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Abstract

In this paper we discover the family of Fault-Tolerant Multistage Interconnection Networks
(MINs) that tolerates switch faults with a minimal number of redundant switching stages.
While previously known constructions handled switch faults by eliminating complete stages,
our approach is to bypass faulty switches by utilizing redundant paths. As a result, we
are able to construct the first known fault-tolerant MINs that are optimal in the number
of redundant stages. Our fault model assumes that a faulty switch can be bypassed and
our goal is to guarantee arbitrary point to point and broadcast connectivity. Under this
model, we show that to tolerate f switch faults the MIN must have at least f redundant
stages. We then present the explicit construction of a MIN that meets this lower-bound.
This construction repeatedly uses the singleton basis of the n-dimensional vector space as the
mask vectors of the MIN. We generalize this construction and prove that an n-dimensional
MIN is optimally fault-tolerant if and only if the mask vectors of every n consecutive stages

span the n-dimensional vector space.



1 Introduction

Multistage Interconnection Networks (MINs) enjoyed important applications in fields such
as telecommunications and parallel computing in the past decades [1] [3] [9] [11] [12]. They
are widely used to construct interconnects in parallel computers as well as various network
switches including ATM switches. One of the advantages of MINs is their ability to allow
novel ways to tolerate component faults. In this paper, we focus our interest on the fault-
tolerance capabilities of Multistage Interconnection Networks over switch faults, and propose
a family of constructions that tolerates switch faults with a minimal number of redundant

switching stages.

>

Straight Mode Exchange Mode

Figure 1: The point to point modes of operation of a 2 x 2 switch

Upper broadcast Lower broadcast

Figure 2: The broadcast modes of operation of a 2 x 2 switch
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Figure 3: Implementation of the switch fault model for a 2 x 2 switch
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A 2 x 2 switch is common building block of MINs. For point to point connection, the
switch operates in either the straight mode or the exchange mode, as illustrated by Figure 1.
Two additional broadcast modes of operations exist to enable one node to send a message
simultaneously to all other nodes (Figure 2). We assume that when a switch is at fault, it
is stuck in the straight mode. This fault model is accepted by other researchers and can be
easily implemented by bypass wires and ON/OFF switches as illustrated in Figure 3. Two
fault-tolerance criterions are considered in this paper, namely, the point to point connectivity
between any two nodes and the broadcast connectivity. We will prove the results for the
point to point model in the early sections, and extend the results to the broadcast model in
Section 4.

A Multistage Interconnection Network is shown in Figure 4. This MIN allows point
to point connection between any pair of nodes. There are 3 stages of 2 x 2 switches that
interconnect the 8 nodes. Each node is labelled by a binary vector. The length of this
vector, n, is the dimension of the MIN. Clearly, n = loga N, where N is the number of nodes
in the MIN. Each switch is also characterized by an n-bit vector, called “mask”. The mask
indicates the difference between the two input nodes, B — A. This difference is obtained by
mod-2 vector subtraction. All switches in the same stage have the same masks, therefore we
can associate the entire stage with a single stage mask, shown above each stage in the figure.

In this example, The MIN uses the singleton mask set: {m; = 001, my = 010, m3 = 100}.
This mask set forms a basis of the 3-dimensional space, therefore all vectors in this space
can be represented as a linear combination of the masks. In other words, this mask set spans
the 3-dimensional vector space. Consequently a path exists between any pair of nodes. To
route a connection between node A and node B, we decompose the difference between A

and B into a linear combination of the masks.

B—AIXn:Cimi (1)

=1
The switches in stage ¢ go straight if ¢; = 0 and exchange if ¢; # 0.

Shown in the bottom half of Figure 4 is the Bar Diagram [7| representation of the same
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MIN. Each node in the MIN is represented by a horizontal bar in the Bar Diagram and each
switch is represented by a vertical bar. A broken vertical bar in the diagram indicates a
faulty switch in the MIN. Connectivity exists between two nodes if and only if a path can
be found between these two nodes. Such a path must use at most one switch at each stage
and must not change direction inside the MIN, as shown in the figure. Tolerating f switch

faults in the MIN is equivalent to tolerating f broken vertical bars in the Bar Diagram.

