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Abstract

This paper presents constructions for fault-tolerant two-dimensional mesh architec-
tures. The constructions are designed to tolerate k faults while maintaining a healthy n
by n mesh as a subgraph. They utilize several novel techniques for obtaining trade-offs
between the number of spare nodes and the degree of the fault-tolerant network.

We consider both worst-case and random fault distributions. In terms of worst-case
faults, we give a construction that has constant degree and O(k*) spare nodes. This is
the first construction known in which the degree is constant and the number of spare
nodes is independent of n. In terms of random faults, we present several new degree-6
and degree-8 constructions and show (both analytically and through simulations) that
they can tolerate large numbers of randomly placed faults.
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1 Introduction

As the number of processors in parallel machines increases, physical limitations and cost
considerations will tend to favor interconnection networks with constant degree and short
wires, such as mesh networks [6]. In fact, the two-dimensional mesh is already one of
the most important interconnection networks for parallel computers. Examples of existing
two-dimensional mesh computers include the MPP (from Goodyear Aerospace), VICTOR
(from IBM), and DELTA and Paragon (from Intel).

Another significant issue in the design of massively parallel computers is fault-tolerance. In
order to create parallel computers with very large numbers of complex processors, it will
become necessary to utilize these machines even when several components have failed. In
particular, the ability to tolerate even a small number of faults may allow the machine to
continue operation between the occurrence of the first fault and the repair of the faults.

A large amount of research has been devoted to creating fault-tolerant parallel architectures.
The techniques used in this research can be divided into two main classes. The first class
consists of techniques which do not add redundancy to the desired architecture. Instead,
these techniques attempt to mask the effects of faults by using the healthy part of the
architecture to simulate the entire machine [2, 11, 17, 19, 23]. These techniques do not
pay any costs for adding fault-tolerance, but they can experience a significant degradation
in performance. The second class consists of techniques which do add redundancy to the
desired architecture. These techniques attempt to isolate the faults, usually by disabling
certain links or disallowing certain switch settings, while maintaining the complete desired
architecture [1, 3, 4, 7, 8,9, 10, 13, 14, 15, 18, 20, 22, 24, 25, 26, 28]. The goal with these
techniques is to maintain the full performance of the desired architecture while minimizing
the cost of the redundant components.

One of the most powerful techniques for adding redundancy is based on a graph-theoretic
model of fault-tolerance [18]. In this model, the desired architecture is viewed as a graph
(called the target graph) and a fault-tolerant graph is created such that after the removal of
k faulty nodes, the target graph is still present as a subgraph. This technique yields fault-
tolerant networks that can tolerate both node faults and edge faults (by viewing a node
incident with the faulty edge as being faulty) and can implement algorithms designed for the
target network without any slowdown (due to the simulation of multiple nodes by a single
node or the routing of messages through switches or intermediate nodes). Unfortunately,
the degree of the fault-tolerant network created with this model can be prohibitably large.
In particular, all previously published techniques for creating fault-tolerant meshes have a
degree that is linear in the number of faults being tolerated.

In this paper we create fault-tolerant meshes with small degree by trading-off the number
of spare nodes with the degree of the fault-tolerant network. We consider both worst-case
and random fault distributions. In terms of worst-case faults, we give a construction that
tolerates k faults and has constant degree and O(k®) spares. This is the first construction
known in which the degree is constant and the number of spares is independent of n. In
terms of random faults, we present several new degree-6 and degree-8 constructions and



show (both analytically and through simulations) that they can tolerate large numbers of
randomly placed faults.

In addition, the construction for worst-case faults is shown to require only wires of length
O(k?) in Thompson’s VLSI model [27], while the constructions for random faults are shown
to require only constant length wires. Thus the fault-tolerant constructions maintain much
of the scalability of the mesh network. We remark that we use Thompson’s VLSI model
only because it provides a well-established means for quantifying the locality of an inter-
connection network; the use of this model does not imply that the constructions presented
here are designed for the wafer-scale implementation of a parallel machine. In fact, most
existing parallel machines have one, or at most a few, processors per chip. This fact mo-
tivates our concern with the degree of the fault-tolerant network (because of the limited
number of pins available to connect one chip to another [12]).

The remainder of this paper is organized as follows. Definitions and several previously
known results are given in Section 2. The results for worst-case fault distributions and
random fault distributions are presented in Sections 3 and 4, respectively.

2 Preliminaries

Definitions: Let & be a nonnegative integer and let 7' = (V, E') be a graph. The graph
F = (V' E') is a k-fault-tolerant graph with respect to T', denoted a k-FT T, if the subgraph
of F induced by any set of |V/| — k nodes contains T' as a subgraph. The graph T will be
called the target graph. The graph F' will be said to contain |V’'| — |V| spare nodes (or
spares).

Definition: The cycle with n nodes will be denoted C,,.

