle sizes and systems with different densities 

and/or with different values of the dimensional parameters Kb ' G and 

Kds (which represent the strength of the col I Islon mechanisms). 

Simulations with a non-Interacting sedlmentlng population of particles 

gave steady state size distributions In agreement with the theory. 

Published col Iision efficiencies derived from theoretical computations 

assuming Stokes' flow and corrected to be consistent with experimental 

results (Nelburger et al., 1974) depend both on the relative and the 

absolute size of the Interacting particles. For large particles (larger 

than about 80~) the col Iision efficiency decreases as the particles 

become of Increasingly different size; for smaller particles col I Is Ions 

between both similar and widely different In size particles are 

unlikely. Equilibrium size distributions were obtained only In 

simulations where the smal lest particle In suspension was larger than 

about 15 ~m. The steady state size distributions attained by the 

coagulating particles had a slope varying about -13/6, which Is the 

slope predicted by dimensional arguments, and depending on the size 

range considered. Measured size distributions of particles In aerosols 

(Pruppacher and Klett, 1978, pg.212) and In sewage sludges (Falsst, 

1976) In the size range 10-10~m have a slope varying about -13/6. The 

larger slope of the size distribution has been attributed erroneously In 

the past to a 'settl lng' dominated regime where particles settle out of 
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the system. Settl lng, however, represents a spatially non-homogeneous 

mass flux (or volume flux, If the particle density Is assumed to remain 

constant after coalescence) which cannot be sustained unless another 

mechanism operates simultaneously to Input mass Into the volume of fluid 

under consideration. The results of the computer simulation help to 

explain both the steeper slopes of the particle size distributions 

observed and their variability. 

In conclusion, the results of the simulations suggest that a 

dynamic equilibrium, sustained by the flux of mass through the size 

spectrum, exists, but a power law expression of the form predicted by 

Hunt and Friedlander can be expected only in the shear Induced 

coagulation regime. The limited size range covered by the simulations 

did not al low confirmation or otherwise of the hypothesis that different 

col I Islon mechanisms act independently over separate regions of the size 

spectrum. The functional dependence of the col I Islon efficiency on the 

relative size of the sedlmentlng particles suggest that differential 

settling Induced coagulation does not Influence the smal I end of the 

size spectrum; and Brownian motion Is too weak as a coagulating 

mechanism to affect large particles. To further elucidate this point, 

Information Is needed on the Influence of hydrodynamic, van der Waals' 

and electrostatic forces on the col I Is Ion probabl I Ity of two particles 

when two or more of the col I Islon mechanisms examined here act 

simultaneously. 

The simulation described here can also be used to give Insight Into 

the spatial fluctuations in particle number and size which occur In a 
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real system. Such information cannot be obtained from the numerical 

solution of the General Dynamic Equation (GDE) which Is a determinisTic 

phenomenological equation and describes the behavior of the suspension 

averaged over some volume of fluid. Furthermore, there Is a good reason 

to question the suitability of the GDE to describe the evolution of a 

coagulating suspension. The GDE assumes a completely mixed system and 

Ignores correlations between the particles Induced by the coagulation 

process. For example, as particles of a given size In a region of fluid 

coagulate, a local reduction In their number occurs, so fewer particles 

of this size remain for further coalescence. If the suspension of 

particles Is poorly mixed or the number of particles Is smal I, then The 

average behavior of the suspension predicted by the GDE may not 

represent the true average of the local coalescence processes. 

Gillespie (1972) and Bayewltz et al. (1974) developed the ful I 

stochastic equation of the coalescence process and showed that the 

solution obtained from the GDE approaches the true stochastic average 

provided certain correlations are neglected and that coagulation between 

particles of equal size are unimportant. The computer model developed 

by Pearson et al. Is a direct simulation of the processes of col Iision 

and coalescence of particles and, as such, It accounts for al I 

correlations between particle properties. It does not only predlci the 

average spectrum, but It also gives Information on higher order moments 

of properties of the suspension. This Is Important since the size 

distribution predicted by the GDE wll I be valid when the standard 

deviation of the various properties of the suspension Is a smal I 

fraction of the mean. The Monte Carlo simulation thus provides a unique 

tool to evaluate the validity of the GDE to describe the dynamics of a 
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coagulating population of particles and such work Is In progress. The 

smal I number of particles which are employed In the simulation restricts 

Its application to smal I regions of the fluid. However, since the 

coagulation process Is mainly local, this may not be a serious defect. 

Ensemble averages over repeated runs can then represent the true 

stochastic average of the coagulation process In a larger fluid volume. 
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NOTATION 

a Correction for the curvilinear co! Iision cross-section In 
laminar shear. 

A Van der Waals' energy of attraction 

Ab Dimensionless constant for Brownian diffusion. 

Ash Dimensionless constant for shear. 

Ads Dimensionless constant for differential sedimentation. 

b Particle mobility 

c Number of Ion pairs 

D Diffuslvlty of unit size particle In the simulation 
o 

D. Dlffuslvlty of particle with radius ~ 
I I 

D. . Relative dlffuslvlty of particles I and j 
IJ 

e Electron charge 

E Particle volume flux through the size spectrum 

E b (r 1 ' r 2) Col I Islon efficiency of particles r, and r
2 

In Brownian 
diffusion. 

Esh(r 1,r
2

) Col I Islon efficiency of particles r, and r
2 

In shear. 

Ed (r1 ,r2 ) Collision efficiency of particles r
1 

and r
2 

In different I a I 
s sedimentation. 

f,F Interparticle forces 

g Gravitational acceleration 

G Rate of strain (strength of the shear) 

h Dimensionless particle separation, h=<r-r
2
-r1 )/r1 • 

H Dimensionless parameter for shear Induced col I Is Ions. 

Number of unit particles In a cluster of sIze v. In the 
sImulation. I 

IonIc strength 

J D Number densIty flux due to dIffusIon 

JF Number densIty flux due to a conservative force 

k Boltzmann's constant 



~s 

n(v) 

N 

r· I 

t· I 

T 

u 

v 

v· I 

v 

V~ 
F 
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z 
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NOTATION (continued) 

Brownian coagulation parameter 

DifferentIal sedImentation coagulation parameter 

Particle sIze dIstribution function 

Particle number density 

Number of particles added per time step In the simulation. 

Avogadro number 

Particle radIus 

PartIcle radius 

Absolute temperature 

RelatIve velocIty of particles 

Volume of partIcle 

Volume of cluster wIth I monomers In the sImulatIon 

Volume of unIt particle In the simulation 

Volume of particle with maxImum size In the simulation 

Fluid volume used In the sImulation 

PotentIal energy between particles 

Attractive potential between particles 

Electrostatic potential at constant surface charge between 
two flat double layers 

Electrostatic potentIal at constant surface potential 
between two flat double layers 

Electrostatic potential at constant surface charge between 
spherical particles 

Stokes' settling velocity of particle with volume v 

Valence of the Jonlc species In solution 
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NOTATION (continued) 

Greek letters 

a Dimensionless retardation parameter. 

S(r1,r2) Collision function for particles r1 and r2 • . 
Y Rate of extension In pure straining motion 

€ Turbulent energy dissipation rate per unit mass of fluid 

K- 1 Debye-Hucke I length 

A London wave-length 

~ Fluid dynamic viscosity 

~ Fluid kinematic viscosity 

Pf Fluid density 

Pp Particle density 

o Particle surface charge 

~,~ Dimensionless particle electrostatic potentials. 

W Frequency 



Adler, P.M. 1981 
Interf. Sci. 

78 

References 

Heterocoagulation In shear flow. 
83, 106-115. 

J. Colloid 

Arp, P.A. and Mason, S.G. 1976 
spheres in simple shear flow. 

Orthoklnetic col I Isions of hard 
Can. J. Chern. 54, 3769-3774. 

Batchelor, G.K. and Green, J.T. 1972 The hydrodynamic interactions 
of two smal I freely-moving spheres In a linear flow field. J. 
Fluid Mech. 56(2), 375-400. 

Batchelor, G.K. 1976 Brownian diffusion of particles with 
hydrodynamic Interactions. J. Fluid Mech. 74, 1-29. 

Bayewitz, M.H., Yershalmi, J., Katz, S. and Shlnnar, R. 1974 The 
extent of correlations In a stochastic coalescence process. J. 
Atmos. Sci. 31, 1604-1614. 

Bel I, G.M. and Peterson, G.C. 1972 Calculation of the electric 
double-layer force between unl Ike spheres. J. Interf. Sci. 41, 
542-566. 

Bel I, G.M., Levine, S. and McCartney, 
of determining the double-layer 
two charged colloidal spheres. 
335-359. 

L.N. 1970 Approximate methods 
free energy of Interaction between 
J. Colloid Interf. Sci. 33, 

Brenner, H. 1966 Hydrodynamic resistance of particles at smal I 
Reynolds numbers. Advan. Chern. Eng. 6, 287-438. 

Derjaguln, B.V. 1954 A theory of the heterocoagulatlon, Interaction 
and adhesion of dissimilar particles In solution of electrolysis. 
Discuss. Faraday Soc. 18, 85-98. 

Einstein, A. 1926 The Theory of the Brownian Movement. Dover 
Publications, New York. 

Falsst, W.K. 1976 Digested sewage sludge: characteristics of a 
residual and modeling for Its disposal In the ocean off Southern 
California. EQL Rep. No 13, California Inst. of Tech., 
Pasadena. 

Findhelsen, W. 1939 Zur Frage der Regentropfenbildung in relnem 
Wasserwolken. Meteor. Z. 56, 365-368. 

Frens G. and Overbeek, J.T.G. 
electrostatic colloids. 

1971 Repeptlzation and the theory of 
J. Colloid Interf. Sci. 38,376-387. 

Friedlander, S.K. 
aerosols. J. 

1960a On the particle size spectrum of atmospheriC 
Meteorol. 17, 373-374. 

Friedlander, S.K. 1960b Similarity considerations for the 
particle-size spectrum of a coagulating, sedlmentlng aerosol. J. 
Metereol. 17, 479-483. 



79 

Fuchs, N.A. 1964 The Mechanics of Aerosols. Pergamon Press, New 
York. 

Gillespie, D.T. 1975 An exact method for numerically simulating the 
stochastic coalescence process In a cloud. J. Atmos. Sci. 29. 
1977-1989. 

Gregory, J. 1969 The calculation of Hamaker constants. Adv. 
Colloid Interf. Sci. 2,396-417. 

Hamaker, H.C. 1937 The London-van der Waals' attraction between 
spherical particles. Physlca 4, 1058-1072. 

Hogg, R., Healy, T.W. and Fuerstenau, D.W. 1965 Mutual coagulation 
of colloidal dispersions. Trans. Faraday Soc. 18, 1638-1651. 

Honig, E.P., Roeberson, G.J. and Wiersema, D.H. 1971 Effect of 
hydrodynamic interaction on the coagulation rate of hydrophobic 
colloids. J. Colloid Interf. Sci. 36, No 1,97-109. 

Honig, E.P. and Mul I, P.M. 1971 Tables and equations of the diffuse 
double layer repulsion at constant potential and at constant 
charge. J. Colloid Interf. Sci. 36, No 2, 258-272. 

Hunt, J.R. 1980 Coagulation In continuous particle size 
distributions: theory and experimental verification. Report No. 
AC-5-80. W.M. Keck Lab. California Inst. of Tech., Pasadena. 

Jeffrey, D.J. 1981 Quasi-stationary approximations for the size 
distribution of aerosols. J. Atmos. Sci. 38,2440-2443. 

Kiefer, J.E., Parseglan, V.A. and Weiss, G.H. 1978 Some convenient 
bounds and approximations for the many body van der Waals' 
attraction between two spheres. J. Colloid Interf. Sci. 67, 
140-153. 

Langbein, D. 
spheres. 

1971 Non-retarded dispersion energy between macroscopic 
J. Phys. Chern. Sol Ids 32, 1657-1667. 

Lifshitz, E.M. 1956 
between sol Ids. 

The theory of molecular attractive forces 
Sov. Phys. JETP 2, 73-83. 

Lyklema. J. 1968 Principles of stability of lyophobic colloidal 
dispersions In non-aqueous media. Advan. Colloid Sci. 2, 65-114. 

Monln, A.S. and Yaglom A.M. 1975 Statistical Fluid Mechanics. Vol. 
2. Cambridge Mass., The MIT Press. 

Nelburger, M., Lee, I.Y., Lobi, E. and Rodriguez, L.Jr. 
1974 Computed col I Islon efficiencies and experimental 

collection efficiencies on cloud drops. Conference on Cloud 
Physics of the American Metereological Society, 73-78, Tucson, 
Arizona. 



0' Mella, C.R. 1980 
aquatic systems. 

Aquasols: 
Environ. 

80 

the behavior of smal I particles in 
Sci. Techn. 14, 9, 1052-1060. 

Ottew i I I, R. H. and Show, J. N. 1966 Stab I I i ty of monod I sperse 
polystyrene latex dispersions of various sizes. Disc. Faraday 
Soc. 42,154-163. 

Parseglan, V.A. and Nigham, B.W. 
Waal s' forces. Biophys. J. 

1970 Temperature dependent van der 
10, 664-674. 

Pearson, H.J., Valloul is, I.A. and List, E.J. 1983 Monte Carlo 
simulation of coagulation In discrete particle size distributions. 
Part I: Brownian motion and fluid shearing. J. Fluid Mech., In 
press. 

Pruppacher, H.R. and Klett, J.D. 1978 Microphysics of Clouds and 
Precipitation. Dordrecht, Hoi land, Reidel. 

Saffman, P.G. and Turner, J.S. 1956 On the col I islon of drops in 
turbulent clouds. J. Fluid Mech. 1, 16-30. 

Schenkel,J.H. and Kitchener, J.A. 1960 A test of the 
Derjaguin-Verwey-Overbeek theory with a colloidal suspension. 
Trans. Faraday Soc. 56, 161-173. 

Schmidt-Ott, A. and Burtscher, H. 
forces on aerosol coagulation. 
2, 353-357. 

1982 
J. 

The effect of van der Waals' 
Colloid Interf. Sci. 89, No 

Smith. D.L., Mitchel I, D.J. and Ninham, B.W. 1973 Deviations of the 
van der Waals' energy for two Interacting spheres from the 
predictions of Hamaker theory. J. Colloid Interf. Sci. 45, 
55-68. 

Smoluchowskl, M. 1916 Drel Vortrage uber Diffusion, brownsche 
Bewegung and Koagulatlon von Kol loldtellchen. Physik Z. 17, 
557-585. 

Smoluchowskl, M. 1917 Versuch elner mathematlschen Theorle der 
Koagulatlonskinetlc kol lolder Losungen. Z. Phys. Chem. 92, 
129. 

Spielman, A.L. 1970 Viscous Interactions In Brownian coagulation. 
J. Colloid Interf. Sci. 33,562-571. 

Stimson, M. and Jeffery, G.B. 1926 The motion of two spheres In a 
viscous fluid. Proc. Roy. Soc. London Sere A 111, 110-116. 

Stumm, W. and Morgan, J.J. 1981 Aquatic Chemistry. 
Wlley-Intersclence. 

Tag, P.M. 1974 The effect of utilizing empirically derived values of 
coalescence efficiency In a microphysical cloud model. Conference 
on Cloud and Physics of the American Metereologlcal Society, 
73-78, Tucson, Arizona. 



81 

Twomey, S. 1977 Atmospheric Aerosols. Elsevier, New York, N.Y. 

Verwey, E.J.W. and Overbeek, J.T.G. 1948 Theory of the Stabi I Ity of 
Lyophobic Colloids. Elsevier, New York, N.Y. 

Zeichner, G.R. and Schowalter, W.R. 1977 Use of trajectory 
analysis to study the stabi I Ity of colloidal dispersions in flow 
fields. AIChE J. 23, 243-254. 

Zeichner, G.R. and Schowalter, W.R. 1979 Effects of hydrodynamic 
and colloidal forces on the coagulation of dispersions. J. 
Colloid Interf. Sci. 71,237-253. 



82 

CHAPTER II: NUMERICAL SIMULATION OF A SEDIMENTATION BASIN 

1. INTRODUCTION 

l.a. Smal 1- and Large-Scale Model ing 

Direct simulation of particle coagulation processes In a natural 

system is not feasible with current computer technology. Instead~ we 

attempt to describe the col I Islons and coalescences of particles by 

continuum mathematical models~ trying to Incorporate into them the 

physics which determine particle behavior. However~ in the process of 

translating physical phenomena to mathematical language we are forced to 

make several approximations. Some of these are due to the 'translation' 

itself~ for Instance rendering the random process of coagulation 

deterministic. Others are a consequence of the limited aval labi I ity of 

computer resources and could be avoided if~ for example~ It were 

possible to decrease the computational mesh-size both in physical space 

and In particle size-space. Nevertheless~ mathematical models~ if 

careful Iy constructed~ can provide the Investigator with the essential 

features of the natural system~ thus becoming a valuable tool for design 

purposes. 

The Monte Carlo simulation of coagulation described In Chapter I 

gives Insight to smal I scale phenomena and extracts Information useful 

for application In large scale modeling. Such information (the 

col I islon functions) wll I be used here to develop a mathematical model 

for a sedimentation basin. The numerical model developed Incorporates 
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the basic kinetics of particle col I Islon and coagulation processes, 

Including floc break-up due to shear, and dccounts for transport 

processes such as particle advection and settl lng, turbulent mixing and 

particle resuspenslon. Experimental results available in the literature 

are used extensively in an attempt to Improve the real ism of the model. 

Some common fallacies with regard to the Influence of certain 

characteristics of the suspension (e.g. particle size-density 

relationship, particle col I Islon efficiencies) on the efficiency of the 

tank are revealed and the parameters which playa major role in the 

operation of a settling basin are pointed out. 

1.b. Historical Review 

Settling Is the most common unit treatment process In a wastewater 

treatment plant. Settling basins are used both as primary clarifiers to 

remove particulate matter and 011 drops and as secondary tanks fol lowing 

the activated sludge unit for biological floc removal. They are also 

used to settle the chemical floc in the chemical coagulation process. 

Camp (1945) presented In a compendium al I physical processes which 

are Important for the economic design of a settling tank. Later 

Investigators focused successfully on the experimental evaluation of 

some of the parameters Indicated by Camp, such as the design of Inlets 

and outlets and the optimum dimensions of the basin (see, for example, 

Ingersol I et al., 1956, and Kawamura, 1981). The Investigations on 

other physical processes, such as flocculation and the effect of the 

properties of the suspension upon It, or the scouring of deposits from 
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the bottom of the tank by turbulent eddies, although numerous, have been 

less successful in providing tools for design purposes, mainly because 

of the complexity of the mechanisms involved. Thus, most settl ing tanks 

are currently designed on the basis of detention times (circular tanks) 

and overflow rates (rectangular tanks). Pi lot units, or data from 

actual plants, are often used to develop relations between loading and 

performance. The significance of physical processes such as particle 

flocculation and resuspension is widely recognized, but they are not 

wei I understood and subsequently modeled, so that the successful design 

of a settl ing tank rei ies heavily on the experience of the engineer. 

However, the performance of tanks might be improved if different design 

and operation schemes could be evaluated by a numerical simulation which 

would include al I of the physical processes in the tank, such as 

turbulent mixing, particle settl ing, advection, coalescence, 

resuspension and deaggregation by turbulent shearing. 

Numerous mathematical and numerical models for the performance of 

settl ing tanks under steady and unsteady conditions have been developed 

(Alarie et al., 1980). Regression models (Tebbutt and Christoulas, 

1975) are empirical. They use data from operating tanks to derive a 

relationship between loading and effluent characteristics. Hydraul ic 

scale-models (Kawamura, 1981), if successful, are applicable only to the 

sedimentation basins they simulate. Dispersion models (EI-Baroudi, 

1969, Humphreys, 1975) are based on the solution of a two-dimensional 

diffusion equation obtained by Dobbins (1944) and Camp (1946) and use an 

experimentally determined longitudinal eddy dispersion coefficient to 

characterize the departure from plug flow In the tank. Mechanistic 

models (Shiba and Inoue, 1975, Alarie et al., 1980) assume a vertically 
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wei I-mixed settl ing basin and use a one-dimensional unsteady diffusion 

equation to predict the effluent qual ity under variable load. The 

physical configuration of the tank is taken Into account and the 

resuspension of sediment related empirically to the longitudinal 

dispersion coefficient. Ramaley et al. (1981) incorporated coagulation 

in simulating the settl ing basin in their numerical model for Integral 

water treatment plant design. Their model does not account for 

scouring, vertical turbulent transport and dispersion of mass through 

the tank, It assumes a constant density for al I particle sizes and uses 

a col I Islon efficiency of unity. Dick (1982) noted that the util ity of 

the Ramaley et al. model is I imlted because of the simpl ifications 

involved. 

Hazen's (1904) early theory predicts that al I particles with 

settl ing velocity greater than Q/A, where Q is the flow rate and A the 

surface area of the tank, are removed provided that the flow Is uniform, 

no short-circuiting currents or scouring occur, and particles of uniform 

density and shape settle discretely. In reality, inlets, outlets, wind 

and density differences Induce currents or create dead regions in the 

tank. High forward velocities near the bottom of the tank resuspend the 

deposits and reduce the efficiency of the basin. Regardless of surface 

loading coagulation Is essential in achieving high suspended sol Ids 

removal (Camp, 1945). Rigorous analysis of the performance of a 

settling basin must be based on the detai led spatial behavior of the 

fluid and the particles in the tank and take into account the 

fluid-particle and particle-particle interactions. 

The aim of this computer simulation of a rectangular settling basin 

Is to describe the spatial and temporal development of the particle size 
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distribution from the Influent towards the outlet of the tank. It is 

based on the fundamental mechanisms which govern particle motion and 

growth. The model accounts for the varlabi I ity of the flow-field and 

the particle size distribution in the tank and, from the local 

development of the particle size spectrum, predicts the overal I 

performance of the settl ing basin. 

2. FUNDAMENTAL MECHANISMS 

In this section we discuss the basic features of the model. 

2.a. Flow field 

Any empirical or observed velocity distribution In the tank can be 

Incorporated Into the model. However, for this analysis the logarithmic 

velocity profl Ie Is used to demonstrate the model capabil ities. We 

assume that the local mean longitudinal velocity through the tank is 

given by 

U .. /~ 
U = U +­

K 
(2. 1 ) 

where U is the cross-sectional mean velocity, u* Is the shear velocity, 

H Is the depth of the tank, u the time averaged velocity at the vertical 

coord I nate z, and K =0.38 I s von Karman's constant, reduced to account 
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for the suspended mass (Vanoni and Brooks, 1957). 
A 

The cross-sectional turbulent mixing coefficient E can be derived 

from the logarithmic velocity profile (Fischer et al., 1979) 

A 

E = (2.2) 

where it is assumed that particles have the same diffusive properties as 

the fluid momentum. Longitudinal turbulent mixing Is neglected because 

it is Insignificant when compared with the shear flow dispersion caused 

by the vertical velocity gradient (Fischer et al., 1979). 

An estimate of the rate of turbulent energy dissipation £, per 

unit mass of fluid, can be obtained from (Blackadar, 1962) 

(2.3) 

which agrees wei I with experimental results (Tennekes and Lumley, 1972). 

E Is needed In the col I Is Ion function for turbulent shear induced 

coagulation and for determining the maximum allowable floc size for a 

given shear strength. 

For the simulations performed and presented below typical values of 

the parameters defining the velocity field are as fol lows: 

u = 0.5 em/sec, 

u* = 0.05 em/sec, 
A 

E 1 • 9 em 2 / sec, 

E O. 25 • 1 0 - 4 em 2/ sec 3 • 
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2.b. Coagulation 

Particles in wastewater are classified as (Rudolfs and Balmat, 1952) 

settlable >100]Jm 

supracolloidal 

colloidal 

soluble 

In the absence of coagulation a settl ing basin operating at a detention 

time of practical interest wil I remove only the settlable and some of 

the supracolloidal particles. However, flocculation transfers mass 

through the particle size spectrum towards larger particle sizes with a 

subsequent increase in the removal efficiency of the tank. Thus 

particles in the size range traditionally referred to as suspended 

sol Ids (> 1 ~m) may be generated within the tank from coagulation of 

colloidal material. 

Brownian motion, fluid shear and differential settling cause 

relative motion of the particles through the fluid and bring them into 

close proximity. Short-range interfacial forces act then between the 

particles to bring about their coalescence. Analytic estimates of the 

probabll ity (col I ision function) B(ri,r j ) that two spherical particles of 

radii r. and r. in a unit volume of fluid will collide in unit time are 
I J 

shown in Table 4; B(r.,r.) represents the geometry and dynamics of the 
I J 

col I ision mechanisms. The col I ision efficiency E(~,~) reflects the 
I J 

influence of hydrodynamic and van der Waals' forces on the col I isfon 

probabi I ity of two approaching particles. 



Brownian Motion 

Turbulent Shear 

Differential Sedimentation 

Table 4 

Collision Function ~(ri,rj) 

2kT (r i +rj )2 
311 r

i 
r j Eb (r i ,rj )-41T(Di +Dj )(ri +r j )Eb (r i' r j ) 

3 (; ~ 
2.3(r i +r j ) (~) Esh(ri,r j ) 

O.7g(p -P ) 
p w 

11 
2 2. 2 

(ri+r j ) \ri-r j \EdS(ri,r j ) 

Source 

Smoluchowski 
(1916) 

Pearson, Valioulis and List 
(1983) 

Findheisen 
(1939) 

Collision functions for the three particle collision mechanisms considered. Values of ~ are for collision 
mechanisms acting individually. Eb' Esh and Eds express the influence of hydrodynamic and other interparticle 
forces on the collision process. 

Notation 

k - Boltzmann constant, T - absolute temperature, ri,rj - particle radii, 11 - coefficient of fluid viscosity, 

Di - particle diffusivity, (; - viscous dissipation rate per unit lnass, v - kinematic viscosity of fluid (-Il/P
f
), 

Pf - fluid density, Pp - particle density, g - acceleration of gravity. 

(Xl 

\.0 
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Publ ished work on E deals with interactions between hard spherical 

particles. For Brownian diffusion induced col I isions the best-fit 

approximation to the numerical calculations obtained from Table 3 can be 

used 

Eb(r.,r.) 
1 J (

r.) (r.\2 
= 0.4207 + 0.031 r~ - 0.0009 r~) , 

r. 
for _I < 20 

r ... 
J 

(2.4) 

r. 
Eb(r.,r.) 

1 J ( r . ) 1 0- 5 (rr

J

i.)2, 0.652 + 0.0055 r~ - 3.035 x for 20<-1 < 100 .... r ..... 
J 

where r. > r. and for A/(kT)=l; A is the van der Waals' energy of 
1 J 

attraction, k Boltzmann's constant and T the absolute temperature. For 

particle size ratios larger than 100, where rj =0.1 ~m is the minimum 

particle size considered here, Brownian diffusion is no longer important 

in inducing particle col I isions (Hunt, 1980). 

Adler (1981a)used Stokes' equations to compute the col I ision 

efficiency E h(r.,r.) for two unequal hard spheres in simple shear flow. 
S 1 J 

His results are a function of the ratio of the size of the interacting 

particles rj Irj , where r > r , and, either the van der Waals' energy 
j 

of attraction (Table 5), or the distance between the spheres at which 

col I ision is assumed to occur. The Monte Carlo simulation of the 

evolution of the particle size distribution by Pearson et al. (1983) 

showed that, for particles much smaller than the Kolmogorov microscale, 

isotropic turbulent shear is equivalent in coagulating power to a 

recti I inear laminar shear with a strain rate, G, of magnitude 1.72 times 
1/2 

the characteristic strain rate (s Iv) given by the rate of dissipation 

of turbulent kinetic energy, s , per unit mass of fluid and the fluid 



A 

l447T~r . 3 G 
1. 

