X-Code: MDS Array Codes with Optimal Encoding *

Lihao Xu Jehoshua Bruck
California Institute of Technology
Mail Code 136-93
Pasadena CA 91125
Email: {lihao,bruck}@paradise.caltech.edu

Abstract

We present a new class of MDS array codes of size n x n (n a prime number)
called X-Code. The X-Codes are of minimum column distance 3, namely, they can
correct either one column error or two column erasures. The key novelty in X-code is
that it has a simple geometrical construction which achieves encoding/update optimal
complexity, namely, a change of any single information bit affects exactly two parity
bits. The key idea in our constructions is that all parity symbols are placed in rows
rather than columns.

Keywords: MDS Codes, array codes, update complexity, optimal updates,
balanced computation

*Supported in part by the NSF Young Investigator Award CCR-9457811 , by the Sloan Research Fellow-
ship, and by DARPA and BMDO through an agreement with NASA/OSAT.

1 Introduction

MDS (Mazimum Distance Separable) array codes whose minimum Hamming distance at-
tains the Singleton bound for a given length and dimension [4] have important applications
in communication and storage systems [5] [6], and have been studied extensively [1] [2] [3]
[7]. A common property of these codes is that the encoding and decoding procedures use
only simple XOR and cyclic shift operations, and thus are more efficient than Reed-Solomon
codes in terms of computation complexity [5]. In this paper, we present X-Code, a new class
of MDS array codes of distance 3. Similar to the codes in [1][3], the error model of X-Code
is that errors or erasures are columns of the array, i.e., if one symbol of a column is an error
or erasure, then the whole column is considered to be an error or erasure.

One important parameter of array codes is the average number of parity bits affected by
a change of a single information bit in the codes, called the update complezity in this paper.
This parameter is particularly crucial when the codes are used in storage applications that
need frequent updates of information. The codes in [3] use two dependent parity columns to
make the distance of the codes to be 3. But the dependency between the two parity columns
makes update of one information symbol affecting virtually all the parity symbols. So the
update complexity of the codes in [3] increases linearly with the number of the columns
of the array codes, just similar to Reed-Solomon codes. To overcome this drawback, the
EVENODD codes [1] and their generalizations [2] were designed based on independent
parity columns resulting in a more efficient information update. The update complexity of
EVENODD codes approaches 2 as the number of the columns of the codes increases. But
it was proven in [2] that for any linear array codes with only parity columns, the update
complexity is always strictly larger than 2 (the obvious lower bound). Hence, we asked the
following question: Is the update complexity of 2 achievable for general array codes? A
positive answer to the foregoing question was given a decade ago [8], and the code in [8] was
described by its parity check matriz and represented recently in a clearer form, also by a
parity check matrix, in [4]. Here we construct a new family of array codes, called X-Codes,
which has a simple geometrical structure and has an update complexity of ezactly 2.

Both the X-Codes and the codes in [8] and [4] are combining information and parity
symbols within columns in order to achieve optimal update complexity. The redundancy
of X-Code is obtained by adding two parity rows rather than two parity columns, which
results in the nice property that update of one information symbol affects only two parity
symbols, i.e., the update complezity is always 2. In addition, the number of operations for
computing parity symbols at every column is the same, namely, the computational load
is evenly distributed among all the columns, thus the bottleneck effects of repeated write
operations are naturally overcome.

The main contribution of this paper is constructing X-Code, a new class of MDS array
codes of distance 3, with the properties of optimal update complexity and balanced compu-
tations. The simple geometrical structure of X-Code makes its decoding very efficient, for
both two erasures and one error.

This paper is organized as follows. In Section 2, the encoding scheme of X-Code is

2

described, and a proof of its M DS property is presented. In Section 3, we provide an efficient
decoding algorithm for correcting two erasures, as well as an efficient algorithm for correcting
one error. Section 4 concludes the paper and presents some future research directions.

2 X-Code Description

In X-Code, information symbols are placed in an array of size (n — 2) x n. Symbols can be
defined over any Abelian groups with an addition operation +. If the group is the addition
group over GF(2™), then the addition operation is the usual bit-wise XOR operation.