Definition: The two-dimensional mesh with r > 2 rows and ¢ > 2 columns will be denoted
M, .. Each node is M"° has a unique label of the form (7, j) where 0 < ir and 0 < j < c.
FEach node (¢,7) is connected to all nodes of the form (i +1,7) and (¢,j 4 1), provided they
exist. The node (¢, j) will be said to be in row ¢ and column j.

Definitions: Let n be a positive integer and let S be a set of integers in the range 1
through n — 1. The graph C(n,95), called the n-node circulant graph with connection set
S [16, 14, 10], consists of n nodes numbered 0,1,...,n — 1. Each node i is connected to all
nodes of the form (i+s) mod n where s € S. The graph D(n,.5), called the n-node diagonal
graph with connection set S [10], consists of n nodes numbered 0,1,...,n — 1. Each node
i is connected to all nodes of the form ¢ + s where s € S, provided they exist. (The terms
“circulant” and “diagonal” refer to the structure of the adjacency matrix.) The values in
a connection set S will be referred to as “jumps” or “offsets” and an edge defined through
an offset s will be referred to as an s-offset edge.

Definition: Let S be a set of integers and let k£ be a nonnegative integer. The expansion



of S by k, denoted expand(9, k), is the set T where

T = U{s,s-l—l,...s-l—k}.
sES

The following theorems give constructions for creating fault-tolerant circulant and diagonal
graphs. The basic idea is to add offsets so that faulty nodes can be “jumped over”. The
construction for diagonal target graphs has lower degree because a cluster of faults can be
avoided by placing the cluster in the position where the missing wraparound edges would
jump over them.

Theorem 2.1 [14] Let n be a positive integer, let S be a set of integers in the range 1
through n — 1, let k be a nonnegative integer, and let T = expand(S,k). The circulant
graph C(n + k,T) is a k-FT C(n,S).

Theorem 2.2 [10] Let n be a positive integer, let y = [n/3], let S be a set of integers
in the range 1 through y, let k be a positive integer, and let T = expand(S,|k/2|). The
circulant graph C(n+ k,T) is a k-FT D(n,S).

The following theorems relate meshes, circulant graphs and diagonal graphs. Combin-
ing these theorems with the two previous theorems yields constructions for fault-tolerant
meshes. The first theorem follows immediately from the row-major labeling of the nodes in
a mesh. The second theorem follows from a diagonal-major order of the nodes in a mesh;
see Figure 1 for an example.

Theorem 2.3 The mesh M, . is a subgraph of C(re,{1,¢c}) and of D(rc,{1,¢c}).
Theorem 2.4 The mesh M, . is a subgraph of C(rc,{c—1,¢}).

Proof: Let ¢(i,j) = ((¢ — j) mod r)c+ j. It is straightforward to verify that ¢ defines an
embedding of M, . into C'(re,{c—1,¢}). O

3 Worst Case Faults

In this section we present a graph M that is a k-FT M., and has constant degree and
O(k?) spares. Our construction is hierarchical. We first construct a graph M’ that is a
E-FT M, . (for some suitably chosen parameters r and ¢) and has degree which is dependent
on k. We then replace each node in M’ with a supernode (a graph with certain properties)
to obtain a graph M with constant degree.
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Figure 1: An example of a diagonal-major ordering of a mesh.

3.1 The Basic Construction

We first present a construction for a k-FT cycle with degree 4 and k? spare nodes. We will
then use this construction to create the graph M’ which is a k-FT M, ..

Theorem 3.1 Let k and N be positive integers where N > k*> + k + 1, and let the graph
C'"=C(N+ k> {1,k+1}). The graph C' is a k-FT Cy.

Proof: First consider the case where (N + k%) mod (k4 1) = 0. For each ¢, 0 < ¢ < k,
let X; be the set consisting of all nodes {j|j mod (k + 1) = i}. Because there are only k
faults and there are k& + 1 disjoint sets X;, at least one of them must be fault-free. Let
X be such a fault-free X;. Note that the nodes in X form a fault-free cycle C" of length
(N + k2)/(k + 1) using the (k + 1)-offset edges. Next, we augment C” to get a healthy
cycle of length at least N. For any two adjacent nodes a and b in C”, if all k of the nodes
in O’ between a and b are healthy, we traverse all k of these nodes by using the 1-offset
edges. On the other hand, if there is a fault between a and b, we skip over all £ of the
nodes between them by traversing the (k+ 1)-offset edge connecting @ and b. It is clear that
we will traverse (k + 1)-offset edges at most k times, so the resulting augmented cycle will
have at least IV nodes. If it has more than N nodes, we can choose to traverse additional
(k + 1)-offset edges, rather than 1-offset edges, until the cycle has length exactly N. An
example of a 2-FT cycle is shown in Figure 2.