10-2 

10- 3 

10- 4 

10- 5 
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Table 5 

Collision efficiencies Esh for hard spherical 

particles in laminar shear (Adler, 1981a) 

a+bx 8 
1+cx+dx2 

a b 

-1.189 0.118 

0.766 0.007 

0.145 -0.0006 

0.0017 -0.0001 

x 
r. 

1. 

r. 
J 

c 

-3.431 

-0.006 

-1.137 

-1. 442 

r. 3 r. 
1. J 

d 

0.331 

1.547 

0.775 

0.557 



92 

kinematic viscosity \!. In primary clarifiers, even at high forward 
1/2 

velocities, (E I\!) Is rarely larger than 10 sec- 1 (Camp, 1945); E Is 

then of order 10- 4 m2 /sec 3 and the Kolmogorov length mlcroscale 
1/4 

(\!3 IE) =3' 10- 4 m. This suggests the use of Adler's (1981a) results 
1/2 

with G=1.72 (E/\!) for turbulent shear Induced collisions between 

particles with sizes up to 100~m. For larger particles differential 

settling Induced coagulation becomes dominant. 

Nelburger et al. (1974) obtained an analytic expression for 

theoretical col I Ision efficiencies induced by differential sedimentation 

of hard spherical particles, computed assuming Stokes' flow (with the 

sl ip-flow correction) and modified to be consistent with experimental 

results 

Ed (r., r.) = 
5 I J (2.5) 

where EO = 0.95 - (0.7 - 0.005 r.)4(7.92 - 0.12 r. + 0.001 r .2 ) 
I I I 

El = 

E2 = 

E3 

C) 2 - r~ - 0.5 

- 1. 5 [ex p - ( 0 • 00 1 5 r.2 + 8) ~ ] 
I r. 

I 

- ( 1 - 0.007 r.) 
I 

exp [-0.65 

o when r. < 20 ~m 
I 

r. 
I (1 -~~)J 

exp[-30~ - ;~)J when r. ~ 20 ~m 
I 

where r. > r. and r. , r. are I n ~ m. Th is express I on can be used for 
I J I J 

r.>10 ~m. Davis (1972) computed col I ision efficiencies for two 
I 

spherical particles smaller than 10 ~m. His results suggest that 
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efficiencies for col I Islons between particles r. and r. such that 
I J 

r . < r . < 10 jJ mare essent I a I I Y equa I to those with r. < r. = 10 jJ m. 
J I J I 

In hydrosols only the smaller particles can be assumed nearly 

spherical. These particles coalesce and form loose aggregates rather 

than solid masses. The volume of the aggregate Is larger than the sum 

of the volumes of primary particles It contains due to inclusion of 

water. The size-density relationship and the structure of the flocs 

depend on their physical and chemical characteristics. This has 

Important Implications with regard to particle-particle and 

fluid-particle Interactions. Floc densities observed (Tambo and 

Watanabe, 1979, Dick, 1982), or computed numerically (VoId, 1963, 

Sutherland and Goodarz-Nia, 1971, Tambo and Watanabe, 1979), Indicate 

almost neutralfy buoyant flocs for sizes larger than about 100jJm. For 

this model particles smaller than 4 jJm are considered solid spheres with 

a density of 2650 kg/m 3. For larger particles the empirical 

size-density relationship proposed by Tambo and Watanabe (1979) Is used: 

p - p 
f w 

(200 

1.3 

) 0.9 r. 
I 

where P
f 

and P
w 

are the densities of the floc and the water, 

respectively. 

The very low aggregate densities are characteristic of particles 

(2.6) 

with an expanded structure. Sutherland's (1967) computer simulation of 

floc formation and observations under an electron microscope by Thiele 

and Levern (1965) revealed an open network of filaments joining denser 

regions. Col I Islons of such clusters creates a chain-like framework. 

VoId (1963) and Sutherland and Goodarz-Nla (1971) characterized their 
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numerically generated flocs by a core radius, where about 60% of the 

primary particles are contained, and by branches or tentacles with a 

mean length from 0.2 to 1 times the diameter of the core. Void (1963) 

suggested that coagulation of such particle formations can Involve only 

mechanical entanglement of their branches. 

The above discussion suggests that the col I Islon efficiencies for 

hard spheres can be used In the simulation of particles smaller than 

4 ~m but wll I underestimate the col Iision frequency between ·flocs. The 

Increased chances of col I Islons of such aggregates are accounted for In 

the simulation by assuming that they behave I Ike solid spheres with a 

20% larger effective coalescence radius. The col Iision rate of Brownian 

diffusion Induced col Iisions Is not altered by this assumption, since 

both the col Iision function and the efficiency depend only on the size 

ratio of the Interacting particles. For shear Induced col I Islons and 

for particles larger than 4 ~m, the best-fit approximation to Adler's 

(1981a) graphical results for the collision efficiency (assuming that 

coalescence occurs at Interparticle separation of 0.2r.) Is used 
I 

(r.) (r.)2 (r.)3 E h(r.,r.) = -0.4036 + 9.423 -1 - 17.214 -1 + 9.444-1 5 I J r. r. r. 
I I I 

where r. > r .• Hocking (1970) showed that the efficiency for 
I J 

differential settling Induced col I Islons Is a weak function of the 

(2.7) 

Interparticle separation at which coalescence Is assumed to occur. Thus 

the col I Islon efficiencies for hard spheres can be used. 

The open structure of the aggregate Indicates that flow stream I Ines 

wll I cross the aggregate. Smal I particles moving on these stream I Ines 

are likely to be captured by purely hydrodynamic effects. Adler (1981b) 
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computes the stream I Ines around a porous sphere of radius rand 

permeabi I Ity p. A reasonable approximation Is that, when the two 

approaching particles are very different in size, the flow field Is 

determined solely by the presence of the larger one. For such particle 

encounters Adler's (1981b)drainage cross-section, I.e. the 

cross-section at Infinity for stream I Ines which cross the aggregate, Is 

equivalent to the col I Islon cross-section of the particles. 

Using the argument advanced by Pearson, Val loul is and List (1983), 

Adler's (1981b)tabulated numerical results for simple laminar shear are 

used here for turbulence Induced coagulation. Adler's (1981) results 

are approximated with 

E h(r.,r.) = 1.1616 - 0.228 t;. + 0.0112 t;.2, 
5 I J 

where ~ = r.//p • 
I 

r »r. 
i J 

(2.8) 

For differential settling the col I Islon efficiencies for particles 

with large difference In size are computed from (Adler, 1981b) 

where 

Ed (r., r .) = 1 - ~ - ~ 
5 I J i;; z;; ~ , 

3 tanht;. 
t;. 

r. » r. 
I J 

a = ; [<' + 6<3 - ta~h< (3<' + 6<3)J 

For aggregates with high porosity the permeability p can be estimated 

from Brinkman's equation applicable to a cloud of spherical particles 
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(Sutherland and Tan, 1970) 

p = c
18

2 
(3 + _4_ - 3'~ - 3 ) 
\ 1-e Vl-e (2.10) 

where c is the radius of the primary particles (or denser regions) In 

the aggregate, assumed to be 1/20 of Its diameter, and e Its porosity 

computed from 

e = (2.11) 

where Pp Is the density of the primary particles (or denser formations) 

which compose the aggregate. 

The efficiencies given by Eqs. 2.8 and 2.9 have been used for 

particle encounters with relative size less than 0.1 and when the larger 

particle possesses a relative density lower than 2.65, that Is, It Is 

considered a floc. Col I Islon efficiencies of two porous spheres of 

comparable size do not appear to be known. Since such particles wll I 

Interact hydrodynamically as they approach each other, It Is assumed 

that the collision efficiencies of hard spheres (with the 20% Increased 

coalescence radius assumption) can be used. 

Summarizing, the fol lowing hypotheses are used here. with regard to 

particle dynamics: Particles smaller than 4 ~m are assumed to behave as 

solid spheres. Larger particles are considered flocs with reduced 

density and an amorphous shape which Increases the col Iision radius of 

the sphere equivalent In mass by 20%. The Increased chances of 

col I Islons between a porous aggregate and a floc or a solid particle are 

taken Into account only for encounters between particles with relative 

size less than 0.1. 
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For this simulation the col I Islon mechanisms are assumed additive, 

although this may not be strictly true (van de Ven and Mason 1977), and 

only binary particle encounters are assumed to occur. In most 

wastewater applications the Ionic strength of the suspension Is large 

enough that double-layer electrostatic forces do not influence the 

coagulation rate. 

2.c Particle size distribution 

The size distribution function n(d) of a population of coagulating 

particles Is defined by 

11N=n(d) 11d 

where 11 N I s the number of partl c I es with a diameter din the size 

Interval (d,d+ lid), per unit volume of fluid. Atmospheric aerosols 

(Friedlander, 1960) and hydrosols (Falsst, 1976) are found to exhibit 

the power law 

n ( d ) = ( !:. N/ !:. d) = A d - ex 

where the exponent a is a constant and the constant A depends on the 

total particle mass per unit volume of fluid. The surface 11S, volume 

11 V and mass 11 Q of particles In the size range 11 d, per unit volume of 

fluid, are then expressed as 

V 1T -0:+3 
!:. = A 6" d !:.d 

(2.12) 
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where the particle density p (d) Is In general a function of particle 

size as discussed In the previous section. 

In hydrosols a ranges from 2.5 to 5.6 (Hunt, 1980), and depends on 

one or more physical mechanisms which induce particle col Iisions. 

Lawler et al. (1980) stressed the significance of a for water qual ity: 

some pollutants are expressed as mass concentrations (suspended sol ids), 

some concentrate on surfaces (trace metals) and for others the total 

number is important (pathogenic organisms). 

2.d. Resuspenslon 

Strong fluid shear near the bottom of the tank results in 

resuspension of material previously deposited. Work on entrainment of 

sediments has focused on the determination of the critical conditions 

for the initiation of motion of the deposits (for an extended review see 

Vanonl, 1977). Individual particles resist resuspension by their weight 

whl Ie fine, cohesive sediments (incorporating fractions of silt or clay, 

for example) offer additional resistance to entrainment due to cohesive 

forces. It Is widely accepted that the critical shear stress for the 

Initiation of motion of noncohesive sediments can be obtained from 

Shields' curve (Vanonl, 1977). The critical velocity near the bottom 

Is, In general, an Increasing function of the grain size. 

Knowledge of the resuspension of cohesive sediments is primitive. 

Experimental data for the critical conditions for the entrainment of 

cohesive sediments is not consistent, mainly because the cohesive forces 

depend on fac~ors such as shear strength, minerai content, plasticity 
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and electrochemical condition of the deposits. Results of several 

experimental studies suggest that cohesive sediments exhibit increasing 

resistance to erosion with decreasing grain size (Vanonl, 1977). 

For the simulation model the resuspension flux of the deposits Is 

needed. To the knowledge cf the author, published information o~ the 

amount of entrained material from cohesive or noncohesive purpose of 

testing the sensitivity of the results to scouring, a reduced deposition 

mass flux per unit volume of fluid Is defined 

deposition mass flux = -wp(l-s) Qp (2.13) 

where wp is the Stokes' settling velocity of particles with mass 

concentration Qp and s Is a scouring parameter. For s=O only deposition 

takes p I ace; for 0 < s < 1 part I a I scour I ng occurs; s=l Imp II es that 

deposition is balanced by scouring; s> 1 implies that scouring 

dominates. For a typical simulation run a value of s=0.15 was chosen; 

this value of s agrees wei I with the experimental results of Takamatsu 

et al. (1974) In a model settling tank. In addition, simulation runs 

with s=O, s=0.4 and s=0.8 were performed. 

2.e. Floc break-up 

Strong local fluid shear may cause the aggregates to break up. The 

effect Is more Important In the flocculation basin which often precedes 

the settling tank, but can be significant In regions of the clarifier 

where turbulence levels are high. 
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Two floc break-up mechanisms are distinguished (Parker et al., 

1972): Inorganic flocs tend to disintegrate due to surface erosion; In 

organic flocs the polymer bridge holding primary particles on the floc 

surface breaks when the shear strength of the polymer bridge is exceeded 

(filament fracture). Parker et al. (1972) obtained experimental 

relationships between the maximum size of the aggregate and the local 

shear. For inorganic flocs they found 

ferric floc: r max 

alum floc: r max 

100~m < r < 15,000 ~m max 

1 5 ~m < r < 250 ~m max 

and for conventionel ectivated sludge flocs 

r 
max 

1/2 

2,250 
GO. 35 ' 

400 ~m < r < 1 ,000 ~m max 

where G=( € / \!) and r is in ~m. max 

3. THE COMPUTER !vl0DEL 

(2.14) 

(2.15) 

For the purpose of modeling these processes a settling tank is 

segmented ihto k equal rectangular cel Is with length x and height z 

(Figure 3.1). The flow field and the size distribution of the particles 

are assumed uniform across the width of the tank and the suspension Is 

spatially homogeneous within each cel I. The continuous particle size 

(radius) spectrum Is divided Into q logarithmically equal spaced 
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sections within each of which the mass concentration of particles is 

constant (Gelbard and Selnfeld, 1980). This procedure reduces the 

number of conservation equations to be Integrated ard renders the 

problem tractable for computer solution. 

The discrete conserveticn equation fer the development of the 

particle size distribution in any cel I k=(m,n) at time t is 

dQ 
.£,m,n 
dt 

- Q 
£, 

-

q 

L: 
i=£+l 

+ S £,m,n+1 

- S £"m,n 

4-
6. n 

I , >c 

....L um- 1 n Qn 1 "T , )",m- ,n 
x 

1 b-
+ 6 .. 

I ,J ,.£ 
Q.Q.) 

I J 

Q.] 
I m,n 

u Q m,n £"m,n 
x 

(1 ) 

(2 ) 

(4) 

(6) 

Q - Q Q - - Q 
+ E t,m,n+1 £,m,n + E £,m,n 1 £,m,n (8) 

n,n+1 z2 n-1,n Z2 

(3. 1 ) 
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Fig. 3.1. Schematic diagram of tank partition. 
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Fig. 3.2. Numerical diffusion. The removal efficiencies for a 
non-coagulating suspension are compared with the 
predictions of Hazen's theory. 
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Table 6 

Sectional Coagulation Coefficients with Geometric Constraint (v i+l ~ 2v i' i - 0,1,2, ••• q-l) 

Symbol 

la- Ib-
Bi ,t-l,,\, ~ S£_I,i,£ 

Ib- la-
(\,£_1,£ = S£_l,i,£. 

2a- la-
l:I i ,£ = 8 i ,£,£+1 

3- 21a-S K B £,£ £,£,£+1 

Remarks 

i < £. - 1 
j < £. - 1 

1 < £ ~ q 
i < £. - 1 

1 < £ ~ q 
1 ~ i < £ 

1 < £~ q 
1 ~ i < £. 

1 ~ £~ q 

l~ £. < q 

+ 

(X X_1 

Jf(v -v) 
£-1 

l X£-l 

f(v -v) £-1 

LXi (x. 

X Jf(: -v) 
i-I ,\, 

Coefficient 

o 

uS(u,v) 

_--,--,u",B:::..(""u:2''-'v..;:)_.,....". 
2 dydx 

uV(X£_l - X£_2) 

uB(u,v) dydx 
uV(X

i 
- Xi_I) (x£ - x£_l) 

vB(u,v) dydx 
uv(x

i 
- x i _

1
)(x£ - x,\,_I) 

where xi - logv - f(v
i
), u

i 
- exp(y

i
), vi - exp(xi ) and u, v denote particle mass per unit 

volume of fluid, B(u,v) is the collision function obtained from Table I and w(v) is the 
Stokes' settling velocity of particles with mass concentration v. 

*adapted from Gel bard and Seinfeld (1980) 



104 

where m and n denote, respectively, the horizontal and vertical index of 

the cel I and are subscripts to al I variables in the square brackets. 

Qo is the concentration of the suspension in section £ in cel I 
'l,m,n 

(m, n) • The 
2a-

S. n , 
I,N 

coagulation coefficients 
2b- 3- 4-

S. n' Sn n' S. n I,N N,N I,N 

1a- 1b-
B. . n , B.. n 
I, J ,N I, J ,N 

and settling coefficient 

Sn are listed in Table 6. E is the vertical turbulent mixing 
N n, n+1 

coefficient for the exchange of momentum and mass between cel Is (m,n) 

and (m,n+1) and is computed on the I ine separating the two cel Is. 

u Is the horizontal velocity assigned to the cel I (m,n), calculated m,n 

at its center. 

Term (1) represents the flux of mass into section £ by coagulation 

of particles from lower sections (i.e. particles of smaller size). 

Term (2) accounts for the loss of mass from section £ when a particle 

In section £ coagu I ates with a partl c I e from lower secti ons. Term (3) 

represents the loss of mass from section £ due to intrasectional 

coagulation and term (4) the loss of mass from section £ when a 

parti c I e from section £ coagu I ates with a partl cl e from a higher 

section. Terms (5) and (6) represent, respectively, gain and loss of 

mass for the cel I (m,n) resulting from particles sedimenting at their 
2 Pf-Pw 

Stokes' sett I I ng ve I oc I ty w="'9 9 )l r 2. Terms (7) correspond to the 

advectlve transfer of mass and terms (8) to the turbulent transport of 

mass from cell to cell. 

The accumulation of particle mass per unit area at the bottom of 

the tank Is obtained from 

dQ~ 
x,. m, 1 
dt 

= (1 - 5) QO 
£"m,l 

S 
£',m,l 

where QO 1 Is the deposited mass per unit volume of fluid In section 
£,m, 
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£ from cel I (m,l). Thus the computer model predicts the particle size 

distribution in the deposits and the thickness of the sludge blanket 

along the length of the tank. For simpl iCity it is assumed that The 

tank volume does not change due to sludge accumulation throughout the 

calculations. 

Due to coagulation particles may exceed the maximum size al lowed by 

the local shear. Their mass Is then distributed equally among the 

smaller size fractions. 

Incoming particles of a given size distribution can be introduced 

selectively at any height. Particles reaching the end of the tank are 

removed In the effluent from one or more cel Is. 

The basis of the computer program is the MAEROS code developed by 

Gelbard (1982) at Sandia National Laboratories. This code simulaTes the 

evolution of the size distribution of a multicomponent aerosol in a 

completely mixed air chamber. The code is adapted here to water 

suspensions and modified to Incorporate the spatial Inhomogeneity of the 

tank and the exchange of particle mass and fluid volume between the 

cel Is. 

For k cel Is and q sections a system of kxq first-order ordinary 

differential equations results. The Runge-Kutta-Fehlberg (4,5) 

Integration routine that MAEROS uses proved to be Inefficient, because 

the Introduction of convective and turbulent mass fluxes renders the 

system of equations stiff. Instead, Gear's (1971) modification of 

Adams's multistep variable order predictor-corrector method is used. 

Gear's (1971) method uses information from previous steps to predict the 

derivative functions and extrapolate them Into the next Interval, 

therefore al lowing a larger step size. 
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The geometr i c constra I nt vi + 1 > 2 vi (I =0,1, •••• q-1 ), where v i Is 

the upper limit of section I, Is imposed in the code on the 

sectional Ization of particle mass, thus minimizing the number of 

sectional coefficients to be computed (Gelbard et al., 1980). The 

latter depend on the section boundaries, the col I ision function 

S(r.,r.) and the physical dimensions of the cel Is. Normally 15 sections 
J J 

are used covering the particle size range from 10- 7m to 10- 3 m. The 

higher size range contains insignificant mass throughout the 

calculations, so the particle mass Is essentially conserved. 

From the three coagulation mechanisms listed In Table 4 only shear 

Induced particle col I Islons are influenced by the flow. For the cel Is 

where turbulent shear induced col I isions are comparatively unimportant, 

the same sectional coefficients are used, thus reducing the 

computational work. 

The abil ity of the computer model to reproduce the actual operating 

characteristics of a settl ing basin depends on the mesh size used, both 

In the physical space and In the particle size-space. A finite cel I 

size Introduces an artificial mixing In the tank. Increased vertical 

and reduced longitudinal mixing enhance the settling rate. The 

selection of the number of cel Is and particle size sections represents a 

compromise between accuracy and computational cost. 18 cel Is (3 rows 

and 6 columns) and 15 particle size sections are used, thus a total of 

270 ordinary differential equations are Integrated simultaneously 

requiring about 12 minutes of Central Processor Unit (CPU) time on an 

IBM 370/3032 computer for 5 hrs of settl ing. The numerical diffusion is 

evaluated by passing a non-coagulating suspension through the basin. 

Particles enter the tank uniformly distributed with height and are 
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subjected to a uniform velocity field. The removal efficiencies 

obtained under steady state operation are compared In Figure 3.2 with 

the ones obtained when a logarithmic velocity profi Ie is used and with 

the predictions of Hazen's (1904) theory. The plotted data points 

represent the removal efficiencies of the 15 particle size sections used 

In the simulation. It is seen that both numerical diffusion and flow 

induced mixing cause some suspended particles, which would have settled 

according to Hazen's theory, to be carried in the effluent. Numerical 

diffusion influences strongly the removal of particles in the size range 

50~m to 100~mi for smaller or larger particles dispersion and turbulent 

mixing are more Important. 

Mixing coeflclents In sedimentation tanks depend also on parameters 

which are not considered here, such as density currents, high inlet 

velocities, three-dimensional effects and sludge removal facilities. 

AI I these mechanisms Increase the mixing in the tank, so that the 

dispersion and vertical mixing caused by the logarithmic velocity 

profile represents a lower bound to the actual dispersion 

characteristics of the tank. In the fol lowing sections we use the mesh 

size described above to Illustrate the capabilities of the computer 

model developed, being aware of the additional mixing caused by 

numerical diffusion and regarding It as if It were due to the 

aforementioned mechanisms. However, In order to reproduce the 

characteristics of an operating settling tank with known mixing 

coefficients a finer mesh size both In physical and In particle size 

space Is needed. 
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4. SENSITIVITY ANALYSIS 

A standard wastewater treatment plant with parameters 

representative of treatment practice (Table 7) is selected to illustrate 

the capabl I Itles of the model. A logarithmic velocity profile is 

assumed. The influent pa~ticle mass flux Is proportional to the 

influent fluid flux. Particles are removed as deposits when they reach 

the bottom of the tank, or as effluent from al I three cel Is at the end 

of the basin. Suspended sol Ids, as traditionally defined, Include al I 

particles with diameters larger than 1ym; colloidal particles range in 

size from O.lym to 1ym. 

It is common practice to evaluate the performance of a settling 

tank by the fraction Rss of suspended sol Ids removed; this is because 

In the field suspended sol Ids analysis only captures particles larger 

than 1ym. This Is only one measure of tank efficiency since the 

effectiveness of the settling process depends on how the mass Is 

distributed In size-space. Rss Is reported here for al I cases examined 

together with the total sol Ids removal efficiency RTS • The relative 

magnitude of RSS and RTS Indicates the Importance of flocculation In 

transferring particle mass from the colloidal particle size range 

( <1 ym) to the suspended size range (>1 ym). 

Sensitivity analysis Is performed to determine the Influence of 

selective variables on the steady state plant performance. For the 

standard plant steady state operation Is reached after about 5 hrs of 

constant Inflow. In Section 11.6 the dynamic response of the 

sedimentation basin to a temporally variable flow rate and concentration 

of Inflow Is examined. 



TABLE 7 

Characteristics of the tank configuration, flow conditions 
and the influent suspensions used in the simulation 

Raw Water 

Suspension A 

Suspension B 

Suspension C 

Suspension D 

Standard Plant 

depth 

length 

detention time 

4 m 

40 m 

2 hrs 

overflow rate 48 m3 /m 2-day 

Influent Suspensions 

Total Solids Concentration Slope parameter a 

400 mg/£ 4 

400 mg/£ 4 

200 mg/£ 4 

400 mg/£ 3 

t Density 

variable§ 

constant 

variable 

variable 

t The size distribution function ned) of the influent suspension follows the 
power law ned) = (6.N/6.d) =A.d-a , where 6.N is the number of particles with a 
diameter in the size range 6.d, per unit volume of fluid, the exponent a is 
a constant and the constant A depends on the influent mass concentration. 

§The relationship proposed by Tambo and Watanabe (1979) is used: Pf-P = 1.3 
w (l00d)o.9 

where P f and ~)w are the densities of the floc and the water, respectively. 

0 
I..D 
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The output of the computer program is a histogram in particle size 

space. The curves of mass and number concentration against parTicle 

size shown In the fol lowing paragraphs are best-fit approximations to 

the histograms. The geometric mean of the diameters which define the 

size section Is taken as the representative diameter of the secTion. 

5. STEADY STATE OPERATION 

5.a. Constant/Variable Particle Density 

The effluent particle size distribution of two suspensions, one 

fol lowing the size-density relationship of Tambo and Watanabe (1979) 

(suspension A, standard case), and one with a constant particle density 

of 2000 kg/m 3 for al I particles sizes (suspension B) are compared In 

Figures 5.1 and 5.2. The curves are best-fit approximations to the 

results of the simulation. For both suspensions the efficiencies for 

col I Islons between flocs are used. The Influent size distribution has a 

slope parameter of a=4 which gives the same influent number size 

distribution but different Influent mass distributions. The sol Ids 

removal efficiencies are Rrs =61% and Rss =44% for the variable density 

suspension and Rrs =53% and RSS =45% for the constant density 

suspension. Large particles (larger than 20 ~m) are removed less 

effectively in the case of the variable density suspension because of 

their reduced density. Their presence, however, Increases the 

coagulation rate and the transfer of mass towards larger size sections. 

As a result, the number of particles in the size fraction 0.5 ~m to 
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20 ~m remaining In the effluent is lower for the variable density 

suspension and the overal I mass removal efficiency higher. However, 

note that in-field suspended sol Ids analysis would, contrary to this 

result, indicate a better tank performance when the constant density 

suspension is treated. 

The development of the mass size distribution of suspensions A and 

B along the tank, averaged over Its cross-section, is shown in Figure 

5.3. Two distinctive peaks in both mass size distributions develop near 

the particle sizes 0.5 ~m and 10 ~m. The constant density suspension 

loses al I particles larger than 10 ~m by the time It reaches the 

midpoint of the tank but coagulation recreates such particles near the 

end of the basin. This Is further illustrated In Figure 5.4 where the 

total mass (per unit width) deposited along the tank during the 2 hrs 

detention time under steady state conditions Is shown. For both 

suspensions most of the removal takes place In the first quarter of the 

tank length. Depletion of the large particles In suspension reduces the 

deposition rate of the constant density suspension near the middle of 

the tank and some time Is required before settlable particles are 

created and precipitated. In contrast, a sludge blanket of decreasing 

thickness accumulates when the variable density suspension Is treated. 

The average particle number distribution In the deposits Is 

depicted In Figure 5.5. Clearly this Is not the particle size 

distribution expected In the sludge since hindered motion and 

compression settling In the high density zone near the bottom of the 

tank will alter the sludge size distribution. It provides the input 

parameters, however, for the modeling of these settl ing processes. 

Information on the quantity and quality of the sludge blanket Is useful 
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In designing the sludge removal facl I itles of the tank. 

5.b. Hydrodynamic Efficiencies 

In model ing particle coagulation in hydrosols the col I Ision 

efficiencies are commonly either assumed unity or constant, Independent 

of the absolute and relative sizes of the interacting particles. A 

variable density suspension (suspension C) with half the total sol Ids 

concentration of the standard case Is used to evaluate the importance of 

employing the proper col I Ision efficiencies. Two cases are compared In 

Figures 5.6 and 5.7, one using the recti linear coagulation functions 

(efficiency unity) and one the col I Islon efficiencies for flocs 

(Eqs. 2.8 and 2.9). The effluent particle size distributions are 

completely different in shape and the reduction In the removal 

efficiency of the tank Is dramatic. When the col I Ision efficiencies for 

flocs are used only 16% of the suspended and 39% of the total sol Ids are 

removed, compared with 87% and 82%, respectively, for the 

hydrodynamically non-Interacting suspension. 