Like other array codes [1] [2] [3] [7], parity symbols are constructed from the information
symbols along several parity check lines or diagonals of some slopes with the addition oper-
ation +. But instead of being put in separate columns, the parity symbols of the X-Code
are placed in two additional rows. So the coded array is of size n x n, with the first n — 2
rows containing information symbols, and the last two rows containing parity symbols. No-
tice that each column has information symbols as well as parity symbols, i.e., information
symbols and parity symbols are mixed in each column. Errors or erasures can happen in
any column. If an error or an erasure occurs to a symbol in a column, then this column is
considered to be an error or erasure column. By the structure of the code, if two columns
are erasures, the number of remaining symbols is n(n — 2), and is equal to the number of
original information symbols, which makes it possible for X-Code to recover the two column
eTasures.

2.1 Encoding Procedure

Let C;; be the symbol at the ith row and jth column, the parity symbols of X-Code are
constructed according to the following encoding rules:

n—3
Cn—2,i = Z Ck,(i+k+2)n
k=0
n—3
Crn-1; =Y Crli—k—2)n (1)
k=0
where i =0,1,---,n — 1, and (z),, = z mod n.

Geometrically speaking, the two parity rows are just the checksums along diagonals of
slopes 1 and -1 respectively. More clearly, to get a parity check row, an imaginary 0-row
is placed after the parity check row, then in the resulting array of n x n, checksums of all
diagonals of slope 1 (or slope -1) in the square array are all 0s. Thus the two parity rows
are constructed independently . The following example gives a construction of X-Code of
size 5 X 9.

Example 1 X-Code of size 5 x 5.

The first parity row is calculated along the diagonals of slope 1, with the last row being
only an imaginary 0-row, as follows:

AN BRCERVANR Y 1/0{0]|1|1
OA S| OO 0(1j0(1]1
VAN YVANE 1K 0[0[1]0]1
SO | d| A& | <1stparity check row— [0[0[1]1]0
S O |IO | M A | —imaginary O-row— |[0[0|0[0]0

The second parity row is calculated along the diagonals of slope -1, as follows:

INEIESE 1/0{0]1]1
21510 &lA ol1lo0l111
oV Ve L (R VA S
SO M |A S 0(0j1]0]1
Cld|A|&| O | «2nd parity check row— |11 |0 |11
OA S| OO «—imaginary 0-row— 0(ojoj0]|0

Then the complete codeword is

= oo ol
[l K==l | el) e
Ol OO
e e (=l
=l i s

From the construction of X-Code, it is easy to see that the two parity rows are obtained
independently, more specifically, each information symbol appears exactly once in each parity
row, and all parity symbols only depend on information symbols, but not on each other. So
updating one information symbol results in updating only two parity symbols. But from the
MDS property which will be proven soon, the code is of column distance 3, i.e., the code can
correct up to two column erasures. So each information symbol must appear at least in three
columns, otherwise, once all the columns containing this information symbol are erased, the
information symbol can never be recovered, which contradicts with the MDS property. So
the lower bound of the update complexity for any codes of column distance 3 is 2. Thus
X-Code has the optimal encoding (or update) property, i.e., it achieves the lower bound 2
of the update complexity.

It is also easy to see that X-Code is a cyclic code in terms of columns, i.e., cyclically
shifting columns of a codeword of X-Code results in another codeword of X-Code.

In addition, notice that each column has two parity symbols, each of which is the check-
sum of n — 2 information symbols, thus the number of computations (group additions) for
parity symbols at each column is 2(n — 3). This balanced computation property of X-Code
is very useful in applications that require evenly distributed computations.

4

2.2 The MDS Property
In this section, we state and prove the MDS property of X-Code.

Theorem 1 (MDS Property)
X-Code has column distance of 3, i.e., it is MDS, if and only if n is a prime number.

Proof: Let us start with the sufficient condition, namely, we need to prove that for any
prime number n, X-Code is MDS.

First observe that X-Code is a linear code, thus proving that the code has column distance
of 3 is equivalent to proving that the code has minimum column weight w,,;, of 3, i.e., a valid
codeword of X-Code has at least 3 nonzero columns. We will prove it by contradiction.

From the construction of X-Code, checksumming is done along diagonals of slope 1 or
slope -1, it is impossible to have only one nonzero column, thus w,,;, > 1.

Now suppose w,;, = 2, then without loss of generality because of the column cyclic
property of X-Code, we can assume the nonzero columns are the Oth and kth columns where
1 < k <n — 1. Denote the ith symbol of the Oth and kth columns by a; and b; respectively.

