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Abstract

Parallel computing systems provide hardware redundancy that helps to achieve low cost fault-
tolerance. Fault-tolerance is achieved, in those systems, by duplicating the task into more than one
processor, and comparing the states of the processors at checkpoints. Many schemes that achieve
fault tolerance exist, and most of them use checkpointing to reduce the time spent retrying a task.
Performance evaluation for most of the schemes either relies on simulation results, or uses a simplified
fault model.

This paper suggests a novel technique, based on a Markov Reward Model (MRM), for analyzing the
performance of checkpointing schemes for fault-tolerance. We show how this technique can be used to
derive the average execution time of a task and other important parameters related to the performance
of checkpointing schemes. Our analytical results match well the values we obtained using a simulation
program.

We compare the average task completion time and total work of four checkpointing schemes, TMR,
DMR-B-2, DMR-F-1 and RFCS. We show that generally increasing the number of processors reduces
the average completion time, but increases the total work done by the processors. Namely, the TMR
scheme, which uses three processors, is the quickest but does the most work, while the DMR-B-2 scheme,
which uses only two processors, is the slowest of the four schemes but does the least work. However,
in cases where there is a big difference between the time it takes to perform different operations, those
results can change. For example, when we assume that the schemes are implemented on workstations
connected by a LAN and the time to move data between workstations is relatively long, the DMR-B-2

scheme can become quicker than the TMR scheme.
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1 Introduction

Parallel computing systems provide hardware redundancy that helps to achieve low cost fault-
tolerance. Fault-tolerance is achieved, in those systems, by duplicating the task into more than a
single processor, and comparing the states of the processors at checkpoints [9][11]. The usage of
checkpoints reduces the time spent in retrying a task in the presence of failures, and hence reduces
the average completion time of a task [4][15]. Reducing the task completion time is very impor-
tant in many applications like real-time systems with hard deadlines, and transactions systems,
where high availability is required. Examples of systems that use checkpointing for fault recov-
ery are Sequoia [2], Eternity from Tolerant Transactions Systems [12] and NonStop from Tandem

Computers [5].

In checkpointing schemes the task is divided into n intervals. At the end of each interval a
checkpoint is added either by the programmer [4] or by the compiler [10]. In the systems considered
here the checkpoints serve two purposes, detecting faults that occurred during the execution of a

task, and reducing the time spent in recovering from faults.

Fault detection is achieved by duplicating the task into two or more processors, and comparing
the states of the processors at the checkpoints. We assume that the probability of two faults

resulting in identical states is very small, hence two matching states indicate a correct execution.

By saving the state of the task at each checkpoint, we avoid the need to restart the task after
each fault. Instead the task can be rolled back to the last correct checkpoint and execution resumed

from there, shortening fault recovery.

Implementation of a system which uses checkpointing can be done in various ways. Figure 1
illustrates a logical view of the system architecture. The system consists of a set of processing ele-
ments (PEs). Each PE has a processor and private memory, either its own memory in a distributed
memory system or part of a shared memory system. All the PEs in the system are identical. The
system has a stable storage, which can be accessed by all processing elements, that is used to
store the states of the PEs at checkpoints. A special processor called the Checkpoint Processor is
used to coordinate the execution of tasks on the PEs. The Checkpoint Processor assigns tasks to
processors, it detects failures in the PEs by comparing the states of the processors at checkpoints,

and coordinates the recovery according to the recovery scheme used.

Figure 1 illustrates an example for the architecture of the system, among many possible vari-
ations. For example, the Checkpoint Processor can be implemented as part of the processing
elements or as a separate processor. The Stable Storage can be part of a shared memory, a sepa-

rate part of a distributed memory, or stored in offline memory (disk). Different implementations of



the architecture provide different execution times for operations in the fault recovery schemes and

affect the performance.

The execution of a task is done in steps. Each step consists of a series of operations. The first
operation in each step is executing one interval of the task by all the processors that are assigned
to it. Note that it is not necessary that all the processors execute the same interval at the same

step.

After the execution of each interval is done, the Checkpoint Processor performs those operations
necessary to achieve fault detection and recovery. The first is to store the states of the processors
at the checkpoint in the stable storage, and to compare those states. Based on the result of the
comparison and the scheme used, the Checkpoint Processor decides what further action should
take place. If no fault occurred then the execution of the task is resumed with the next interval in
the next step. Otherwise the Checkpoint processor performs operations to recover from the fault.
Table 1 presents a list of possible operations that are used in this paper, and the time it takes
to perform each of them. Figure 2 shows the time notation for those operations, that is used in

examples throughout the paper.

Agrawal [1] describes a fault tolerance scheme, called RAFT (Recursive Algorithm for Fault
Tolerance), which achieves fault tolerance by duplicating the computation of a task on two pro-
cessors. If the results of the two executions do not match, the task is executed again in another
processor until a pair of processors produces identical results. The RAFT scheme does not use

checkpoints, and every time a fault is detected the task has to be started from its beginning.

Later schemes use checkpointing to avoid re-execution of an entire task. At each checkpoint the
state of the task is stored into a stable memory. If a fault is detected and rollback is needed it can

be done to the last stored checkpoint, not to the beginning of the task.

PE PE PE PE
Mem Mem Mem Mem
O0O0
Proc. Proc. Proc. Proc.
Stable Checkpoint
Storage Processor

Figure 1: Logical system model



Operation Time

Execute one task interval tr
Store and compare checkpoint states tek
Roll back to last verified checkpoint t,

Copy state from one processor to another lep

Load spare processor with task and start it | ¢4

Table 1: List of possible operations

tck tr tcp tld
Compare Rollback Copy Load spare
checkpoints checkpoint PE

X Fault

—— Useful computation Time step§

J

Figure 2: Time notation



Recently [9] and [11] proposed schemes that try to avoid rollback in the presence of a single fault
by using spare processors to verify the state at the end of the last checkpoint, while the processors

assigned to the task look ahead, beyond that checkpoint.

Performance analysis is very important when trying to evaluate and compare different schemes,
or check if a scheme achieves its goals in a certain system. Most authors rely on simulations for
performance evaluation [11], or use a simplified fault model [9][11]. The use of simulation leads to
long and time consuming evaluation, and does not allow examination of many cases. The simplified

fault model provides only approximate results.