It is Interesting to compare the removal efficiencies of the tank 

with suspensions Band C (where In both cases the col I Islon efficiencies 

for flocs are used). Suspension A has a total sol Ids concentration of 

400mg/£ of which 250mg/£ Is defined as suspended sol Ids. For this 

Influent 61% of the total sol Ids are removed In the tank and 44% of the 

Influent particles larger than 1 ~m (the suspended sol Ids), I.e. 

R =44%. For the Influent suspension C with 200mg/£ of total sol Ids 
55 

and 125mg/£ of suspended sol Ids, 39% of the total sol Ids are removed and 
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16% of the suspended sol ids (RSS =16%). This low figure is indicaTive 

of the production of suspended sol ids by the coagulation process. A 

non-coagulating suspension gives removal efficiencies RTS =20% and 

Rss =33%. Coagulation transfers mass through the particle size spectrum 

toward settleable particle sizes so that the total sol ids removal 

efficiency is increased but the suspended sol ids removal efficiency is 

reduced. Coagulation is responsible for this paradox. For the 

hydraul ic conditions and the size density relationship used here only 

particles larger than about 20 ~m are precipitated. Coagulation 

accumulates particle mass in the size range 1 ~m to 40 ~m and this is 

characteristic of al I simulations presented above. The rate of mass 

transfer to particle sizes larger than 40 ~m Is slow since the number of 

large particles which wil I extract mass from the immediately smaller 

size fractions is reduced because of settling. Hence the remarkable 

reduction In suspended sol ids removal efficiency for the coagulating 

suspensions. 

5.c. Influent Particle Size Distribution 

Suspension D has a total sol ids concentration of 400 mg/£ , as for 

suspension A, but a flatter particle size distribution with a =3. This 

value of a implies a uniform surface area concentration distribution 

and increasing volume and mass concentrations with Increasing particle 

size (see Eqs. 2.12 In Chapter I I). Both coagulation and settl ing are 

enhanced and so 98% of the sol Ids are removed when suspension D is 

treated under the standard hydraulic conditions. Figures 5.8 and 5.9 
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Illustrate the change In the mass and number distributions, 

respectively, when suspension D passes through the settling tank. For 

al I particles smaller than about 8 ~m the particle number distribution 

Is merely shifted downwards, retaining the influeni slope; for larger 

particles the slope is altered to -3.5. 

The development of the volume average diameter, defined as 

d = (.§. LNV) 1/3 
iT LN, 

where N and v are, respectively, the number and volume concentrations of 

the particles, along the length of the tank for suspensions A and D is 

shown In Figure 5.10. The volume average diameter increases 

continuously In the case of suspension A Indicating that coagulation 

transfers mass to large particle size sections at a faster rate than 

sedimentation removes suspended mass. The situation is reversed for 

suspension D which has relatively more mass at large particle sizes. 

5.d. Longer Tank 

For the same detention time a longer but more shal low tank with 

reduced overflow rate can be used. Longitudinal dispersion Is enhanced 

and vertical turbulent mixing reduced. Large particles spend less time 

suspended, collecting fewer particles as they fal I. 

Suspension B was treated in a settling basin 64m long and 2.5m 

deep. The sol Ids removal efficiencies were Rrs =50% and RSS =27% 

Indicating a reduction in the removal efficiency of the basin. Figure 

5.11 compares the effluent characteristics for the standard basin and 
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the longer one, both treating suspension A. The stronger shearing 

In the shal low tank promoted coagulation of particles In the size range 

0.5 ~m to 10 ~m, but larger particles, whose coagulation rate depends 

largely on differential settl ing induced coil islons, tend to remain in 

suspens ion. 

5.e. Recirculation 

The logarithmic velocity distribution is not realistic near the 

Inlet and outlet of the basin and has been used above only to provide a 

convenient flow regime in order to examine other para~~ters of interest. 

Published data on the flow fields in settl ing tanks do not satisfy 

continuity of fluid mass. Thus, a flow field Is assumed, Including a 

circulation current, as shown In Figure 5.12. This Is obviously one of 

an Infinite number of possible flow patterns which can develop in a 

sedimentation tank and assumes that the inflow has a jet-like behavior. 

Uin -"-* -+--.. Uout 

H 

L 

Fig. 5.12. Schematic diagram of the recirculating flow pattern. 
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A variable mesh size Is used In the vertical direction and it Is 

assumed, first, that one fourth of the inflow moves horizontally along 

the upper row of cel Is, and second, that al I vertical velocities in the 

tank are equal. This crude flow pattern enhances the mixing and the 

turbulence intensity at the lower section of the tank. The vertical 

mixing coefficient Is estimated using the mixing-length argument from 

E = (z + z 1) (u + u +1)' n=l, 2 n n+ n n 

where z and u are, respectively, the depth and the horizontal velocity n n 

In the cel Is In row n. The turbulent energy dissipation rate, per unit 

mass of fluid, Is estimated using Eq. 2.3 In Chapter I I. The Intense 

local shearing enhances the coagulation rate but also breaks up any 

flocs which, according to Eq. 2.15 in Chapter I I, grow larger than about 

1000 ]Jm. 

Figures 5.13 and 5.14 compare the tank effluent when suspension A 

Is subjected to the recirculating flow field with the effluent of the 

standard case. The Increased mixing In the tank, Induced by the 

circulating current, causes more large particles to be carried over the 

effluent weir. Enhanced coagulation rates and the break-up of flocs 

exceeding 1000 ]Jm In diameter - their mass Is equally distributed among 

the other sections - result In smoother number and mass distributions In 

the effluent. The total sol Ids removal efficiency remains 61% but the 

suspended sol Ids removal efficiency Is Increased to 54%, as compared 

with the standard case. 
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5.f. Scouring 

The sensitivity of the tank performance to scouring was 

investigated by performing simulation runs at various values of the 

resuspension parameter s, al I other parameters remaining the same. The 

removal efficiencies obtiined when suspension A was treated are listed 

in Table 8. Included in the same table are the results for a 

non-coagulating suspension with the same characteristics as suspension 

A. In the case of the non-coagulating suspension the tank performance 

deteriorates as the rate of resuspension increases. The sensitivity of 

the sol ids removal efficiency to s is In accordance with the results of 

Takamatsu et. al. (1974) for a non-flocculating suspension. On the 

contrary, when a suspension which undergoes coagulation Is treated, 

resuspenslon of the deposits Improves slightly the tank performance for 

smal I values of the resuspension parameter s; for large s the tank 

perfomance deteriorates. 

Coagulation In the high mass concentration regions near the bottom 

of the tank, resulting from resuspension of previously deposited 

material, transfers mass toward larger particle size sections with a 

subsequent improvement In the tank performance. As the resuspension 

flux Increases, however, a critical situation Is reached, where 

coagulation cannot compensate for the reduced settl ing rates and so the 

sol Ids removal efficiency of the basin is reduced. 



Table 8: Sensitivity of the tank performance to scouring 

Resuspension Parameter % Total Sol ids Removed % Suspended Sol ids Removed 
5 R

TS RSS 

0 60.1 42.8 

Coagulating 0.15 60.6 43.6 
suspension 0.4 60.8 44.1 

0.8 55.7 38.2 

N 

0 21.6 33.9 V1 

Non-coagu 1 at i ng 0.15 20.0 33.0 

suspension 0.4 18.8 29.7 

0.8 13.8 21.3 
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6. UNSTEADY RESPONSE 

In actual wastewater treatment plants the flow rate and the 

concentration In the Inflow may vary considerably with time. The 

computer simulation Is capable of predicting the dynamic response of the 

settl ing tank to a temporally variable Input. For the purpose of 

demonstrating the capabilities of the computer model the effluent 

characteristics are Investigated when a top-hat discontinuity or a 

sinusoidal variation In the Influent concentration or the flow rate 

occurs. 

6.a. Top-hat Discontinuity 

A sedimentation tank Is assumed operating with a detention time of 

2 hrs. It Is taken to be treating the variable density suspension A In 

a steady state mode. Then, either the Influent concentration, or the 

overflow rate Is doubled for 30 minutes, the discontinuity occurring at 

360 minutes after start-up time, with the latter marked as time zero. 

The ratio of the total mass concentration In the effluent at a given 

time to the steady state effluent concentration Is plotted in Figure 6.1 

as a function of time for the two cases examined. The change In the 

effluent concentration due to an Impulse In the concentration In the 

Inflow Is smal I. After a time lag of about 30 minutes the effluent 

concentration Increases, reaches Its maximum value at 60 minutes after 

the Initial change In the Influent concentration and then decreases for 
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some time below Its steady state value. The shape of the effluent curve 

reflects the trade-off between the Increased Influent mass load, which 

suggests that more mass wll I be carried In the effluent, and 

coagulation, which is a second order function of concentration and 

promotes settl ing and therefore mass loss from the effluent. The 

response of the tank to the Impulse In the flow rate Is immediate; this 

Is because It Is assumed that the flow field In the tank adjusts 

Instantaneously to the change In the Inflow rate. In both cases the 

increase In the effluent concentration Is smal I because of the dumping 

effects of numerical diffusion, turbulent mixing and coagulation. 

The next two figures compare the effluent particle mass 

distribution curves at the peak effluent mass concentration with that 

for the steady state effluent. Figure 6.2 is for the case when there Is 

an Impulse In the Influent mass concentration and it can be seen that 

the effects are mainly on particles larger than 100 ~m. In Figure 6.3, 

which Is for the case of an Impulse in flow rate, the effects are more 

severe. There Is a significant rise In the concentration of larger 

particles In the effluent. 

6.b. Periodic Input 

The variable density suspension A Is used to Investigate the 

response of the tank to a periodic variation In the Influent 

concentration or the flow rate. The frequency of the sinusoidal Input 

Is equal to the Inverse of the residence time of the suspension In the 

tank (2 hrs) and its amplitude equal to half the steady state Input. 
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Figure 6.4 shows the temporal variation In the effluent 

concentration when the mass concentration In the Inflow varies 

sinusoidally with time. The tank acts as a filter and smooths the 

variations In the Influent concentration. The effluent characteristics 

of a non-coagulating suspension, plotted In the same figure, indicate 

that numerical diffusion and turbulent dispersion and mixing are mainly 

responsible for the filtering action of the tank, while coagulation 

reduces significantly the time-averaged effluent concentration. 

Coagulation also reduces the time between the effluent and influent peak 

concentrations (modal time) from 90 minutes for the non-coagulating 

suspension to about 60 minutes. In both cases the modal time is smaller 

than the theoretical detention time; observed dispersion curves In 

model settl ing tanks show the same trend (EI-Baroudl, 1969, Kawamura, 

1 981 ) • 

Figure 6.5 Illustrates the effluent response to a sinusoidally 

varying flow rate. In this figure the flow rate, non-dlmenslonallsed 

with Its time-averaged value, and the effluent mass concentration, 

non-dimensional Ised with the steady state effluent concentration 

obtained when the flow rate Is steady and equal to the time-averaged 

flow rate, are plotted against time. Note the very short modal time, 

about 30 minutes, and that the time-averaged effluent concentration Is 

slightly higher than the one obtained when the flow rate Is steady. 

The next two Figures 6.6 and 6.7 show the mass distribution at the 

maximum and minimum effluent concentrations for the two time variable 

Input simulations performed. As In the case of the top-hat 

discontinuities, the variation In the mass concentration function Is 

larger when the flow rate varies with time. 
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7. CONCLUSIONS 

The basic aim of this study has been to develop a numerical model 

simulating the operation of a rectangular sedimentation basin. The 

model is based on a computer solution of an extended General Dynamic 

Equation and includes al I of the basic kinetics of particle col I islon 

and coagulation processes, including Brownian motion, turbulent shear 

and differential sedimentation. Also Included are estimates for the 

modification to particle col I Ision efficiencies by van der Waals' forces 

and hydrodynamic interactions between particles. Specific attention is 

directed to transport processes such as particle advection, turbulent 

diffusion and particle resuspenslon. The Influence of the particle 

size-density relationship and floc deaggregatlon by turbulent shearing 

are also modeled. Of necessity, modeling of some of these processes has 

been somewhat empirical since the physical and biochemical nature of the 

flocs produced are often unique to a particular suspension. 

Nevertheless, the model developed Is capable of predicting the evolution 

of a particle size distribution In flow through a sedimentation tank 

under both steady and unsteady operating conditions, and within 

reasonable computation time. 

For the purpose of elucidating features of the model, It has been 

appl led to a specific sedimentation tank design. From the limited 

number of simulations presented here It Is evident that particle 

col I Islon efficiencies, the particle size-density relationship and the 

shape of the Influent particle size distribution affect dramatically 

both the characteristics of the effluent size distribution and the 

overal I tank performance. The col I Islon efficiencies between particles 
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and the particle size-density relationship were modeled somewhat 

arbitrarily, since, to the knowledge of tha writer, no related publ ished 

results exist; both depend on the physical and biochemical nature of 

the flocs and wil I be unique for a particular suspension, so their 

determination requires experimental work. 

The col I ision efficiencies used in the simulation runs are val id 

only if it is assumed that the ionic strength of the suspension is 

sufficiently large for coagulation to occur. Repulsive double layer 

forces may inhibit flocculation, as suggested by Figures 3.9, 3.10 and 

3.11 in Chapter I. For a non-coagulating suspension the removal 

efficiency Rssof suspended sol ids is larger than the removal efficiency 

Rrsof the total sol ids (see the results in Section 11.5.b); the reverse 

is true for a coagulating suspension in most simulation runs performed. 

This indicates that coagulation tranfers mass through the size spectrum 

toward settleable particle sizes. This phenomenon is more I ikely to 

occur in polymer-added sedimentation. Coagulants help precipitate 

particles with sizes less than 1~m (phosphorus (Long and Nesbitt, 1975) 

or bacteria (Waite, 1979), for instance) and have been found to increase 

the relative contribution of suspended sol ids in the total sol ids of the 

effluent (Hunter and Heukelekian, 1965). The above suggest that the 

simulation runs performed here are appl icable to situations where the 

suspension has been destabil ized by some coagulating agent. 

Moderate resuspension of the deposits may improve the performance 

of a basin when a coagulating suspension is treated. For a 

non-flocculating suspension scouring reduces the sol ids removal 

efficiency. Since, however, scouring and resuspension of sediments 

were modeled empirically, definite conclusions cannot be drawn. 
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However, experimental and theoretical work on resuspension of cohesive 

sediments is in progress (NOAA, 1982) and the results can be easi Iy 

incorporated in the simulation. 

The simulations of tank operation under unsteady state inflow 

conditions suggest that coagulation smooths moderate variations in the 

inflow concentration and flow rate. A finer mesh size than the one used 

here In physical space is required In order to reduce the effect of 

numerical diffusion. 

Clearly, further modifications, Improvements and trials wll I be 

necessary before the model can be used with confidence in the design of 

new facil ities. At this juncture, it appears that more experimental 

work on the nature of the particle size-density relationship, the 

resuspension of deposits and the particle col I ision efficiencies are the 

crucial next steps in improving the real ism of the model. Also, 

information on the properties of the suspension in the influent and 

effluent of operating sedimentation tanks wil I al low the testing and 

subsequent improvement of the simulation model. 
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NOTATION 

Van der Waals' energy of attraction 

Density of dense regions In the floc 

Particle diameter 

Dlffusivlty of particle with radius ~ 

Porosity 

Particle volume flux through the size spectrum 

Col I Islon efficiency of particles r1 and r
2 

In Brownian 
diffusion. 

Col Iision efficiency of particles r1 and r
2 

In shear 

Col I Ision efficiency of particles r1 and r2 In differential 
sedimentation 

Froude number 

Gravitational acceleration 

Strain rate 

Depth of tank 

Boltzmann's constant 

Average cross-sectional mixing coefficient 

Length of tank 

Particle size distribution function 

Particle number density 

Permeab i I I ty 

Mass concentration of the particle size section 9, In cel I 
number (m,n) 

Particle mass concentration In the size range (d,d+ 6d) 

Particle radius 

Maximum particle radius for a given shear rate 

Suspended sol Ids removal efficiency, % 

Total sol Ids removal efflclenct, % 



138 

NOTATION (continued) 

s Resuspension parameter, dimensionless 

S£ Settling coefficient 

6S Particle surface concentration In the size range (d,d+6d) 

T Absolute temperature 

u Mean horizontal velocity In cel I (m,n) m,n 

U Vertically averaged horizontal velocity In the tank 

u* Shear velocity 

6V Particle volume concentration in the size range (d,d+ 6d) 

w Stokes' settling velocity 

x Horizontal dimension of the cel I 

z Vertical dimension of the cel I 

Greek letters 

a Slope parameter for particle size distribution 

S(r.,r.) Collision function for particles r. and r. 
I J I J 

S· . k Coagulation coefficient 
I , J , 

E Turbulent energy dissipation rate per unit mass of fluid 

K Von Karman's constant 

~ Fluid dynamic viscosity 

v Fluid kinematic viscosity 

Pf Density of floc 

Pp Density of particle 

Pw Density of water 
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ABSTRACT 

A method for the Monte Carlo simulation, by digital computer, of 

the evolution of a colliding and coagulating population of suspended 

particles is described. Collision mechanisms studied both separately 

and in combination are: Brownian motion of the particles, and laminar 

and isotropic turbulent shearing motions of the suspending fluid. 

Steady state distributions are obtained by adding unit size particles 

at a constant rate and removing all particles once they reach a pre-set 

maximum volume. The resulting size distributions are found to agree ~ith 

those obtained by dimensional analysis (Hunt, 1980a,b, 1982). Isotropic 

turbulent shear is shown, for particles much smaller than the Kolmogorov 

microscale, to be equivalent in coagulating power to a rectilinear 

laminar shear, G, of magnitude 1.72 times the characteristic strain 

k 
rate (E/v) 2 given by the rate of dissipation of kinetic energy per 

unit mass and the fluid viscosity. 
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1. INTRODUCTION 

In many fluid systems with a continuous size distribution of 

suspended particles the primary mechanism for the production of larger 

particles from smaller particles. over much of the size range. is 

coagulation. the process of collision and coalescence of particles. 

These coagulating particles can be solid or liquid with the suspending 

medium gaseous or liquid. for example: atmospheric aerosols. cloud 

water droplets, colloidal suspensions in water or emulsions of one 

liquid in another. The computations described in this paper are 

primarily concerned with suspensions of solid particles in water but 

the techniques used have general applications. 

In describing the dynamics of continuous size distributions it is 

convenient to introduce the particle size distribution. n(v), defined by 

dr-; .., n (v)dv 

so that dN is the number of particles per fluid volume whose sizes 

(volumes) lie in the range v to v+dv. The collision rate. per unit 

volume of fluid. of particles of volumes v. and v. is given by the 
~ J 

product of their respective concentrations and a collision function, 

6(v .• v.). representing the geometry and dynamics of the collision 
~ J 

mechanism. so that 

collision rate'" 6(v
i
,v.)n(v i )n(v.)dv.dv .• 

J J ~ J 

Then the change with time of the particle size distribution is 

given by the general dynamic equation (GDE) 

an{v) 
at 

v if f ,an(v) .., l(v) +"2 6(v'.v-v')n(v')n(v-v')dv' - 6(v,v')n(v)n(v')dv +5(v) az 

o 0 
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Here I(v) is a source of particles (through condensation, for example) 

an 
and S(v) az is a particle sink resulting from particles sedimenting in 

the z direction at their Stokes' settling velocity, S(v). If we restrict 

attention to size ranges where the source term is negligible, and to 

homogeneous situations (so that spatial derivatives may be neglected) 

then (1) reduces to the coagulation equation 

an(v) 
at 

v ~ 

= i~S(V',v-v')n(v')n(V-V')dV' -~S(v,v')n(v)n(V')dV' 
o 0 

The two terms on the r.h.s. of (2) represent, respectively, the rate of 

(2) 

gain of particles of volume v by coagulation of pairs of smaller particles, 

conserving volume, and the loss of particles, v, due to their coagulation 

with particles of all sizes. 

A variety of techniques have been used to investigate (1) and (2) 

and an extensive literature has resulted (see Pruppacher and Klett, 1978 

for a recent account). In most of these techniques some simple analytic 

form for 6 is used. The heart of the coagulation problem is to provide 

an accurate model for this collision kernel and the study of two particle 

collisions has been mostly toward this end. In the present study both S 

and solutions to (2) are directly simulated at the same time by a Monte 

Carlo method. Direct numerical solutions of equation (2) such as 

developed by Gelbard, Tambour and Seinfeld (1980) must assume forms 

for the B functions. 

For particles to coagulate two processes are required: (a) a 

mechanism to develop relative motion of the particles through the fluid 

which will briftg them into close proximity, and (b) short-range inter-

facial forces acting between the particles to bring about their 
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coalescence. Relative motion of particles in a fluid can be due to one 

or a combination of the following: 

1. Bro~~ian or thermal motion. 

2. Laminar or turbulent fluid shear or straining. 

3. Particle inertia in turbulent flows. 

4. Differential sedimentation of different size particles. 

As a first step, the hydrodynamic interactions between particles are 

often ignored. In this case, relatively simple analytic estimates for 

S are available for each of these collision mechanisms acting indepen­

dently and these are summarized in Table 1. The table also includes 

the dimensional parameters that characterize the mechanisms and determine, 

in any given situation, the characteristic size of particle that they 

affect. 

Note that all the collision functions depend on properties of the 

suspending fluid, the structure of its velocity field, and the size of 

the particles. However, only the functions for the final two collision 

mechanisms depend on a physical property of the particles: the 

difference between their density and that of the fluid. If the particle 

density excess ratio (pp-Pf)/P
f 

is small then sedimentation and inertia 

will only be important for larger particles. In a turbulent flow 

sedimentation will dominate inertial effects unless the characteristic 

acceleration (£3/v)~ is comparable with g, the gravitational accelera­

tion. In this papeI we will be concerned only with the first two 

collision mechanisms. Differential sedimentation and interfacial 

forces will be the SI bj er;t of a sequel. 

For a coagulating system more than one collision mechanism can be 

important for a given size range of particles. However, if there is a 
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Table 1. Various mechanisms for particle collisions. 

Mechanism 

Brownian Motion 

Laminar Shear 

Pure Strain 
(extension) 

Isotropic Turbulent 
Shear 

Turbulent Inertia 

Differential 
Sedimentation 

Collision Function 
a 

2kT (rt r j)2 
3;;- rir

j 
- 4n (DtDj)(rtrj) 

1.33G (rtrj)3 

• 3 
4.89y (rtrj) 

2. 3* (r i+ r j ) 3 ([ / v) 1/2 

3 
1/_ 

1. 27(Pe-Pf ) 

ev) (ri+rj)2Iri2-rj21 
~ 

O.7g(p -Pf) 
p (r+r )21r 2_r 21 

~ i j i j 

----- --- -- ----

* corrected from original, see text. 

Source 

Smoluchowski 
(1916) 

Smoluchowski 
(1917) 

Zeichner and 
Schowalter (1977) 

Saffman and 
Turner (1956) 

Saffman and 
Turner (1956) 

Findheisen 
(I939) 

------ ---- ---- --

Dimensional 
Parameter 

~ _ k~T 

G 

y 

(~(2 

(p _p ) 1/ • 

~(Ev3) 

g(p -Pf) 

Kds - p 
~ 

---- - ---

+0-
0:> 
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particle size subrange in which the coagulation is dominated by only 

one collision mechanism. and this subrange is in a state of dynamic 

equilibrium. then the theory of Friedlander (1960a.b) and Hunt (1980a.b) 

predicts the local size distribution given a constant flux of mass 

through the particle size distribution. The theory depends on two 

basic hypotheses: an equilibrium size distribution being established 

and non-interference of particles of a size characteristic of one 

collision mechanism with those of another collision mechanism. 

Hunt's (1980a)*experimental results generally support the predic­

ticns of the theory for Bro~~ian motion and laminar shear but are 

limited by uncertainty over the effects of the unsteadiness in the 

experiments due to particle sedimentation and loss from the system. 

In the present work these limitations are overcome by performing a 

computer "experiment" in which particle collisions are directly 

simulated by Monte Carlo techniques. The size evolution of a population 

of particles is followed. This allows the effects of each collision 

mechanism to be evaluated independently. and. by combining mechanisms. 

the hypothesis of non-interference of characteristic particle sizes to 

be tested. Collision rates as well as the approach to and the final 

ferm of an equilibrium size distribution are studied. The method 

could also be used to study the "aging" of an initially fixed number 

of particles as they collide and grow. 

Monte Carlo simulations have been used by Nowakowski and Sitarski 

(1981) to model the collision function for Brownian coagulation of 

aerosol particles and by Husar (1971) and Gartrell and Friedlander (1975) 

to find soluti~ns to the coagulation equation (2). In addition to 

*See also Hunt (1982). 
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simulating directly the collision function. the Monte Carlo method 

accounts properly for correlations which are ignored in the derivation 

of the general dynamic equation (Gillespie. 1975). 

In this paper we first briefly describe Hunt's theory and expp.ri­

mental results. Subsequent sections describe in detail the simulation 

techniques used to model Brownian. laminar shear and turbulent shear 

induced coagulation and the results obtained. The results are then 

compared with previous experiments and theory. and the success of the 

method evaluated. 

2. HUNT'S WORK 

Friedlander (1960a,b) explained observed regularities in the size 

distributions of atmospheric aerosols by assuming that a state of 

dynamic equilibrium existed between production. coagulation and loss 

through sedimentation of particles. He then employed methods analogous 

to those developed by Ko1mogorov for the analysis of turbulence spectra. 

If it is assumed that the size distribution in some subrange depends 

only on the particle volume. v. the constant flux of particle volume 

through the size distribution. E. and a dimensional parameter. C. 

characterizing the sole dominant coagulation mechanism (see Table 1) 

so that 

n(v) ~ n(v.E.C) • 

then the form of n(v) can be determined by dimension!l ,nalysis alone. 

This is analogous to postulating an inertial subrange of scales in 

which the turbrlent energy spectrum is determined solely by the wave­

number and the flux of energy through the subrange (equal to the rate 
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of energy dissipation by viscous stresses at the smallest scales). 

(See, for example, Monin and Yaglom, 1975, Ch. 21). 

Hunt (1980a,b) extended these ideas to hydrosols and 

compared the predictions of his theory with both laboratory and field 

measurements. In particular, he performed experiments on Brownian and 

laminar shear induced coagulation. His theory predicts the following 

size distributions for regions dominated by Brownian, shear and 

differential sedimentation coagulation 

Brownian 

,\(E/~) 
1/2 -3/2 

n(v) :: V (3) 

Shear 
1/2 -2 

n(v) = ash(E/G) v (4 ) 

Differential Sedimentation 

1/2 -13/6 
n(v) :: ads(E/Kds ) v (5) 

He shows (Hunt 1980b, Figure 1) that it is plausible, for a typical 

coagulating hydrosol, that these three mechanisms could dominate in 

regions of successively increasing particle size. 

Hunt's measurements indicated that his system was in a quasi-

dynamic equilibrium where size distributions taken at progressively 

later times were similar in shape but decreasing in magnitude. This 

unsteadiness was due to the overall particle concentration decleasing 

as a result of the larger aggregates settling to the bottom. Hunt 

measured the varying total suspended volume by light absorbance and 

used the computed rate of volume loss as an estimate for E. He 
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explains why this will be an overestimate for the quantity (see Hunt, 

1980a for details), but it is still a useful approximation. The 

~ measured value of E can then be used to normalize size distributions 

(c.f. equations (3) - (5» partially correcting for the effects of 

unsteadiness. 

Hunt successfully collapsed much of his data at various times and 

for different experiments at different shear rates by normalizing the 

~ 1 
size distributions not just with E , but with the ratio (E/G)~ and 

non-dimensionalizing the particle volume with the characteristic 

volume at which particles have both Brownian collisions and shear 

induced collisions at the same rate. This characteristic volume, found 

by putting r. = r. in the expressions for the relevant collision rates 
l. J 

in Table 1, is seen to be v = TI~/(3G), proportional to the ratio of 

the Brownian and shear parameters. 