Observe that one diagonal of slope 1 or -1 only traverses n — 1 columns, then among
the diagonals of slope 1, the diagonal crossing a,,_1_ does not cross any symbol of the kth
column, and the diagonal crossing by_; does not cross any symbol of the Oth column, so
an_1-r = 0 and b;_; = 0. Because of the same property of the diagonals of slope -1, we can
alsoget ax_1=0and b, ; y=0(orb, 1 =0ifk=1).

Starting from ay_; = 0, we get bog_1 = 0, since they are in same the diagonal of slope 1;

then we get as;_1 = 0, since it is on the same diagonal of slope 1 with bgg_1, - - -, and so on,
we have

ap—1 = Q31 = As5p—1 = *** = Q(p—2)k—1 = 0
and

bok—1=bar—1 =ber—1 ="+ =bn_1)p-1 =0

all indices above are mod n.
Similarly, starting from a,_;_; = 0, we have

Up1-k =013k =" = A1 (n—2)k = 0

and
bn1—2k =bp1ar=-"=bp_1-(n-1)x =0

again, all indices above are mod n.

We can describe the above 4 sets of entries in the array as follows. Let Ay = {{(2m +
Dk—1),:m=0,1,---,%3} and A; = {(n — (2l + 1)k — 1), : 1 =0,1,---, 22} let By =
{@mk — 1), :m=1,2,---,22} ‘and B; = {{n — 2lk — 1), : { = 1,2,---, 21} notice that
all the sets do not include n—1, since n is prime. This can also be seen from the construction
of X-Code, since the (n — 1)th row is just an imaginary all-0 row and it does not need to be

considered. An illustration of the above sets for n = 5 and k = 2 is as follows:

AO B1
Al BO
Al BO

Since n is prime, for any 1 <k <n —1, ged(n, k) = 1, | Ao = || 41 = 252, and if there
were such m and [that

C2m+1Dk—1=n—(2l+ 1)k — 1 mod n (2)

ie.,

2(m+1+1)k=0mod n (3)

but 1<m+1+1<n-—2ged(m+1+1,n)=1,gcd(2k,n) = 1, so it is impossible to have
such a pair of m and [, i.e., |49 N A;|| = 0. Notice that n — 1 = (225 + 1)k — 1 mod n, we
have

A0UA1 ={0,1,"',7’L—2}

Similarly,
B()UBl :{0,1,,77,—2}

So all the first n — 1 symbols in the Oth and the kth columns are 0’s, obviously the last
symbols in the Oth and the kth columns should be also 0’s. Thus, w,;, > 3, but it is easy
to see there is a codeword of column weight 3, so w,,;, = 3. This concludes the proof for the
sufficient condition.

Now from the equation Eq. (3), it can be seen that if n was not a prime number, i.e.,
n could be factored into two factors n; and ns, let £k = ny, and m + 1+ 1 = ns, we got a
solution (k,l,m) for the equation Eq. (3) or Eq. (2), where 2 < k < n —1, i.e., we got a
codeword of weight 2 (see (2) in the following remark for an example). Because the code is
linear, the code is of distance 2, this contradicts with the fact that the code is MDS, i.e., of
distance 3. So n being a prime number is a necessary and sufficient condition to the MDS
property of X-Code. O

Remarks:

1. For the sufficient condition, we can always find a diagonal of one slope which traverses
only one of the two columns, and thus the traversed symbol must be 0. Starting
from this 0-symbol, use the diagonal of the other slope crossing this symbol, we can
determine the crossed symbol by the diagonal in the other column must be also 0. So
this saw-like recursive procedure can proceed until it hits a parity symbol at one of the
two columns, since a parity symbol can only lie in one diagonal. We call this saw-like
recursion as a decoding chain. Since there are four parity symbols at the two columns,

6

there are at most four decoding chains. (A simple calculation can show that there are
two decoding chains when k£ = 1 and four decoding chains otherwise.) The procedure
of getting the decoding chains will stop with all the symbols at the two columns as Os if
n is prime. Since this procedure is deterministic once the positions of the two columns
are given, it also provides an efficient erasure decoding algorithm.

