Efficient Digital to Analog Encoding *
Michael Gibson Jehoshua Bruck

California Institute of Technology
Pasadena, CA 91125
gibson@cns.caltech.edu, bruck@paradise.caltech.edu

Abstract

An important issue in analog circuit design is the problem of digital to analog conversion,
namely, the encoding of Boolean variables into a single analog value which contains enough
information to reconstruct the values of the Boolean variables. A natural question is: What
1is the complexity of implementing the digital to analog encoding function? That question was
recently answered in [5], where matching lower and upper bounds on the size of the circuit for
the encoding function were proven. In particular, it was proven that [3”2_1] 2-input arithmetic
gates are necessary and sufficient for implementing the encoding function of n Boolean variables.
However, the proof of the upper bound is not constructive.

In this paper, we present an explicit construction of a digital to analog encoder that is
optimal in the number of 2-input arithmetic gates. In addition, we present an efficient analog
to digital decoding algorithm. Namely, given the encoded analog value, our decoding algorithm
reconstructs the original Boolean values. Our construction is suboptimal in that it uses constants
of maximum size nlogn bits while the non-constructive proof uses constants of maximum size
2n + [log n] bits.

1 Introduction

Analog elements have recently been advanced as a way to compute Boolean functions with lower
circuit complexity than traditional digital approaches. For example, analog VLSI has been used for
hardware implementation of neural networks[1, 2]. With all the interest in analog computation, it
is natural to consider the pros and cons of analog circuits at a theoretical level[3, 4].

The computing power of analog elements depends on the basis used. In this paper, the basis
+, —, x will be considered. Circuits using this basis are called arithmetic circuits.

All Boolean functions, implemented arithmetically, require size at most O(2"/2) [3]. For most
Boolean functions, this is a lower bound as well. The construction which achieves this bound,
requires that 2"/2 Boolean functions of n/2 variables be encoded into real numbers. More formally,

Definition 1 (Encoding Function)
An encoding function is an injective (one-to-one) mapping f : {0,1}" — R.

In this paper we consider fan-in 2 arithmetic circuits, hence, the encoding problem is:

*Supported in part by a National Science Foundation Graduate Research Fellowship, by NSF Young Investigator
Award CCR-9457811 and by a Sloan Research Fellowship.

Definition 2 (Encoding problem)

Let the basis (+,—, X) be given, where each operation has fan-in 2. Assuming that real-valued
constants are available for free, what is the minimum number of operations necessary to create an
encoding function?

Example 1 (Simple Case)

One simple encoding function is 22:01 2iz; 1. This can be implemented with (n — 1) 2-input
multiplications and (n — 1) 2-input additions; its size is (2n — 2). Note that this can be done with
all constants of 2, i.e. the size of the constants does not depend on n.

Wegener [5] showed that the lower bound for the size of fan-in 2, fan-out 1 arithmetic circuit
implementing the encoding function is [%] He also proved the existence of a circuit which
achieves that bound and has constants of size 22+ [logn],

The main contribution in this paper is an explicit construction, with constants of size
which achieves Wegener’s lower bound on the number of operations needed in digital to analog
encoding. In addition, we present an efficient analog to digital decoding algorithm. Namely, given
the encoded analog value, our decoding algorithm reconstructs the original Boolean values.

The rest of the paper is organized as follows: in Section 2 the construction and decoding al-
gorithm, as well as examples of each, are presented. In Section 3, the correctness of the decoding
algorithm is proved; this establishes that the construction produces an encoding function. In Sec-
tion 4, the optimality of our construction as well as an upper bound on the constants size are
proved.

1
on ogn’

2 Encoding Function and Decoding Algorithm

In this section, we will introduce our construction for an encoding function, introduce the decoding
algorithm, and show examples of each. We start off with a bit of notation. For the rest of the paper,
let 2™ denote some arbitrary element of {0,1}". The construction is as follows.

Construction 1 (The Encoding Function)
Let fy : ({0,1}",R) — R be defined recursively by

2 ifn=0
fa(@™,C) =< 1 +2 ifn=1
(fn_g(x"_z, C+ 1)) (Zno1+CO)+ 2z, ifn>2

Let
K,=f(1"0)+1

Then f, (-, K,) is an encoding function. See Figure 1 for a schematic representation of the inductive
case.

Example 2 (An Encoding Function)
For example, consider the case n = 5.

fs(2%,0) = ((z1+2)(z2+ (C+1)) +x3) (24 + C) + 25
Ks = f5(15a0)+1
= [(A+2)Q1+1)+1)(1+0)+1]+1
=9

Tn—1 C

Figure 1: Schematic representation of the inductive case of Construction 1.