For some of the particle types tested the normalized volume 

distributions expressed as functions of nondimensional size provide 

support for the relations (3) and (4) (see in particular Hunt, 1980a, 

Figure 4.9). However, as we have already noted, there are some 

reservations about the experiments, complicated as they are by 

instrumental difficulties and uncertainties about the effects of 

unsteadiness. Also, no one single experiment exhibits a size 

distribution having regions with the equilibrium power laws corres-

ponding to both Brownian and shear dominated mechanisms. One of 

the main aims of the present study, then, is to provide support or 

otherwise for Hunt's results by means of a computer "experiment". 

This allows a genuine steady state to be set up and detailed probing 

of the interaction between Brownian and shear collision mechanisms. 



153 

3. COHPVTER SIHULATION 

3.1 General Technique 

Simulation of solutions to the coagulation equation (2) 

proceeds by tracking the positions and sizes of a variable number, N, 

of spherical particles (typically 50 < N < 600). Whenever two particles 

collide they are coagulated to form a larger (still spherical) particle, 

conserving particle volume, thereby reducing N by one. The population 

of particles studied therefore consists of particles of unit volume, 

v , and integral multiples, v. = i.v of the unit volume. In this 
o 1 0 

paper the suffix i is used to denote properties of i-fold particles 

made up from i elemental particles. The collision simulation algorithm 

is programmed for a digital computer. 

The program can also function in a different mode in which 

collisions are counted but particles are not coagulated. On collision, 

one of the particles is randomly repositioned so as to avoid repeated 

collisions of the same pair of particles. This allows direct measure-

ment of the collision function, B, for any given mechanism. These 

results can be used both to verify the analytic solutions given in 

Table 1 and as a check on the correct operation of the simulation. 

Particle motions take place in a cubical box or "control volume" 

of side L and volume V (Figure 1 gives a schematic representation of 

this box and a definition of the rectangular coordinate system used). 

Particle positions are denoted by £(i) ~ (P
l

(i),P2 (i),P3 (i». The 

simulation employs what are essentially periodic boundary conditions, 

so that partic~es that have left the control volume at the end of a 

time step are replaced, for the next time step, by image particles 
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L 

Figure 1. Schematic diagram of simulation box or "control volume" 
with cartesian coordiante system and representative particle 
at position (PI, P 2 , P3). Displacement of particle in 
current time step is (Dl,Dz,D 3 ). 



155 

that enter from the opposite side. This type of boundary condition is 

commonly employed in Monte Carlo simulations (see Alder and Wainwright, 

1959) and allows an infinite homogeneous system to be modeled approxi-

mately by a finite volume. Edge effects are reduced by allowing particles 

to interact with image particles just outside the control volume. The 

slight modifications to these boundary conditions required for laminar 

and turbulent shearing motions are described in §3.4 and §3.5 below. 

In order to model a system in dynamic equilibrium, a fixed number 

N of particles of unit volume are added to the population at random 
c 

each time step and any particles that have reached a preset maximum 

volume v = i .v are removed from the population. (Typically, max max a 

i = 125). The constant addition of small particles is a crude max 

attempt to represent, indirectly, the flux of particles into the size 

range from the collision of particles smaller than v. The removal of 
o 

large particles is necessary to limit the total volume density of 

particles in the simulation. It can be physically justified as a crude 

representation of the loss of larger particles from a region by the 

combined action of sedimentation and vertical concentration gradients. 

The procedure of adding small particles and extracting large ones is 

consistent with the hypothesis that collisions between particles of 

similar size are more important and is justified a posteriori by the 

success of the simulation in reproducing Hunt's (1980b) dimensional 

results. 

A schematic representation of the logical sequence of the simulation 

is given in Figure 2. The simulation starts either by generating a 

monodisperse ptpulation of particles randomly distributed over the 

control volume, or by reading a set of particle positions and sizes 
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Figure 2. Summary of logical structure of simulation program. 
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from a preexisting file. This file is either a set of particles of 

given size distribution generated by an auxiliary program, or the end 

point of a previous simulation that is to be continued. Controlling 

parameters for the simulation run are either input manually or read 

from a file. 

The particular methods for generating the particle displacements 

at each time step, 1(i) = (Yl (i),Y2(i)'Y3(i», and updating their 

positions between time steps are described in detail below in connection 

with each physical collision mechanism. Each particle is assumed to 

Lravel on a straight line path at constant speed during each time step. 

The algorithm used to detect particle collisions is described in §3.2 

belo~. 

At the end of every time step the particle size distribution is 

computed. After a prescribed number k of time steps, the size 

distribution, averaged over time t = k.~t, is output along with the 

positions and sizes of all the particles to a file in permanent 

computer storage. The particle positions and sizes are written over 

the previous copy to save storage space. The latest version is then 

always available to restart a run at a later time. The simulation 

continues until the required number of time steps have been completed. 

Time averages are needed to provide reasonable particle size 

statistics as only a small number of particles are followed. Once a 

simulated system has reached a statistical steady state (dynamical 

equilibrium) then long time averages can be employed to produce well 

converged statistics. To follow the evolution of a rapidly changing 

system with any precision, it would be necessary to repeat the simula­

tion many times and compute ensemble averages. 
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Most simulation runs were started with a monodisperse population 

of particles. The total volume of particles in the simulation increases 

continuously until the first particle grows by coagulation to v and 
max 

is removed. In order to have reasonable computational times the 

volume concentration, ¢, of suspended particles used in the simulations 

is larger than that occurring in many natural systems. (For example, 

typically ¢ is about 20 p.p.m. in Hunt's experiments but is about 10 3 

larger in the simulation runs). Simulation results must therefore be 

checked for dependence on volume fraction of particles, before they are 

applied to more dilute systems. 

The simulation requires the generation of relatively large numbers 

of (pseudo-) random numbers from both uniform and Gaussian distributions; 

details of the numerical methods used are given in Appendix A. 

3.2 Collision algorithm 

Detecting which particles have collided at each time step is 

very costly in computer time and so an efficient method is needed. To 

this end the basic control volume is divided into cubic sub-cells. The 

cells are chosen to be as small as possible consistent with the constraint 

that any particle can only collide, during the next time step, with 

particles in the same cell or the adjoining 26 cells. Each cell is 

given three integer coordinates that define its position in the control 

volume. For each particle the numbers of the cell it occupies are 

stored along with its actual position. 

T.~e first stage in checking for collisions is to determine for 

each pair of p~rticles whether they are in the same or adjoining cells. 

Only if this is so, are they considered candidates for a collision and 
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a detailed calculation performed. Checking whether particles are in 

adjoining cells is performed by computationally fast integer arithmetic. 

Given two candidate particles their relative initial position, ~ = 

PCl) - P(2), and displacement, RY = Y(2) - Y(l), are computed (note the 
~ -- ""'......... "'" 

different ordering of particles). Then the condition for collision is 

that the vector ~ enters the sphere of radius 0 = r. + r. around the 
1 J 

point RP, a simple geometrical test. This corresponds to following 

the motion of the two particles in a frame of reference moving with 

the (1) particle (see Figure 3 for schematic illustration). 

A further advantage of the sub-cell system is that it allows for 

easy implementation of periodic boundary conditions. Particles in cells 

along any of the boundaries of the control volume are allowed to interact 

with particles in the requisite cells on the opposite side of the volume. 

3.3 Bro~~ian motion 

The thermal impact of molecules cause suspended particles to 

perform random motion relative to the bulk fluid. In contrast to the 

recent work of Nowakowski and Sitarski (1981), the particles studied 

here are much larger than the molecular free-path in the fluid and so 

are in the continuum regime of Brownian motion. Also the time step, Lt, 

of the simulation is very much larger than the particle viscous relaxation 

time, t = 2r 2 /9v. Therefore, the relevant probability distribution 
r 

function (p.d.f.) for the displacement, Y, of a particle during a time -
Etep is (Chandrasekhar, 1943) 
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o 

Figure 3. (a) Geometry for collision algorithm. (b) Viewed in 
frame of reference in which particle 2 is at rest. 
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where D is the diffusivity of the particle 

D == kT/(6TI~r) == ~/6TIr 

Each component of Y has an independent Gaussian p.d.f. 

1 

1/2 (4-D':t) ( 

Y 2 

exp __ k ) 
4D.:t k == 1,2,3 

and this is used to replace the Brownian motion of the particles by a 

finite random walk. At each time step three independent random 

components of displacement are generated for each particle from the 

corresponding Gaussian distribution (see Appendix A for details). 

The r.m.s. displacement in any direction, ~x, of an i-fold particle is 

1/2 
~x. == (2, D . • 1I t ) 

1 1 

~here, Di == ~/6TIri' is the particle diffusivity. D. can be obtained 
1 

in terms of the diffusivity D of an elemental particle by 
o 

D. = D 'i 
1 0 

-1/3 

Particle collisions are simulated on the basis of straight line 

trajectories during each time step. The question arises, therefore, of 

the validity of this as an approximation to Brownian induced coagulation. 

The r.m.S. displacement has been chosen correctly, but a particle of 

mass m undergoi'lg Brownian motion actually travels along a tortuous 

path at r.m.s. speed (kT/m)~. At first sight this suggests that the 

simulation would underpredict the collision rate. However, replacing 

Brownian motion by a finite random walk must change the pair distribution 
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function, that is to say the probability distribution function for 

the spacing between any given pair of particles. So, while modeling 

Brownian motion by a finite random walk introduces inefficiency into 

the basic collision process it can compensate by increasing the 

probability that any pair of particles are found close together at the 

beginning of a time step. Here, "close together" means a separation 

on the scale of the r.m.s. steplength of the random walk. These matters 

are investigated in detail in Appendix B. Tests with the non-coagulating 

form of the program have shown that satisfactory collision rates for 

monodisperse populations of particles are obtained when the ratio ~x/r 

is about 0.5. It is important to use the maximum possible time step in 

order to minimize computation times. 

3.4 Laminar shear 

The coagulating effects of a velocity gradient are investigated 

by imposing a uniform shearing motion on the control volume: 

with G the shear rate. The particles are assumed to move with the fluid 

so their displacement in any time step is just 

rei) = (Yl (i),O,O); 

This means that we are igroring hydrodynamic interactions between particles. 

This is only defensible as the first stage towards a more realistic model. 

The large body of work on particle interactions in low Reynolds number 

flows (see e.g. Mason, 1976, for a review) shows that hydrodynamic forces 

will always come into play in a detailed analysis of collision dynamics. 

This is investigated in detail in a subsequent paper. 
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Figure 4 shows how a uniform shearing motion, on average, moves 

a fraction of the particles out of the control volume at every time 

step. If they were replaced in the control volume according to simple 

periodic boundary conditions (PI = PI - L, whenever PI > L) the simulation 

would be completely deterministic once initial positions had been chosen 

for the particles. Each particle would move in a straight line with 

fixed P2 and P3 coordinates. After a certain time all collisions 

between existing particles would cease as each particle would have 

swept out its own track through the control volume. In a real flo~ 

this would not occur as particles are continually meeting "new" particles. 

Therefore, in the simulation, when a particle leaves the volume it is 

replaced at a randomly chosen height P
3 

on the other side of the control 

volume. The random value of the height P
3 

must be chosen from a distribu­

tion that reflects the increasing flux of particles at larger values of 

P3 (see Appendix A). This strategy leads to a further complication: 

particles may be replaced on top of one another, leading to spurious 

collisions. This is almost totally eliminated by checking for such 

particle overlaps at the end of each time step and randomly moving one 

of each overlapping pair. This may introduce a few further overlaps as 

no final check is made. An estimate of this number is available from 

the number of initial overlaps, which is recorded. This error is 

acceptable in the light of other approximations in the simulation. 

Overlaps are also introduced by t;e process of adding new elemental 

particles at each time step, whatever the collision mechanism. All 

types of overlaps are resolved simultaneously in the same manner. 

3.5 Turbulent shear 

We wish to simulate the coagulation of small particles by 
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Figure 4. Action of laminar shearing motion, u 1=G.x3' on control volume. 
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turbulent flow. The motion of a suspended particle can be identified 

with the motion of an adjacent fluid particle provided that the time 

scale of the (fluid) particle acceleration is much greater than the 

particle relaxation time, t , that is to say, if inertial effects are 
r 

negligible, as will be the case here. Then for particles of radius 

smaller than the smallest scale of the turbulent motion (the Kolmogorov 
1 

length scale, (v3/£)~), coagulation rates are determined solely by the 

kinematics of the small scales of the turbulent flow field, in particular 

by the r.m.s. strain rate (£/v)~/15~. These small scales are very nearly 

isotropic (Batchelor, 1953). 

Under these conditions, two particles separated by a distance 

smaller than the Kolmogorov length scale are subjected to a motion that 

can be decomposed into a rigid body rotation representing the local 

vorticity, and a locally uniform three-dimensional straining motion. 

The rigid body rotation component of the motion has no effect on the 

collisions of non-interacting particles and so only the straining motion 

(with symmetric velocity gradient tensor) is modeled. The straining 

motion will be uniform over length scales smaller than the Kolmogorov 

micro-scale but there is no agreement as to the duration of this 

straining (Monin and Yaglom, 1975). Two time scales are important for 

the small scale straining: the rate of rotation of the principal axes 

of strain and the rate of change of the magnitude of the principal rates 

of strain. For turbulent flow at high Reynolds.number the rate of 

change of the deformation fields of the small ed~ies is related to 

the Lagrangian time microscale a (Lumley, 1977.). The time scale of 

the deformation field is A/u'. where A is the Taylor microscale and u' 

the r.m.s. fluctuating velocity. Corrsin (1963) approximates the 
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and since by definition 

u' 2 
).2 = ISv ' 

we have 

ex 
1 

(V/£)"i 
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and u' A 
v 

which implies that the strain and vorticity fields of the small eddies 

remain constant for a time interval at least equal to the Kolmogorov 

time scale, t = (V/E)~. This is just the inverse of the characteristic 

strain rate. 

The effect of the rate of rotation of the principal axes of strain 

on the collision rate was investigated using the monodisperse, non-

coagulating version of the simulation. The velocity gradient was 

simulated so that both the principal axes and principal rates of strain 

could be changed independently. The magnitude of the strain was kept 

constant for a time interval equal to the Kolmogorov time scale. No 

statistically significant difference in the collision rate was found, 

whatever the time scale of rotation of the principal axes of strain. 

Therefore in the coagulation simulation both principal axef and rates 

of strain were varied at the same rate. 

Assuming homogeneous, isotropic, unbounded turbulence with a 

Gaussian velocity gradient field, the elements of the rate of strain 

tensor were chosen randomly to satisfy (Hinze, 1959) 
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1 £ = 15 v 

1 £ 
= -

30 v 

2 £ = 15 v 

= 0 

au. 
J. 

ax. 
~ 

= 0 
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i=j=k=t 

j=t and i=k or i=£ and j=k and i~j 

k=t and i=j and i~k 

all other combinations 

and kept constant for a time interval equal to the Kolmogorov time scale. 

The simulation proceeds as in the case of laminar shear with particle 

displacements being given by the product of the time step (t
k

) and the 

fluid velocity corresponding to the particle position. Now, however, as 

the motion is three-dimensional and stochastic, true periodic boundary 

conditions can be used. This corresponds to the control volume being 

surrounded by copies which are deformed with the original. Particles in 

the control volume at the end of one time step can then be used for the 

next. However, in preliminary simulations, random fluctuations in the 

number of particles were found to cause trouble. To avoid the program 

halting because of too many or no particles left in the control volume the 

total number was adjusted at each time step according to 

where NeOl is the number of collisions that had occurred during the time 

step and N 
c 

the number of elemental particles added. In order to 

satisfy the above condition, either particles were removed at random, 
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or a particle whose volume had been chosen at random from the existing 

population was added at a random position. Finally, particle overlaps 

were resolved as explained in §3.4. 

3.6 Multiple mechanisms 

Simulations were perfqrmed in which the particle displacement was 

the linear sum of a fluid shearing and a Brownian component. The relative 

magnitude of the Brownian and shearing parameters could then be varied to 

investigate their interaction. 

4. RESULTS 

Figure 5 shows the effect of changing the r.m.s. steplength on 

collision rate in Brownian motion (see Appendix B for a discussion). 

There is some statistical scatter in the results but the general shape 

of the curve is correct. From these results a suitable time step can be 

chosen for simulations involving Brownian motion. Similar computations 

of collision rates in laminar and turbulent shear induced coagulation 

were performed to check that they yielded the values given by Table 1. 

This, indeed, was found to be the case. The result for turbulent shear 

due to Saffman and Turner (1956) has been amended by a factor of TI~ from 

that in the original paper, correcting an algebraic error. 

The development of a size distribution in a typical simulation 

starting with particles all of unit volume v and undergoing Brownian 
o 

induced coagulation is shown in Figure 6. The size distribution is non-

dimensionalized according to equation (3) and plotted logarithmically 

against particl~volume non-dimensionalized with the unit particle 

volume. The curves plotted are smoothed approximations to the actual 
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data points, at v=i.v , which are rather scattered. The upper portion 
o 

of the data attains a slope of -3/2 once a range of about one decade 

in volume has been reached. Then, as particles of increasing size are 

formed, the slope of the size distribution remains the same, but its 

absolute level declines gradually. It reaches a statistically steady 

state once the first large particle is lost from the system. The final 

steady state for this set of parameters is shown in Figure 7, along with 

that for a run at a higher final volume concentration ¢ (this is obtained 

by adding more particles at each time step). The points plotted are actual 

data from the simulations, averaged over 1000 time steps. Even with this 

time averaging there is still some statistical scatter in the data, 

especially at the lower end of size distribution where very small numbers 

of particles are actually involved. To further smooth the data in the 

region v/v = 20-100 they have been averaged in groups of 5. 
o 

For both these runs v =125.v, although the volume distribution 
max 0 

is only plotted out to v/v =100. Beyond this the data becomes erratic. 
o 

The two sets of data are fully collapsed by the normalization used and 

very clearly exhibit the -3/2 power law expected from Hunt's (1980a,b) 

theory. The intercept of the best fit line of slope -3/2 with the axis 

v/voEl gives the constant ab in equation (3). 

Figure 8 is a comparison of the steady state size distributions for 

laminar shear at two volume concentrations differing by an order of 

magnitude. Again the data points are averaged over 1000 time steps, and 

are collapsed onto a slope of -2 by the normalization suggested by 

dimensional arguments. Similar results are shown for turbulent shear 

in Figure 9, where the inverse of the Kolmogorov time scale, (£/v)~, 

is used in place of G in the normalization of the size distribution. 
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Again a -2 power law is achieved at steady state and the normalized 

results are independent of the flux of particle volume through the size 

range. Note, however, that the intercept of the data with the axis 

v/v is larger by a factor of nearly 2 than in the case of laminar shear. 
o 

This is simply a consequence of the collision functions given in Table 1: 

the expressions for laminar and isotropic turbulent shear are identical 

~ if G is replaced by 1.72 (E/v) • With this scaling the data of figures 

8 and 9 collapse. This result strongly suggests the equivalence of 

laminar rectilinear shear and three-dimensional turbulent shear as 

coagulating agents; a result previously suggested but not verified. 

The next series of simulation runs illustrate the effect that the 

ratio v Iv (i.e., the size range covered by the simulation) has on max 0 

final steady state size distributions in Brownian motion and laminar 

shear. Figures 10 and 11 give size distributions for the three cases 

v Iv = 27,125, and 512; all other parameters remaining equal. In all 
m~ 0 

cases the relevant -3/2 or -2 power law prevails. For Brownian motion 

the results for v Iv =125 and 512 are indistinguishable, while those 
max 0 

for the smallest size range are slightly higher at the upper end of the 

size range. For laminar shear there is a slight but consistent decline 

in level with increasing size range. This reflects the extent to which 

the size distribution is affected by the collisions of the relatively 

small number of large particles. In laminar shear the collision function 

increases with the volume of the particles involved faster than in Brownian 

coagulation. Work on the effects of hydrodynamic interactions between 

particles on coagulation (see Adler, 1981 for most recent study) suggests 

that they act to reduce most the collision rate between particles of widely 

different sizes. This would probably result in weaker dependence of the 
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level of the size distribution (the value of ash) on the size range 

covered by the simulation. Further work. with a more sophisticated 

simulation incorporating hydrodynamic interactions. will elucidate this 

point. 

A consensus of the simulations performed gives the values. 

~ = 0.2 :t 0.04. ash = 0.24 ± 0.05 

which are close to the range of values found by Hunt (1980a) in his experi­

ments. This comparability of "constants" is striking and supports the 

general validity of the study. 

So far all the results have been for simulations in which only one 

collision mechanism has been present. We now turn to cases where both 

Bro~~ian motion and fluid shearing operate. A new normalization of the 

size distribution and volume variable is now required to collapse all the 

data. Following Hunt (1980a) we define a non-dimensional volume 

where Ksh represents G or 1.72(E/v)~and ~ is as before. This is such 

that the collision rates due Brownian motion and shear are equal for 

particles of size x::::: 1. Then if a normalized size distribution is 

defined by 

equations (3) and (4) reduce to 
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n*(x) c a 'X- 2 
sh 

Results of three simulations each for laminar and turbulent shear 

with Brownian motion are plotted in this normalized form in Figure 12. 

Lines of slope -3/2 and -2 are plotted for comparison. There is some 

indication of a change in slope around X=l but it is not conclusive. 

Also, the constants ~ and ash obtained from (10), (11) and Figure 12 

are the same (~ithin statistical error) as those obtained from simulations 

with only one collision mechanism present, providing some support for the 

hypothesis of non-interference of mechanisms. 

5. DISCUSSION 

The main aims of this study have been: 

1. to study the feasibility of a Monte Carlo simulation of 

both the collision function, e, and the coagulation 

equation, (2), for the evolution of a population of 

particles to a steady state; 

2. the investigation of Hunt's (1980a,b) theory for the 

form of the resulting size distribution. 

The simulation method described has proved most successful in 

modeling the coagulating powers of both Brownian and bulk shearing 

mechanisms and the development of steady state size distributions. 

This is in spite of the relatively restricted range of particle sizes 

that can be followed in anyone computer run and the somewhat artificial 

strategy of adding new unit particles at each time step. 
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The results show that final steady state is rather insensitive to 

the size range covered, and that the size distribution at the upper end, 

(small particles), is not very disturbed by replacing the interactions 

of all small particles with the addition of unit particles at a constant 

rate. These observations are in accord with the striking success of 

dimensional analysis in predicting the observed size distributions. For 

dimensional analysis to be successful the dynamics of the coagulation 

process must be mainly "local" in size space so that further independent 

parameters (such as v and v ) are not important. We expect that 
o max 

accounting for hydrodynamic interactions between particles will decrease 

the dependence of the level of the size distribution, for given volume 

flux, in shear-induced coagulation. Notice that the evolving populations 

of particles start to exhibit the relevant power-law over much of their 

size distribution long before a steady state is reached. 

Hunt's further hypothesis that different collision mechanisms can act 

independently over separate size ranges has been partially confirmed. A 

slope of -3/2 is not very different from one of -2 when there is scatter 

in the data! However, complete resolution of this point would require 

the simulation to cover a greater range of particle sizes. This is not 

feasible with the available computer storage. The perturbation analysis 

of van de Ven and Mason (1977), for the effect of weak shear on Brownian 

coagulation, suggests that when hydrodynamic interactions are considered 

the twc mt'chanisms may not be strictly additive. 

In conclusion it can be said that, while simple in concept, and using 

acceptaLle computer resources, the simulation method has provided useful 

elucidation of Hunt's hypotheses and experimental results under carefully 
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controlled conditions. Further work on the technique to include hydro­

dynamic interactions and gravitational settling is in progress. 
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APPEh~IX A 

RAh~OM NU~ER GENERATION 

Each simulation requires very many (_10 6 ) random numbers from both 

uniform and Gaussian distributions. A sequence of (pseudo-)random numbers 

distributed uniformly on the interval (0,1), denoted URN, are generated by 

the standard congruence method described in Abramowitz and Stegun (1964), 

§26.8 (henceforth referred to as AS). These random variates can then be 

scaled to any required uniform distribution. Random variates with Gaussian 

distribution are generated from URN by various algebraic manipulations and 

employing a 6 constant rational function approximation to the inverse of 

the Gaussian cumulative distribution function. Details are given in AS 

§26.2.23 and §26.l. :he variates so computed are then scaled to the 

required variance. While the rest of the computer code is in FORTRAN 

the random number gen~rator is written in assembler language, for 

efficient programming of the algorithm. 
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The random number generator produces a repeating sequence of variates 

whose maximum cycle length is restricted to 32.768 because the computer 

used (PDP 11/60) is a 16-bit machine. To avoid possible problems with 

the finite repetition time of the U~~ the sequence is restarted with a 

randomly generated seed number for each block of random numbers. The 

random seed is generated using an independent U~~ generator and the 

computer's internal clock. This guarantees different sequences of random 

variates even if the same program is rerun. Each block of random variates 

is a small fraction of the whole cycle. 

In the simulation of laminar shearing motions. particles leaving the 

box must be replaced on the other side with a vertical coordinate (P
3

) 

whose probability distribution reflects the differing fluxes of particles 

from the box at different heights. This flux is proportional to P
3 

and a 

UFL~ variate may be converted to this linear p.d.f. by taking its square-root. 

APPEf'.."DIX B 

FINITE STEPLENGTH AND COLLISION RATE IN BRO\,~IAN MOTION 

The theoretical collision function. B. for Brownian induced collisions 

between particles of radii r
i 

and rj given in Table 1 was computed (see e.g. 

Cllandrasekhar. 1949) by solving a diffusion equation for the pair distribu-

tion function. w(s). where s is the distance between the particles. In 

particular, the collision fUlict: on is given by the asymptotic flux to the 

surface of a fixed sphere of radius 0 ~ r
i 

+ r
j

, with a total diffusivity 

D = D. +D.. The "concentration". w, is held at zero at s=o and unit at s=o.o. 
1 J 

Initially, w is uniform outside the sphere. Then at large times the pair 

distribution function is given by 
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w = I - o/s , (A.I) 

whence the required result: 

6 = 4cD(s 2 dw/ds) = 4cDo . s=o (A.2) 

If the actual pair distribution function in the finite steplength 

simulation was identical to that in (A. I), then the collision rate 

measured would be no larger than one-half of that in (A.2), however small 

the steplength. This result can be obtained either by careful evaluation 

of the expected collision probability from the algorithms used for 

generating particle displacements and detecting collisions, or by the 

following simple argument. In the limit of Lx « 0, i.e., very small r.m.s 

steplength, but still with Lt » t , two particles must be so close at the 
r 

beginning of the time step in which they collide that the curvature of 

their surfaces may be neglected. The problem then reduces to that of the 

collision of a diffusing point with an adsorbing plane and we need only 

consider the component of the random walk perpendicular to the plane. 

Consider now this one-dimensional problem. The particle is judged 

to have collided with the plane if its final position is on the far side 

of the plane. For any given final position on the far side of the plane 

there is a whole class of possible Brownian trajectories leading to it. 

Now each of these trajectories must cross the plane for the first time 

at some point. There will be an associated trajectory defined to be 

identical with the original until the flrs~ contact with the adsorbing 

plane and then the mirror image, in the plane, of the original. As the 

end-point of thi~ associated trajectory lies on the near side of the plane 

it would not be judged a collision by the collision algorithm. Hence the 

50 per cent inefficiency. 
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Ho~ever, for the same reason, the pair distribution function ~ill 

not be identical in the theoretical and simulated cases. In the finite 

steplength case, ~ ~ill be larger ~ithin a distance of order Lx of s=:. 

This can compensate for the basic inefficiency of the collision algorithm. 