2. For the necessary condition, if n is not prime, then we can always choose k as a factor
of n, and as long as all the symbols in the two columns whose indices are in the sets
Ay, A1, By and Bj are 0s, the obtained codeword is a valid codeword of weight 2. For
example, if n = 6, then let k = 2, we get A9 = A; = By = By = {1,3}, i.e., keep
a1 = az = b; = bz =0, we can get a valid codeword of weight 2 as follows:

0 0/0(0

e (=l =l
i =l =l

OO OO O
[en) Nen) | Ren) Hen) Han}
[en) Nen) | Ren) Hen) Han}
[en) Nen) | Ren) Hen) Han}

3. In the code construction above, we use diagonals of slopes 1 and -1. This choice of
slopes is not unique. In fact, codes constructed by the pair of slopes (s, —s), where
s=1,---, "T_l, are MDS if and only if n is prime. The proof is similar to the case
where the slope pair is (1,-1). It seems that other slope pairs don’t provide advantages
over (1,-1), so in this paper we will focus on X-Codes generated by the slope (1,-1).

3 Efficient Decoding Algorithms

In this section, we present decoding algorithms for correcting two erasures or one error of
X-Code. As the encoding algorithm of the code, decoding algorithms do not require any
finite field operations. Instead, the only operations needed are just cyclic shifts and XORs,
which can be implemented very efficiently with software and/or hardware. It is clear how to
correct one erasure, since the erasure can be easily recovered along one of the diagonals. So
we will proceed with correcting two erasures.

3.1 Correcting Two Erasures

First notice that in an array of size n xn, if two columns are erasures, then the basic unknown
symbols of the two columns are the information symbols. So the number of unknown symbols
is 2(n — 2). On the other hand, in the remaining array, there are 2(n — 2) parity symbols
which include all the 2(n — 2) unknown symbols. Hence correcting the two erasures is only a
problem of solving 2(n—2) unknowns from the 2(n—2) linear equations. From the proven fact
that X-Code is of distance 3, it can correct two erasures, thus the 2(n — 2) linear equations

7

must be linearly independent, i.e., the linear equations are solvable. Now notice that the
code has such a feature, as proven in section 2, that no two information symbols in a same
column can appear in one parity symbol, each equation has at most two unknown symbols,
and some equation has only one unknown symbol. This drastically reduces the complexity
of solving the equations. We can always start from the equation (or the parity symbol, the
determination of whose position will be discussed soon) with only one unknown symbol in
it, then recursively go to the other parity symbol including this just solved symbol to get
another unknown symbol until all the unknown symbols are solved.

Suppose the erasure columns are the ith and jth (0 < i < j < n — 1) columns, since
each diagonal traverses only n — 1 columns, if a diagonal crosses a column at the last row,
no symbols of that column are included in this diagonal. This determines the position of the
parity symbol including only one symbol of the two erasure columns, and the symbol can be
immediately recovered from the simple checksum along this diagonal.

First consider the diagonals of slope 1. Suppose the xth symbol of the ith column is the
only unknown symbol in a diagonal, then this diagonal hits the jth column at the (n — 1)th
row, and hits the first parity row at the yth column, i.e., the three points (z,i), (n — 1, 7)
and (n — 2,y) are on the same diagonal of slope 1, thus the following equations hold:

{ (n—1)—z=j—imodn
(m—1)—(n—2)=j—ymodn

Since1<j—i<n-—1,and 0 < j7—1<n— 2, the solutions for x and y are

{x=((n—l)—(j—i)>n=(n—l)—(j—i)
y=(-1n=j—1

So from the parity symbol C,_5;_1, we can immediately get the symbol C,_1)_(j_i); in the
ith column. Similarly, the symbol C(;_;_1; in the jth column can be solved directly from
the parity symbol Cy,_3 i—1),-

Symmetrically with the diagonals of slope -1, the symbol C(;_;_1; in the ith column can
be solved from the parity symbol C,_; (j;1),., and the symbol C(,,_1)_(j—s),; in the jth column
can be solved from the parity symbol C),_1 1.

Notice that an information symbol is crossed by the diagonals of slope 1 and -1 exactly
once respectively, so if an unknown symbol is solved along a diagonal of slope 1 (or -1),
then from the parity symbol along the diagonal of slope -1 (or 1) which crosses the solved
symbol, another unknown symbol in the other column can be solved. This procedure can be
used recursively until the parity symbol is in an erasure column or the solved symbol itself
is a parity symbol.