Now consider the case where (N + k%) mod (k4 1) = « # 0. Let R be a region of k+ 1+
consecutive healthy nodes in C’. Note that such a region must exist because N 4 k* >
2k? + k + 1, so there must be a region of 2k + 1 or more consecutive healthy nodes between
two faults. Without loss of generality, we will assume that R consists of the k+ 14« highest
numbered nodes in C’. For each i, 0 < i < k, create the cycle C¥ as follows. First, start
at node ¢ and traverse the (k + 1)-offset edges until a node in R is reached. Then, traverse
the 1-offset edges @ times. Finally, traverse one additional (k + 1)-offset edge to return to
t. Note that these k + 1 cycles only share nodes within R. Because all of the nodes in R
are healthy, there must exist an 7 such that C is healthy. We can augment C! as before
to obtain a cycle of length N. O



Figure 2: A degree-4 2-fault-tolerant cycle with 4 spare nodes.

Theorem 3.2 Let k, r and ¢ be positive integers where r,c > 2 and re > k> + k + 1, let
N =rc, and let M' = C(N + k?,{1,k+ 1} U {c+ k|0 <7 < k}). The graph M' is a k-FT
M, ..

Proof: Let T'= C(N,{1,c}). We will prove that M’ is a k-FT T. Applying Theorem 2.3
will complete the proof. First, it follows from Theorem 3.1 that in the presence of k faults,
M’ contains a cycle of N healthy nodes. Let C'” denote a cycle of healthy nodes constructed
according to the proof of Theorem 3.1 and number the nodes in ¢ from 0 through N — 1.
We will now prove that any two nodes numbered @ and b in C”, where (a + ¢) mod N = b,
are connected in M’. Let ' and b be the labels of @ and bin M’, and assume without loss
of generality that ¢’ < &’. We know that it is possible to traverse the cycle €' from a to b
by traversing 1-offset edges and at most k (k 4 1)-offset edges. Therefore, b’ — a' = ¢ + jk
for some integer j where 0 < j < k, which implies that a and b are connected in M’. O

3.2 Hierarchical Constructions

In the previous subsection we described a construction of a k-FT cycle with k? spare nodes
and degree 4 and a construction of a k-FT 2-dimensional mesh with k? spare nodes and
degree 2k + 6. In this subsection we will present techniques for reducing the degree of these
FT graphs. The general idea is to replace each node in the original FT graph by a small
graph (which we call a supernode). Then, for each edge (a,b) in the original graph, one or
more nodes in the supernode corresponding to @ is connected to one or more nodes in the
supernode corresponding to b. This approach results in a FT graph with lower degree than
the original graph, although it does increase the number of spare nodes that are required.



3.2.1 Hierarchical fault-tolerant cycles

We illustrate the concept of a supernode by creating a hierarchical FT cycle.

Theorem 3.3 Let k and N be positive integers where N > k* + k + 1, and let C' be the
graph with 2N + 2k? nodes, numbered 0 through 2N + 2k* — 1, and with edges specified as
follows: each odd numbered node i is connected to nodes (¢4 1), (1 —1) and 142k + 1, and
each even numbered node i is connected to nodes (¢t + 1), (¢ — 1) and i — 2k — 1, where all
of the arithmetic is performed modulo (2N + 2k?). Then C' is a k-FT Cqy.

Proof: The graph (' can be obtained from the graph C' of Theorem 3.1 by replacing each
node with a supernode consisting of a pair of nodes connected to one another. The edges
that correspond to the positive direction connections in C” are connected to odd nodes in
C' while the edges that correspond to negative direction connections in C’ are connected to
even nodes in C'. Consider the graph " in which a node a is faulty iff at least one of the
nodes in the supernode corresponding to a in Cis faulty. It follows from Theorem 3.1 that
(' contains a cycle of N healthy nodes. Therefore, ' must contain a cycle of 2N healthy
nodes corresponding to the cycle of N healthy nodes in C’. O

Figure 3 shows an example of a 2-FT cycle of degree 3 with 2k? = 8 spares.

Figure 3: A degree-3 2-fault-tolerant cycle with 8 spare nodes.

3.2.2 Hierarchical fault-tolerant meshes

We will now show how hierarchical constructions can be used to reduce the degree of the
graph M’ of Theorem 3.2. We will start with an approach that reduces the degree to
O(vVk). We will then consider a more powerful technique that reduces the degree to a
constant. The first approach uses the following graph as a supernode.



Definition: Let H,, be a graph with n nodes and degree 3 (if n is even) or degree 4 (if n
is odd) such that for every pair of distinct nodes in H,,, there is a Hamiltonian path that
has those nodes as endpoints. H, graphs have been created for all n > 2 [5]. See Figure 4
for an example.

Figure 4: Examples of Hamiltonian graphs by Moon with minimal degree. The number of
nodes is even in (a) and is odd in (b).

Construction 3.4 Letk, r, ¢, n and s be positive integers where r,c,s > 2, r¢ > k> +k+1,
and 2rs = ¢ = n, let V = {c +ik|0 < ¢ < k}), and let the graph M' = C(re + k%, {1,k +
1}UV). Let M be the hierarchical graph obtained from M’ by replacing each node in M’ by
a supernode Hys. Divide the nodes in each supernode arbitrarily into two halves of s nodes
each. Add connections between supernodes as follows:

1. Connect each node in each supernode i to every node in supernodesti—1, 1+1, i—k—1
and i+ k+ 1 (all modulo rc+ k?). These edges, called horizontal edges, contribute 8s
to the degree of each node.