The actual form of ~ for a given distribution of steplengths and hence the 

collision function could be computed by solving the relevant integral 

equation. This has not been done as yet, but the non-coagulating form of 

the simulation has been used to determine the collision rate for a mono­

disperse population of particles as a function of the mean steplength. The 

results of this "experimental" determination are sho ... 'TI in Figure 5. The 

ratio of measured collision rate to that predicted from (A.2) is plotted 

against the ratio of r.m.s. displacement in any direction, Lx, and the 

particle radius r. The ratio is unity for Lx/r about 0.6 and so Lx is 

chosen accordingly in all the coagulation simulations. 
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APPENDIX B 

C MAIN PROGRAM FOR THE MONTE-CARLO SIMULATION OF PARTICLE 
C COAGULATION (REF: PEARSON, VALIOULIS AND LIST, 1983, AND 
C VALIOULIS' PH.D. THESIS, CHAPTER I). 
C BROWNIAN DIFFUSION, LAMINAR SHEAR AND DIFFERENTIAL SEDIMENTATION 
C INDUCED PARTICLE COLLISIONS. THE PROGRAM INCLUDES HYDRODYNAMIC 
C INTERACTIONS FOR SEDlMENTING PARTICLES. 
C 
C THE COMPUTER CODE IS ADAPTED FOR CALTECH'S IBM 370/3032. 
C 
C APTS: NUMBER OF PARTICLES ADDED PER TIME-STEP 
C D1,D2,D3: PARTICLE DISPLACEMENTS 
C DIFF: DIFFUSIVITY FOR MONOMER 
C DSK: DIFFERENTIAL SEDIMENTATION PARAMETER 
C DT: TIME STEP 
C GA: STRAIN RATE 
C JCOLL: NUMBER OF COLLISIONS 
C JSR(I): NUMBER OF INTEGRAL MULTIPLES 
C KB1(I),KB2(I),KB3(I): INTEGERS DEFINING THE SUB-CELL OF PARTICLE I 
C L1,L2,L3: NUMBER OF SUB-CELLS 
C N: NUMBER OF PARTICLES 
C NDT: TIME INTERVALS FOR OUTPUT 
C NT: TOTAL NUMBER OF TIME-STEPS 
C P1,P2,P3: PARTICLE POSITIONS 
C R: RADIUS OF MONOMER 
C RMAX: RADIUS OF LARGEST PARTICLE 
C UL(I): DIMENSIONS OF CONTROL VOLUME 
C VOL: CONTROL VOLUME 
C XR(I): RADIUS OF AGGREGATE CONSISTING OF I MONOMERS 
C 

REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(lOOO), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
COMMON /FLAG / KFLAG 

C*** DEFINE CONSTANTS 
EPI=2.51327E+01 
KR2=0 
KR3=0 
KR4=0 
KR5=0 
NUM=456789 
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C*** CHECK INPUT MODE: TERMINAL, FILE OR RERUN, 
READ(5,81) KFLAG 

81 FORMAT(Il) 
IF(KFLAG.NE.O) GO TO 7 
READ(5,8,ERR=99) N,R,DIFF,GA,DT,NT,NDT,APTS,RMAX,RMICRO 

8 FORMAT(I3,4F6.4,2I4,2F5.2,F5.1) 
READ(5,10,ERR=99) DSK,MEFF 

10 FORMAT(F6.4,I2) 
READ(5,13,ERR=99)UL(I),UL(2),UL(3),Ll,L2,L3 

13 FORMAT(3F5.2,3I2) 
RMAX=R*RMAX 
DX=SQRT(2.*DIFF*DT) 
GO TO 16 

C*** INPUT DATA FOR RERUN 
7 CALL PAREAD 

READ(5,II,ERR=99) GA,DSK,RMICRO,MEFF 
11 FORMAT(2F6.4,F6.2,I2) 

READ(5,15,ERR=99) NT,NDT,APTS,RMAX 
15 FORMAT(2I4,2F5.2) 

READ(5,152,ERR=99) Ll,L2,L3 
152 FORMAT(3I2) 

RMAX=R*RMAX 
DX=SQRT(2.*DT*DIFF) 

C*** COMPUTE DERIVED PARAMETERS 
16 VOL=UL(I)*UL(2)*UL(3) 

XNC=N/VOL 
FT=DT 
ESPAC=EXP(-ALOG(XNC)/3.) 
SPACR=ESPAC/R 
FTAU=NT*FT 
DFR=DX/R 

C*** OUTPUT PARAMETERS OF RUN AND INITIALISE 
WRITE(I,18)VOL,N,R,DIFF,GA,DSK,NT,NDT 

18 FORMAT(' VOL ',FI0.4,' N ' ,14,' RAD ' ,FI0.4,' DIFF " 
* FI0.4,' GA ' ,FI0.4,' DSK ',FI0.4,' NT ' ,15,' NDT ',14) 

WRITE(I,19)DT,APTS 
19 FORMAT(' DT' ,EI0.4,' APTS' ,F8.4) 

WRITE(I,20)XNC,SPACR,FTAU,DFR 
20 FORMAT(' NCONC ' ,EI0.4,' SPACR ' ,EI0.4,' FTAU ' ,EI0.4, 

* ' DFR ',EI0.4) 
CALL INIT3 
IN=O 
JCOLL=O. 
ISTEP=O 
CALL CCOLL3(IN,MEFF,KR2,KR3,KR4,KR5,ISTEP) 
IN=1 
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WRITE(1,2l) BL(1),BL(2),BL(3),RMAX 
21 FORMAT(' BLENG' ,3(2X,ElO.4),' RMAX ',F8.4) 

WRITE (1,22) JCOLL 
22 FORMAT(' INITIAL COLLS ' ,F8.0/) 

WRITE(1,25) RMICRO 
25 FORMAT(' RMICRO=',F8.2) 

JCOLL=O. 
NIN IT=N 

C*** MAIN LOOP 
DO 1 I=l,NT 

C*** COMPUTE GRAVITY INDUCED DISPLACEMENT 
CALL DIFSED 
IF(DX.LE.O.lE-05) GO TO 261 

C*** GENERATE RANDOM DISPLACEMENTS 
CALL DISPG(Dl,XR,R,N,DX,NUM) 
CALL DISPG(D2,XR,R,N,DX,NUM) 
CALL DISPG(D3,XR,R,N,DX,NUM) 

C*** COMPUTE SHEAR INDUCED DISPLACEMENT 
261 IF(GA.LE.O.lE-05) GO TO 262 

CALL SHDISP 
C*** CHECK FOR COLLISIONS 
262 CALL CCOLL3(IN,MEFF,KR2,KR3,KR4,KR5,I) 
C*** UPDATE POSITIONS AND BOX-NUMBERS 

CALL UPDATE(APTS,I,MEFF,KR2,KR3,KR4,KR5) 
CALL SZDIST(I,FT,NDT,NF) 

1 CONTINUE 
C*** COMPUTE FINAL STATISTICS 

TV=APTS*N T+N IN IT 
XNL=TV-JCOLL-NF 
FV=TV-XNL*(RMAX/R) **3 
FVOLC=FV*EPI*(R**3)/(6.*VOL) 
IF(TIM.LE.O.O) TIM=TIM+86400. 

C*** PRINT FINAL RESULTS 
IF(APTS.LT. 1.) WRITE(1,24) 

24 FORMAT(//' FVOLC IN ERROR') 
WRITE(1,23)JCOLL,TIM,FVOLC 

23 FORMAT(/' NCOLL ' ,FlO.O,' RTIME ' ,FlO.O,' FVOLC ' ,E12.4//) 
WRITE(1,25l) KR2,KR3,KR4,KRs 

251 FORMAT(/' TIME STEPS FOR REMOVAL: KR2',I4,' KR3',I4,' KR4', 
* 14,' KRs',I4) 

99 STOP 
END 
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C ******************************************************************** 
C ROUTINE TO DETERMINE WHETHER GIVEN PARTICLES HAVE COLLIDED 
C CALLS COAG 
C 
C 

SUBROUTINE MCOLL3(I1,I2,IN,MEFF,KR2,KR3,KR4,KRS,ISTEP) 
REAL*4 JSR,DT,JCOLL 
COMMON/PART/ D1(lOOO),D2(lOOO),D3(lOOO),P1(lOOO),P2(lOOO), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
DIMENSION RD(3),RP(3) 

C*** COMPUTE COLLISION CROSS-SECTION 
SIG2=(XR(I1)+XR(I2»**2 
IF(IN.EQ.O) GO TO 12 
XR1=XR(I1)*RMICRO 
XR2=XR(I2)*RMICRO 
IF(XR2.GE.XR1) GO TO 14 
A=XR1 
PR=XR2/XR1 
GO TO 13 

14 A=XR2 
PR=XR1/XR2 

13 EO=O.9S-(O.7-0.00S*A)**4*(7.92-0.12*A+O.001*A**2) 
E1=-(PR-O.S)**2 
E2=-1.S*EXP(-(O.OOlS*A**2+8.)*PR) 
E3=-(1.-0.007*A)*EXP(-O.6S*A*(1.-PR» 
E4=EXP(-30.*(1.-PR» 
IF(A.LT.20.) E4=O. 
EFF=EO+E1+E2+E3+E4 
IF(EFF.LT.O.O) EFF=O. 
SIG1=SIG2*EFF 

C*** CHECK FOR WRAP-AROUND 
SHX=O. 
SHY=O. 
SHZ=O. 
LDX=KB1(I1)-KB1(I2) 
IF(IABS(LDX).LE.1) GO TO 3 
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SHX=SIGN(UL(I),FLOAT(LDX» 
3 LDY=KB2(Il)-KB2(I2) 

IF(IABS(LDY).LE.l) GO TO 5 
SHY=SIGN(UL(2),FLOAT(LDY» 

5 LDZ=KB3(Il)-KB3(I2) 
IF(IABS(LDZ).LE.l) GO TO 4 
SHZ=SIGN(UL(3),FLOAT(LDZ» 

4 Pl(I2)=Pl(I2)+SHX 
P2(I2)=P2(I2)+SHY 
P3(I2)=P3(I2)+SHZ 
Dl(I2)=Dl(I2)+GA*DT*SHZ 

C*** CHECK FOR COLLISION 
IF(IN.NE.O) GO TO 11 

1 2 D 1 (II) =0 • 0 
D2(Il )=0.0 
D3(Il)=0.0 
D1(12)=O .0 
D2(12)=0.0 
D3(I3)=0.0 

11 RD(I)=Dl(I2)-Dl(Il) 
RD(2)=D2(I2)-D2(Il) 
RD(3)=D3(I2)-D3(Il) 
RP(I)=Pl(Il)-Pl(I2) 
RP(2)=P2(Il)-P2(I2) 
RP(3)=P3(Il)-P3(I2) 
RD2=RD(I)**2+RD(2)**2+RD(3)**2 
RP2=RP(I)**2+RP(2)**2+RP(3)**2 
IF(IN.EQ.O) GO TO 10 
DDOTP=RD(I)*RP(I)+RD(2)*RP(2)+RD(3)*RP(3) 
IF(DDOTP.LT.O.OE+OO)GO TO 1 
IF(RD2.LE.0.OE+00) GO TO 1 
IF«RP2-DDOTP**2/RD2).GT.SIGl) GO TO 1 
IF(RD2.GE.DDOTP) GO TO 2 
IF«RP2+RD2-2.*DDOTP).GT.SIGl) GO TO 1 

2 CALL COAG(Il,I2,KR2,KR3,KR4,KR5,ISTEP) 
GO TO 6 

1 Pl(I2)=Pl(I2)-SHX 
P2(I2)=P2(I2)-SHY 
P3(I2)=P3(I2)-SHZ 
Dl(I2)=Dl(I2)-GA*DT*SHZ 

6 RETURN 
10 IF(RP2.GT.SIG2) GO TO 6 

CALL PINIT(I2,IN) 
JCOLL=JCOLL+ 1. 
GO TO 6 
END 
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C******************************************************************** 
C FINDS AND COUNTS COllISIONS 
C 

SUBROUTINE CCOLL3(IN,MEFF,KR2,KR3,KR4,KR5,ISTEP) 
REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
N1=N-1 
L11=11-1 
L22=L2-1 
L33=13-1 
DO 100 LI=1,N1 
IX1=KB1(LI) 
IYl=KB2(LI) 
IZ1=KB3(LI) 
LIP=LI+1 
DO 1 LT=LIP,N 

C*** CHECK FOR NULL PARTICLES 
IF(KB1(LI).EQ.0) GO TO 100 
IF(KB1(LT).EQ.0) GO TO 1 

C*** TEST FOR ADJACENT BOX-NUMBERS 
IDX=IABS(IX1-KB1(LT» 
IF(IDX.EQ.L11) IDX=l 
IF(IDX.GT.1) GO TO 1 
IDY=IABS(IY1-KB2(LT» 
IF(IDY.EQ.L22) IDY=l 
IF(IDY.GT.1) GO TO 1 
IDZ=IABS(IZ1-KB3(LT» 
IF(IDZ.EQ.L33) IDZ=l 
IF(IDZ.GT.1) GO TO 1 

C 

CALL MCOLL3(LI,LT,IN,MEFF,KR2,KR3,KR4,KR5,ISTEP) 
1 CONTINUE 

100 CONTINUE 
RETURN 
END 

C********************************************************************* 
C INITIALISES POSITIONS AND/OR BOX NUMBERS 
C 

SUBROUTIN E IN IT3 
REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
COMMON /FLAG / KFLAG 
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C*** COMPUTE BOX DIMENSIONS 
BL(1)=UL(1)/FLOAT(L1) 
BL(2)=UL(2)/FLOAT(L2) 
BL(3)=UL(3)/FLOAT(L3) 
IF(KFLAG.EQ.1) GO TO 3 
DO 1 I=1,N 
NUM=NUM*65539 

C 

IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*0.465661E-9 
Pl(I)=UL( l)*URN 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*0.465661E-9 
P2(I)=UL(2)*URN 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*0.465661E-9 
P3(I)=UL(3)*URN 
XR(I)=R 

1 CONTINUE 
3 DO 2 1=1,100 
2 JSR(I)=O. 

ANF=O .E+OO 
DO 4 I=1,N 
KB1(I)=1+INT(P1(I)/BL(1» 
IF(XR(I).LE.1.E-07) KB1(I)=0 
KB2(I)=1+INT(P2(I)/BL(2» 
KB3(I)=1+INT(P3(I)/BL(3» 

4 CONTINUE 
RETURN 
END 

C******************************************************************** 
C GENERATES GAUSSIAN RANDOM DISPLACEMENTS 
C 

SUBROUTINE DISPG(D,XR,R,N,DX,NUM) 
DIMENSION D(1000),XR(1000) 
DO 1 I=1,N 
IF(XR(I).LT.1.E-09) GO TO 1 
CALL GRAN (RN ,NUM) 
D(I)=DX*SQRT(R/XR(I»*RN+D(I) 

1 CONTINUE 
RETURN 
END 
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C****************************************************************** 
SUBROUTINE DIFSED 
REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
DO 1 I=l,N 
IF(KB1(I).EQ.0.0) GO TO 1 
D3(I)=-(2./9.)*XR(I)**2*DSK*DT+D3(I) 
Dl( I )=0.0 
D2(I)=0.0 

1 CONTINUE 
RETURN 
END 

C 
C******************************************************************** 
C GENERATES STANDARD NORMALLY DISTRIBUTED RANDOM NUMBERS 
C USING I AS SEED, RANDOM NUMBER IS XN. 
C 

C 

SUBROUTINE GRAN (XN ,NUM) 
DATA CO,C1,C2,D1,D2,D3/ 2.515517,0.802853,.010328,1.432788, 

* .189269,.001308/ 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*0.465661E-9 
XH=URN-0.5EOO 
IF(ABS(XH).LE.1.E-04) GO TO 2 
T=SQRT(-ALOG(XH*XH» 
XNT=T-(CO+T*(C1+C2*T»/(1.+T*(D1+T*(D2+T*D3») 

1 XN=SIGN(XNT,XH) 
RETURN 

2 XNT=3.719124 
GO TO 1 
END 

C******************************************************************** 
C COAGULATES PARTICLES 
C 

SUBROUTINE COAG(I1,I2,KR2,KR3,KR4,KR5,ISTEP) 
REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
C*** UPDATE TOTAL NUMBER OF COLLISIONS 

JCOLL=JCOLL+1. 
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C*** COMPUTE RADIUS OF AGGREGATE 
R3=XR(Il)**3+XR(I2)**3 
XR(Il)=EXP(ALOG(R3)/3.E+00) 
IF(KR5.NE.0) GO TO 15 
IF(KR4.NE.0) GO TO 16 
IF(KR3.NE.0) GO TO 17 
IF(KR2.NE.0) GO TO 18 
IF(XR(Il).GE.2.*R) KR2=ISTEP 
GO TO 15 

18 IF(XR(Il).GE.3.*R) KR3=ISTEP 
GO TO 15 

17 IF(XR(Il).GE.4.*R) KR4=ISTEP 
GO TO 15 

16 IF(XR(Il).GE.5.*R) KR5=ISTEP 
C*** CHECK FOR AND REMOVE LARGE PARTICLE 

15 IF(XR(Il).LT.RMAX) GO TO 1 
XR ( Il ) =0 .0 E-l 0 
KBl(Il)=O 
KB2(Il )=0 
KB3(Il)=0 

C*** ZERO PARTICLE 

C 

1 XR(I2)=0.OE-I0 
KBl(I2)=0 
KB2(I2)=0 
KB3(I2)=0 
RETURN 
END 

C******************************************************************** 
C CALCULATES SIZE DISTRIBUTION AS FUNCTION OF RADIUS 
C 

SUBROUTINE SZDIST(IT,FT,NDT,NF) 
REAL*4 JSR,JCOLL 
COMMON/PART/ Dl(1000),D2(1000),D3(1000),Pl(1000),P2(1000), 

* P3(1000),KBl(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
NF=O 
JM=O 
DO 2 I=I,N 
IF(KBl(I).EQ.O) GO TO 2 
IM=I 
NF=NF+l 
JR=INT(I.E-04+(XR(I)/R)**3) 
JM=MAXO(JR,JM) 
IF(JR.GT.I00) GO TO 2 
JSR(JR)=JSR(JR)+I. 

2 CONTINUE 
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N=IM 
ANF=ANF+NF 
IF(IT-NDT*INT(FLOAT(IT)/FLOAT(NDT)+1.E-04).NE.0) GO TO 3 
DO 4 1=1,100 

4 JSR(I)=JSR(I)/NDT 
ANF=ANF /NDT 
CALL SZDOUT(IT,FT,NF,JM) 
DO 5 1=1,100 

5 JSR(I)=O. 
ANF=O .OE+OO 

3 RETURN 
END 

C******************************************************************** 
C OUTPUTS SIZE DISTRIBUTION 
C 

SUBROUTINE SZDOUT(IT,FT,NF,JM) 
REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000),KB1(1000),KB2(1000),KB3(1000),XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
RTlME=IT*FT 
WRITE(1,20) RTlME,JCOLL,N,NF,ANF,JM,JSR 

20 FORMAT(//,' TlME=',F10.4,' NCOLL=',F8.0,' N=',I4, 
* NF=',I4,' ANF=',F6.1,' VMAX=',I6,//,(10F8.3» 

C*** OUTPUT INTERMEDIATE DATA FOR POSSIBLE RERUN 
REWIND 3 
WRITE (3)N,UL,R,DT,DX,P1,P2,P3,XR 
RETURN 
END 

C 

C******************************************************************** 
C ADDS NEW PARTICLES 
C 

SUBROUTINE PADD(APTS) 
REAL*4 JSR,JCOLL 
COMMON/PART/ D1(1000),D2(1000),D3(1000),P1(1000),P2(1000), 

* P3(1000) ,KB1()OOO) ,KB2(1000) ,KB3(1000) ,XR(1000), 
* JSR(100),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,L1,L2,L3,DSK,DX,RMICRO 
IF(APTS.GE.1.) GO TO 1 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*0.465661E-9 
IF(URN.GT.APTS) GO TO 3 
NADD=1 
GO TO 4 

1 NADD=INT(APTS+1.E-04) 
4 J=O 

IN=1 
DO 2 I=1,N 
IF(KB1(I).NE.0) GO TO 2 



CALL PINIT(I,IN) 
J=J+l 
IF(J.EQ.NADD) GO TO 3 

2 CONTINUE 
NN=N+NADD-J 
IF(NN.GT.IOOO) GO TO 5 
Nl=N+l 
DO 6 I=Nl,NN 

6 CALL PINIT(I,IN) 
N=NN 

3 RETURN 
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5 WRITE(1,7) 
7 FORMAT(f r STOPPING BECAUSE N>lOOO') 

STOP 
END 

C******************************************************************** 
C INITIALISES PARTICLE 
C 

SUBROUTINE PINIT(I, IN) 
REAL*4 JSR,JCOLL 
COMMON/PART/ Dl(lOOO),D2(lOOO),D3(lOOO),Pl(lOOO),P2(lOOO), 

* P3(lOOO),KBl(lOOO),KB2(lOOO),KB3(lOOO),XR(1000), 
* JSR(lOO),UL(3),BL(3),NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O.465661E-9 
pI( 1)=UL(1 )*URN 
NUM=NUM*6 5539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=Nml*O .46 5661E-9 
P2(I)=UL(2)*URN 
NUM=NUM*6 5539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O.465661E-9 
P3 (I) =UL(3) *URN 
KBl(I)=l+INT(Pl(I)/BL(l» 
KB2(I)=1+INT(P2(I)/BL(2» 
KB3(I)=1+INT(P3(I)/BL(3» 
IF(IN.NE.O) XR(I)=R 
RETURN 
END 
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C******************************************************************** 
C READS STORED RESULTS 
C 

SUBROUTIN E PAREAD 
REAL*4 JSR,JCOLL 
COMMON/PART/ Dl(lOOO),D2(lOOO),D3(lOOO),Pl(lOOO),P2(lOOO), 

* P3(lOOO),KBl(lOOO),KB2(lOOO),KB3(lOOO),XR(lOOO), 
* JSR(lOO),UL(3),BL(3),NUM 

COMMON /VALI/ N, R, DT, JCOLL,GA,ANF, RMAX, Ll ,L2 ,L3 ,DSK, DX,RMICRO 
REWIND 2 
READ(2)N,UL,R,DT,DIFF,Pl,P2,P3,XR 
RETURN 
END 

C******************************************************************** 
C COMPUTES SHEAR INDUCED DISPLACEMENT 
C 

SUBROUTINE SHDISP 
REAL*4 JSR,JCOLL 
COMMON/PART/ Dl(lOOO),D2(lOOO),D3(lOOO),Pl(lOOO),P2(lOOO), 

* P3(lOOO),KBl(lOOO),KB2(lOOO),KB3(lOOO),XR(lOOO), 
* JSR(lOO),ULl,UL2,UL3,BLl,BL2,BL3,NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
DO 1 I=l,N 
IF(KBl(I).EQ.O) GO TO 1 
Dl(I)=Dl(I)+DT*GA*(P3(I)+O.S*D3(I» 

1 CONTINUE 
RETURN 
END 

C******************************************************************** 
C UPDATES POSITIONS AND BOX-NUMBERS 
C 

SUBROUTINE UPDATE(APTS,IT,MEFF,KR2,KR3,KR4,KRS) 
REAL*4 JSR,JCOLL 
COMMON/PART/ Dl(lOOO),D2(lOOO),D3(lOOO),Pl(lOOO),P2(lOOO), 

* P3(lOOO),KBl(lOOO),KB2(lOOO),KB3(lOOO),XR(lOOO), 
* JSR(lOO),ULl,UL2,UL3,BLl,BL2,BL3,NUM 

COMMON/VALI/ N,R,DT,JCOLL,GA,ANF,RMAX,Ll,L2,L3,DSK,DX,RMICRO 
DO 1 I=l,N 
IF(KBl(I).EQ.O) GO TO 1 
P2(I)=P2(I)+D2(I) 
IF(P2(I).LE.O.OE+OO) P2(I)=P2(I)+UL2 
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IF(P2(I).GT.UL2) P2(I)=P2(I)-UL2 
Pl(I)=Pl(I)+Dl(I) 
IF(Pl(I).LE.O.OE+OO) Pl(I)=Pl(I)+ULl 
IF(Pl(I).GT.ULl) GO TO 2 
GO TO 9 

8 Pl(I)=Pl(I)-ULl 
9 P3(I)=P3(I)+D3(I) 

IF(P3(I).LE.O.IE-5) GO TO 7 
GO TO 3 

7 NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O.465661E-9 
P l( I ) =ULI *URN 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O.465661E-9 
P2 (I) =UR2 *URN 
F=-P3(I) 
IK=INT(F/UL3+1.E-5) 
P3(I)=P3(I)+(IK+l)*UL3 
GO TO 3 

2 IF(GA.LE.O.IE-05) GO TO 8 
NUM=NUM*65539 
IF(NUM.LT.O) NUM=NUM+2147483647+1 
URN=NUM*O.465661E-9 
P3(I)=UL3*SQRT(URN) 
Pl(I)=DT*GA*P3(I)*(Pl(I)-ULl)/Dl(I) 

3 KBl(I)=l+INT(Pl(I)/BLl) 
KB2(I)=1+INT(P2(I)/BL2) 
KB3(I)=1+INT(P3(I)/BL3) 

1 CONTINUE 
IF (APTS.LE.l.E-04) GO TO 4 
CALL PADD(APTS) 

4 XJC=JCOLL 
IN=O 
CALL CCOLL3(IN,MEFF,KR2,KR3,KR4,KR5,IT) 
XNJ=JCOLL-XJC 
JCOLL=XJC 
RETURN 
END 
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APPENDIX C 

C COMPUTER PROGRAM FOR THE SIMULATION OF A RECTANGULAR SEDIMENTATION BASIN 
C 
C Solves the General Dynamic Equation (Ref: Valioulis, Ph.D. Thesis) 
C using the sectional approximation to the particle size spectrum 
C as developed by Gelbard and Seinfeld, 1980. The collision 
C functions are appropriate for a flocculant suspension in water 
C as described in Valioulis' Thesis, Chapter II. The time-integration 
C is performed using Gear's subroutine on Caltech's IBM 370/3032. 
C The arrays are dimensioned for 24 equal cells (settling tank partitions) 
C and 21 particle size sections. 
C 

C 

C 

DIMENSION Q(362),SOURCE(24),TOUT(2),DIAM(2l),QEFFL(2000) 
COMMON/PHYSPT/AFLROV,VOLUME,EPS 
COMMON/TANK/BL1,BL2,UAVE,USTAR,UL1,UL2,SCOUR,FREQ 
COMMON/VELOC/Ul,U2,U3,U4 
DATA TOUT/16200.E+00,18000.E+00/ 

DATA IPRNT/4/ 

C Initialize parameters and flags 
C IDISC: =0 for continuous input, =1 for discontinuous input (step 
C input), =2 for sinusoidal input with frequency FREQ) 
C ISCOUR: =0 No scour 
C NEWCOF: =0 Use coagulation coefficients from file, =12 Compute 
C new coagulation coefficients 
C 

C 

START=O. 
IDISC=O 
FREQ=O. 
ISCOUR=O 
NEWCOF=O 
TWAT=288. 

C Set number of sections (M), minimum (Diam(l)) and maximum (Diam(M+1)) 
C particle diameter, length of tank (UL1), depth of tank (UL2), 
C number of horizontal cells (NB1), number of vertical cells (NB2). 