In this paper we describe an analysis technique for studying the performance of checkpointing
schemes for fault-tolerance. The technique provides means to evaluate important parameters in the
performance of a scheme. It provides a way to compare various schemes and select optimal values

for some parameters of the scheme, like the number of checkpoints [18].

The analysis of a scheme is based on the analysis of a discrete time Markov Reward Model
(MRM) [13]. The analysis is done in three steps. In the first step the analyzed scheme is modeled as
a state-machine. The transition edges of the state-machine are assigned with values that correspond
to the properties that need to be evaluated, like the useful work done by the transition, the time to
execute the transition etc. In the second step the edges of the state-machine are assigned transition
probabilities according to the events that cause the transition and the fault model used. In the last
step the Markov chain, created by the first two steps, is analyzed, and values for the properties of

interest are derived.

Markov chains can be analyzed using transient analysis or steady-state analysis. The transient
analysis is more accurate, but it is also more complicated. In this paper we concentrate on steady-
state analysis, which is much simpler. We show, with simulation results, that the values achieved

using steady-state analysis are close enough to the real values.

The proposed analysis technique is used to evaluate the average execution time and the CDF of
the execution time for four checkpointing schemes, Triple Modular Redundant with checkpointing
(TMR) [9], Double Modular Redundant with backward recovery and two recovery processors (DMR-
B-2) [9], Double Modular Redundant with forward recovery and one recovery processor (DMR-F-
1) [9], and Roll-Forward Checkpointing Scheme (RFCS) [11]. The results of the analysis are used
to compare between the schemes. We evaluate two quantities, the average completion time of a
task and the total work done to complete a task. The completion time of a task is defined as
the total elapsed time from the beginning of the execution of the task, until the last checkpoint
is compared correctly. This parameter is important in real-time systems, where tasks face hard
deadlines. We show that the number of processors used to implement the scheme has a major

effect on the average completion time, while the complexity of the scheme has only a minor effect.



Out of the four schemes examined in this paper, the TMR scheme, which uses three processors
and a simple recovery technique, is the quickest. The DMR-F-1 and RFCS schemes, which use two
processors during normal execution and add spare processors during fault recovery, are slower than

TMR but quicker than the DMR-B-2 scheme, that always uses two processors.

The total work to complete a task depends on not only the time to complete the task but also
the number of processors used. It is defined as the sum of the time each of the processors is used
by the scheme. This parameter is important in transactions systems, where high availability is
important. In these types of systems reducing the total work to complete a task means increasing
the total throughput of the system. We show that schemes with low completion time are not work
efficient, and that the lowest work is done using schemes that use a small number of processors,
and have higher completion time. The total work results of the four schemes examined here were
the reverse of the completion time results. The DMR-B-2 scheme has the lowest total work, while
the TMR scheme has the highest total work.

There are some cases where a big difference in the time it takes to perform various operations
can cause the schemes to behave differently than described above. Those cases can still be analyzed
with the technique described in this paper. For example, when workstations connected by a LAN
are used to implement the schemes, operations that involve more than one workstation, and need
the LAN, take longer time to execute than operations that can be done locally. In this case the
DMR-B-2 scheme that uses the LAN only lightly is quicker than the TMR scheme.

The rest of the paper is organized as follows. Section 2 describes the analysis technique, using
Double Modular Redundant scheme with backward recovery and a single recovery processor (DMR-
B-1) [9] as an example. In Section 3 the four schemes are described and analyzed. The analysis
results are used to compare the average execution time and the total work of the schemes in

Section 4. Section 5 concludes the paper.

2 Analysis Technique

The analysis of the schemes is based on the analysis of a discrete time Markov Reward Model
(MRM) [13]. In a Markov Reward Model each state of the Markov Chain has a reward level
associated with it. The properties of the reward of the Markov chain are used to evaluate the
measures of interest. In this paper we use a Markov Reward Model which is slightly different from
the one used in [13]. In the model used here the rewards are assigned to the transitions of the

Markov chain, not to the states.

Markov Reward Models are often used in evaluating the performance of computing systems.
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Figure 3: Example of execution with the DMR-B-1 scheme

Smith and Trivedi [13] describe the MRM and give examples of its use in evaluating reliability
and performance of parallel computer, task completion time in faulty systems and properties of
queueing systems. Others like [3], [6], [14], use MRM to evaluate various aspects of computer

system performance.

The analysis of the schemes is done in three steps, building the extended state-machine of the
scheme, assigning probabilities to the transitions of the machine according to the fault models, and
solving the Markov chain created by the the first two steps to get the desired analysis. Next we

describe the three steps in more detail, using as an example the DMR-B-1 scheme [9].

In the DMR-B-1 scheme the task is executed by two processors in parallel. At the end of each
interval the states of both processors (or a signature of them) are compared. If they match then
a correct execution is assumed, and the execution of the next interval starts. In case the states do
not match a new processor executes the interval and its state is compared to all the states of the

previous executions of the interval, until two matching states are found.

Figure 3 gives an example of execution of a task with the DMR-B-1 scheme. In the first step both
processors that are assigned to the task execute the interval without faults, hence the comparison
at the end of the interval succeeds, and the next interval is executed in the next step. During that
step a fault occurred in one of the processors, and this causes the Checkpoint processor to start a
third processor in the third step. This processor executes the same interval (j41). After it finishes,
its state matches the state of processor A, hence the interval is verified, and normal execution can
resume. In the forth step both processors have faults, and the spare processor has to produce two
correct executions before fault recovery is achieved, and normal execution resumed. We assume
that at each step a new spare processor is used, in order to avoid a match between two faulty states
that were caused by the same permanent fault. Because of that a processor has to be loaded every

step during fault recovery.



2.1 Building The State-Machine

The first step in analyzing a fault recovery scheme is to build the extended state-machine that
describes the operation of the scheme. The extended state-machine describes the behavior of the
scheme in the eyes of external viewer, who can observe the faults that occurred during a step.
Two fault patterns that are not distinguishable in the scheme, but might later cause different
actions, cause transitions to different states in the extended state-machine. For example, when two
processors execute the same interval, and their states do not match at the end, the scheme can
not tell if the fault occurred in one of the processors or in both. The number of faults might affect
the ability of the scheme to recover from the faults, and thus should cause transitions to different

states in the extended state-machine.