Suppose the erasures are the ith and jth (0 <i < j <n — 1) columns, and the parity
rows are Py and P; for the diagonals of slopes 1 and -1 respectively, i.e., Py[k] = C,,_ax and
Pi[k] = Cp_1 for 0 < k <n — 1, then a formal algorithm for correcting the two erasures in
X-Code can be described as follows:

Algorithm 1 (Correcting Two Erasures)

1.

2.

O

Step 1 of the algorithm computes the positions of the four parity symbols with only
one unknown symbol. Step 2 through 4 include the recursive procedure described above.
Step 3 is just the checksum calculation along a diagonal of slope Slope crossing the parity
symbol Py[Par_Col] (or P;[Par_Col]) to recover the unknown symbol Csym_row,sym_col if
the parity symbol is not in one of the erasure columns, otherwise just restarts with another
parity symbol obtained in Step 1. Step 4 decides the position of the diagonal including the

Init_Slope_Set = { 1, 1, -1, -1 }

Init_Par Col _Set = {j —1,{i — 1)p, (j + 1)p,2 + 1};

Init_Sym_Col_Set = {i,j,i,7};

Init_Sym_Row_Set={(n—1)—(j —14),—9)—-1,(j—0)—1,(n—1)—(j—19)};
i=—1;

i+
If : == 4 Then
Compute Py[i], Py[j], Pi[i], Pi[j] according to the encoding rule Eq. (1);
Stop;
Else
Slope = Init_Slope_Set[i];
Par_Col = Init_Par_Col_Set|i];
Sym_Col = Init_Sym_Col_Set[i];
Sym_Row = Init_Sym_Row _Set|[i];
End If
. If Par_Col ==1i Or Par_Col == j Then
Goto 2;
Else

If Slope == 1 Then
CSym_Row,Sym_Col = Po[PaT'_COZ] + Ez;g,k;éSym_Rmu Ck,(Par_Col+k+2)n;
Else
Csym_Row,sym_co. = P1[Par_Col]| + ZZ;S‘,kﬁym_Rw Ch,(Par_Col—k—2)n;
End If
End If

. Slope = —Slope;

Par _Col = (Sym_Col — Slope * (Sym_Row + 2)),;
If Sym_Col == i Then

Sym_Col = j;
Else
Sym_Col = i;
End If
Sym_Row = (n — 2 — Slope x (Par_Col — Sym_Col)),;
Goto 3;

9

next unknown symbol from the just solved symbol. The complexity of the algorithm is easy
to analyze. Each iteration solves one unknown symbol, and it needs (n —3) XOR operations.
So to correct two erasure columns, the decoding algorithm needs 2n(n — 3) XOR operations,
just the same as that of the encoding algorithm.

Following is a simple example to show how the decoding algorithm works. To be more
general, we would use symbols rather than numerical values.

Example 2 Correcting Two Erasures of a 5 x 5 X-Code

Without loss of generality, we assume the last (i.e., the 4th) column is one of the
erasures, and because of the symmetry of the code, we only need to examine the cases where
the other erasure is 3rd or 2nd column.

Casel.i=3,j=4

Then the remaining array is follows :

ap aiq a9 ?(ag) ?(a4)
bo by by ?(bs) | ?(ba)
Co c1 Co ?(c3) | ?(ca)
do=ag+bs+cy|di=a3+bs+cy|do=0a4+by+c1 ?(dg) ?(d4)
eo=az+by+ci|eg=ags+b3+co|es=ag+bs+c3 ?(63) ?(64)

After omitting the obuvious checksum calculations, the solution chain for the erasures would
be as follows:

as(da) — b(e1) — ca(do)

0,3(60) — b4(d1) — 03(62)

Each chain above represents a recursion starting from a parity symbol, and in each term of
the chain, x(y) means that the symbol x can be recovered from the parity symboly. Obviously,
ds, dg, e3 and ey can be easily computed after all others are known.

Case2.i=2,j=4

Then the remaining array is follows :

ap a; ? asg ?
bo by ? bs ?