M=15 
DIAM(1)=1.E-7 
DIAM(M+1)=1.E-3 
ULl=40. 
UL2=4. 
NB1=6 
NB2=3 
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C Logarithmic velocity profile: UAVE is the mean horizontal velocity 
C and USTAR the shear velocity 

UAVE=0.0053 
USTAR=0.00055 

C 
C Check for scour 

IF(ISCOUR.LE.O) GO TO 53 
FROUDE=UAVE/(SQRT(9.81*UL2)) 
COEFDI=3.59*EXP(58.5*FROUDE) 
SCOUR=1.17*(EXP(-8.05/COEFDI)) 
GO TO 54 

53 SCOUR=O. 
54 CONTINUE 

C 
C Compute dimensions of cells 
C 

BLl=ULl/NBl 
BL2=UL2/NB2 
VOLUME=BL1*BL2*1. 
AFLROV= 1 • / BL2 

C 
C Initialise mass concentrations 
C The mass concentations are stored in Q(MKS) in a sequential manner 
C so that IBOX=I+(J-1)*NB1 is the index of cell IBOX and 
C MKS=IBOX+(L-1)*KBOX is the mass concentration of section L in cell IBOX. 
C Q(~OCBOX+1) is the mass concentration in the effluent. 
C Q(MKBOX+2) is the mass (per unit volume of tank) deposited. 
C 

C 

C 

C 

IFILE=O 
KBOX=NB1 *NB2 
MKBOX=M*KBOX 
IF(IFILE.EQ.l) GO TO 509 
DO 1 I=l,MKBOX 

1 Q(I)=START 
GO TO 507 

509 DO 508 I=l,NBl 
DO 508 J=1,NB2 
IBOX=(J-l )*NB1+l 

508 READ(4,406,ERR=99) (Q«L-1)*KBOX+IBOX),L=I,M) 
406 FORMAT(5E15.10) 

507 Q(MKBOX+1)=0. 
Q(MKBOX+2)=0. 

TIME=O. 

C Compute section boundaries 
C 

DO 2 I=2,M 
2 DIAM(I)=DIAM(1)*(DIAM(M+1)/DIAM(1))**(FLOAT(I-1)/FLOAT(M)) 

C 
IF(IDISC.NE.l .AND. IDISC.NE.2) GO TO 681 
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C Discontinuous input 
C Request output every 100 sec 
C 

HEXT=lOO. 
MAXTIM=INT(TOUT(4)/HEXT) 
ISTEP=4 
GO TO 682 

C 
C Continuous input 

681 ISTEP=2 
682 IFLAG=l 

C 
C Round is set for IBM 370/3032 

ROUND=5.E-7 
C 
C Output initial parameters 
C 

WRITE(IPRNT,60) M,NBl,NB2 
60 FORMAT(' NUMBER OF SECTIONS=',I3/' NUMBER OF BOXES: NBl=' ,12, 

*lX,'NB2=',I2/) 
WRITE(IPRNT,6l) ULl,UL2,BLl,BL2 

61 FORMAT(' TANK LENGTH=',F5.l,' TANK HEIGHT=',F5.1/' BOX LENGTH= 
*',F5.l,' BOX HEIGHT=',F5.1/) 

WRITE(IPRNT,62) UAVE,USTAR,SCOUR 
62 FORMAT(' AVERAGE VELOCITy=',F7.5,' SHEAR VELOCITy=',F7.5, 

* SCOURING PAR.=',F7.5/) 
WRITE(IPRNT,6l0) TOUT(1),TOUT(2),TOUT(3),TOUT(4) 

610 FORMAT(' TIME STEPS=',4E12.4/) 
Ml=M+l 
WRITE(IPRNT,63) (DIAM(I),I=l,Ml) 

63 FORMAT(15X,'SECTION BOUNDARIES (DIAMETERS)'/(5E13.8» 
WRITE(IPRNT,64) START 

64 FORMAT(/' INITIAL MASS=',E13.8/) 
WRITE(IPRNT,65) TWAT,ROUND 

65 FORMAT(' WATER TEMPERATURE=',F5.l,' K' ,5X,'ROUND=',E13.8//) 
C 
C Set parameter for turbulence induced coagulation 

EPS=l. 
C 

IF(NEWCOF.EQ.12) WRITE(2,8) M,DIAM(l),DIAM(M+l) 
8 FORMAT(' NUMBER OF SECTIONS=' ,I3,4X,' DIAM RANGE: ',ElO.5,' - ' 

C* 
*ElO.5/) 

H=26.*ROUND 
SOUOLD=O. 
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C Main loop 
C 

DO 3 ITIME=l,ISTEP 
DELTIM=TOUT(ITIME)-TIME 
CALL SOR(NBl,NB2,ITIME,TIME,TOUT(ISTEP),SOURCE,FLOW,SMASS,IDISC) 
IF(SOURCE(I).NE.SOUOLD) GO TO 7 
GO TO 18 

7 DO 77 I=I,NBI 
DO 77 J=I,NB2 
IBOX=I+(J-l)*NBI 

77 WRITE(IPRNT,9)I,J,SOURCE(IBOX) 
9 FORMAT(10X,'BOX=',2I3,' SOURCE=',EI3.5,'KG/SEC') 

WRITE(IPRNT,91) FLOW,Ul,U2,U3,U4 
91 FORMAT(//' FLOW RATE=',EI0.4,' Ul=',EI0.4,' U2=',EI0.4, 

* ' U3=',EI0.4,' U4=',EI0.4) 
IFLAG=1 
SOUOLD=SOURCE(I) 

18 IF«TOUT(I)-16200.E+OO).GT.I0.E+OO) GO TO 99 
CALL AERSL(M,NBl,NB2,TIME,DELTIM,Q,SOURCE,DIAM,ROUND,IPRNT, 

*IFLAG,NEWCOF,H,ITIME,SMASS,PERSUS,HEXT,IDISC,TOUT,QEFFL,FLOW) 
CALL PRAERO(Q,DIAM,DELTIM,TIME,VOLUME,M,NBI,NB2,IPRNT,SMASS, 

*FLOW,PERSUS,MAXTIM,IDISC,HEXT,TOUT(4),TOUT(2),QEFFL,SOURCE) 
3 CONTINUE 
99 STOP 

~D 

C******************************************************************* 
SUBROUTINE PRAERO(Q,DIAM,DELTIM,TIME,VOLUME,M,NBI,NB2,IPRNT, 
*SMASS,FLOW,PERSUS,MAXTIM,IDISC,HEXT,TIM~D,TDISIN,QEFFL,SOURCE) 

C 
C This routine prints results every time step 
C 

DIMENSION Q(362),QT(362),DIAM(21),QEFFL(2000),QINFL(2000), 
*SOURCE(24) 

COMMON/OUTX/DUMl(362),DUM2(362),DEPSIT(362),OUTMAS(362) 
COMMON/TANK/BLl,BL2,UAVE,USTAR,ULl,UL2,SCOUR,FREQ 
COMMON/RDEQU/RNUM(20),DNUM(20) 
COMMON/VELOC/U(4) 
COMMON/DISCO/SUMAX(20),SUMIN(20),TIMAX,TIMIN,TSRMAX,SSRMAX, 

* TSRMIN,SSRMIN,QEFMAX,QEFMIN,OUTDIR,SINUS 
DATA TOTOUT,TOTDEP,DEPDIR/3*O.E+OO/ 



C 

C 
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TIMEFF=HEXT 
IF(IDISC.EQ.O) TIMEFF=DELTIM 
IF«TIME+20.).LT.TIMEND .OR. IDISC.EQ.O) GO TO 101 
TDIS=O. 
MAXI =MAXTIM+ 1 
IF(IDISC.EQ.1) GO TO 108 
DO 120 L=1,MAX1 
SUM=O. 
DO 130 J=1,NB2 
IBOX=(J-1)*NB1+1 
TD=TDIS+FLOAT(L)*HEXT 

130 SUM=SUM+SOURCE(IBOX)*(1.+0.S*SIN(2.*3.14*FREQ*TD» 
SUM=SUM/FLOW 

120 WRITE(IPRNT,103) TD,QEFFL(L) 
103 FORMAT(' TIME=',F10.2,' EFFLUENT CONC.=',E10.4, 

*' INFLUENT CONC=' ,E10.4) 
DO 1200 L=1,MAX1 
SUM=O. 
DO 1300 J=1,NB2 
IBOX=(J-1)*NB1+1 
TD=TDIS+FLOAT(L)*HEXT 

1300 SUM=SUM+SOURCE(IBOX)*(1.+0.S*SIN(2.*3.14*FREQ*TD» 
SUM=SUM/FLOW 

1200 WRITE(3,406) TD,QEFFL(L),SUM 
406 FORMAT(3E1S.10) 

GO TO 109 
108 DO 122 L=1,MAX1 

TD=TDIS+FLOAT(L)*HEXT 
122 WRITE(IPRNT,110) TD,QEFFL(L) 
110 FORMAT(' TIME=',F10.2,' EFFLUENT CONC.=',E10.4) 
109 WRITE(IPRNT,104) TIMAX,TSRMAX,8SRMAX,TIMIN,TSRMIN,SSRMIN 
104 FORMAT(' TIME FOR MAX CONC=',F8.2,' % TS REMOVAL=',E10.4, 

*' % 88 REMOVAL=',E10.4/' TIME FOR MIN CONC=',F8.2, 
*' % TS REMOVAL=',E10.4,' % SS REMOVAL=',E10.4// 
*' MAXIMUM CONC. (KG/M3)',' MINIMUM CONC. (KG/M3)'f) 

DO 105 L=l,M 
105 WRITE(IPRNT,106)SUMAX(L),SUMIN(L) 
106 FORMAT(SX,E10.4,10X,E10.4) 

WRITE(IPRNT,107)QEFMAX,QEFMIN 
107 FORMAT(' TOTAL MAX CONC.=',E10.4,' TOTAL MIN CONC.=',E10.4) 
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101 KBOX=NB1 *NB2 
MKBOX=KBOX*M 

C 
DO 100 I=l,MKBOX 
IF(OUTMAS(I).LE.O.O) OUTMAS(I)=O. 

100 IF(DEPSIT(I).LE.O.O) DEPSIT(I)=O. 
C 

SUM=O. 
DO 1 L=l,M 
QT(L)=O. 
DO 2 I=1,NB1 
DO 2 J=1,NB2 
IBOX=NB1 *(J-1)+1 

2 QT(L)=QT(L)+Q(IBOX+(L-1)*KBOX) 
1 SUM=SUM+QT(L) 

C 
Sl=SUM*VOLUME 
WRITE(IPRNT,312)TIME,Sl 

312 FORMAT(lH1,20X,'TIME=',E10.5,' SEC'/20X,' TOTAL MASS=',E12.5, 
*' KG' ,//12X,'AVERAGE MASS, NUMBER AND VOL CONCENTRATIONS') 

WRITE(IPRNT,314) 
314 FORMAT(//12X,'DIAMETER RANGE (M)',8X,'KG/M3',4X,'#/CM3', 

*8X, 'PPM' f) 
DO 313 I=l,M 
Sl=QT(I)/KBOX 
S2=Sl/(3.14/6.*RNUM(I)*DNUM(I)**3)*1.E-6 
S3=Sl/RNUM(I)*1.E+6 

313 WRITE(IPRNT,3)DIAM(I),DIAM(I+1),Sl,S2,S3 
3 FORMAT«10X,E10.4,' -',E10.4,E12.5,3X,E10.4,3X,E10.4)/) 

C 

C 

WRITE (IPRNT, 36) 
36 FORMAT(/15X,' MASS IN EACH BOX'/) 

DO 4 I=1,NB1 
DO 4 J=1,NB2 
SUM=O. 
IBOX=NB1 *(J-1)+1 
DO 5 L=l,M 

5 SUM=SUM+Q«L-1)*KBOX+IBOX) 
Sl=SUM*VOLUME 

4 WRITE(IPRNT,6)SUM,Sl,I,J 
6 FORMAT(10X,'TOTAL=',E13.4,'(KG/M3)',lX,E13.4,'KG', 

*' BOX=',I2,lX,I2) 

WRITE(IPRNT,37) 
37 FORMAT(//10X,' MASS DISTRIBUTION ALONG THE TANK'/) 
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DO 38 I=1,NB1 
TSREM=O. 
SSREM=O. 
SUM3=0. 
SUM4=0. 
DO 383 L=l,M 
SUM1=0. 
DO 381 J=1,NB2 
IBOX=NB1 *(J-1)+1 
MKS=IBOX+(L-1)*KBOX 
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381 SUM1=SUM1+Q(MKS) 
SUM2=SUM1/(3.14/6.*RNUM(L)*DNUM(L)**3)/NB2 
Sl=SUMl/NB2 
TSREM=TSREM+S1 
IF(L.GE.S) SSREM=SSREM+S1 
S2=Sl/RNUM(L)*1.E+6 
S3=SUM2*1.E-6 
WRITE(IPRNT,382) I,L,Sl,S2,S3 

382 FORMAT(' POSIT=',I2,' SECTION=',I2,' MASS CONC=',E10.4, 
*' KG/M3',' VOL CONC=',E10.4,' PPM' " NUM CONC=',E10.4,' #/CM3'/) 

SUM3=SUM2+SUM3 
383 SUM4=SUM4+SUM1/NB2/RNUM(L) 

SUM=(6./3.14*SUM4/SUM3)**(1./3.) 
TSREM=l.-TSREM*FLOW/SMASS 
SSREM=l.-SSREM*FLOW/(SMASS*PERSUS) 

38 WRITE(IPRNT,384) SUM,TSREM,SSREM 
384 FORMAT(' EQUIVALENT DIAMETER=',E10.4,' % TS REMOVAL=',E10.4, 

* ' %SS REMOVAL=',E10.4//) 

C Optional output for detailed information on particle size distribution 
C l.n the tank 
C WRITE(IPRNT,37) 
C 37 FORMAT(//lSX,' MASS DISTRIBUTION IN TANK'/) 
C 
C 
C 
C 

DO 38 I=1,NB1 
DO 38 J=1,NB2 
IBOX=NB1 *(J-1 )+1 
DO 38 L=l,M 

C 38 WRITE(IPRNT,39) I,J,L,Q(KBOX*(L-l)+IBOX),Q(KBOX*(L-1)+IBOX)/ 
C * (3.14/6.*RNUM(L)*DNUM(L)**3)*1.E-6 
C 39 FORMAT(' BOX=',2I3,' SECTION=',I3,' MASS CONC.=',ElO.4,' KG/ 
C 
C 

*M3',' NUM CONC.=',E10.4,' #/CM3'/) 

C Compute total (approximate) mass concentration in deposits 
C 

DEPTIM=O. 
DO 111 I=1,NB1 
DO 111 L=l,M 
MKS=KBOX*(L-1)+I 

III DEPTIM=DEPTIM+DEPSIT(MKS) 
IF(DEPTIM.LT.1.E-1S) GO TO 1110 
CORDEP=(Q(MKBOX+1)-DEPDIR)/DEPTIM 

1110 TOTDEP=TOTDEP+DEPTIM 
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C Compute total (approximate) mass concentration Ln effluent 
C 

C 

SUM2=O. 
DO 112 J=1,NB2 
IBOX=NB1*(J-1)+NB1 
DO 112 L=l,M 
MKS=KBOX*(L-1)+IBOX 

112 SUM2=SUM2+0UTMAS(MKS) 
IF(SUM2.LT.1.E-12) GO TO 1120 
COROUT=(Q(MKBOX+2)-OUTDIR)/SUM2 

1120 TOTOUT=TOTOUT+SUM2 

C Output deposited mass 
C 

C 

Sl=Q(MKBOX+1)*VOLUME 
S2=DEPTIM*CORDEP*VOLUME 
WRITE(IPRNT,22) Sl,S2 

22 FORMAT(//' CUMULATIVE DEPOSITED MASS=',E12.4,' KG'/, 
* DEPOSITED MASS FOR THE TIME STEP=',E12.4,' KG'//) 

C Output deposition rates during last time step 
C 

IF(DEPTIM.LT.1.E-15) GO TO 1111 
J=l 
DO 11 I=1,NB1 
SUM1=0. 
SUM=O. 
DO 16 L=l,M 
MKS=KBOX*(L-1)+I 
SUM1=SUM1+DEPSIT(MKS)/RNUM(L) 

16 SUM=SUM+DEPSIT(MKS) 
Sl=SUM*CORDEP/DELTIM 
S2=SUMl*CORDEP/DELTIM*1.E+6 
WRITE(IPRNT,13) I,J,Sl,S2 

13 FORMAT(' BOX',I3,lX,I3,' MASS DEP RATE=',E13.4,' KG/(M3-SEC)', 
* ' VOLUME DEP RATE=',E13.4,' #/(CM3-SEC)'/) 

11 CONTINUE 
C* 
C WRITE(IPRNT,21) 
C 21 FORMAT(/8X,' DEPOSITION RATES FROM BOXES'/) 
C 
C DO 12 I=1,NB1 
C DO 12 L=l,M 
C MKS=KBOX*(L-1)+I 
C SUM=DEPSIT(MKS)/(3.14/6*RNUM(L)*DNUM(L)**3)/DELTIM 
C 12 WRITE(IPRNT,14) I,J,L,DEPSIT(MKS)*CORDEP/DELTIM,SUM*CORDEP*1.E-6 
C 14 FORMAT(' BOX=',2I3,' SECTION=',I2,' MASS DEP. RATE=',E10.5, 
C *' KG/M3-SEC',' NUM DEP. RATE=',E10.4,' #/CM3-SEC'/) 
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WRITE (IPRNT,19) 
19 FORMAT(/12X,'AVERAGE DEPOSITION RATES'/) 

DO 17 L=l,M 
SUM=O. 
DO 18 I=1,NB1 
MKS=KBOX*(L-1)+I 

18 SUM=SUM+DEPSIT(MKS)/DELTIM*CORDEP 
SUM3=SUM/(3.14/6.*RNUM(L)*DNUM(L)**3)/NB1*1.E-6 
Sl=SUM/NB1 
S2=Sl/RNUM(L)*1.E+6 

17 WRITE(IPRNT,20) L,Sl,S2,SUM3 
20 FORMAT(' SECTION=',I3,' MASS DEP RATE=',E10.4,' KG/M3-SEC', 

*' VOL DEP RATE=',E10.4,' PPM-SEC',' NUM DEP RATE=',E10.4, 
*'#/CM3-SEC'/) 

C 
C Output effluent mass 
C 

C 

C 

C 

1111 Sl=Q(MKBOX+2)*VOLUME 
S2=SUM2*COROUT*VOLUME 
WRITE(IPRNT,23) Sl,S2 

23 FORMAT(//' CUMULATIVE MASS IN EFFLUENT=',E12.4,' KG'/, 
* ' EFFLUENT MASS FOR THE TIME STEP=',E12.4,' KG'//) 

I=NB1 
DO 24 J=1,NB2 
SUM=O. 
DO 25 L=l,M 
MKS=KBOX*(L-1)+J*NB1 

25 SUM=SUM+OUTMAS(MKS) 
Sl=SUM*COROUT/(U(J)*BL2*TIMEFF)*VOLUME 

24 WRITE(IPRNT,26) I,J,Sl 
26 FORMAT(' BOX=',2I3,' EFFLUENT CONC.=',E10.4,' KG/M3'/) 

C Optional output for detailed information on effluent particle size 
C distribution 
C WRITE(IPRNT,27) 
C 27 FORMAT(//9X,' MASS DISTRIBUTION IN EFFLUENT FROM EACH BOX'/) 
C. DO 28 J=1,NB2 
C DO 28 L=l,M 
C MKS=KBOX*(L-1)+J*NB1 
C SUM3=VOLUME/(U(J)*L2*TIMEFF) 
C SUM=OUTMAS(MKS)/(3.14/6.*RNUM(L)*DNUM(L)**3)*SUM3 
C S!=OUTMAS(MKS)*COROUT*SUM3 
C S2=SUM*COROUT*1.E-6 
C 28 WRITE(IPRNT,29) I,J,L,Sl,S2 
C 29 FORMAT(' BOX=',2I3,' SECTION=',I3,' MASS CONC=',E10.4,' KG/M3', 
C *' NUM CONC=',E10.4,' #/CM3'/) 
C 

IF(S2.LT.1.E-15) GO TO 1112 



C 

210 

WRITE( IPRNT, 30) 
30 FORMAT(//9X,' AVERAGE MASS CONC. IN EFFLUENT FROM TANK'/) 

TSREM=O. 
SSREM=O. 
SUM5=O. 
SUM7=O. 
DO 31 L=I,M 
SUM=O. 
DO 32 J=I,NB2 
MKS=KBOX*(L-l)+J*NBI 
SUM4=VOLUME/(U(J)*BL2*TIMEFF*NB2)*COROUT 
SUM9=SUM9+0UTMAS(MKS) 

32 SUM=SUM+OUTMAS(MKS)*SUM4 
TSREM=TSREM+SUM 
IF(L.GE.5) SSREM=SSREM+SUM 
SUM3=SUM/(3.14/6*RNUM(L)*DNUM(L)**3)*I.E-6 
SUM7=SUM7+SUM3 
SUM6=SUM/RNUM(L) 
SUM5=SUM5+SUM6 
SI=SUM6*I.E+6 

31 WRITE(IPRNT,33) L,SUM,SI,SUM3 
33 FORMAT(' SECTION=',I3,' MASS CONC=',EI0.4,' KG/M3', 

*' VOL CONC=',EI0.4,' PPM',' NUM CONC=',EI0.4,' #/CM3'//) 
SUM=(6./3.14*SUM5/SUM7)**(I./3.) 
SI=SUM5*I.E+6 
TSREM=I.-TSREM*FLOW/SMASS 
SSREM=I.-SSREM*FLOW/(SMASS*PERSUS) 
WRITE(IPRNT,42) SI,SUM,TSREM,SSREM 

42 FORMAT(' TOTAL VOLUMETRIC CONC IN EFFLUENT=',EI0.4,' PPM'/, 
* ' EQUIVALENT DIAMETER=',EI0.4,' M',' % TS REMOVAL=', 
* EI0.4,' % SS REMOVAL=',EI0.4//////) 

C Initialise effluent and deposition parameters 
C 

C 

1112 DO 41 I=I,NBI 
DO 41 J=I,NB2 
IBOX=NBl*(J-l)+I 
DO 41 L=I,M 
MKS=(L-l)*KBOX+IBOX 
DEPSIT(MKS)=O. 

41 OUTMAS(MKS)=O. 

C Store cumulative deposited and effluent mass concentrations 
C 

C 

OUTDIR=Q(MKBOX+2) 
DEPDIR=Q(MKBOX+l) 

RETURN 
99 STOP 

END 
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C******************************************************************* 
SUBROUTINE AERSL(M,NBl,NB2,TIME,DELTIM,Q,SOURCE,DIAM,ROUND, 

*IPRNT,IFLAG,NEWCOF,H,ITIME,SMASS,PERSUS,HEXT,IDISC,TOUT,QEFFL, 
*FLOW) 

'c 
C This routine calls COEF, to compute the coagulation coefficients, 
C and then GEAR for the time integration 
C 

C 

C 

DIMENSION Q(362),SOURCE(24),WORK(90000),IWORK(362),DIAM(2l), 
*V(21),QT(24),X(2l),TOUT(4),QEFFL(2000) 

COMMON/AVGCOF/COEFAV(78l,24),SRATE(362),MPASS,KPASl,KPAS2,NB2A, 
*NB2B,NB3,NB4,NDEPST 

COMMON/PHYSPT/AFLROV,VOLUME 
COMMON/RDEQU/RNUM(20),DNUM(20) 
COMMON/OUTX/DUMl(362),DUM2(362),DUM3(362),OUTMAS(362) 
COMMON/VELOC/U(4) 
COMMON/DISCO/SUMAX(20),SUMIN(20),TIMAX,TIMIN,TSRMAX,SSRMAX, 

* TSRMIN,SSRMIN,QEFMAX,QEFMIN,QSTORE,SINUS 
COMMON/TANK/BLl,BL2,UAVE,USTAR,ULl,UL2,SCOUR,FREQ 
EXTERNAL DIFFUN 
DATA JTIME/O/ 
DATA SINOLD,SINNEW/2*0.E+00/ 

KBOX=NBI *NB2 
MKBOX=M*KBOX 

C Set pointers 
C 

C 

MPASS=M 
KPASl=NBl 
KPAS2=NB2 
NB2A=«M-2)*(M-l))/2 
NB2B=«M-l)*M)/2+NB2A 
NB3=NB2B+«M-l)*M)/2 
NB4=NB3+M 
NDEPST=NB4+«M-l)*M)/2 
NUMCOF=NDEPS T+ M 
MPl=M+l 

IF«TOUT(1)-16200.E+00).GT.lO.E+00) GO TO 100 
IF(NEWCOF.LT.O) GO TO 1 



212 

C Compute the geometric means of the diameters and the densities 
C of the boundaries of the particle size spectrum 
C 

C 

v(l)=O. 
CALL RHODD(V(I),D1AM(I) ,RHO) 
Rl=RHO 
DO 18 1=2,MPl 
V(1)=O. 
CALL RHODD(V(1),D1AM(1),RHO) 
RNUM(1-l)=SQRT(Rl*RHO) 
Rl=RHO 
DNUM(1-l)=SQRT(D1AM(1-l)*D1AM(1» 

18 CONTINUE 

C Compute coagulation coefficients 
C 

C 

C 

C 

1F(NEWCOF.EQ.O) GO TO 777 

CALL COEF(NEWCOF,M,V,ROUND,1PRNT) 
DO 20 1=l,NBI 
DO 20 J=I,NB2 
1BOX=NBl *(J-l )+1 
DO 20 K=l,NUMCOF 
COEFAV(K,1BOX)=COEFAV(K,l) 

20 CONTINUE 
WR1TE(2,300) (COEFAV(K,I),K=l,NUMCOF) 

300 FORMAT(5EI5.8) 
GO TO 100 

777 DO 303 1=l,NBl 
DO 303 J=I,NB2 
1BOX=NBl *(J-l )+1 
READ(3,300) (COEFAV(L,1BOX),L=l,NUMCOF) 

303 CONTINUE 

NEWCOF=12 

1 NEWCOF=-1ABS(NEWCOF) 
C 
C Fractionate the input mass 
C 

CALL D1V1DE(M,NBl,NB2,VOLUME,SOURCE,SRATE,D1AM,1PRNT,1T1ME, 
* PERSUS) 
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C Set parameters for the integration subroutine 
C 

C 

C 

REL=.OOIE+OO 
METH=1 
MITER=2 
MKBOX2=MKBOX+2 

TEND=TIME+DELTIM 

C Check for type of input 
C 

C 

C 

C 

IF(IDISC.NE.1 .AND. IDISC.NE.2) GO TO 6 
PROD=VOLUME/(FLOW*HEXT) 
TEND=TIME+HEXT 

7 QSTORE=Q(MKBOX2) 
SINOLD=SINNEW 
DO 120 I=I,MKBOX 

120 OUTMAS(I)=O. 
CALL DGEAR(MKBOX2,DIFFUN,FCNJ,TIME,H,Q,TEND,REL,METH,MITER, 

*IFLAG,IWORK,WORK,IER,COEFAV,NDEPST,M,NBl,NB2,NSTEP,NFE,SCOUR) 

IF(IFLAG.NE.2 .AND. IFLAG.NE.O) GO TO 8 
TEND=TIME+HEXT 

C Optional for sinusoidal input 
C IF«TIME+I.E-2).LT.TOUT(2)) GO TO 11 
C SINNEW=I.+0.5*SIN(2.*3.14*TIME*FREQ) 
C SINUS=O .5*(SINNEW+SINOLD) 
C PRODl=PROD/SINUS 

PRODl=PROD 
JTIME=JTIME+l 
QEFFL(JTIME+l)=(Q(MKBOX2)-QSTORE)*PRODl 
IF«TIME+5.).LT.TOUT(2)) GO TO 11 
IF(QEFFL(JTIME+I).GT.QEFMAX)GO TO 9 
IF(QEFFL(JTIME+I).LT.QEFMIN)GO TO 10 
GO TO 11 
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C Determine maximum and minimum mass concentrations in effluent 
C 