Each transition in the state-machine represents one step, and a transition is done at the end of
each step. Because of the way the state-machine is constructed, the transition is determined only

by the last state and the faults that occurred during the last step (Markov property).

Each transition has associated with it a set of properties, called rewards. The rewards are used
to evaluate the measures of interest related to the scheme. In this paper we are interested in the
execution time of the schemes, and use two rewards for that. Other measures, such as the number
of checkpoints stored in the stable storage and the number of processors used, can also be viewed as
rewards and analyzed using the technique described here. The two quantities we use for execution

time analysis are:

v; — The amount of useful work that is done during the transition on Edge ¢. We measure the
useful work as the number of intervals whose checkpoints were matched as a result of the

event that caused the transition along the edge.

t; — The time it takes to complete the step that corresponds to the transition. As defined earlier
a step starts when the processor(s) start to execute an interval, and ends the next time an

interval is ready to be executed.

The time it takes to complete a step is the time to perform all the operations of that step.
Each step includes at least the execution of the interval, denoted as t7, and the comparison of
the states at the end of the interval, denoted as t.;. Some steps may include other operations

that appears in Table 1.

Note that the first step in the analysis depends only on the scheme and is totally independent
of the fault model.

In the DMR-B-1 scheme the operation has two basic modes. The first mode is the normal



operation mode, where two processors are executing the task in parallel. The second mode is the

fault recovery mode, where a single processor tries to find a match to an unverified checkpoint.

The extended state-machine that describes the same scheme has two different fault recovery
states, the first state has no correct execution of the current interval so far, and the second state
has a single correct execution. Figure 4 shows the extended state-machine. State 2 in the machine
is the normal execution state, and States 0 and 1 are the fault recovery states with the respective

number of correct execution.

The execution of the scheme starts at State 2, and if no faults occur it remains there, or in
other words a transition is made via Edge 0. If a mismatch between the states of the processors
is found a transition to a fault recovery state is made. As the external observer knows how many
faults occurred, it knows if it has to move along Edge 2 to State 0 (faults in both processors), or

along Edge 1 to State 1 (one fault only).

Normal execution | Fault recovery

Figure 4: Extended state machine for the DMR-B-1 scheme

In the fault recovery states the recovery processor executes the task again, and every time it fails
it remains in the same state (transition via Edge 3 or 5). When a correct execution is completed a

transition to the next state is made. Table 2 gives the events for each transition edge.

In the example of Figure 3 the execution starts at State 2. In the first step there are no faults
and a transition is made via Edge 0. In the second step there is a single fault which causes a
transition to State 1 via Edge 1. In the next step a recovery is made and transition via Edge 6
takes place. In the forth step there are two faults which cause a transition via Edge 2 to State 0.
In the next step there is one correct execution, hence there is a transition to State 1, and in step 7

the second correct execution is completed, which causes a transition back to State 2.

After the state-machine is built, rewards are assigned to each of its edges. The third and fourth

columns in Table 2 show the values of the two rewards of interest, v; and ;.

In DMR-B-1 there are two transitions that complete the execution of an interval, and hence do



Edge No. Event Interval completion | Time to execute | Transition
(vi) () Probability
0 No faults 1 tr+tog (1—F)?
1 One fault 0 tr +tek + g 2F(1 — F)
2 Two faults 0 tr + ter + tig F?
3 Fault 0 tr + ek + g F
4 No fault 0 tr +tek + g (1—F)
) Fault 0 tr + ek + g F
6 No fault 1 tr +tep + tig (1-F)

Table 2: Transition description for the DMR-B-1 extended state-machine

useful work. The first transition is Edge 0, where no fault occurred during normal execution. The
second one is the transition out of the recovery mode, Edge 6. The value of v; for those two edges

is 1. All other transitions do not do any useful work, and thus their value of v; is 0.

The time to complete any step in the DMR-B-1 scheme includes the time to execute the interval
and compare the checkpoints at the end. We assume that a spare processor is loaded before every
step in the fault recovery mode, and the main processors are loaded when the recovery is completed.
Hence all the edges have execution time of t; + t.x + 114, except Edge 0 that has execution time of
to =15 + tek.

2.2 Creating the Markov Chain

The second step in the analysis is assigning probabilities to each of the transitions in the state-
machine constructed in the first step. Each edge ¢ is assigned a probability p;, which is the proba-

bility that the event that causes the transition via that edge will occur.

The probabilities assigned to the edges are determined by the fault model. In the simplest case
it is assumed that the fault patterns do not change with time, and thus the transition probabilities
are constants. More complex models assume that the fault pattern changes with time, or even
that it is a random process [8]. In this case the probabilities of transitions are functions of time or

random processes.

The probabilities of transition out of a state do not depend on the way this state was reached.
Hence the state-machine with the transition probabilities corresponds to a Markov chain. Together

with the properties of the transitions, or the rewards, described earlier a Markov Reward Model is

10



created. The analysis of this MRM provides results related to the fault recovery scheme.

In the example here we assume that the fault pattern does not change with time, and thus
the transition probabilities are constants. We also assume that the faults in different processors
are independent of each other. This fault model is used in [9] and [11]. In this model F is the
probability that a processor will have a fault while executing an interval. The probabilities of the

transitions using this fault model appear in the fifth column of Table 2.

2.3 Analyzing the Scheme Using the MRM

After constructing the MRM induced by the fault recovery scheme and the fault model, its analysis
provides the required results. This analysis can be done using computerized mathematics tools
such as Mathematica [17].

The first step in solving the MRM is constructing the transition matrix of the Markov chain.
In the transition matrix, called P, each entry p;; is the probability of transition from state ¢ to
state j. If the transitions are not time dependent the Markov chain is called homogeneous and its
transition matrix is constant. Otherwise the Markov Chain is non-homogeneous, and the transition

matrix at time ¢ is denoted by P(t).

There are two ways to analyze a Markov chain, transient analysis and steady-state or limiting
analysis. In the transient analysis we look at the state probabilities at each step, and from those
probabilities get the desired quantities. In limiting analysis we look at the state probabilities in the
limit as ¢ — oo. The limiting analysis is simpler than the transient analysis, but it is less accurate
and does not always exist. A detailed discussion on analysis of Markov chains can be found in [7]
and [16]. We concentrate on the steady-state analysis. Simulation results, given in Section 3, show

that the steady-state results are close enough to the real results.