2. For each offset v € V and for every supernode i, connect one of the nodes in the second
half of supernode i to one of the nodes in the first half of supernode (i+ v) mod (rc+
k?). These edges, called vertical edges, should be evenly distributed among the nodes
in each half of each supernode, so they contribute at most [(k+ 1)/s] to the degree of
each node.

Note that the degree of M is at most 8s + [(k+1)/s] + 3. Choosing s = O(vk) yields a
graph M with degree O(Vk) and with O(k%/?) spare nodes.

Theorem 3.5 The graph M defined in Construction 3.4 is a k-FT My, .



Proof: Consider the graph M’ of Theorem 3.2 in which a node @’ is faulty iff at least one of
the nodes in the supernode corresponding to a’ in M is faulty. It follows from Theorem 3.2
that M’ contains a healthy M, . subgraph. We will show that this implies that M contains
a healthy M, ,, subgraph.

Let @' be any node in the healthy M, . subgraph of M’ and let @ be the supernode in M
corresponding to a’. We will view & as a column of 2s nodes in M, ,. Note that o’ has
vertical neighbors @’ — vy mod (re + k%) and @’ 4 vy mod (re + k%), where vy and vy are
in V. Let t be the node in the first half of @ that is connected to a node in supernode
@ — vy mod (rc + k%) and let b be the node in the second half of @ that is connected to a
node in supernode @ + vz mod (re + k2). We will view ¢ as being the top node and b as
being the bottom node in the column of 2s nodes formed by a. Recall that for every pair
of nodes in Hqg, there is a Hamiltonian path that has those nodes as endpoints. Therefore,
we can use the Hamiltonian path with endpoints ¢ and b as the vertical connections within
a. Furthermore, the connections between the node b in one supernode and the node ¢
in the next supernode provide the vertical connections between supernodes. Finally, note
that ' has horizontal neighbors ¢’ — x1 mod (rc + k%) and ' 4 23 mod (re + k?) where x4
and a5 are in {1,k + 1}. Because each node in @ is connected to every node in supernodes
a—z1 mod (re+k?) and a+ay mod (re+k?), the horizontal connections between supernodes
are also present. O

We will now show how the use of a different supernode graph can yield a k-FT mesh with
O(k?) spare nodes and constant degree. The following graph will be used as the supernode
graph.

Definition: The graph Pj consists of 2k + 4 nodes. This graph consists of two parts,
denoted 57 and S5, each of which is the graph C(k + 2,{1,2}), plus an edge connecting
node k + 1 in 57 with node k£ + 1 in S5. See Figure 5 for an example of Fg.

Now we describe the construction of a k-FT mesh based on the graph Pi as a supernode.

Construction 3.6 Let k, 7, ¢, and n be positive integers where r,c > 2, r¢ > k*> +k + 1,
and (2k+4)r =c=mn, let V = {c+ik|0 <i < k}), and let M’ = C(re+ k% {1, k+1}UV).

Let M be the hierarchical graph obtained from M' by replacing each node in M’ by the
supernode Pj,. Add connections between supernodes as follows:

1. Connect each node j € Sy of supernode i to nodes {j—2,7—1,7,7+1,7+2} mod (k+2)
in Sy of supernodes {i—1,i+1,i—k—1,i+k+1} mod (rc+k?). These edges, called
horizontal edges, contribute 20 to the degree of each node in Sy.

2. Connect each node j € Sy of supernode i to nodes {j—2,j—1,j,j+1,742} mod (k+2)
in Sy of supernodes {i —1,i+1,i—k —1,i+k+ 1} mod (rc+ k?). These edges, also
called horizontal edges, contribute 20 to the degree of each node in S5.

3. Connect each node 7 € Sy of supernode i, where 0 < j < k, to node j € 51 of
supernode (i + ¢+ jk) mod (re+k?). These edges, called vertical edges, correspond to



Figure 5: An example of the graph Fs.

the k + 1 offsets in V' and contribute 1 to the degree of each node numbered less than
k + 1 in each half of each supernode.

Note that the degree of M is 25. The fact that M is a k-FT mesh relies on the following
lemmas.

Lemma 3.7 Consider the subgraph S = Sy (or equivalently, S = S3) of Py. There exists
a set of paths, {Qo,Q1,...,Qr}, such that for each i, 0 < i < k, Q; is a Hamiltonian
path through S with endpoints ¢ and k + 1, and for each ¢, 0 < ¢ < k, and for each j,
0<j<k+1,ifaisthe j-th node in Q; and b is the j-th node in Q;11, then (a —b) = x
(mod k 4 2) where x € {-2,-1,0,1,2}.