(a2) (a4)
(b2) (ba)
Co C1 ?(62) C3 ?(04)
(da) (da)
(2) (€4)

dy=as+bs+cy|di=a3+bg+cy|? dz3=ag+b+co|?
€0=a3+b2+01 €1=a4+b3+62 ? €3=a1+bo+04 ?64

Now the solution chain becomes as follows:

C2(d3) — a4(61)
ba(dy)
bz(eo)
ca(es) — az(do)

Again, dsy, d4, es and e4 are easy to get after all other symbols are obtained.
O

10

3.2 Correcting One Error

To correct one error, the key is to locate the error position. This can be done by computing
two syndrome vectors from the two parity rows. Since the error is a column error, it is
natural to compute the syndromes with respect to columns than to rows as in the encoding
procedure. Once the error location is found, the value of the error can be easily computed
along the diagonals of either slope.

Suppose R = [r;j]o<ij<n—1 iS the error-corrupted array, then construct two arrays U =
[ui,j]Ogi,an—l and V = [Ui,j]Ogi,an—l from R, where for 0 S] S n— 1,

Uij =Vij =Tij, 0<1<n—3 (4)

Un—2j = Tn—2,j, Un-2j = Tn-1, ()
n-1j = tn-15 =0 (6)

(7)

i.e., U and V are constructed by copying the n — 1 information rows and parity rows accord-
ingly from R, then adding an imaginary 0-row at the last row, From U and V', compute two
syndrome vectors Sy and S; as follows:

Soli] = :2::0 Uit kb (8)
Sili] = :z::o Vi—k k (9)

all sub-indices above are mod n.

It is easy to see that the two syndrome vectors are respectively the column checksums
along the diagonals of slope 1 and -1, and they should be all-zero vectors if there is no error
in the array R. If there is one error in the array R, then the two syndromes are just the
cyclic-shifted version of the error vector with respect to the position of the error column,
thus its location can be determined simply by cyclic equivalence test. The following example
shows how a single error column is reflected in two syndromes for an X-Code of size 5.

Example 3 Syndrome Computation for a 5 X 5 X-Code
Suppose the 3th column is an error column, then the two syndrome vectors (Sy and Sy
respectively) and their corresponding error arrays are as follows:

So S1
000 |eg |0 es 0[0[0|eg |0 e
0[{0|0|e |0} O 0[{0]|0|ey1 |0 eq
000 |ey |0 eg 0[{0]|0|ey|0O] O
0[0(0|e3|0| er 0[{0[0|es |0 e
0[0(0|0 (0] e 0(0]/0| 010} e

11

So the two syndromes are actually just the original error column vector (cyclic-)shifted in
two different directions for the same number of positions. When they are shifted back, then
they only differ in at most one position, the number of the positions shifted gives the location
of the error column. O

The above example almost gives the decoding algorithm for one error correction. To
describe the algorithm more formally, some notations are introduced. For a vector V', denote
VT as its transpose. Let V = (V[0],V[1],---,V[n — 1])7, denote V(Y (or V(=1) as the
down- (or up-) shifted vector from V, i.e., V) = (V[n—1],V[0],---,V[n—2])7, and V(-1 =
(V[1],---,VIn—1],V[0]))T. Also denote V[l..m] as the subvector containing the components
v[l] through v[m], i.e., V[I.m] = (V[I], V[I+1],---,V[m])T, where 0 <1 < m < n—1. With
these notations, a formal algorithm for correcting one error can be described as follows:

Algorithm 2 Correcting One Error
1. Compute two syndrome vectors Sy and Sy from the possibly-error-corrupted array R
according to the equations Eq. (4) through Eq. (9);
2.1=0;
. If SO[On — 3] == 51[0n — 3] And So[n — 1] == Sl[n — 1] == 0 Then
The error position is the ith column, and the error value is
E = (50[0], So[1], - - -, So[rn — 3], So[n — 2], S1[n — 1]);
Else If i ==n Then
Declare decoding failure : more than one error occurred;
Else
So = 31), S1= S£_1);'
i+ +;
Goto 3;
End If
O

Before proving the correctness of the algorithm, we give a numerical example.