A discrete time Markov chain has limiting probabilities if it is irreducible, aperiodic and ho-
mogeneous [7]. The limiting, or steady-state probabilities 7 can be found by solving the system of

equations
T = 7P,
Z m = 1.
i
The steady-state probability e; of transition via edge 7, from state u to state v is
€ = Ty * Piy
where p; is the transition probability of the edge. The average reward R for edge reward vector r

11



is

R = Zmei.

We now show how 7, e and R can be used to perform time analysis of a checkpointing scheme

of a task with n intervals.

Average Execution Time

The first thing we can get from the steady-state analysis of the Markov chain is the average number
of intervals completed in a step, or the amount of useful work done during a step. This quantity is

the average reward for the reward v and is given by
V=> ue. (1)

The average number of steps it takes to complete a single interval is

1 1

"= Vo >oiviei @)

The average time it takes to complete a single step is the average reward for the reward vector
t and is given by

T, = Ztiei (3)

From Eqs. (2) and (3) the average time to complete one interval and the whole task of n intervals

are
2 ti€
T, = §-T, == 4
' ° i Vi€ )
2 li€
T, = n-Ty=n=i"""
A nzivm (5)

Probability Distribution of Execution Time

A precise calculation of the probability distribution of the execution time can be done with the
transient analysis of the Markov chain. We give here an approximation to that distribution, based

on the steady-state analysis of the Markov chain.

We approximate the number of steps it takes to complete n intervals as a negative binomial

random variable with parameters V' and n, where V' is the average number of intervals completed

12



in a single step, as given in Eq. (1). Hence the probability of completing the n intervals in k steps
is

k—1

1)V”(1—V)k_” k=nmn+1,...

P,(k) = Pr{n intervals completed in k steps} = (
n —

By approximating the time it takes to complete each step as T, the average time to complete a

step, the probability of completing the task in time less than or equal to kT is

Pr{T < kT,} = Zk: Pa(j).

j=n
Analysis of DMR-B-1

We now apply the results to the DMR-B-1 scheme with the fault model described earlier. The

transition matrix of the scheme is

p3 pa 0 Fo(1-F) 0
P=10 ps ps |=| 0 F (1=F) |
P2 P1 Po F? QF(l—F) (1—F)2

and the steady-state probabilities are

W:{ F2 (2— F)F 1—F}

1+F 14+F 14 F

which leads to the following quantities,

1-F

Vs (6)
14+ F

5 = 1_F’ (7)

4F —3F? 4 I3

Ts = ti+tg+ T F tid, (8)

T (1+ F)(t; + te) + (4F = 3F% + F2)iyy 0

1 — 1 _F ’ ()
14+ F)(1+ntey)+ (4F — 3F% + F3)nty

ro_ UEE) )+ (4F ntia. 10)

3 Schemes Analysis

In this section we describe and analyze four schemes that use parallel processors and checkpointing

to achieve fault tolerance. The four schemes are Triple Modular Redundant with checkpointing

13



(TMR) [9], Double Modular Redundant with backward recovery and two recovery processors (DMR-
B-2) [9], Double Modular Redundant with forward recovery and one recovery processor (DMR-F-
1) [9], and Roll-Forward Checkpointing Scheme (RFCS) [11].

For each of the four schemes a short description of the scheme is given, with an execution
example that uses the time notation of Figure 2. The description of the scheme is followed by the
extended state-machine induced by the scheme with the rewards given to its edges. The state-
machine is used to find the average execution time and the CDF of the execution time, using
steady-state analysis of the Markov Reward Model. The analytical results are then compared with

results measured using a simulation program.

In all the analysis done here the amount of useful computation in the task is 1. The task is
divided into n intervals of length % All time to perform any other operation is given as a fraction
of the task length.

Fault Model

The fault model used in this section assumes that faults are time invariant, i.e., the probabilities
of faults do not change with time. This assumption is necessary for the steady-state analysis done
here. Other fault models, like the one in [8] can be handled using the analysis technique given in

the paper, but transient analysis of the Markov chain is needed.

In the fault model we use in this section the faults in different processors are independent of each
other. The same model is used in [9] and [11]. We assume that faults occurred in each processor
according to Poisson process with rate A, i.e., the probability that a processor will have a fault or

faults while executing interval of length ¢; = % is

F=1—e"n. (11)

Since faults in different processors are independent of each other, the probability of an event is the
product of the probabilities of the sub events in each processor. For example the probability that
a specific processor will not have a fault, while a single fault occur in one of two other processors
is (1—F)-2F(1 - F)=2F(1 - F)%.

3.1 TMR

The simplest scheme described here is the TMR (Triple Modular Redundant) scheme. In this

scheme the task is executed by three PEs, all of them executing the same interval. In this scheme

14
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a fault in a single PE can be recovered without a rollback because two PEs with correct execution

still agree on the checkpoint.

Figure 5 gives an example of execution of some intervals with the TMR scheme. If there are
no faults during the execution of an interval, as in the first step in Figure 5, the next interval is
executed immediately. In the second step there is a single fault in processor €', which is recovered
immediately with the copy of the correct state from A or B to C'. In the next two steps there are

two faults, which cause rollback in both cases.

The Markov chain describing the scheme has only one state, with three edges for the three

different cases of faults. Figure 6 gives the Markov chain for the scheme with description of the

Figure 5: Time diagram for TMR

edges and their properties and the transition probability.

(L

L)'

Transition
Edge No. Event Probability t; v
0 No faults (1-F)? tr +tog 1
1 Single fault | 3F(1 — F)? | t; +tek +tep | 1
2 20r 3 faults | 3F2 —2F2% | t; 4+t +t | 0

Figure 6: State machine for simple TMR scheme

The steady-state solution for the chain is easy to find. As there is only one state, the probability

of being in that state is 1.
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The steady-state edge probabilities are

{eo,e1,62} = {(1 = F)*,3F(1 — F)* 3F* — 2F3}.