001 010 100

000 000
001

100
101

—— 101

010 >< \— 010
011 p— |0

110 —— 011
111 111

001 010 100
000 000
001 | 001
010 | 010
011 011
100 | 100
101 101
110 | 110

Figure 4: a 3-dimensional Multistage Interconnection Networks using 2 x 2 switches

To tolerate broken vertical bars in the Bar Diagram, we need to find disjoint paths
between any pair of nodes. Two paths are disjoint in a Bar Diagram if they share no vertical
bars. To tolerate f broken vertical bars, it is sufficient and necessary to find f + 1 mutually
disjoint paths between all pairs of nodes. It is sufficient because f broken vertical bars can
at most break f disjoint paths, and there is at least one paths left between all pair of nodes.

It is necessary because if only f disjoint paths can be found between some pair, f broken
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vertical bars can break all of them, and destroy the connectivity between that pair.

In the MIN shown in Figure 4, one and only one path can be found between all pair of
nodes. Therefore it can not tolerate switch faults. To make this MIN single-fault-tolerant,
redundant stages need to be added. This problem of tolerating a single switch fault with
extra stages has been investigated in the past[2][4]. One solution is to add a stage with an
all-1 mask, also known as a “wildcard” stage. The fault-tolerant MIN with the “wildcard”

configuration is shown in Figure 5.

001 010 100 111
000 000
010 f — 001
011 110
100 — 010
110 011
111 — 100

001 010 100 111
000 I 000
001 001
010 | 010
011 011
100 | 100
101 101
110 | 110
111

Figure 5: 3-dimensional 1-extra-stage “wildcard” Multistage Interconnection Network

The “wildcard” MIN tolerates one switch fault because we can simply discard the entire
stage where the switch fault occurs, and the masks of the remaining three stages still span
the space. Therefore the difference between any pair of nodes can still be decomposed into a
linear combination of the remaining three masks and a correct routing is therefore available.
Two disjoint paths between 000 and 110 are outlined in the figure. This scheme in essense
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tolerates a stage fault, i.e., it tolerates any number of switch faults if all of them occur in
the same stage. The “wildcard” solution does not however tolerate two switch faults since
they can occur in different stages.

The “wildcard” construction is not a unique solution to the single-fault-tolerant problem.
There exist other solutions that tolerate a single switch fault, which do not necessarily
tolerate a single stage fault. We present one of these solutions in Figure 6. This is also a
1-extra-stage construction and the extra stage is masked 001. This MIN does not tolerate a
stage fault, since erasing stage 010 or stage 100, the masks of the three remaining stages do
not span the space. But this MIN can indeed tolerate a single switch fault. The two disjoint

paths between 000 and 110 are outlined in the figure as an example.

001 010 100 001
000 000
) X B
010 \ \ 010
011 ——— 011
100 — 100
IOI >< \ IOI
110 110
111 111

001 010 100 001
000 I | 000
001 001
010 010
011 | | 011
100 | | 100
101 101

110
111

110
111 |

Figure 6: 3-dimensional 1-extra-stage Cyclic Multistage Interconnection Network

The problem of tolerating stage faults have been investigated in previous research works
[4] [13]. Bruck and Ho correlated the problem of fault-tolerant MIN to the results in the
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field of Error-Correcting Codes, and proved that a MIN constructed according to a (n, k,
d) code can tolerate d-1 switch faults, as well as stage faults[4]. It showed that a fault-
tolerant MIN constructed according to a MDS code uses optimum number of extra stages to
tolerate f stage faults. Despite extensive research in the field[5] [6] [8] [10] [11] [14], optimal
constructions to tolerate an arbitrary f switch faults, however, have not been proposed.

The two examples we showed led us to consider the following questions: Are the existing
solutions the best we can do in tolerating switch faults? If not, what is? Furthermore, if
we are able to find optimal constructions, are those constructions the only solutions? The
answers to all of these questions are the main contributions of this paper.