Thus,

f5(.’E5,9) = ((.’El + 2)(272 + 10) + 2173) (.’E4 + 9) + 5
is an encoding function. Its 32 values appear in Table 1. Notice that the 32 values of f5(z°,9) are
different.

To show that f,(-, K,,) is an encoding function, it suffices to find a decoding algorithm. Formally,
a function f is injective if and only if it has a left inverse, i.e. there is a function f~! : ® — {0,1}"
such that
vz™ € {0,1}", (f ' o f)(z") = 2"

The following algorithm is a left inverse for f,(-, K,,); the proof appears in Section 3.

Algorithm 1 (Decoding Algorithm)

7 1) =0
i@ +2) = (z1+2)-2
If n > 2, then
1.
2 = {0 if fo(z",C) mod C €{0,1}
n—1 — .
1 otherwise
2.

Zp = fn(2",C) mod (z,—1 + C)

3. Apply this algorithm recursively with

" C)—x
e n—2 1 — fn(w 9 n
fo2(z"23,C+1) T 10

to get z1,...,Zp—2.

2122737425 | f5(2°,9) | f5 mod 9 2122737425 | f5(2°,9) | f5 mod 9
00000 180 0 10000 270 0
00001 181 1 10001 271 1
00010 200 2 10010 300 3
00011 201 3 10011 301 4
00100 189 0 10100 279 0
00101 190 1 10101 280 1
00110 210 3 10110 310 4
00111 211 4 10111 311 5
01000 198 0 11000 297 0
01001 199 1 11001 298 1
01010 220 4 11010 330 6
01011 221 5 11011 331 7
01100 207 0 11100 306 0
01101 208 1 11101 307 1
01110 230 5 11110 340 7
01111 231 6 11111 341 8

Table 1: Values for the function in Example 2
Next, we give examples of the decoding algorithm in action. For the first step in the decoding
algorithm, see Table 1.

Example 3 (Decoding)
Let us consider decoding the 6th entry in the table, namely

f5(07 Oa 1a07 179) =190

We have 190 mod 9 = 1. Thus z4 = 0 and x5 = 1. We apply the algorithm recursively with

fa(a®,10) = 191
= 21
We have 21 mod 10 = 1. Thus 2z = 0 and z3 = 1. Again, we apply the algorithm recursively, this
time with L 011
fi(zh,11) = ==
= 2

This is a base case, so z1 =2 —2 = 0.

Example 4 (More decoding)
Let us consider another example, the 28th entry in the table.

f5(17 1,0,1,1, 9) =331
We note that 331 mod 9 = 7. Thus z4 = 1. It follows that

zs = 331mod(1+9)
= 1

We apply the algorithm recursively with

f2(@?,10) = g

We find that 33 mod 10 = 3. Thus z = 1.

33 mod (1 + 10)
=0

x3

Again, we apply the algorithm recursively, this time with

filet1n) = B0
= 3

This is a base case, so z1 =3 —2 = 1.

3 Correctness of Decoding Algorithm

In this section, we prove the correctness of the decoding algorithm (Algorithm 1). The basic idea is
to use f,(z",C) mod C to recover the values of z,,_; and z,, then apply the algorithm recursively.
Provided that C is “large enough,” we will show that

fn(z™,C)mod C € {0,1} & ZTp—1 =0 (1)

This will allow us to recover the required values and apply the algorithm recursively. First, we prove
a technical lemma, which is necessary for our proof of Equation 1.

Lemma 3 (Bounds on f mod C)
For all C > K,, and "2 € {0,1}"2, the following holds

fao—2(@" 3 1)mod C € {2...C -2}

Proof. We shall consider the case where n is odd. The case for n even is similar. For n > 3,
fa—2(@"2,0+1) = (((z1+2)(@2+C+%532)+23)...(2p-3+C+1)) +Tn2

= terms without C + terms with C

= (((:cl +2)(z2 + ”T_?’) + :[:3) coi(®p—s + 1)) + Zp_o + terms with C

= fa_2(z"2,1) + terms with C

The terms with C' disappear modulo C, so
fnoa(@"2,C+1)modC = fo_2(z" 2 1) modC

By the monotonicity of f,

fn—2(0n_2, 1) S fn—Q(xn_27 1) S fn—2(1n_2a 1)

Thus, we have

fn—2($n_2a 1) S fn—2(]—n_2a 1)
= K, 2-1
< C-2

ot

As for the lower bound,
fn—2(xn_2a 1) > fn—2(0n_27 1)
> 2

Hence,
2 < fao(@"3C+1)modC < C-2

O

Theorem 4 (Correctness of decoding algorithm)
The decoding algorithm is correct, i.e. given f,(z™,C), it will uniquely and correctly determine z".