The average number of steps it takes to complete one interval is

1 1

5 = = :
S22 jew; L= (3F2—2F3)

(12)

The average time to execute a step is
2
Ty = eiti =15+ tep + (3F(1 = F)*)tey + (3F? — 2F°)t,.. (13)
1=0
The average time to complete a single interval and a task of n intervals are

tr+teg + (BF(1 = F))tep + (312 — 21730,
1—(3F2 - 2F3) ’

Ty =5-T, =

I+t + (3F(1 — F)?)nte, + (3F? — 2F°)nt,

T, = ol
i 1— (3F2— 2F%)

(14)

3.2 DMR-B-2

The DMR-B-2 scheme is described by Long et al. in [9]. This is a variation to the RAFT scheme [1].
In this scheme two processors execute the task. Whenever a fault occurred both processors are
rolled back and executes the same interval again. The difference between this scheme and simple
rollback schemes, like TMR, is that all the unverified checkpoints are stored and compared, not
just the checkpoints of the last step. Hence two steps with a single fault are enough to verify an

interval.

An example of execution of a task with the DMR-B-2 scheme is given in Figure 7. In the first
step there are no faults, so the execution continues to the next interval in the second step. During
the second and third steps there are faults, one in the second and two in the third, and there are
no matching checkpoints, hence after both steps a rollback is done. During the forth step there is
another fault, but this time a match between the checkpoint of processor B after this step and the
checkpoint of processor A after step 2 is found and the next interval can be executed in the next

step, after processor A is loaded with the correct checkpoint.

Figure 8 gives the Markov chain for the DMR-B-2 scheme. The chain has 2 states, 0 and 1, for
the number of correct checkpoints for the interval found so far. For example at the second step in

Figure 7 there is a single fault, hence one correct checkpoint is found and transition to state 1 is

16



,_‘ I] — Ij+1 . 1j+1 Ij+1 __ 1j+2 — 1j+3
A —— i }
B - o
1 2 3 4 5
Figure 7: Time diagram for DMR-B-2
age
eQOu
4
Transition
Edge No. Event Probability t; v
0 No faults (1 - F)? tr + tog 1
1 Single fault | 2F(1 = F) | t;+te+t. | O
2 Double fault F? tr+tep +¢t | 0
3 No fault (1— F)? tr +tog 1
4 Single fault | 2F(1 — F) |ty +tep +tep | 1
5 Double fault F? tr+tep +¢t- | O

Figure 8: State machine for DMR-B-2 scheme
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made. In step 4 the second correct checkpoint is found, this cause a transition back to state 0, via

edge 4.

The transition matrix for the Markov chain is

P_lPo-l—Pz p1]_[(1—F)2+F2 QF(l—F)]
Pst+pa Ps 1— F? F? ’

with steady-state probabilities of the states

.= fr 7T}_{1+F oF }
TV A Y31+ 3F

The average number of steps needed to complete one interval is

1 14+ 3F
L I S TR (15)

and the average time to execute a step is

5 2 2 3
N AFY(1 = F)te, + (2F + F? + FO)t,
Ts = E el =11+ tep + (1-|-3F) .

1=0

The average time to execute a single interval is

(L4 3F)(tr 4 ter) + 4F2(1 = F)tep + (2F + F2 4+ F2)t,

T = 5T, = TV AEYGE ,

and the average time to execute the whole task is

201 _ 2 3
T =T = (14 3F)(1 + nter) + 4F*(1 = F)ntep + (2F + F2 + F )ntT. an
(1-F)(1+F)

3.3 DMR-F-1

The next two schemes, DMR-F-1 described here, and RFCS described in the next subsection, use
spare processors and the roll forward recovery technique in order to avoid roll back. In the DMR-
F-1 scheme, suggested by Long et al. in [9], two processors are used during fault free steps. Three
additional spare processors are added for a single step after each fault to try to recover without a
rollback. The state of the two processors that are currently executing the task is copied to two of
the spare processors. The third spare processor is loaded with the last verified checkpoint and tries
to verify the faulty checkpoint. If it fails, either because it had a fault or because both processors
had faults in the previous step, a roll back is done. If the verification succeeds then no roll back is
done and the processor with the correct checkpoint and the one that this checkpoint was copied to

continue to execute the task.
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Figure 9: Time diagram for DMR-F-1

In Figure 9 processors A and B execute the task and processors €', D and S are the spares.
In the second step there is a fault in processor A while executing interval j 4+ 1, so in the end of
the step the state of processor A is copied to C', the state of B is copied to D and 9 is loaded
with the state after interval j. In the third step S verifies the checkpoint of B and a full recovery
is achieved, with processors B and D the new permanent processors for the task. In step 4 there
is another fault in B and the recovery process begins again. This time $ fails to verify where the

fault was, so a rollback is done in the end of step 5, and interval j + 3 is repeated in step 6.

Figure 10 shows the Markov chain for the DMR-F-1 scheme. The chain has three states, State
0 for normal execution, State 1 for fault recovery when single fault occurred, and recovery is
possible, and State 2 for fault recovery when double faults occurred and recovery is impossible.
The description of the edges in the chain is also given in Figure 10. In the fault recovery states
processors A and B are the two processors in the non-faulty path. For example the execution of
Figure 9 causes the following transitions (the number above the arrows are the edges that are used

for the transitions)
02012012020

The transition matrix of the Markov chain is

Po P1 P2 (1 F)? 21— F)F P2
P=1pstps ps ps | = | (1=FP+F 2(1-FP>F (1-F)F* |,
1 0 0 1 0 0

and the steady-state probabilities of the states are

T = {7, T, M2} = L —2F +4F* —2F°  2(1-F)F F?
= AT, 1, T2y = 1+3F2—2F% "1+3F2—2F3" 1 +3F2—2F3("

Using these probabilities and the reward of the edges, v; and t;, we can find the average number

19



Event

Transition

Edge No. Probability t; v;
0 No faults in (A, B) (1 - F)? tr + tek 1
1 Single fault in (A, B) | 2F(1 = F) |tr+ts+ta | O
2 Double fault in (A, B) ? tr+te+tg | O
3 No fault in (A, B, 5) (1-F)? tr + tek 2
4 Fault in S, F tr+tep +t, | 0
(A, B) don’t care

5 No fault in .9, 2F(1— F)? |ty +tep +ta | 1
1 fault in (A, B)

6 No fault in .9, FX(1-F) | ty+tep+ta| 1
2 faults in (A, B)

7 Always 1 tr+tep +t, | 0

Figure 10: State machine for DMR-F-1 scheme
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of steps to complete a single interval as

1 143F2 257

- = : 18
° S _gvier 1 —3F2 4 2F° (18)

The average time to execute a step is

7 2 3 2
Fo=2F°t, + (2F — F*)t
T,=>) t¢6¢=t1+tck+(3 Jir + ( )ld.