C 

9 OUTALL=O. 
DO 12 J=I,NB2 
IBOX=NBl*(J-l)+NBI 
DO 12 L=I,M 
MKS=KBOX*(L-l)+IBOX 
IF(OUTMAS(MKS).LT.O.) OUTMAS(MKS)=O. 

12 OUTALL=OUTALL+OUTMAS(MKS) 
IF(OUTALL.LT.l.E-lS) GO TO 11 
COROUT=(Q(MKBOX2)-QSTORE)/OUTALL 
TSREM=O. 
SSREM=O. 
SUMS=O. 
SUM7=0. 
DO 13 L=I,M 
SUMAX(L)=O. 
DO 14 J=I,NB2 
MKS=KBOX*(L-l)+J*NBI 
SUM4=VOLUME/(U(J)*BL2*HEXT*NB2)*COROUT 

14 SUMAX(L)=SUMAX(L)+OUTMAS(MKS)*SUM4 
TSREM=TSREM+SUMAX(L) 
IF(L.GE.S) SSREM=SSREM+SUMAX(L) 
SUM3=SUMAX(L)/(3.14/6*RNUM(L)*DNUM(L)**3) 
SUM7=SUM7+SUM3 
SUM6=SUMAX(L)/RNUM(L) 

13 SUMS=SUMS+SUM6 

SUM=(6./3.14*SUMS/SUM7)**(I./3.) 
TSRMAX=I.-TSREM*FLOW/SMASS 
SSRMAX=l.-SSREM*FLOW/(SMASS*PERSUS) 
TlMAX=TEND 
QEFMAX=QEFFL(JTIME+l) 
GO TO 11 

10 OUTALL=O. 
DO IS J=I,NB2 
IBOX=NBl*(J-l)+NBI 
DO IS L=I,M 
MKS=KBOX*(L-l)+IBOX 
IF(OUTMAS(MKS).LT.O.) OUTMAS(MKS)=O. 

IS OUTALL=OUTALL+OUTMAS(MKS) 
IF(OUTALL.LT.l.E-lS) GO TO 11 
COROUT=(Q(MKBOX2)-QSTORE)/OUTALL 
TSREM=O. 
SSREM=O. 
SUMS=O. 
SUM7=0. 
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DO 16 L=l,M 
SUMIN (L)=O. 
DO 17 J=1,NB2 
MKS=KBOX*(L-1)+J*NB1 
SUM4=VOLUME/(U(J)*BL2*HEXT*NB2)*COROUT 

17 SUMIN (L)=SUMIN (L)+OUTMAS(MKS)*SUM4 
TSREM=TSREM+SUMIN(L) 
IF(L.GE.S) SSREM=SSREM+SUMIN(L) 
SUM3=SUMIN(L)/(3.14/6*RNUM(L)*DNUM(L)**3) 
SUM7=SUM7+SUM3 
SUM6=SUMIN(L)/RNUM(L) 

16 SUM5=SUMS+SUM6 

SUM=(6./3.14*SUMS/SUM7)**(1./3.) 
TSRMIN=l.-TSREM*FLOW/SMASS 
SSRMIN=l.-SSREM*FLOW/(SMASS*PERSUS) 
TIMIN=TEND 
QEFMIN=QEFFL(JTIME+1) 

11 IF(TEND.GT.(1.+1.E-4)*TOUT(ITIME» GO TO 200 
GO TO 7 

C Continuous input 
C 

C 

6 CALL DGEAR(MKBOX2,DIFFUN,FCNJ,TIME,H,Q,TEND,REL,METH,MITER, 
*IFLAG,IWORK,WORK,IER,COEFAV,NDEPST,M,NB1,NB2,NSTEP,NFE,SCOUR) 

QEFFL(1)=Q(MKBOX2)*VOLUME/(FLOW*TIME) 

IF(IFLAG.EQ.2.0R.IFLAG.EQ.0.OR.IFLAG.EQ.3)RETURN 
8 WRITE(IPRNT,27)IER,TIME 
27 FORMAT(' GEAR ERROR NUMBER' ,I4,3X, 

* 3X,'TIME REACHED =',E11.4) 
WRITE(IPRNT,29)(Q(I),I=1,MKBOX2) 

29 FORMAT(' VALUES OF Q ARRAY'/(SE1S.4» 
100 STOP 

END 
C*************************************************************** 

SUBROUTINE COEF(NEWCOF,M,V,ROUND,IPRNT) 
C 
C This routine computes the sectional coagulation coefficients 
C (Gelbard and Seinfeld, 1980) 
C 

DIMENSION V(2!) ,X(2!) ,DEL(20) 
COMMON/AVGCOF/COEFAV(781,24),SRATE(362),MPASS,NB1,NB2,NB2A, 

*NB2B,NB3,NB4,NDEPST 
EXTERNAL DEPOST,BETCAL 
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C 

MM1=M-1 
MP1=M+1 
DO 10 I=1,MP1 
X1=V(I) 

10 X(I)=ALOG(X1) 
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DO 2 L=1,M 
2 DEL(L)=X(L+1)-X(L) 

C 
C 
C 
C 

REL=S.E-3 
ABSER=1.E-20 
TWAT=288. 

C NBTYPE = TYPE OF COEFFICIENT CALCULATED 
C INNER = 0 INNER LIMITS OF INTEGRATION ARE CONSTANT 
C 1 CHANGE LOWER INNER LIMIT OF INTEGRATION TO 
C ALOG(BASESZ-OUTER INTEGRATION VARIABLE). IN THIS 
C CASE FIXSZ IS THE INNER UPPER LIMIT OF INTEGRATION. 
C 
C 
C 
C 
C 
C 
C 

2 CHANGE UPPER LIMIT OF INTEGRATION TO 
ALOG(BASESZ-OUTER INTEGRATION VARIABLE). IN THIS 
CASE FIXSZ IS THE INNER LOWER LIMIT OF INTEGRATION. 

C CALCULATE BETA(SUPER-1B,SUB-I,L-1,L) 
C STORE WITH I VARYING FIRST FROM 1 TO L-2 
C 

C 
C 
C 

IBOX=1 

NBTYPE=1 
INNER=1 
DO 13 L=3,M 
LM2=L-2 
LIBEF=(LM2*(L-3))/2 
DO 13 I=1,LM2 
IER=1 
BASESZ=V(L) 
FIXSZ=X(L) 
CALL GAUSBT(BETCAL,X(I),X(I+1) ,REL,ABSER,ROUND,ANS, IER, IPRNT, 

*FIXSZ, BASESZ, INNER,TWAT,NBTYPE) 
IF(IER.NE.O)GO TO 31 

13 COEFAV(I+LIBEF,IBOX)=ANS/(DEL(I)*(X(L)-X(L-1))) 
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C CALCULATE BETA(SUPER-2A,SUB-I,L) AND BETA(SUPER-2B,SUB-I,L) 
C STORE WITH I VARYING FIRST FROM 1 TO L-l 
C 

C 

DO 14 L=2,M 
LMl=L-l 
LIBEF=(LMl*(L-2))/2 
DO 14 I=I,LMI 
NBTYPE=2 
IER=1 
INN ER= 1 
BASESZ=V(L+l) 
FIXSZ=X(L+l) 
CALL GAUSBT(BETCAL,X(I),X(I+l) ,REL,ABSER,ROUND,ANS, IER, IPRNT, 

*FIXSZ, BASESZ, INNER,TWAT,NBTYPE) 
IF(IER.NE.O)GO TO 31 
COEFAV(NB2A+I+LIBEF,IBOX)=ANS/(DEL(I)*DEL(L)) 
NBTYPE=3 
IER=1 
INNER=2 
BASESZ=V(L+l) 
FIXSZ=X(L) 
CALL GAUSBT(BETCAL,X(I),X(I+l) ,REL,ABSER,ROUND,ANS, IER, IPRNT, 

*FIXSZ, BASESZ, INNER,TWAT,NBTYPE) 
IF(IER.NE.O)GO TO 31 

14 COEFAV(NB2B+I+LIBEF,IBOX)=ANS/(DEL(I)*DEL(L)) 

C CALCULATE BETA(SUPER-3,SUB-L,L) 
C 

C 

DO 15 L=I,M 
LPl=L+l 
NBTYPE=4 
IER=1 
INNER=1 
REL=I.E-2 
BASESZ=V( LP 1) 
FIXSZ=X(LP1) 
ALV=V(LPl) 
ALV=ALOG( .5*ALV) 
CALL GAUSBT(BETCAL,X(L) ,ALV,REL,ABSER,ROUND,ANS, IER, IPRNT, 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 
IF(IER.NE.O)GO TO 31 

IER=1 
COEFAV(NB3+L,IBOX)=ANS 
NBTYPE=4 
INNER=1 
ALV2=V(LP1)-V(L) 
ALV2=ALOG (ALV2) 
BASESZ=V(LPl) 
FIXSZ=X(LPl) 
CALL GAUSBT(BETCAL,ALV,ALV2,REL,ABSER,ROUND,ANS,IER,IPRNT, 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 



C 

C 
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IF(IER.NE.O)GO TO 31 
COEFAV(NB3+L,IBOX)=ANS+COEFAV(NB3+L,IBOX) 

IER=1 
NBTYPE=5 
INNER=O 
BASESZ=X(L) 
FIXSZ=X(LPl) 
CALL GAUSBT(BETCAL,ALV2,X(LPl) ,REL,ABSER,ROUND,ANS,IER, IPRNT, 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 
ANS=ANS+COEFAV(NB3+L,IBOX) 
IF(IER.NE.O)GO TO 31 

15 COEFAV(NB3+L,IBOX)=.5*ANS/DEL(L)**2 

C DETERMINE THE SECTIONAL COAGULATION COEFFICIENTS FOR 
C SCAVENGING OF PARTICLES IN SECTION L BY THOSE IN SECTION I 
C I.E. BETA(SUPER-4,SUB-I,L) 
C STORE WITH I VARYING FIRST FROM L+l TO M 
C 
C 

C 

NBTYPE=6 
INNER=O 
DO 12 L=I,MMI 
LPl=L+l 
NBEFR=«L-l)*(2*M-L))/2 
DO 12 I=LPl,M 
INNER=O 
BASESZ=X(L) 
FIXSZ=X(LPl) 
CALL GAUSBT(BETCAL,X(I) ,X(I+l) ,REL,ABSER,ROUND,ANS,IER,IPRNT, 

*FIXSZ,BASESZ,INNER,TWAT,NBTYPE) 
IF(IER.NE.O)GO TO 31 

12 COEFAV(NB4+I-L+NBEFR,IBOX)=ANS/(DEL(I)*DEL(L)) 

C DETERMINE THE SECTIONAL DEPOSITION COEFFICIENTS OF THE L-TH 
C SECTION ON THE J-TH DEPOSITION SURFACE 
C 

C 
C 

C 
C 

REL=I.E-3 
DO 1 L=I,M 
NBTYPE=7 
IER=1 
CALL GAUS2(DEPOST,X(L) ,X(L+l) ,REL,ABSER,ROUND,ANS, IER,DUM, TWA T, 

*NBTYPE) 
IF(IER.NE.O)GO TO 31 

1 COEFAV(NDEPST+L,IBOX)=ANS/DEL(L) 

RETURN 

31 WRITE(IPRNT,3)IER,NBTYPE 
3 FORMAT(//' OUTER INTEGRATION ERROR NUMBER' ,13, 

*' FOR COEFFICIENT TYPE' ,13) 
STOP 
END 
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C************************************************************** 
SUBROUTINE DIFFUN(MKBOX2,TIME,Q,DQDT) 

C 
C This routine calculates the time derivatives of the General 
C Dynamic Equation 

C 
C 

C 

C 

DIMENSION Q(MKBOX2),DQDT(MKBOX2) 
COMMON/AVGCOF/COEFAV(781,24),SRATE(362),M,NB1,NB2,NB2A, 

*NB2B,NB3,NB4,NDEPST 
COMMON/VELOC/U(4) 
COMMON/TANK/BL1,BL2,UAVE,USTAR,UL1,UL2,SCOUR,FREQ,ADIS 
COMMON/OUTX/OUTMAS(362),DEPTUB(362),DEPSIT(362),DUM(362) 

KBOX=NB1*NB2 
MKBOX=MKBOX2-2 

DO 3 L=l,M 
LM1=L-1 
LM2=L-2 
LM1KBF=LM1*KBOX 
LM2KBF=LM2*KBOX 
L1BF=«L-3)*LM2)/2 
L2BF=(LM1*LM2)/2 

C Coagulation 
C 

DO 3 I=l,NBl 
DO 3 J=1,NB2 
K=NBI *(J-1 )+1 
SUM=O. 
IF(L.LT.3)GO TO 4 
DO 5 N=l,LM2 
NL=(N-1 )*KBOX+K 

5 SUM=SUM+Q(KBOX*(N-1)+K)*(COEFAV(NB2A+N+L1BF,K)*Q(K+LM2KBF) 
* -COEFAV(NB2A+N+L2BF,K)*Q(K+LM1KBF» 
* +Q(KBOX*(N-1)+K)*(COEFAV(N+L1BF,K)*Q«LM1-1)*KBOX+K) 
* +COEFAV(NB2B+N+L2BF,K)*Q«L-1)*KBOX+K» 

4 IF(L.GT.l)SUM=SUM+Q«LM1-1)*KBOX+K)*(COEFAV(NB3+LM1,K)*Q(K+LM2KBF) 
* -COEFAV(NB2A+LMl+L2BF,K)*Q(K+LM1KBF» 
* + COEFAV(NB2B+LM1+L2BF,K)*Q«L-1)*KBOX+K)*Q(K+LM2KBF) 

DQDT(K+LM1KBF)=SUM-COEFAV(NB3+L,K)*Q«L-1)*KBOX+K)*Q(K+LMlKBF) 
3 CONTINUE 
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C Removal rate from a section due to scavenging by higher sections 
C 

C 
C 

MMl=M-l 
DO 6 l=l,NBl 
DO 6 J=1,NB2 
K=NB1 *(3-1 )+1 
DO 6 1=1,MM1 
1Ml=1-1 
1MlKBF=1M1*KBOX 
1BF=(1M1*(2*M-1))/2 
SUM=O. 
1P1=1+1 
DO 7 N=1P1,M 

7 SUM=SUM+COEFAV(NB4+N-1+1BF,K)*Q«N-l)*KBOX+K) 
DQDT(K+1M1KBF)=DQDT(K+1M1KBF)-SUM*Q(K+1M1KBF) 

6 CONTINUE 

C Spatial sources and sinks of particle mass 
C 

C 

C 

SINUS=1.+0.S*SIN(2*3.14*T1ME*FREQ) 

DO 8 1=1,M 
DO 8 1=1,NB1 
DO 8 J=1,NB2 
K=NB1 *(3-1)+1 
MKS=K+(1-1)*KBOX 
DQDT(MKS)=DQDT(MKS)+SRATE(MKS)*SINUS 

* -COEFAV(1+NDEPST,K)*Q(MKS) 
8 CONTINUE 

C Correct for adjacent cells 
C 
C 1. Settling 
C 

NB22=NB2-1 
DO 9 l=l,NBl 
DO 9 J=1,NB22 
K=NB1*(J-1)+1 
DO 9 1=1,M 
MKS=K+(1-l)*KBOX 
DQDT(MKS)=DQDT(MKS)+COEFAV(1+NDEPST,K)*Q(MKS+NB1) 

9 CONTINUE 



C 

S1G=O. 
J=1 
DO 90 1=1,NB1 
K=NB1 *(J-1)+1 
DO 90 L=1,M 
MKS=K+(L-1)*KBOX 
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C Scouring 
C 

C 

DEPTUB(MKS)=-COEFAV(L+NDEPST,K)*Q(MKS)*SCOUR 
DQDT(MKS)=DQDT(MKS)-DEPTUB(MKS) 
S1G=S1G+COEFAV(L+NDEPST,K)*Q(MKS)+DEPTUB(MKS) 

90 DEPTUB(MKS)=O. 
DQDT(MKBOX+1)=S1G 

C 2. Advection 
C 

C 

SUM=O. 
DO 10 1=2,NB1 
DO 10 J=1,NB2 
1BOX=NB1*(J-1)+1 
DO 10 L=1,M 
MKS=1BOX+(L-1)*KBOX 
OUTMAS(MKS)=O. 
DQDT(MKS)=DQDT(MKS)+(Q(MKS-1)-Q(MKS»*U(J)/BL1*SINUS 

C Compute the rate (kg/(sec-m3» at which mass leaves the tank 
C 

C 

1F(1.EQ.NB1) OUTMAS(MKS)=U(J)*Q(MKS)/BL1 
10 SUM=SUM+OUTMAS(MKS) 

DQDT(MKBOX2)=SUM 

C For the first column of cells 
C 

1=1 
DO 12 J=1,NB2 
1BOX=NB1 *(J-1)+1 
DO 12 L=1,M 
MKS=1BOX+(L-1)*KBOX 
DQDT(MKS)=DQDT(MKS)-U(J)*Q(MKS)/BL1*SINUS 

12 CONTINUE 
C 
C 3. Vertical turbulent mixing 
C 

1F(NB22.LT.2) GO TO 19 
DO 13 1=1,NB1 
DO 13 J=2,NB22 
Z1=(J-1 )*BL2 
Z2=J*BL2 
TUD1F1=0.3*USTAR*Zl*(1.-Z1/UL2)*AD1S*SINUS 
TUD1F2=0.3*USTAR*Z2*(1.-Z2/UL2)*AD1S*SINUS 



C 

222 

IBOX=(J-1)*NB1+I 
DO 13 L=I,M 
MKS=IBOX+(L-1)*KBOX 
DQDT(MKS)=DQDT(MKS)-«Q(MKS)-Q(MKS+NB1))*TUDIF2+ 

* (Q(MKS)-Q(MKS-NB1))*TUDIF1)/(BL2**2) 
13 CONTINUE 

C For the lowest (first) row of cells 
C 

C 

19 J=l 
Z=BL2 
TUDIF=O.3*USTAR*Z*(1.-Z/UL2)*ADIS*SINUS 
SIG=O. 
DO 14 I=1,NB1 
IBOX=NB1 *(J-1 )+1 
DO 14 L=l,M 
MKS=IBOX+(L-1)*KBOX 
DQDT(MKS)=DQDT(MKS)-(Q(MKS)-Q(MKS+NB1))*TUDIF/BL2**2 

14 CONTINUE 

C For the upper (last) row of cells 
C 

C 

J=NB2 
Z=(J-1)*BL2 
TUDIF=O.3*USTAR*Z*(1.-Z/UL2)*ADIS*SINUS 
DO 15 I=1,NB1 
IBOX=(J-1)*NB1+I 
DO 15 L=l,M 
MKS=IBOX+(L-1)*KBOX 
DQDT(MKS)=DQDT(MKS)-(Q(MKS)-Q(MKS-NBl))*TUDIFZ/BL2**2 

15 CONTINUE 

RETURN 
END 

C******************************************************************** 
SUBROUTINE FCNJ(N,X,Y,PD) 
INTEGER N 
REAL Y(N),PD(N,N),X 
RETURN 
END 

C********************************************************************* 
BLOCK DATA 
COMMON/OUTX/OUTMAS(362) ,DEPTUB(362) ,DEPSIT(362) ,OUT(362) 
COMMON/DISCO/SUMAX(20),SUMIN(20),TIMAX,TIMIN,TSRMAX,SSRMAX, 

* TSRMIN ,SSRMIN,QEFMAX,QEFMIN ,QSTORE, SINUS 
DATA QSTORE,QEFMAX,QEFMIN,SINUS/O.,O.,lOO.,O./ 
DATA OUT,DEPSIT/724*O.E+OO/ 
END 
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C********************************************************************* 
C 

C 

C 

C 

C 

C 

C 

C 
C 

SUBROUTINE DGEAR 
1 

(N,FCN ,FCNJ,X,H,Y,XEND,TOL,METH,MITER, INDEX, 
IWK,WK,IER,COEFAV,NDEPST,MSECT,NB1,NB2, 
NNSTEP,NNFE,SCOUR) 2 

INTEGER 
REAL 

INTEGER 
1 

SPECIFICATIONS FOR ARGUMENTS 
N,METH,MITER,INDEX,IWK(l),IER 
X,H,Y(N),XEND,TOL,WK(l) 

2 

SPECIFICATIONS FOR LOCAL VARIABLES 
NERROR,NSAVE1,NSAVE2,NPW,NY,NC,MFC,KFLAG, 
JSTART,NSQ,NQUSED,NSTEP,NFE,NJE,I,NO,NHCUT,KGO, 
JER,KER,NN,NEQUIL,IDUMMY(21),NLC,NUC 

1 

1 
2 
3 

REAL 
REAL 

SDUMMY(4) 
T,HH,HMIN,HMAX,EPSC,UROUND,EPSJ,HUSED,TOUTP, 
AYI,D,DN,SEPS,DUMMY(39) 

INTEGER NDEPST,MSECT,NB1,NB2 
REAL COEFAV(781,24),YOLD(362),DEPOLD(362) 

EXTERNAL 
COMMON /DBAND/ 
COMMON /GEAR/ 

FCN ,FCNJ 
NLC,NUC 
T,HH,HMIN,HMAX,EPSC,UROUND,EPSJ,HUSED,DUMMY, 
TOUTP,SDUMMY,NC,MFC,KFLAG,JSTART,NSQ,NQUSED, 
NSTEP,NFE,NJE,NPW,NERROR,NSAVE1,NSAVE2,NEQUIL, 
NY,IDUMMY,NO,NHCUT 

COMMON/OUTX/OUTMAS(362),DEPTUB(362) ,DEPSIT(362) ,OUT(362) 

DATA SEPS/Z3C100000/ 
FIRST EXECUTABLE STATEMENT 

KBOX=NB1 ~B2 
DO 400 I=1,NB1 
DO 400 J=1,NB2 
IBOX=(J-1)~B1+I 
DO 400 LS=l,MSECT 
MKS=(LS-1)*KBOX+IBOX 
YOLD(MKS)=O. 

400 DEPOLD(MKS)=O. 
C 
C 

IF (MITER.GE.O) NLC = -1 
KER = 0 
JER = 0 
UROUND = SEPS 



C 

C 
C 

NERROR = N 
NSAVE1 = NERROR+N 
NSAVE2 = NSAVE1+N 
NY = NSAVE2+N 

224 

COMPUTE WORK VECTOR INDICIES 

IF (METH.EQ.1) NEQUIL = NY+13*N 
IF (METH.EQ.2) NEQUIL = NY+6*N 
NPW = NEQUIL + N 
IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUIL 
MFC = 10*METH+IABS(MITER) 

CHECK FOR INCORRECT INPUT PARAMETERS 

IF (MITER.LT.-2.0R.MITER.GT.3) GO TO 85 
IF (METH.NE.1.AND.METH.NE.2) GO TO 85 
IF (TOL.LE.O.) GO TO 85 
IF (N.LE.O) GO TO 85 
IF «X-XEND)*H.GE.O.) GO TO 85 
IF (INDEX.EQ.O) GO TO 10 
IF (INDEX.EQ.2) GO TO 15 
IF (INDEX.EQ.-1) GO TO 20 
IF (INDEX.EQ.3) GO TO 25 
IF (INDEX.NE.1) GO TO 85 

C IF INITIAL VALUES OF YMAX OTHER THAN 
C THOSE SET BELOW ARE DESIRED, THEY 
C SHOULD BE SET HERE. ALL YMAX(I) 
C MUST BE POSITIVE. IF VALUES FOR 
C HMIN OR HMAX, THE BOUNDS ON 
C DABS(HH), OTHER THAN THOSE BELOW 
C ARE DESIRED, THEY SHOULD BE SET 
C BELOW. 

DO 5 I=l,N 
WK(I) = ABS(Y(I» 
IF (WK(I).EQ.O.) WK(I) 1. 
WK(NY+I) = y(I) 

5 CONTINUE 
NC = N 
T = X 
HH = H 
IF «T+HH).EQ.T) KER = 33 
HMIN = ABS(H) 
HMAX = ABS(X-XEND)*10. 
EPSC = TOL 
JSTART = 0 
NO = N 
NSQ = NO*NO 
EPSJ = SQRT(UROUND) 
NHCUT = 0 
DUMMY(2) = 1.0 
DUMMY (l 4) = 1.0 
GO TO 30 



C 
C 

C 

C 

C 

C 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

10 HMAX = ABS(XEND-TOUTP)*10. 
GO TO 45 

15 HMAX = ABS(XEND-TOUTP)*10. 
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TOUTP IS THE PREVIOUS VALUE OF XEND 
FOR USE IN HMAX. 

IF «T-XEND)*HH.GE.O.) GO TO 95 
GO TO 50 

20 IF «T-XEND)*HH.GE.O.) GO TO 90 
JSTART = -1 
NC = N 
EPSC = TOL 

25 IF «T+HH).EQ.T) KER = 33 

30 NN = NO 
CALL DGRST (FCN,FCNJ,WK(NY+1),WK,WK(NERROR+1),WK(NSAVE1+1), 

1 WK(NSAVE2+1),WK(NPW+1),WK(NEQUIL+1),IWK,NN) 

KGO = 1-KFLAG 
GO TO (35,55,70,80), KGO 

35 CONTINUE 
KFLAG = 0, -1, -2, -3 

NORMAL RETURN FROM INTEGRATOR. THE 
WEIGHTS YMAX(I) ARE UPDATED. IF 
DIFFERENT VALUES ARE DESIRED, THEY 
SHOULD BE SET HERE. A TEST IS MADE 
FOR TOL BEING TOO SMALL FOR THE 
MACHINE PRECISION. ANY OTHER TESTS 
OR CALCULATIONS THAT ARE REQUIRED 
AFTER EVERY STEP SHOULD BE 
INSERTED HERE. IF INDEX = 3, Y IS 
SET TO THE CURRENT SOLUTION ON 
RETURN. IF IN DEX = 2, HH IS 
CONTROLLED TO HIT XEND (WITHIN 
ROUNDOFF ERROR), AND THEN THE 
CURRENT SOLUTION IS PUT IN Y ON 
RETURN. FOR ANY OTHER VALUE OF 
INDEX, CONTROL RETURNS TO THE 
INTEGRATOR UNLESS XEND HAS BEEN 
REACHED. THEN INTERPOLATED VALUES 
OF THE SOLUTION ARE COMPUTED AND 
STORED IN Y ON RETURN. 
IF INTERPOLATION IS NOT 
DESIRED, THE CALL TO DGRIN SHOULD 
BE REMOVED AND CONTROL TRANSFERRED 
TO STATEMENT 95 INSTEAD OF 105. 



C 

C 

C 
C 
C 
C 
C 
C 
C 

D = O. 
DO 40 I=l,N 

AYI = ABS(WK(NY+I» 
WK(I) = AMAX1(WK(I),AYI) 

40 D = D+(AYI/WK(I»**2 
D = D*(UROUND/TOL)**2 
DN = N 
IF (D.GT.DN) GO TO 75 
IF (INDEX.EQ.3) GO TO 95 
IF (INDEX.EQ.2) GO TO 50 
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45 IF«T-XEND)*HH.LT.O.) GO TO 255 
NN = NO 
CALL DGRIN (XEND,WK(NY+1),NN,Y) 
X = XEND 
GO TO 1055 

255 DO 113 IB=1,NB1 
DO 113 JB=1,NB2 
IBOX=(JB-1)*NB1+IB 
DO 113 LS=l,MSECT 
MKS=(LS-1)*KBOX+IBOX 
AVEMAS=0.5*(WK(NY+MKS)+YOLD(MKS»*(1.-SCOUR) 
DEPTUB(MKS)=COEFAV(LS+NDEPST,IBOX)*AVEMAS*HUSED 
DEPSIT(MKS)=DEPTUB(MKS)+DEPSIT(MKS) 
AVEOUT=0.5*(OUTMAS(MKS)+DEPOLD(MKS» 
OUT(MKS)=AVEOUT*HUSED+OUT(MKS) 
DEPOLD(MKS)=OUTMAS(MKS) 
YOLD(MKS)=WK(NY+MKS) 

113 CONTINUE 
GO TO 25 

50 IF «(T+HH)-XEND)*HH.LE.O.) GO TO 255 
IF (ABS(T-XEND).LE.UROUND*AMAX1(10.*ABS(T),HMAX» GO TO 95 
IF «T-XEND)*HH.GE.O.) GO TO 95 
HH = (XEND-T)*(1.-4.*UROUND) 
JSTART = -1 
GO TO 255 

ON AN ERROR RETURN FROM INTEGRATOR, 
AN IMMEDIATE RETURN OCCURS IF 
KFLAG = -2, AND RECOVERY ATTEMPTS 
ARE MADE OTHERWISE. TO RECOVER, HH 
AND HMIN ARE REDUCED BY A FACTOR 
OF .1 UP TO 10 TIMES BEFORE GIVING 
UP. 