Proof: For each i, 0 < i < k, define ¢; as follows. Start at ¢« and traverse the 1-offset
edges in the positive direction until node k is reached. Then traverse the 2-offset edges in
the positive direction until either node ¢ — 1 or ¢ — 2 is reached. If node ¢ — 1 is reached,
traverse the 1-offset edge to node ¢ — 2 and then traverse the 2-offset edges in the negative
direction until node k£ + 1 is reached. On the other hand, if node 7 — 2 is reached before
node ¢ — 1, traverse the 1-offset edge to node ¢ — 1 and then traverse the 2-offset edges in
the negative direction until node k4 1 is reached. See Figure 6 for an example of the paths
Q4 and Q5 in Sl of P6.

fi<a<k-1,thenb=a+1 Ifa==F% thenb=0. If a = k+ 1, then b = a. If
0 <a <i—1, we have the following cases: (i) if ¢ is even and 0 < a < i—2, then b = a+ 2,
(ii) if @ is even and @ = 7 — 1, then b = a + 1, and (iii) if ¢ is odd and 1 < a <7 — 1, then
b = a. Therefore, in every case (a —b) =2 (mod k 4 2) where z € {-2,-1,0,1,2}. O

10



Figure 6: An example of two paths in 57 of Ps starting from nodes 4 and 5, respectively.

Lemma 3.8 Let k, v, ¢, n, V, and M’ be as defined in Construction 3.6. Consider any
set of k faulty nodes in M' and let M be the healthy mesh M, . in M' that is obtained
by applying Theorem 3.2. Let a, b, a’, and b’ be any nodes in M’ such that a and b are
horizontal neighbors in M, ' and b’ are horizontal neighbors in M, a and a' are vertical
neighbors in M, and b and b’ are vertical neighbors in M. If ' = (a+c+1ik) mod (rc+k?)
and ' = (b+ ¢ + jk) mod (rc+ k%) where 0 < 4,5 < k, then |i — j| < 1.

Proof: Assume without loss of generality that a is to the left of b in M and o’ is to
the left of &' in M. Note that (b — a) =  (mod rc + k?) where 2 € {1,k + 1} and
(0'—a') = 2" (mod rc+k?%) where 2’ € {1,k+1}. Therefore, (i —j)k = (c+ik)—(c+jk) =
(/ —a)— (b —b)=2 —2' (mod rc+ k?), which implies that | — j| < 1. O

Theorem 3.9 The graph M defined in Construction 3.6 is a k-FT M., and has constant
degree and 2k> + 4k* spare nodes.

Proof: The proof is analogous to that of Theorem 3.5. In particular, as in the proof of
Theorem 3.5, we project the faults in M onto M’ and use Theorem 3.2 to find a healthy
M, . subgraph of M.

Let @’ be any node in the healthy M, . subgraph of M’ and let @ be the corresponding
supernode in M. We view & as a column of 2k + 4 nodes in M., . We find top and
bottom nodes t and b in @ as in the proof of Theorem 3.5, and we use Lemma 3.7 (twice)
to create a Hamiltonian path through @ with endpoints ¢ and b. Then, let ' be a node
that is horizontally adjacent to @’ in the healthy M, . subgraph of M’, and let b be the
corresponding supernode in M. It follows from Lemma 3.8 that the top nodes in @ and
b have positions within their supernodes that differ by at most one. A similar argument
applies to the bottom nodes in @ and b. Therefore, it follows from Lemma 3.7 that for each
1, 0 <12 < 2k + 4, the i-th node in the Hamiltonian path in @ has a horizontal connection
to the i-th node in the Hamiltonian path in b, which completes the proof. O

11



Hence, we have obtained a construction of a k-FT two-dimensional mesh with constant
degree and O(k®) spare nodes. Although the construction given above is for a k-FT M, ,
where n is a multiple of 2k 4 4, it is straightforward to generalize the construction to
arbitrary values of n as follows.

Construction 3.10 Let k, r, ¢, and n be positive integers where r,c > 2, re > k* + k + 1,
r=|n/(2k+4)], and c = n, let V = {c+ik|0 < i < k}), and let M' = C(rc+ k?, {1,k +
1JuUVv).

Let nmod (2k 4+ 4) = a. If a = 0, let M be the graph M defined in Construction 3.6. If
a # 0, first define the graph Pj, from Py as follows. Add a node, denoted x, to Py, connect
node @ to node k + 1 of Sy in Py, and connect node x to node k + 1 of Sy in Py. Let M
be the graph obtained by replacing each of the first an + k* nodes in M' by the supernode
P/ and replacing each of the remaining nodes in M' by the supernode Py. Add connections
between supernodes as follows:

1. Ignore the x nodes in the P] supernodes and add connections between supernodes as
required by Construction 3.6.

2. For each supernode i, where 0 < i < an + k%, connect node x in supernode i to node
x in supernode j, where j € {i — 1, i+ 1,i—k—1,i+k+1} and 0 < j < an + k.

The following theorem is immediate from the preceding construction.

Theorem 3.11 Let k and n be positive integers, let r = |n/(2k +4)|, and let ¢ = n. If
r.e > 2 and re > k* + k + 1, then there exists a k-FT M, ., with constant degree and
2k + 5k? spare nodes.