1
= 1+ 3F2—2F3 (19)
The average time to complete a single interval is
7= gp. = Lttt (BF2 = 2F)(tr 4 top + 1) 4+ (2F — F?)lq
PTree T 1—3F2 4 2F3 ’
and the total average time to execute the task is
B It + (3F% = 2F?)(1 4 ntep + nt,) + (2F — F?)ntyg
Tn—n Tl— 1—3F2-|—2F3 . (20)
3.4 RFCS

Pradhan and Vaidya [11] give another roll forward scheme called Roll-Forward Checkpointing
Scheme (RFCS). In this scheme, as in DMR-F-1, a spare processor is used in fault recovery in
order to avoid rollback. The difference between the schemes is that RFCS uses only one spare

processor and the recovery takes two steps instead of one step in DMR-F-1.

In the first step of fault recovery the spare processor is loaded with the last verified checkpoint
and it tries to verify the next checkpoint, while the two regular processors continue with the normal
execution. If the spare processor succeeds in verifying the first checkpoint the state of the correct
processor is copied to the faulty processor. In the next step the spare processor tries to verify the
next checkpoint, that have only one correct execution. In Figure 11 the fault in processor B during
step 2 if recovered in steps 3 and 4. In step 5 there is another fault in processor B. This time the
recovery fails due to the fault in S in the next step, so rollback is done. After step 7 another fault
recovery starts due to the fault in processor A while executing interval j + 4. The first step of the
recovery is successful but because of the fault in 5 at step 9 interval j + 5 is not verified and roll

back is needed.

Figure 12 gives the Markov chain for the RFCS scheme. State 0 is the normal execution state.
States 1 and 2 are the first step in the recovery, with and without recovery chance. State 3 is the
second step in the recovery. Description of the edges is given in Figure 12. The transitions of the

execution in Figure 11 are

020153201 Lo L1 %53 .
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fivr fiv2
.

I I
e . J+3

4 5 6 8
Transition
Edge No. Event Probability t; v,
0 No faults in (A, B) (1— F)? tr + tek 1
1 Single fault in (A, B) | 2F(1 = F) | tr+t+ta |0
(assumed to be in A)
2 Double fault in (A, B) F? tr+tgp+tig | 0
3 Fault in B F1-F) | trd+te+ty | 1
No fault in 5
4 Fault in 9 F tr+tg+t | 0
5 always 1 tr+tp+t |0
6 No fault in (B, 5) (1—F) | tr+tep+tep |1
7 Single fault in (A, B) | 2F(1— F)? tr + tek 1
No fault in 9
8 Fault in 9 F tr+ top +t,
9 No fault in (A, B, 5) (1-F)? tr + tek
10 Double fault in (A, B) | F?(1 - F) tr + tek
No fault in 9

Figure 12: State machine for RFCS scheme
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The transition matrix of the Markov chain is

P p1 p2 0 (1-F)  2F(1-F) F? 0

P P4 0 ps ps | _ F 0 F(1-F) (1-F)? ,
1 0 0 0 1 0 0 0
ps+pa Pr Pro (1-FP+F 2F(1-F)* F)(1-F) 0

and the steady-state probabilities of the states are

T = {mo, 7, mom3}
1 =2F 4 8f? —12F% 4 8f* — 21 2F(1 - F)
|14 2F 4 3F2 —10F3 4+ 8f4 —2F5" 1 4 2F 4+ 3F2 — 10F3 + 8f4 — 215’
F2(3 —4F +2F7?) 2F(1 — F)?
14+ 2F +3F2 — 10F3 4+ 8f* —2F5" 1 4+ 2F + 3F2 — 10F3 + 8f* —2F5 |~

Using these probabilities and the reward of the edges, v; and ¢;, the average number of steps to
complete a single interval is
1 14 2F +3F% — 1082 +8f4 — 2F°

- - : 21
& O vie; 14 2F —11F2 + 14F3 — 8F4 4 2F° (21)

The average time to complete a step is

10
T, = Ztiei = tr+i
=0

N 2F(1 — F)? .
14+ 2F +3F2 —10F3 4+ 8F4 —2F5
2F — |2
_|_

t
1+ 2F +3F2 — 10F3 4 8F4 —2F5 @
2 3 4 o915
. TF? — 1283 4 8F* — 2F . 22)
1+ 2F +3F% — 10F3 4 8F* — 2F5

The average time to complete a single interval is

14+2F +3F* —10F3 + 8F* — 217
14+ 2F — 11F2 + 14F3 — 8F4 4 2F5
N 2F(1 — F)? .
14+2F — 11F2 4 14F3 —8F4 4 25 F
2F — F?2
15 2F — 11F2 1 14F® — 871 4 275
TF? — 12F3 4 8F4 — 2F® .
142F — 11F2 4+ 14F3 —8F4 4 2F5 "

and the total average time to execute the task is

T =51 =

(tr 4 tek)

_I_

_I_

1+2F +3F? —10F2% 4+ 8F4 — 2F5
T, =n-Ty = 1+ nt,
n = S F P L 4Fe —sFi a5 L T k)
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2P (1 — F)?
1+ 2F — 1152 1 14F% — SF1 4 255 e
2F — I
1+ 2F —11F2 1 14F3 —8F1 1+ 255
TF? — 12F3 + 8F* — 2F°
15 2F — 1172 + 1405 —sFt 4 205

_I_

_I_

niyy

_I_

3.5 Simulation Results

We compared the average execution time and the CDF derived in this section with values mea-
sured using a simulation program for all four schemes analyzed in this section. Figure 13 shows a
comparison between the analytical values and those measured by the simulation program for the
DMR-F-1 scheme. The results for the other three schemes where the same as the results for the
DMR-F-1 scheme.

In Figure 13a the average execution time of the DMR-F-1 scheme, given by Eq. (20) is compared
with the average execution time measured by a simulation program, for 20 checkpoints (n = 20),
ter = 0.001, ¢, = 0.002 and t., = 0.002. The solid line is the execution time given in Eq. (20) and
the asterisks are the average execution time measured using the simulation program. We can see

that the simulation points fall on the line of analytical plot.