In Section 2, we propose a construction of fault-tolerant Multistage Interconnection Net-
works that uses an optimal number of extra stages to tolerate f switch faults. In that section,
we first prove that to tolerate f switch faults, at least f extra stages must be added. None of
the previously proposed constructions, however, meets this lower bound. We then propose a
new construction that meets this lower bound. A reconfiguration algorithm is also given in
that section. In Section 3, we generalize the construction proposed in Section 2 and prove a
necessary and sufficient condition for MINs to tolerate an arbitrary number of switch faults
with an optimal number of extra stages. While we focus on the MINs that use 2 x 2 switches
under the point to point connection model in Section 2 and Section 3, we extend the results
to the Mulstistage Interconnection Networks that use t x t switches and MINs under the

broadcast model in Section 4. In Section 5 we conclude.

2 An Optimal Construction

We first present the following theorem which states the lower bound on the number of extra

stages required to tolerate f switch faults for MINs with ¢ x ¢ switches.

Theorem 1 To tolerate f switch faults in an n-dimensional Multistage Interconnection Net-

work with t X t switches, at least f extra stages must be added.
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Proof: (by contradiction) Suppose only f —1 extra stages were added. If all the switches
in the first f stages that are connected to node 0 failed, only n — 1 stages can be used to
connect node 0 to the other " — 1 nodes. But it is not possible, since with n — 1 stages, at

most ¢! nodes can be reached. O

None of the previously proposed MINs meets this lower bound for arbitrary f. For

example, the

wildcard” solution only works for f = 1 [2]; The number of switch faults that
the Error-Correcting Code solutions tolerate is in general less than the redundant stages
required [4].

Now we present a new construction of MINs with 2 x 2 switches that meets this lower

bound.

Definition 1 (Cyclic Multistage Interconnection Networks)
A (n, k) Cyclic Multistage Interconnection Network is an n-dimensional k-extra-stage MIN
which has the singleton basis of the n-dimensional space as the masks of its first n stages

and m; , =m; for 1 <i<k.

A (3, 4) cyclic Multistage Interconnection Network is illustrated in Figure 7. The fol-
lowing theorem implies that this MIN tolerates 4 faults, therefore meets the lower bound
stated above. The five mutually disjoint paths can be found between any pair of nodes. In

the figure, the paths between node 000 and node 110 are outlined.

Theorem 2 A (n, f) Cyclic Multistage Interconnection Network with 2x 2 switches tolerates

f switch faults.

Proof: We will prove the theorem by explicitly showing that between any two nodes, A
and B, there are f 4+ 1 mutually disjoint paths in the Bar Diagram. Please note that in this
proof, the nodes A and B and the masks {m;,my,...,m,. s} are n-bit binary vectors and
all arithmatic operations between them are bitwise mod-2. We construct the f + 1 paths as

follows:



000
001
010
011
100
101
110
111

001 010 100 001 010 100 001

Figure 7: 3-dimensional 4-extra-stage Cyclic Multistage Interconnection Network

For path i, 1 < f, the switches at stage ¢ always exchange, while stages ¢4 1 through i+n
are used to perform a regular routing. Since every n consecutive masks span the space, a
correct routing from A to B is always achievable. The switches in all other stages go straight.
The path f + 1 is constructed by going straight in stages 1 through f and regular routing
using stages f + 1 through n + f. Figure 8 illustrates this construction.

stages

paths 1 2 i+l n n+l £ f+l i+n n+f
T T T T T
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X indicates switches in that stage always go across

< > indicates regular routing using the n consecutive stages

Figure 8: Construction of f + 1 disjoint paths
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We will show that these paths are mutually disjoint from each other by proving that path

i, 1 < f 41, is disjoint from path j, 7 < i¢. We consider three cases:

For j < i — n, there are no common stages in which the two paths use the switches.

Therefore path 7 and path j are disjoint.

For j = 1 —n, the two paths share stage ¢. By the construction, path j exchanges at stage
j while path i goes straight. The nodes on the two path are different at bit (j mod n) until
stage 7. The only case for the two paths to use the same switch is when path j exchanges
from A —m; to A while path ¢ exchanges from A to A —m;. But it is not possible since path

j must reach B after ith stage and A # B. Therefore path 7 and path j are disjoint.