Proof. (By induction)
The base cases are trivial.
Ifn>2,

fa(@,C)mod C = (fn—2(z"%,C+1)(zn-1+C)+z,) mod C
= (fa2@"2,C+1)xzpHh1 + zn) mod C

If £,_1 =0, then f,(z",C) mod C =z, € {0,1}

If z,_1 =1, then

fa(@™,C)mod C = (fn_2(z"2,C+1)x1+z,) modC
= fn_2($n—2’ 1) x 1+ xn)

e {2,...,C—-1}

by Lemma 3. Thus Equation 1 holds, i.e.
fa(z™,C)mod C € {0,1} & ZTp_1 =0

Hence the first step of the algorithm correctly determines z,,_1 from f,(z™, C).
Given z,_1, the second step of the algorithm correctly determines z,, from f,(z",C).
Finally,

c+1 > C
> Ky
> Kn—2

So we may apply the algorithm recursively. By the induction hypothesis, the algorithm is able to
decode f,_o(z""2,C + 1) correctly. O

4 Complexity Issues

In this section, we show that our construction achieves Wegener’s lower bound on the number of
operations of an encoding function[5]. We then prove a bound on the size of the constants involved,
which is suboptimal in that Wegener proved (non-constructively) the existence of smaller constants
creating an encoding function.

Theorem 5 (Number of operations)
This construction produces a formula with an optimal number of operations.

Proof (By induction)

Let |f,| denote the number of arithmetic operations in f,. Then

[fol = 0
_ [3(0)—1"
2
il =1
3(1)-1
2]
For n > 2,
[fnl = |fn-2[+3
3(n—22)—1—‘ +3
_ 3n—26—1_|_3'|
— M]
2

Which matches Wegener’s lower bound[5]. O

Theorem 6 (Constant Size)
For n > 2, the largest constant in the above construction is of size < 271987,

Proof. Again, we shall consider the case where n is odd. The even case is similar.

Constypae = Kp+ "T_?’
[((T+2)(1+253) +1) ... (1+1)+1) (14+0) + 1+ 1] + 252

nn

2nlogn O

Al

Wegener [5] showed that there exist constants of maximum size 2278”1 which produce an
encoding function; hence this construction is suboptimal.

5 Conclusions

We have extended Wegener’s result on the optimal size of a formula which solves the encoding
problem by presenting an explicit construction. Further, we have devised an algorithm to decode
the real numbers that our function produces.

Our constants are larger than one might hope, based on Wegener’s [5] existence proof. One
interesting extension of this work would be to find a different construction which decreases the size
of the constants involved. We note that the encoding function in Example 1, although it has more
operations than the function in Construction 1, has constants which do not depend on the number
of variables n. It is not clear if there is a formula with an optimal number of gates which uses a set
of constants independent of n.

The original interest in encoding is motivated by the construction of formulas for arbitrary
Boolean functions with size of 0(2"/ 2) [3]. In that paper, the encoding is done up front, and only
the final output, the real number, is used. The complexity in that case comes from the decoding. In
this paper, we’ve given a decoding algorithm, but no arithmetic circuit to implement it. A possible
area of further research is the trade-off between encoding complexity and decoding complexity for a
given basis set.

Finally, in this paper only formulas with fan-in 2 were considered. A more general analysis would
include circuit complexity (i.e. fan-out > 1) and would include bounded fan-in greater than 2.

References

[1] B. E. Boser, E. Sickinger, J. Bromley, Y. L. Cun and L. D. Jackel, An Analog Neural Network
Processor with Programmable Topology, IEEE Journal of Solid-State Circuits, Vol. 26, No. 12,
pp. 2017-2025, Dec. 1991.

[2] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, 1989.

[3] G. Turdn and F. Vatan, On the Computation of Boolean Functions by Analog Circuits of
Bounded Fan-in (Extended Abstract), Proceedings of the 35th Annual Symposium on the
Foundations of Computer Science (FOCS), pp.553-564, 1994.

[4] A. Vergis, K. Steiglitz and B. Dickinson, The Complexity of Analog Computation, Mathematics
and Computers in Simulation, 28, pp.91-113, 1986.

[6] I. Wegener, On the Complexity of Encoding in Analog Circuits, to appear in Information
Processing Letters.