C 

C 

C 

C 

C 

C 

C 

C 

55 JER = 66 
60 IF (NHCUT.EQ.10) GO TO 65 

NHCUT = NHCUT+ 1 
HMIN = HMIN*.l 
HH = HH*.l 
JSTART = -1 
GO TO 25 

65 IF (JER.EQ.66) JER = 132 
IF (JER.EQ.67) JER = 133 
GO TO 95 

70 JER = 134 
GO TO 95 

75 JER = 134 
KFLAG = -2 
GO TO 95 

80 JER = 67 
GO TO 60 

85 JER = 135 
GO TO 110 

90 JER = 136 
NN = NO 
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CALL DGRIN (XEND,WK(NY+1),NN,Y) 
x = XEND 
GO TO 110 

95 X = T 
DO 100 I=l,N 

100 Y(I) = WK(NY+I) 

1055 HSTEP=HUSED-(T-XEND) 
C 

KBOX=NB1 *NB2 
DO 114 IB=1,NB1 
DO 114 JB= 1 ,NB2 
IBOX=(JB-1)*NB1+IB 
DO 114 LS=l,MSECT 
MKS=(LS-1)*KBOX+IBOX 
AVEMAS=0.5*(Y(MKS)+YOLD(MKS»*(1.-SCOUR) 
DEPTUB(MKS)=COEFAV(LS+NDEPST,IBOX)*AVEMAS*HSTEP 
DEPSIT(MKS)=DEPTUB(MKS)+DEPSIT(MKS) 
AVEOUT=0.5*(OUTMAS(MKS)+DEPOLD(MKS» 
OUT(MKS)=AVEOUT*HSTEP+OUT(MKS) 
DEPOLD(MKS)=OUTMAS(MKS) 
YOLD(MKS)=Y(MKS) 

114 CONTINUE 
NNFE=NFE 
NNSTEP=NSTEP 
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105 IF (JER.LT.128) INDEX KFLAG 
TOUTP = X 
H = HUSED 
IF (KFLAG.NE.O) H = HH 

110 IER = MAXO(KER,JER) 
9000 CONTINUE 

IF (KER.NE.0.AND.JER.LT.128) CALL UERTST (KER,6HDGEAR ) 
IF (JER.NE.O) CALL UERTST (JER,6HDGEAR ) 

9005 RETURN 
END 

C**************************************************************** 
SUBROUTINE RHODD(V,D,RHO) 

C 
C This routine computes the density of the floes assuming the 
C size-density relationship Eq. 2.6, Chapter II, in Valioulis' Thesis. 
C 

RHOWAT=1000. 
IF (V.LE.O.) GO TO 1 
RHO=2650. 
IF(V.GT.8.8802E-14) GO TO 5 
D=(6.*V/(3.141592654*RHO»**(1./3) 
RETURN 

5 D=4.E-6 
DO 10 1=1,1000 
F1=RHOWAT+1.3/(100.*D)**0.9 
F=F1*0.5235987757*D*D*D-V 
DF=F1*1.5707963*D*D-0.0097092232*D*D/D**0.9 
D=D-F/DF 
IF(ABS(F).LE.(O.OOl*V» GO TO 14 

10 CONTINUE 
GO TO 15 

14 RHO=RHOWAT+1.3/(100.*D)**O.9 
RETURN 

1 IF(D.LT.4.E-6) GO TO 2 
RHO=RHOWAT+1.3/(D*100.)**O.9 
GO TO 3 

2 RHO=2650. 
3 V=O.5235987757*D*D*D*RHO 

RETURN 
15 STOP 

END 
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C******************************************************************** 
C SUBROUTINE RHODD(V,D,RHO) 
C This routine computes the density of the flocs assuming a constant 
C density of 2000kg/m3 for all floc sizes 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1 

RHO=2000. 
IF(V.LE.O.) GO TO 1 
n=(6.*V/(3.14l592654*RHO»**(1./3.) 
RETURN 
V=0.5235987757*D*D*D*RHO 
RETURN 
END 

C********************************************************************* 
SUBROUTINE DIVIDE(M,NB1,NB2,VOLUME,SOURCE,SRATE,DIAM,IPRNT,IT, 

* PERSUS) 
C 
C This routine fractionates the source (kg/m3) according to the 
C power law: Number=constant*(particle volume)**(-bslope) 
C and stores the input mass concentration in SRATE (kg/sec-m3) 

DIMENSION SOURCE(24),SRATE(362),DENS(21),DIAM(2l),V(2l), 
*CONSTA(24),ROMEAN(21),DIMEAN(2l) 

COMMON/VELOC/U(4) 
COMMON/TANK/BLl,BL2,UAVE,USTAR,UL1,UL2,SCOUR 
KBOX=NB1 *NB2 
BSLOPE=3. 
MAX=15 
SUMFRA=O. 
MK=M+l 
DO 1 I=l,MK 
V(I)=O. 

1 CALL RHODD(V(I),DIAM(I),DENS(I» 
DO 2 I=l,M 
ROMEAN(I)=SQRT(DENS(I+1)*DENS(I» 

2 DIMEAN(I)=SQRT(DIAM(I+1)*DIAM(I» 
DO 21 I=l,MAX 
SUMFRA=ROMEAN(I)*DIMEAN(I)**(3.-BSLOPE)*3.14/6.+SUMFRA 

21 CONTINUE 
WRITE(IPRNT,900)M,SOURCE(1),DIAM(1),DENS(1) 

900 FORMAT(' DIV=',I3,2X,3(2X,ElO.4» 
DO 3 I=l,NBI 
DO 3 J=1,NB2 
K=NB1*(J-1)+I 

3 CONSTA(K)=SOURCE(K)/SUMFRA 
IF(IT.NE.1) GO TO 12 
WRITE(IPRNT,10) 

10 FORMAT(' MASS CONC. ' ,3X,' NUMBER CONC.' ,3X, 
* ' VOLUME CONC.' ,3X,' MEAN DIAMETER',3X,' MEAN DENSITY', 
* 3X,' SECTION'/' KG/M3 ',6X,'#/CM3 ',5X,' PPM. 
* l2X,'M' ,16X,'KG/M3'//) 

, 



12 SUMl=O. 
TOTVOL=O. 
DO 41 L=I,MAX 
SUM=O. 
PARNUM=O. 
PARVOL=O. 
DO 4 1=I,NBI 
DO 4 J=I,NB2 
K=NBI *(3-1) +I 
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SUM2=I./(U(J)*BL2*NB2) 
PARVOL=PARVOL+CONSTA(K)*D1MEAN(L)**(3.-BSLOPE)*SUM2*3.14/6. 
SRATE(KBOX*(L-l)+K)=CONSTA(K)*D1MEAN(L)**(3.-BSLOPE) 

* *ROMEAN(L)/VOLUME*3.14/6. 
SUM=SUM+SRATE(KBOX*(L-l)+K)*VOLUME*SUM2 
SUMl=SUMl+SRATE(KBOX*(L-l)+K) 

4 PARNUM=PARNUM+CONSTA(K)*D1MEAN(L)**(-BSLOPE)*SUM2 
1F(1T.NE.l) GO TO 41 
SI=PARNUM*I.E-6 
S2=PARVOL*I.E+6 
WR1TE(1PRNT,II) SUM,SI,S2,D1MEAN(L),ROMEAN(L),L 

11 FORMAT(IX,EI0.4,6X,EI0.4,6X,EI0.4,7X,EI0.4,6X,EI0.4, 
* 7X,13//) 

TOTVOL= TOTVOL+ PARVOL 
41 CONTINUE 

1F(1T.NE.l) RETURN 

C Compute equivalent diameter 1n effluent 
C 

C 

SUM2=O. 
SUM3=0. 
DO 50 J=I,NB2 
SUM=O. 
SUM4=0. 
IBOX=NBI *(3-1) + 1 
DO 51 L=I,M 
MKS=1BOX+(L-l)*KBOX 
SUM=SRATE(MKS)/ROMEAN(L)+SUM 

51 SUM4=SRATE(MKS)/(3.14/6.*ROMEAN(L)*D1MEAN(L)**3)+SUM4 
SUM2=SUM+SUM2 

50 SUM3=SUM3+SUM4 
SUM2=(6./3.14*SUM2/SUM3)**(1./3.) 

C Compute the % suspended solids in effluent 
C 

SUM=O. 
DO 88 1=1,NB1 
DO 88 J=1,NB2 
1BOX=NBl*(J-l)+1 
DO 88 L=5,M 
MKS=1BOX+(L-1)*KBOX 

88 SUM=SUM+SRATE(MKS) 



C 

C 

PERSUS=SUM/SUMI 
S 1 =TOTVOL * 1 • E+6 
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WRITE(IPRNT,48) Sl,SUM2,PERSUS 
48 FORMAT(' TOTAL VOLUMETRIC CONC IN INFLUENT=',EIO.4/, 

* ' EQUIVALENT DIAMETER=',EIO.4/,' % SUSPENDED SOLIDS IN', 
* ' INFLUENT=' ,EIO.4/) 

RETURN 
END 

C*********************************************************** 
SUBROUTINE SOR(NBl,NB2,IT,TIME,TDISIN,SOURCE,FLOW,START,IDISC) 

C 
C This routine computes the velocity field and the input 
C mass in SOURCE (kg/sec) 
C 

COMMON/TANK/BLl,BL2,UAVE,USTAR,ULl,UL2,SCOUR,FREQ,ADIS 
COMMON/VELOC/Ul,U2,U3,U4 
DIMENSION SOURCE(24) 
KBOX=NBl'RNB2 
ADIS=l. 
IF(IT.NE.l) GO TO 7 
START=O.00888 
Zl=O.5*BL2 
Z2=1.5*BL2 
Z3=2.5*BL2 

C z4=3.5*BL2 
C V4=UAVE+USTAR/O.3*(1.+ALOG(Z4/UL2» 

Vl=UAVE+USTAR/O.3*(1.+ALOG(Zl/UL2» 
V2=UAVE+USTAR/O.3*(1.+ALOG(Z2/UL2» 
V3=UAVE+USTAR/O.3*(1.+ALOG(Z3/UL2» 
V4=O. 
V=Vl+V2+V3+V4 
VFLOW=V*BL2 
V=l./V 
Al=Vl*V 
A2=V2*V 
A3=V3*V 
A4=V4*V 

7 IF(IDISC.EQ.l .AND. TIME.EQ.TDISIN) ADIS=2. 
SOURCE(l)=Al*START*ADIS 
SOURCE(NBl+l)=A2*START*ADIS 
SOURCE(2'RNBl+l)=A3*START*ADIS 

C SOURCE(3'RNBl+l)=A4*START 



Ul=Vl 
U2=V2 
U3=V3 
U4=V4 
FLOW=VFLOW 
DO 11 J=I,NB2 
DO 11 I=2,NBI 

11 SOURCE(NBl*(J-l)+I)=O. 
RETURN 
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END 
C***************************************************************** 

FUNCTION BETCAL(X,RELER,ABSER, ROUND, IPRNT,FIXSZ, BASESZ, INNER, 
*TWAT,NBTYPE) 

EXTERNAL BETA 
C 
C This routine calculates the 1nner integral of the sectional 
C coagulation coefficients. 
C 

C 

C 

C 

C 

YU=FIXSZ 
YL=BASESZ 
IF(INNER.EQ.O) GO TO 3 
YL=ALOG(BASESZ-EXP(X» 
IF(INNER.EQ.l) GO TO 20 
YU=YL 
YL=FIXSZ 

3 IER=1 
ABE=ABSER*ABSER 
REL=.5*RELER 
CALL GAUS2(BETA,YL,YU,REL,ABE,ROUND,ANSWR,IER,X,TWAT,NBTYPE) 

10 BETCAL=ANSWR 
IF(IER.EQ.O) RETURN 

WRITE(IPRNT,4) NBTYPE,X,YL,YU,IER,REL,ABE 
4 FORMAT(' INNER INTEFRATION ERROR, INTEGRAL TYPE',I3, 

*/' OUTER VARIABLE=',EI2.4,' INNER DOMAIN=',2EI2.4,' ERROR=', 
*13,' REL='EI2.4,' ABE=',EI2.4) 

STOP 
20 ETEST=ABS(YU-YL)/(DABS(YU)+DABS(YL» 

IF(ETEST.GT.500.*ROUND) GO TO 3 
DELVL=EXP(X)/BASESZ 
YMEAN=0.5*(YU+YL) 
ANSWR=(DELVL+0.5*DELVL*DELVL)*BETA(YMEAN,X,TWAT,NBTYPE) 
GO TO 10 

END 



233 

C***************************************************************** 
FUNCTION BETA(Y,X,TWAT,NBTYPE) 

C This routine computes the coagulation coefficients due 
C to Brownian diffusion, turbulent shear and gravity settling 
C The collision efficiencies are computed as outlined in Valioulis' 
C Thesis, Section II.2.b. 
C 

C 

C 

COMMON/PHYSPT/AFLROV, VOLUME, EPS 
COMMON/TANK/BLl,BL2,UAVE,USTAR,ULl,UL2 

V=EXP(X) 
U=EXP(Y) 
DX=O. 
DY=O. 
CALL RHODD(V,DX,RHOX) 
CALL RHODD(U,DY,RHOY) 

C Determine the physical properties of water 
C 

C 

RHOWAT=lOOO. 
VISCOS=l.002E-03 
VISCKI=VISCOS/RHOWAT 
BKT=4.1E-22 
HYEFF=l. 

DX=l.2*DX 
DY=l.2*DY 
IF(DX.GT.DY) GO TO 9 
R2=DY*0.5 
RATIO=DY /DX 
DENS=RHOY 
GO TO 10 

9 R2=DX*0.5 
DENS=RHOX 
RATIO=DX/DY 

10 RATINV=1./RATIO 
C 
C Brownian coagulation 
C 

IF(RATIO.GT.20.) GO TO 6 
HYEFF=0.4207+0.031*RATIO-9.E-4*RATIO**2 
GO TO 5 

6 HYEFF=0.652+0.0055*RATIO-3.035*E-5*RATIO**2 
5 BETABR=(2./3.)*BKT/VISCOS*(DX+DY)**2/(DX*DY)*HYEFF 
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C Turbulent shear coagulation 
C 

Z=(EPS-0.5)*BL2 
C 
C For the log-velocity profile 
C 

EPS1LO=USTAR**3/(0.3*Z)*(1.-Z/UL2) 
C 
C 
C 
C 

G=SQRT(EPS1LO/V1SCK1) 
C 

C 

1F(R2.LT.1.E-6) GO TO 201 
POROS=(2650.-DENS)/(2650.-RHOWAT) 
1F(POROS.LT.1.E-2) GO TO 20 
X1=SQRT(3.+4./(1.-POROS)-3.*SQRT(8./(1.-POROS)-3.» 
X1=SQRT(1800.)/X1 
1F(X1.GT.10.89) X1=10.89 
HEFSH1=1.16156-0.22776*X1+0.0111864*X1*X1 
GO TO 203 

20 HEFSH1=0. 
203 RAT12=RATINV*RATINV 

RAT13=RAT12*RATINV 
HEFSH2=-0.403611+9.42306*RATINV-17.2139*RAT12+9.444*RAT13 
HEFFSH=AMAX1(HEFSH1,HEFSH2) 
GO TO 202 

201 HEFFSH=(-0.9798-1.09705E-3*RAT10+2.2377E-5*RAT10**2-
* 1.3297E-7*RAT10**3)/(1.-2.79224*RAT10) 

202 IF(HEFFSH.LT.O.) GO TO 35 
BETATU=2.3/8.*(DX+DY)**3*G 
BETATU=BETATU*HEFFSH 
GO TO 36 

35 BETATU=O. 

C Gravitational coagulation 
C 

36 1F(R2.LE.7.E-6) GO TO 21 
POROS=(2650.-DENS)/(2650.-RHOWAT) 
X1=SQRT(3.+4./(1.-POROS)-3.*SQRT(8./(1.-POROS)-3.» 
X1=SQRT(1800.)/X1 
X12=X1*X1 
X13=X1*X1*X1 
X15=X1*X1*X13 



C 

235 

JEY=2.*XI2+3.-3./XI 
CJEY=-(XI5+6.*XI3-(3.*XI5+6.*XI3)/XI)/JEY 
DJEY=3.*XI3*(1.-1./XI)/JEY 
HEFPOR=1.-DJEY/XI-CJEY/XI3 
IF(R2.LE.15.E-6) GO TO 205 
IF(R2.LE.20.E-6) R2=20.E-6 
R22=R2*1.E+6 
IF(R22.GT.140.) R22=140. 
EO=0.95-(0.7-0.005*R22)**4*(7.92-0.12*R22+0.001*R22**2) 
El=-(RATINV-0.5)**2 

C Correct E2 for particles larger than 140.E-6 m. 
C 

C 

E2=-1.5*EXP(-(0.0015*(R2*1.E+6)**2+8)*RATINV) 
E3=-(1.-0.007*R22)*EXP(-0.65*R22*(1.-RATINV)) 
E4=EXP(-30.*(1.-RATINV)) 
HEFFDS=EO+El+E2+E3+E4 
GO TO 206 

205 HEFFDS=0.5*RATINV**2/(1.+RATINV)**2 
206 HEFFDS=DMAX1(HEFFDS,HEFPOR) 

IF(HEFFDS.LT.O.O) HEFFDS=O.O 
GO TO 31 

21 HEF=0.5*RATINV**2/(1.+RATINV)**2 
31 IF(RATINV.GE.0.4) HEFFDS=DMAX1(HEFFDS,0.4D-l) 

IF(RATINV.LE.O.l .AND. R2.GE.l.E-6) HEFFDS=DMAX1(HEFFDS,0.6D-l) 
BETAGR=0.7/16.*9.81/VISCOS*(DX+DY)**2 
BETAGR=BETAGR*ABS«RHOX-RHOWAT)*DX**2-(RHOY-RHOWAT)*DY**2) 
BETAGR=BETAGR*liEFFDS 

C Add all coagulation mechanisms 
C 

BETA=BETABR+BETAGR+BETATU 
C 
C Convert the integrand for sectionalization by mass 
C 

GO TO (2,1,2,3,3,1),NBTYPE 
1 BETA=BETA/V 

RETURN 
2 BETA=BETA/U 

RETURN 
3 BETA=1.E20*BETA*(U+V)/(U*I.E20*V) 

RETURN 
END 
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C******************************************************************* 
FUNCTION DEPOST(X,DUMMY,TWAT,NBTYPE) 

C 
C This routine computes the deposition coeficients 
C 

C 

C 

COMMON/PHYSPT/AFLROV, VOLUME 

V=EXP(X) 
D=O. 
CALL RHODD(V,D,RHO) 

C Determine the physical properties of water 
C 

C 

RHOWAT=lOOO. 
VISCOS=1.002E-03 

Dl=1.2*D 
VTERM=(1./18.)*9.81*(RHo-RHOWAT)/VISCOS*Dl*Dl 
IF(NBTYPE.EQ.7) DEPOST=AFLROV*DMAXl(O.D+OO,VTERM) 
RETURN 
END 

C*****************************************~*********************** 
SUBROUTINE GAUS2(F,XL,XU,RELER,ABSER,ROUND,ANSWR,IER,EXTRA1, 

* EXTRA2,NEXTRA) 
C 
C 
C THIS ROUTINE COMPUTES THE INTEGRAL OF F(X, EXTRAI ,EXTRA2 ,EXTRA3, 
C NEXTRA) FROM XL TO XU. A TWO POINT GAUSS-LEGENDRE QUADRATURE 
C FORMULA IS USED. CONVERGENCE IS CHECKED BY DIVIDING THE DOMAIN IN 
C HALF AND REAPPLYING THE FORMULA IN EACH HALF. IF THE VALUE OF THE 
C INTEGRAL CALCULATED OVER THE ENTIRE DOMAIN IS NOT EQUAL TO THE 
C SUM OF THE INTEGRALS IN EACH HALF (WITHIN THE 
C USER SPECIFIED ERROR TOLERANCE), EACH HALF IS FURTHER DIVIDED 
C INTO HALVES AND THE GAUSS-LEGENDRE FORMULA IS REAPPLIED. THE 
C PROCEDURE WILL CONTINUE ITERATING (I.E. SUBDIVIDING),UNTIL 
C CONVERGENCE IS ACHIEVED OR THE MAXIMUM NUMBER OF ITERATIONS IS 
C REACHED. THE MAXIMUM NUMBER OF ITERATIONS IS EITHER THE SET 
C DEFAULT VALUE OF 30 (WHERE THE FIRST ITERATION IS FOR EVALUATION 
C OVER THE ENTIRE DOMAIN), OR THE LARGEST NUMBER OF ITERATIONS 
C POSSIBLE WITHOUT SEVERE MACHINE ROUND-OFF ERRORS, WHICHEVER IS 
C SMALLER. THE MACHINE ROUND-OFF ERROR CHECK IS MADE TO INSURE 
C THAT THE INTEGRATION DOMAIN IS NOT TOO SMALL SO AS TO BE 
C INSIGNIFICANT. SINCE THE PROCEDURE IS ADAPTIVE, ONLY THE REGIONS 
C WHICH ARE NONCONVERGENT ARE DIVIDED INTO HALVES. THIS CODE WAS 
C WAS WRITTEN BY FRED GELBARD, FEBRUARY, 1982. 
C 



C 

C 
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DIMENSION A(2,21),X(21),H(21),ISIDE(21) 
FUN(XD,HD)=0.5*HD*(F(XD+.2113248654052*HD,EXTRA1,EXTRA2, 

* NEXTRA)+F(XD+.788675134598*HD,EXTRA1,EXTRA2,NEXTRA» 
NMAX=21 

H(l)=XU-XL 
A(2,1)=FUN(XL,H(1» 
IF(IER.NE.1) GO TO 2 
IF(10.*ABS(H(1»/RELER.LT.AMAX1(ABS(XU),ABS(XL») GO TO 7 

C CHECK THAT THE SIZE DOMAIN IS NOT TOO SMALL 
C 

C 

2 IF(ABS(XU-XL).GT.4.*ROUND*AMAX1(ABS(XL),ABS(XU») GO TO 8 
AN SWR=A(2, 1) 
IER=-2 
RETURN 

C DETERMlN E THE MAXIMUM NUMBER OF SUBDIVIS ION S BEFORE ROUND OFF 
C ERROR WOULD MAKE IT DIFFICULT TO DISTlNGUISH POlNTS IN THE DOMAIN 
C 

8 RATIO=AMA.X1(ABS(XU/H(1»,ABS(XL/H(1») 
N1=2-IFIX(1.4427*ALOG(RATIO*ROUND» 

C- N1=-IFIX(1.4427*ALOG(RATIO*ROUND» 
C+ ALLOW TWO EXTRA ITERATIONS TO lNCREASE CHANCE OF CONVERGENCE 

NMAX=MINO(NMAX,Nl) 

C 

C 

C 

C 

IF(NMAX.GT.1) GO TO 10 
IER=-1 
RETURN 

10 ISIDE(1)=2 
DO 1 I=2,NMAX 
ISIDE(I)=2 

1 H(I)=.5*H(I-1) 

X(2)=XL 
N=2 

4 SUM=O. 
A(1,N)=FUN(X(N),H(N» 
A(2,N)=FUN(X(N)+H(N),H(N» 
SUM=A(1,N)+A(2,N) 

IF(ABS(SUM-A(ISIDE(N),N-1»/RELER.LT.ABS(SUM)+ABSER) GO TO 3 
IF(N.EQ.NMAX) GO TO 9 
N=N+1 
ISIDE(N)=1 
X(N)=X(N-1) 
GO TO 4 



C 
C 

C 
C 

C 

C 
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3 A(ISIDE(N),N-1)=SUM 
IF(ISIDE(N).EQ.1) GO TO 5 

6 IF(N.EQ.2) GO TO 7 
N=N-1 
A(ISIDE(N),N-1)=A(1,N)+A(2,N) 
IF(ISIDE(N).EQ.2) GO TO 6 

5 ISIDE(N)=2 
X(N)=X(N-1)+H(N-1) 
GO TO 4 

9 IER=N-1 
XL=X(N) 
XU=X(N) +2. *H (N) 
RELER=SUM 
ABSER=A(ISIDE(N),N-1) 
RETURN 

7 IER=O 
ANSWR=A(2 ,1) 
RETURN 
END 

C***************************************************************** 
C 

C 

SUBROUTINE GAUSBT(F,XL,XU,RELER,ABSER,ROUND,ANSWR,IER,IPRNT, 
* FIXSZ,BASESZ,INNER,TGAS,NBTYPE) 

DIMENSION A(2,21),X(21),H(21),ISIDE(21) 
FUN(XD,HD)=O.5*HD*(F(XD+.2113248654052*HD,RELER,ABSER,ROUND, 

* IPRNT,FIXSZ,BASESZ,INNER,TWAT,NBTYPE)+ 
* F(XD+.788675134598*HD,RELER,ABSER,ROUND, 
* IPRNT,FIXSZ,BASESZ,INNER,TWAT,NBTYPE» 

NMAX=21 
H(l)=XU-XL 
A(2,1)=FUN(XL,H(1» 
IF(IER.NE.1) GO TO 2 
IF(lO.*ABS(H(1»/RELER.LT.AMAX1(ABS(XU),ABS(XL») GO TO 7 

2 IF(ABS(XU-XL).GT.4.*ROUND*AMAX1(ABS(XL),ABS(XU») GO TO 8 
ANSWR=A(2,1) 



IER=-2 
RETURN 
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8 RATIO=AMAX1(ABS(XU/H(1»,ABS(XL/H(1») 
N1=2-IFIX(1.4427*ALOG(RATIO*ROUND» 

C- N1=-IFIX(1.4427*ALOG(RATIO*ROUND» 
C+ ALLOW TWO EXTRA ITERATIONS TO INCREASE CHANCE OF CONVERGENCE 

$ 

NMAX=MINO(NMAX,N1 ) 
IF(NMAX.GT.1) GO TO 10 
IER=-1 
RETURN 

10 ISIDE(l)=2 
DO 1 I=2,NMAX 
ISIDE(I)=2 

1 H(I)=.5*H(I-1) 
X(2)=XL 
N=2 

4 SUM=O. 
A(1,N)=FUN(X(N),H(N» 
A(2,N)=FUN(X(N)+H(N),H(N» 
SUM=A(1,N)+A(2,N) 
IF(ABS(SUM-A(ISIDE(N),N-1»/RELER.LT.ABS(SUM)+ABSER) GO TO 3 
IF(N.EQ.NMAX) GO TO 9 
N=N+l 
ISIDE(N)=l 
X(N)=X(N-l) 
GO TO 4 

3 A(ISIDE(N),N-1)=SUM 
IF(ISIDE(N).EQ.l) GO TO 5 

6 IF(N.EQ.2) GO TO 7 
N=N-l 
A(ISIDE(N),N-l)=A(1,N)+A(2,N) 
IF(ISIDE(N).EQ.2) GO TO 6 

5 ISIDE(N)=2 
X(N)=X(N-l)+H(N-l) 
GO TO 4 

9 IER=N-l 
XL=X(N) 
XU=X(N)+2.*H(N) 
RELER=SUM 
ABSER=A(ISIDE(N),N-l) 
RETURN 

7 IER=O 
ANSWR=A(2,l) 
RETURN 
END 