For : —n < j < 1, the two paths are disjoint till stage j + n since path j exchanges at
stage j while path ¢ goes straight and they differ at bit (j mod n). After stage j + f they
must agree on bit (j mod n), since they must reach the same destination B. Therefore only
one of the two paths will use the switch at stage 7 + f. Consequently path ¢ and path j are
disjoint.

Hence the f + 1 paths from A to B are mutually disjoint and a (n, f) Cyclic Multistage

Interconnection Networks tolerates f switch faults. O

Theorem 2 shows that the performance of Cyclic Multistage Interconnection Networks
meets the lower bound stated in Theorem 1. In other words, this construction is optimal in

the number of extra stages used to tolerate an arbitrary number of switch faults.

The proof for Theorem 2 explicitly gives the construction of f + 1 disjoint paths between
any two nodes. This provides a straight-forward way to perform the reconfiguration for
Cyclic Multistage Interconnection Networks. When a fault occurs, a node only needs to
compare the faulty switch with all the switches in the current routing paths. If a match is
found, that path is discarded and the next path according to the construction in the proof
will be adopted. Since a routing path uses at most n + 1 switches and there are N — 1
destinations to reach from a node, the reconfiguration complexity for a node is O(NlogN).
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3 A Necessary and Sufficient Condition for Optimal
Fault-Tolerance

In Section 2 we introduced the Cyclic Multistage Interconnection Network that demonstrates
optimal performance in tolerating any number of switch faults. The construction, however,
is not unique. In this section we extend the results to a more general class of fault-tolerant
Multistage Interconnection Networks, named Generalized Cyclic Multistage Interconnection

Networks.

Definition 2 (The Generalized Cyclic Multistage Interconnection Network)
An (n,k) Generalized Cyclic Multistage Interconnection Network is an n-dimensional k-
ertra-stage Multistage Interconnection Network which has the property that the masks of

every n consecutive stages span the n-dimensional vector space.

Figure 9 illustrates a (3, 4) generalized cyclic MIN using a non-singleton and non-
repetitive mask set. The 5 disjoint paths between node 000 and node 110 are shown in

the illustration.

001 010 100 111 010 011 110
000 I 000
001 001
010 ‘ 010
011 011
100 100
101 I I I 101
110 ‘ 110
111 111

Figure 9: 3-dimensional 4-extra-stage Generalized Cyclic Multistage Interconnection Net-

work

Clearly, the Cyclic MINs is a subclass of the Generalized Cyclic MINs. We will prove that
the Generalized Cyclic MINs have the same fault-tolerance capabilities as the Cyclic MINs,
12



namely, they tolerate f faults with f extra stages. In addition, it is the necessary condition for

a Multistage Interconnection Networks to demonstrate the optimal fault-tolerance capability.

Theorem 3 An n-dimensional f-extra-stage Multistage Interconnection Network with 2 x 2
switches tolerates f switch faults if and only if the masks of every n consecutive stages span

the n-dimensional vector space.

Proof: We prove the forward direction of the theorem by contradiction. Suppose an
n-dimensional f-extra-stage Multistage Interconnection Network does not have the property
that the masks of any n consecutive stages span the space. There exists n consecutive stages
in the MIN whose masks do not span the n dimensional space. When the faults happen in
the switches of the remaining f stages at both sides of these n non-spanning stages, and all
the faults before the n stages happen at switches connected to node A, and all the faults
after the n stages happen at switches connected to node B. The MIN must perform all of
the routing in the n nonspanning stages. There exists a B such that a path does not exist
between A and B, since the masks of the n stages do not span the n-dimensional vector
space while B can take 2" — 1 possible values.

The proof of the backward direction is similar to the proof of Theorem 2. The construction
of the f + 1 paths from node A to node B are the same. We need to show that these paths
are all mutually disjoint from each other. Again we prove that path ¢, 7 < f + 1, is disjoint
from path j, j < i by considering three cases:

For j < i—n, there are no common stages that the two paths use the switches. Therefore
path ¢ and path j are disjoint.