Although the degree of M is increased to 26 (as both node k + 1 of 5y and node k + 1
of 53 have an edge to node z in the same supernode), one can easily reduce the number
of horizontal edges of node k + 1 to 4 (as opposed 20 of the current definition) so that
the degree of M remains 25. In fact, we remark that it is possible to reduce the degree
still further by using a different graph for each supernode. Specifically, if each supernode
is defined to be the product graph of P, and a 4-node linear array, and if each supernode
plays the role of a (2k 4+ 4) x 4 submesh, it is possible to obtain a k-FT mesh with degree
12 and 8k> + 16k? spare nodes. The details are omitted.

Finally, we will consider laying out the fault-tolerant graph M using Thompson’s VLSI
model [27]. One of the greatest advantages of two-dimensional mesh networks is that they
can be laid out using only short (constant length) wires. The following theorem shows that
the fault-tolerant graph M may require somewhat longer wires, but the wire lengths are
still independent of n.

Theorem 3.12 It is possible to lay out the graph M defined in Construction 3.10 using
only wires with length O(k>).

12



Proof: We will begin by presenting a mapping from the nodes in M’ to the nodes in a
torus network which maintains locality. We will then use standard techniques for laying
out torus networks to obtain the final layout of M. First, consider the case where k2 is a
multiple of . In this case, lay out the nodes in M’ in row-major order on an (rc+k%)/c by
¢ torus. It is straightforward to verify that any pair of nodes that are connected in M’ map
to nodes that are in columns of the torus that differ by at most O(k?) and in rows of the
torus that differ by at most O(1). This torus can then be mapped to on an (re+k?)/c by ¢
grid by using the standard technique of placing the first half of the torus columns (rows) in
increasing order in the even numbered columns (rows) of the grid and the remaining torus
columns (rows) in decreasing order in the odd numbered columns (rows) of the grid (see,
for example, [21, p. 246]). Finally, each node in M’ can be layed out using an O(k) by
O(k) square. The vertical tracks between grid columns are O(k) wide and the horizontal

tracks between grid rows are O(k”) wide (to accommodate wires that traverse O(k*) nodes,
each of which is O(k) wide). Thus each wire is of length O(k?).

Now consider the case where ¢ does not evenly divide k2. In this case, let & = k? mod ¢
and use a (rc¢+ k?%)/c by ¢+ 1 torus. The nodes of M’ are placed in the torus in row-major
order, with the first a rows receiving ¢ + 1 nodes and all remaining rows receiving only ¢
nodes. Again, it is straightforward to verify that any pair of nodes that are connected in
M’ map to nodes that are in columns of the torus that differ by at most O(k?) and in rows
of the torus that differ by at most O(1). This torus can then be laid out as described for
the other case. O

4 Random Faults

In this section we consider random fault distributions. More specifically, we will assume
that the fault-tolerant graph contains k faults, and that every configuration of £ faulty
nodes is equally likely. We will focus on the problem of creating fault-tolerant graphs for
the mesh M, ,,. We will present six constructions for fault-tolerant meshes, analyze their
asymptotic fault-tolerance, and study their fault-tolerance for realistic values of n.

The first three constructions are simple generalizations of previously known construc-
tions [10] designed to tolerate worst-case fault distributions, while the remaining three
constructions are new. In particular, the fourth construction introduces the concept of
adding “dummy faults” in order to provide a fairly regular fault pattern. The fifth con-
struction introduces the use of a 2 by 2 “submeshes”, and the sixth construction combines
the use of dummy faults with the use of submeshes.

Throughout this section let Ty(n) denote C(n?, {n—1,n})and let T5(n) denote D(n%, {1,n}).
Recall from Theorems 2.4 and 2.3 that both Ty(n) and T»(n) contain M, , as a subgraph.
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4.1 The Constructions

In this subsection we will define the six constructions, My(n, k) through Mg(n, k). The first
two constructions are based on the target graph Ty(n).

Definition: The graph My(n,k) = C(n? + k,{n —1,n,n+ 1}).
Definition: The graph My(n, k) = C(n* + k,{n —1,n,n+ 1,n + 2}).

Note that Mq(n, k) has degree 6 and My(n, k) has degree 8. The idea behind both of these
constructions is that they can tolerate faults by using the larger offsets (n 4+ 1 and n 4 2)
to jump over faults. The remaining constructions are based on the target graph T5(n).

Definition: The graph M3(n, k) = C(n® + k,{1,2,n,n+ 1}).
Definition: The graph My(n,k) = C(n?> + n +k,{1,2,n+ 1,n+ 2}).