Example 4 Correcting One Error of a 5 x 5 X-Code
Suppose the possibly-error-corrupted array R is :

(e} Ren)| Nen) Nen) Nan)
(e} Ren)| Nen) e} Nan)
(e} Renl| Nen) e Nan)
Ol || O+~
(e} Ren)| Nen) e Nan)

then U and V', the two constructed arrays from R, and their corresponding syndromes Sy
and Sy are as follows:

12

U So |4 S
0(0|0|1]0]1 0({0{0|1]0]0
00100010 000100180
0/0/0{0]0]|1 0[{0(0]0]0|O0
0[0(0[1]0|0 0/0{0|0]0]1
0(0[0|0]0]O 0[{0{0|0]0O]O

Repeat Step 8 of the algorithm until i = 3, then we get Sy = (1,0,0,1,0)T and S; =
(1,0,0,0,0)T, so S[0..2] equals to S1[0..2], and So[4] = S1[4] = 0, thus we declare the error
occurs at the 3rd column, and the error value is E = (1,0,0,1,0), i.e., the uncorrupted array
should be an all-zero array. O

Now we give a proof of correctness of the algorithm.
Proof: If one error occurs at the ith column, and its value is e = (e[0], e[1],- - -, e[n—2], e[n—
1])7, then the two syndromes (Eq.(4 through Eq.(8)) are:

So = ((e[0],---,e[n—3],e[n—2], O)T)@ (10)
S1 = ((e[0],---,e[n —3],e[n—1], O)T)(’) (11)
thus
53? = (e[0],--,e[n — 3],¢e[n — 2],0)T (12)
S = (e[0],-- -, e[n — 3], e[n —1],0)T (13)

Since X-Code can correct one error, which means the location of a single column error can
always be found unambiguously, such a unique ¢ can be found that the two shifted syndrome
vectors may only differ in the second last component and their last components are both Os
(Eq. (12) and Eq. (13)). Once the error location i is found, the error value is directly
obtained from Eq. (12) and Eq. (13). O

The above algorithm needs 2n(n — 2) XOR operations to compute the two syndrome
vectors, and on average n cyclic equivalence test operations to get the error location.

4 Conclusions

We have presented X-Code, a new class of n x n MDS array codes of distance 3. The
significant difference of these codes from all other known array codes is that the parity
(redundant) symbols are placed in two independent rows rather than columns. Encoding
and decoding of the codes may be accomplished using only XOR operations. We proved that
n being a prime number is necessary and sufficient for X-Code to be MDS. X-Code achieves
the lower bound of the update complexity for all prime numbers n, and it also has balanced
computation at each column, which might be very helpful in storage systems and distributed
computing systems. Finally decoding algorithms for correcting erasures and error are given.

13

One future research problem is to extend X-Code for all positive integers rather than only
prime numbers. Another research direction is to extend X-Code to have distance r+1, where
r > 3, while all the properties of X-Code still remain unchanged, namely the M DS property
and the optimal update complexity property. Our primary research shows that in general
X-Code can not be easily extended to have larger distance by simply using more parity rows
and taking more slopes, except for few lengths n.

References

[1] M. Blaum, J. Brady, J. Bruck and J. Menon, “EVENODD: An Efficient Scheme for
Tolerating Double Disk Failures in RAID Architectures”, IEEE Trans. on Computers,
44(2), 192-202, Feb. 1995.

[2] M. Blaum, J. Bruck, A. Vardy, “MDS Array Codes with Independent Parity Symbols”,
IEEE Trans. on Information Theory, 42(2), 529-542, March 1996.

[3] M. Blaum, R. M. Roth, “New Array Codes for Multiple Phased Burst Correction”,
IEEE Trans. on Information Theory, 39(1), 66-77, Jan. 1993.

[4] M. Blaum, R. M. Roth, “On Lowest-Density MDS Codes”, Preprint, 1997.

[5] M. Blaum, P. G. Farrell and H. C. A. van Tilborg, “Chapter on Array Codes”, Preprint,
1996.

[6] P. G. Farrell, “A Survey of Array Error Control Codes”, ETT , Vol.3, No.5, 441-454,
1992.

[7] R. M. Goodman, R. J. McEliece and M. Sayano, “Phased Burst Error Correcting Arrays
Codes,” IEEE Trans. on Information Theory, 39, 684-693,1993.

[8] G. V. Zaitsev, V. A. Zinov‘ev, and N. V. Semakov, “Minimum-Check-Density Codes
for Correcting Bytes of Errors, Erasures, Or Defects” Problems of Information Trans-
mission, 19(3), 197-204, 1983

14