The CDF of the execution time as calculated by the technique shown in Section 2, with the
values of S and T given in Eqs. (18) and (19), are compared in Figure 13b to the CDF measured by
the simulation program for the case of n = 100, A = 10, ¢, = 0.001, ¢, = 0.002 and ¢, = 0.002. The
calculated CDF is close to the measured one, but the slope of the graph is bigger in the calculated
case. The difference in the distribution functions is caused by the fact that the negative binomial

approximation is not accurate because a step can have more than single interval completed in it.

4 Scheme Comparison

In this section the results of Section 3 are used to compare between the the schemes described in
that section. The behavior of the schemes is greatly affected by their exact implementation and
the architecture of the parallel computer. Those parameters affect the time it takes to execute
the operations that are needed at the end of each step, like comparing checkpoints, rolling back,
etc. To obtain general properties of the schemes, we will use a simpler model than the one used in

Section 3. In this model the time to execute each step is ¢; + t,,, where t,; is the overhead time
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Figure 13: Comparison between analytical and simulation results for the DMR-F-1 scheme

required by the scheme. This overhead time is the same for all the transitions of the state machine

of the scheme. It is also assumed to be the same for all schemes.

The results of the simplified model are still valid when a more precise model, like the one used
in Section 3, is used, for a large range of scheme parameters. However, in cases where there is a
big difference between the time it takes to perform different operations, those results can change.
Later in the section we give an example of such a case, where we assume that the schemes are
implemented on workstations connected by a LAN. This implementation causes the slowest scheme

in the general case, the DMR-B-2 scheme, to become the quickest scheme.

We compare here two properties of the schemes. The first property is the average completion
time of a task using the scheme. The second property is the average work used to complete the
execution of a task using the scheme. In both cases we assume that the number of checkpoints in
the task is chosen such that the best possible result is achieved, given the scheme and the fault rate
A (see [18]).

The average completion time of a task is important in real-time systems that have hard dead-
lines. We show here that the average completion time is affected mostly by the number of processors
used by the scheme, and the complexity of the scheme has only a minor effect. In Section 4.1.1
we show that with enough processors event the simplest scheme can achieve the lowest possible

average completion time.

The total work to complete the execution of a task is the sum, over all processors used by the

scheme to complete the task, of the time they were in use. As the number of processors does not
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change during a step, the work, W can be defined as

W = Z t; - ¢,

step ¢

where t; is the length of the step and ¢; is the number of processors used in that step.

The average work of a scheme can be found by using the analysis technique described in Sec-
tion 2. The number of processors used in every transition edge of the state-machine of the scheme

is used as a reward C'. The average number of processors used in a step is given by

C=FE-C= Z €;C;,
edges 7
and the average work is
W=cC-T.

For example, in the state machine of the DMR-B-1 scheme described in Figure 4, two processors
are used during normal execution (State 2) and a single processor is used in fault recovery mode
(States 0 and 1). The reward vector of the number of processors for the scheme is {2,2,2,1,1,1,1}.
The average number of processors is given by

_ 2F
S P
¢ 14+ F

The work is important in transaction systems, where high availability of the system is required,
and thus the system should use as few resources as possible. We show here that the best work is
achieved when a small number of processors is used, and again the complexity of the scheme has

only a minor effect.

4.1 Simplified Model

To obtain general properties of the schemes, without the influence of a specific implementation, we
use a simpler model than the one used in Section 3. Using this model, we can also prove achievable
lower bounds on both the average execution time and the total work. In the simplified model the
time to execute each step is t; + 1,5, where ., is the overhead time required by the scheme. This
overhead time is the same for all the transitions of the state machine of the scheme. It is also
assumed to be the same for all schemes. Using this simplified model, the average execution time
and the total work of a task with n intervals (¢; = 1) are simplified to

T = n-S-(tI-|-toh)=S-(1-|-ntoh),

W o= C.T=C-5(1+nty),

where S is the average number of steps to complete an interval.
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4.1.1 Lower Bounds

Before the four schemes, described in Section 3, are compared we give achievable lower bounds on
both the average completion time and the average work. Later the performance of the schemes will

be compared to these lower bounds.

Lemma 1 The average time to complete a task of length 1, with overhead time of t,; after each

step, is greater than or equal to 1+ 1.

Proof: To execute the whole task at least one time unit is needed. The state of the task is

compared at least once, hence the minimum time to complete the taskis 1 +¢,,. 1
Lemma 2 The lower bound on the execution time, given in Lemma 1, is achievable.

Proof: We use a scheme, similar to the TMR scheme described in Section 3, with m processors
instead of three. The task is executed with a single checkpoint in the end (the number of intervals
is 1). The probability that the task will not be completed in a single step is the probability that

at least m — 1 processors has faults. This probability is
Pr=F"+m(l—F)YF" ' = F" P+ m(l1 - F)] < mFP™ 1,
The number of steps to complete the task is geometric random variable, hence the average time to

complete the task is
14 ton < 14 ton

T =
1—Pf = 1 —mpm-1’
and
TJEHOOTI 1+t
|

Lemmas 1 and 2 show that given enough processors, we can bring the average time to complete
a task as close as we want to the lower bound. This may be very important in real-time tasks,
where tasks have to meet deadlines. The problem is that in order to achieve this bound we use a

large number of processors, so that a lot of processor work is wasted.

On the other hand in transaction systems, where the important requirement from the system
is availability we want to do as little work as possible to complete a task, even if it means slower

execution time. Next we show that the work to complete a task can also be bounded.
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Lemma 3 The total average work, W, to complete a task of length 1 with overhead time of t,,

after each step, is bounded from below by

.
Wonin = (2 + Moh + /A2 + 4/\toh) e VTR (24)

Proof: The proof of the lemma uses the following propositions.
Proposition 4 A scheme can be simulated by a single processor, with the same amount of work.

Proof: A single processor can execute the intervals that are given to each of the processors assigned
to the task in each step. As the failures are both time invariant and processor independent, the

failure pattern is not affected by the simulation. [

Proposition 5 The scheme that uses a single processor with the fastest average completion time

has the lowest possible work.