Note that both Ms(n,k) and M4(n, k) have degree 8. In both constructions, the 1-offset
and 2-offset edges of the fault-tolerant graphs implement the 1-offset edges of the target
graph and the n-offset, (n + 1)-offset, and (n + 2)-offset edges of the fault-tolerant graph
implement the n-offset edges of the target graph. In particular, the (n+1)-offset and (n42)-
offset edges of My(n, k) can implement the n-offset edges of the target graph, provided that
each window of n 4+ 1 consecutive nodes contains at least 1 fault and each window of n + 2
consecutive nodes contains at most 2 faults. Although it is very unlikely (or impossible)
that each window of n 4+ 1 consecutive nodes contains at least 1 fault, we can view up to n
healthy nodes as being “dummy faults” (because there are n + k spares) in order to satisfy
this requirement.

Finally, constructions Ms(n, k) and Mg(n, k) are hierarchical constructions based on Ms(n/2, k)
and My(n/2,k), respectively. They are defined only for even values of n.

Definition: The graph Ms(n, k) is created from M3(n/2, k) as follows:
1. Create n' = (n/2)(n/2)+k = n?/4 + k squares (that is, cycles of length 4) numbered
0 through n’ — 1.

2. For each square 7, connect the upper right corner of ¢ to the upper left corners of
(i+1)mod n’ and (i+2) mod n’, and connect the lower right corner of i to the lower
left corners of (i + 1) mod n’ and (i 4 2) mod n'.

3. For each square ¢, connect the lower left corner of ¢ to the upper left corners of
(i+ n)mod n' and (i4+ n + 1) mod n’, and connect the lower right corner of i to the
upper right corners of (i + n) mod n’ and (i + n 4+ 1) mod n'.

Definition: The graph Mgs(n, k) is created from My(n/2, k) as follows:

1. Create n’ = (n/2)(n/2)+(n/2)+k = n?/4+n/2+k squares (that is, cycles of length
4) numbered 0 through n’ — 1.
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2. For each square 7, connect the upper right corner of ¢ to the upper left corners of
(i4+1) mod n’ and (¢ +2) mod n’, and connect the lower right corner of i to the lower
left corners of (7 + 1) mod »n’ and (i 4+ 2) mod n'.

3. For each square ¢, connect the lower left corner of ¢ to the upper left corners of
(i+n+1)modn’ and (i + n 4+ 2) mod n’, and connect the lower right corner of i to
the upper right corners of (i + n 4+ 1) mod »n’ and (i + n 4 2) mod n’.

Note that both Ms(n, k) and Mg(n, k) have degree 6. The idea behind these constructions
is that the squares act as 2 by 2 submeshes and the graphs can be reconfigured if the
corresponding fault-tolerant graph (namely Ms(n/2,k) or M4(n/2,k)) can tolerate faults
located in the positions corresponding to the faulty squares (see the proof of Theorem 3.5
for a description of hierarchical fault-tolerant graphs).

4.2 Asymptotic Techniques

In this section we will present several definitions and lemmas that will be useful in establish-
ing the asymptotic fault-tolerance of the six constructions given above. It will be assumed
throughout that k < n/2 and k = o(n).

Definition: A graph tolerates O(f(n)) random faults iff o f(n)) random faults can be
tolerated with a probability that is 1 — o(1) and w(f(n)) random faults can be tolerated
with a probability that is o(1).

Definition: Given a circulant graph with = nodes, and given integers y and z where
0 < vy,z < z, the y-node window starting at z, denoted W (y, z), consists of the y nodes in
the graph numbered z,z 4+ 1 mod x,...,z+ y — 1 mod x.

Definition: Given a circulant graph with = nodes, and given integers y and z where
0 <y,z < z,the distance between y and z, denoted dist(y, z), is the minimum of z—y mod z
and y — z mod z, and nodes 2 and y are consecutive iff dist(y,z) = 1.

Definition: Given a circulant graph with 2 nodes, and given integers y and z where 1 < y <
xz and 0 < z < z, the y-th healthy node following (respectively, preceding) = is the healthy
node a such that there are exactly y healthy nodes in the set {z+1 mod z, 2+2 mod x,...,a}
(respectively, {z — 1 mod z,z — 2 mod z,...,a}).

We will consider the fault-tolerance of My(n,k) and Ms(n, k) with respect to the target
graph Ti(n), and the fault-tolerance of Ms(n, k), My(n,k), Ms(n,k) and Mg(n, k) with
respect to the target graph Ty(n). For My(n, k), My(n, k), Ms(n, k) and M4(n, k), we will
consider only embeddings of the target graph in which node 0 of the target graph maps
to some healthy node h in the fault-tolerant graph, and for each ¢, node ¢ in the target
graph maps to the i-th healthy node following node h. For Ms(n, k) and Mg(n, k), we will
consider only embeddings obtained by viewing squares that contain faults as representing
faulty nodes in the corresponding fault-tolerant graph (namely Ms(n/2,k) or My(n/2,k)).
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Lemma 4.1 Let M’ be a circulant graph with ©(n?) nodes and let y = O(n). Assume that
M’ contains k randomly located faulty nodes. If k is 0(n1/2), the probability that there exists
a node 1 such that W(y,1) contains two or more faults is o(1).