For j = ¢ — n, the two paths share stage . We know that path j exchanges at stage j,
while path ¢ goes straight. Since any n consecutive masks are linearly independent, m; can
not be represented by a linear combination of m;,; through m,_;. Therefore the two paths
are disjoint till stage 7, and the only way that the two paths are not disjoint is that at stage
i, path j exchanges from A — m; to A while path ¢ exchanges from A to A — m,;. But it is
not possible since path j must reach B after ith stage and A # B. Therefore path ¢ and
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path j are disjoint.

For i —n < j < 1, since path j exchanges at stage j while path ¢ goes straight, the two
paths are disjoint till stage j+n with the same reasoning as the previous case. At stage j+n,
only one of the two paths exchanges since they must reach the same destination. Therefore

path ¢ and path j are disjoint. O

4 Extensions

In this section, we will make two extensions to the results presented in the previous sections.
First, instead of looking at Multistage Interconnection Networks with 2 x 2 Switching Ele-
ments, we will show that the theorems presented in the previous sections also apply to the
MINs consisting of ¢ x t Switching Elements. Following that, we will show that the results
are also valid if we are to guarantee the broadcast capabilities of the network.

Let us look at a 9-node 3-extra stage (2, 3) generalized cyclic Multistage Interconnection
Network consisting of 3 x 3 switches. Figure 10 shows the 4 mutually disjoint paths from

node 00 to node 20.

Theorem 4 An n-dimensional f-extra-stage Multistage Interconnection Network with t X t
switches tolerates f switch faults if and only if the masks of every n consecutive stages span

the n-dimensional vector space.

Proof: The proof of the forward direction is the same as the proof for the 2 x 2 case.
To prove the backward direction, we similarly construct f + 1 paths from node A to node B
and prove that they are disjoint. The difference lies in the construction of the first f paths.
The reason for the modification is that a 2 x 2 switch can only go straight or exchange, while

a t x t switch has t ways of switching. We say a switch is in mode s if for that switch:

output = input + s X mask 0<s<t—-1 (2)
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Figure 10: Extension to the MINs with 3x3 Switching Elements
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In this proof all vector operations are mod-t. In the construction of path ¢, ¢ < f,
we decompose the n-dimensional vector B — A into a linear combinations of the masks

{ms, mig1, ..., Miyn_1}:

i+n—1
B-—A= ) ¢m (3)
j=i
Since {m;, m; 1, ...,M;1n_1} Span the space, such a decomposition is always possible. If
the coefficient ¢; # 0, the switches in stage ¢ is forced to be in mode ¢;, i.e., output =
input + ¢; X my; If ¢; = 0, we only need to make sure that the switches in stage ¢ exchange
to some output, as long as they do not go straight. The path ¢ will reach the destination B
by a regular routing in the next n stages, i.e., stages ¢ + 1 through ¢ + n. The construction
of path f+ 1 and the proof that these f + 1 paths are disjoint to each other are the same as
the proof for the 2 x 2 case. O

001 010 100 001 010 100 001

Figure 11: Survived broadcast tree in the presence of 4 faults in a (3,4) Cyclic MIN

We also extend the results to the broadcast connectivity. In the previous sections, we
have shown that in an f-extra-stage Cyclic MIN, there exist f 4+ 1 disjoint paths between
any pair of nodes. It follows that in the presense of f faults, at least 1 path remains intact
between any node A and every other nodes. The broadcast from node A is then achieved by
picking a survived path from each of these pairs, and construct a broadcast tree from them.
Therefore an f-extra-stage Cyclic Multistage Interconnection Network guarantees broadcast
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connectivity in the presense of f switch faults. As an example, Figure 11 shows the survived

broadcast tree in the presence of f switch faults.

5 Conclusion

In this paper we studied the fault-tolerance capabilities of Multistage Interconnection Net-
works. We constructed the first known extra-stage fault-tolerant Multistage Interconnection
Network that tolerates an arbitrary number of switch faults with a minimal number of extra
stages. In addition, we proved the general condition that is both sufficient and necessary to

achieve this optimal fault-tolerance.
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