Proof: For a scheme that uses only one processor the completion time is also the total work of
the scheme. As every scheme can be simulated by a single processor, there exists a scheme with the
lowest possible work that uses a single processor. This scheme has the lowest average completion

time. |

Proposition 6 For a given number of checkpoints n, the best average completion time for a single
processor is

Tnin = (2 + 2nt,p) en. (25)

Proof: The simple scheme, that executes each interval until two matching checkpoints are found,
has the best average completion time because it never tries to execute an interval more than
necessary. The probability of correct execution of an interval is 1 — F', hence the average number
of steps until a correct execution of an interval is ﬁ, the average number of steps to find two
correct executions is % The time to execute each step is % + ton, and the task has n intervals, so

the average completion time is
T oo 2 4 2nt,p,
min — 1 _ F .

For the value of F' = 1 — e~ we get the minimum value of Eq. 25. |
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From Proposition 5, the scheme described in Proposition 6 has the best work among all schemes
with n intervals. To find the optimal work, we need to find the number of intervals that minimizes

Trnin. The value of n that achieves this minimum is

Aty A+ 2

2

Nmin =

which leads to the value of optimal work given in Eq.24. |
Corollary 7 The DMR-B-1 scheme with nyin intervals has optimal work.

Proof: The scheme of Proposition 6 is the single processor simulation of DMR-B-1. |}

4.1.2 Comparison of Average Completion Time

The average completion time of a task with n checkpoints is
Tzn-s-(t[-l-toh):S-(l-l—ntoh),

where S is the average number of steps it takes to complete an interval. Using the analysis technique

described in Section 2, we calculated the average completion time of the four schemes:

_ 1
TTMR = 1_(3F2_2F3) '(1+ntoh)7
_ 14 3F
T = (1 + ntop),
DMR-B-2 (I-F)(1+F)? (1 + nton)
_ 14 3F% —2F3
TDMRF-1 = Tgpagaps (Lt nlen);
T 1 42F 4 3F? —10F° + 8F* — 2F° (1 + nt)
RFCS = T379F “11F2 4 14F3 — 8F* | 2F5 oh):

Figure 14 shows the average completion time of a task using each of the four schemes, with
overhead time of t,, = 0.002 for each step. The number of checkpoints for each scheme is chosen

such that its average completion time is minimized [18].

The figure shows that the TMR scheme, despite being the simplest of the four schemes, has
the lowest completion time. The TMR scheme has better completion time because it is using more
processors than the other schemes, and thus has a much lower probability of failing to find two
matching checkpoints. The DMR-B-2 scheme is the worst because it uses only two processors, and
does not use spare processors to try to overcome the failure. The RFCS and DMR-F-1 schemes

use spare processors during fault recovery, and thus have better performance than DMR-B-2.
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Figure 14: Average execution time with optimal checkpoints
4.1.3 Comparison of Average Work

Applying the analysis technique to the four schemes gives the following average work:

_ 3
WTMR = 1_(3F2_2F3) '(1+ntoh)7
_ 24+ 6F
WDMR-B-2 - (1 _ F)(l T F)2 ’ (1 + ntoh):
— 24 6F +3F? —4F3
WDMR-F-1 = ~—_gpmgams (Lt
24 8F + F? — 18F2 + 16F* — 4F°

WRFCS = 1_|_2F_11F2+14F3_8F4+2F5 '(1‘|‘ntoh).

The average work of a task of length 1 with overhead time of t,;, = 0.002 for the four schemes

is shown in Figure 15. The figure also shows the lower bound of the work, as given in Eq. (24).

The results here are the reverse of the results in the average completion time. The best scheme
here is the DMR-B-2, which always uses only two processors. The RFCS and DMRF-1, which use

2 processors during normal execution and add spare processors during fault recovery, require more

work. The TMR scheme, which uses 3 processors, is the worst scheme.
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Figure 15: Average work with optimal checkpoints

4.2 Precise Model

When a more precise model is used, in which the time to perform each operation is used (as in the
analysis done in Section 2), the results shown here for the simplified model are still valid for a large
range of scheme parameters. There are some cases where a big difference in scheme parameters
can cause different behaviors of the schemes than those described for the simplified model. Those
cases can still be analyzed with the technique described in this paper, by using the execution time

equations given in Section 3 instead of the equation used in the simplified model.

For example, consider the following case: Workstations connected by a LAN are used to im-
plement the schemes. Each workstation saves its own checkpoint states, and sends only a short
signature of them to the other workstations for comparison. In this implementation, operations that
are done within a workstation can be completed relatively quickly, while operations that involve
more than one workstation, and need the LAN, take much longer to execute. In this case schemes
that do not use the network heavily have lower execution time than those which do. Specifically,
the slowest scheme under the general model, the DMR-B-2 scheme, which uses the network only
for state comparison can become the quickest scheme under these conditions. Figure 16 shows the
execution time of a task when ¢, = 0.001, ¢, = .001, ¢, = 0.03 and t;; = 0.03, with optimal
checkpoints. It can be seen that the DMR-B-2 scheme is the quickest after the failure rate, A,

reaches some critical value that require the other schemes to use the network heavily.
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Figure 16: Average execution time for the workstations example

5 Conclusions

In this paper we proposed a novel technique to analyze the performance of checkpointing schemes.
The proposed technique is based on modeling the schemes under a given fault model with a Markov

Reward Model, and evaluating the required measures by analyzing the MRM.

We used the proposed technique to analyze the execution time of a task of four different schemes.
We compared the average and the probability distribution function of the execution time, calculated
using the proposed technique, with the real values, measured using a simulation program. Despite
the fact that the analysis used approximations, such as the steady-state analysis of the Markov
chain and the use of negative binomial as the distribution function, the difference between the

analysis results and the simulation results is very small.

We compared the average execution time of a task and the total processor work done for four
known checkpointing schemes. The comparison shows that generally the number of processors
has a major effect on both quantities. When a scheme uses more processors its execution time
decreases, while the total work increases. The complexity of the scheme has only a minor effect on
its performance. In some cases, when there is a big difference between the time it takes to perform
different operations, the general comparison results are no longer true. However, the proposed

technique can still handle these cases and give correct results for them.

The proposed technique is not limited to the schemes described in this paper, or to the fault
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model used here. It can be used to analyze any checkpointing fault-tolerance scheme, with various
fault models. The proposed technique can be also used to provide analytical answers to problems
that haven’t been dealt with before or were handled by a simulation study. Examples of such
problems are deriving the number of checkpoints that minimizes the average completion time and

computing the probability of meeting a given deadline.
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