Proof: Given any two faults ¢ and b, the probability that there exists a node ¢ such
that both a and b lie in W(y,7) is ©(n~'). There are o(n) distinct pairs of faults, so
the probability that there exists a node ¢ such that W(y,?) contains two or more faults is
o(n™n) =o(1). O

Lemma 4.2 Let M’ be a circulant graph with ©(n?) nodes and let W = W (y, 1), W(y, 22),
oo, Wy, zg) be a collection of ¢ mutually disjoint y-node windows in M', where y = O(n)
and ¢ = O(n). Assume that M' contains k randomly located faulty nodes. If k is w(n'/?),
the probability that there exists a window in W that contains two or more faults is 1 —o(1).
Proof: Divide the faults into halves. After the first half of the faults have been placed, if
no window in W contains two or more faults then there must be w(n®?) healthy locations,
each of which lies within a window in W that contains a fault. Therefore, the probability
that any given fault in the second half will lie in a window in W that contains another fault
is w(n‘1/2). As a result, the probability that no window in W contains two or more faults
after all of the faults have been placed is at most (1 — n_1/2)‘”(”1/2) =(1- n_1/2)”1/2‘”(1) =
(1/e)*M = o(1). O

Lemma 4.3 Let M’ be a circulant graph with ©(n?) nodes and let y = ©(n). Assume that
M’ contains k randomly located faulty nodes. If k is 0(n2/3), the probability that there exists
a node 1 such that W(y,1) contains three or more faults is o(1).

Proof: Given any three faults, the probability that there exists a node ¢ such that all
three faults lie in W(y,7) is ©(n=%). There are o(n?) distinct sets of three faults, so the
probability that there exists a node ¢ such that W(y,¢) contains three or more faults is
o(n™2n%) = o(1). O

Lemma 4.4 Let f(n) be any function such that 1 < f(n) < n. Given w(n) independent
Bernoulli trials, each of which has a probability of success of at least 1/ f(n), the probability
of at least n/ f(n) successes is 1 — o(1).

Proof: Divide the trials into w(n/f(n)) groups, each of which contains at least [f(n)]
trials. Given any one group of trials, the probability of at least one success in that group
is at least 1/2. Therefore, given any 2 [n/f(n)] groups, the probability of at least n/f(n)
successes is at least 1/2. This implies that the probability that the entire set of w(n) trials
contains at least n/f(n) successes is at least 1 — (1/2)“() =1 — o(1). O

Lemma 4.5 Let M’ be a circulant graph with ©(n?) nodes and let W = W (y, 1), W(y, 22),
s Wy, z4) be a collection of ¢ mutually disjoint y-node windows in M', where y = O(n)
and ¢ = O(n). Assume that M' contains k randomly located faulty nodes. If k is w(n?/?),
the probability that there exists a window in W that contains three or more faults is 1 —o(1).
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Proof: Divide the faults into three groups, each of which contains w(n?/3) faults. Consider
the three following statements:

Statement 1: At least n2/® windows in W contain at least one fault each.
Statement 2: At least n!/? windows in W contain at least two faults each.

Statement 3: There exists a window in W that contains three or more faults.

For all sufficiently large n, after the first group of faults has been placed, at least one of
the three statements above must be true.

First, consider the situation in which Statement 1 is true after the first group of faults has
been placed. For each fault in the second group, consider that fault to be a success iff it
lies in a window in W that contains a fault from the first group. Given any fault in the
second group, the probability that it is a success is Q(n‘1/3). It follows from Lemma 4.4
that with probability 1 — o(1) at least n'/3 faults in the second group are successes.

Therefore, regardless of which statement is true after the first group of faults is placed,
there is a probability of at least 1 — o(1) that after the second group of faults is placed,
either Statement 2 or Statement 3 (or both) is true. Now consider the situation in which
Statement 2 is true and Statement 3 is false after the second group of faults is placed. For
each fault in the third group, consider that fault to be a success iff it lies in a window in
W that contains at least two faults from the union of the first and second groups. Given
any fault in the third group, the probability that it is a success is Q(n_2/3). It follows from
Lemma 4.4 that with probability 1 — o(1) at least one fault in the third group is a success.

As a result, in any case there is a probability of at least 1 — o(1) that after all of the faults
have been placed, Statement 3 holds. O

Lemma 4.6 Let M’ be a circulant graph with ©(n*) nodes. Assume that M' contains k
randomly located faulty nodes. If k is o(n), the probability that there exists a pair of faults
that are consecutive is o(1).

Proof: Given any two faults, the probability that they are consecutive is ©@(n=2). There
are o(n?) distinct pairs of faults, so the probability that there exists a pair of faults that
are consecutive is o(n=?n%) = o(1). O

4.3 Asymptotic Results

Given the previous definitions and lemmas, we are now ready to establish the asymptotic
fault-tolerance of the six constructions.

Lemma 4.7 Assume that My(n,k) contains k faulty nodes. My(n,k) tolerates the faults
iff for each i, 0 <i < n?+k, W(n + 1,1) contains at most one fault.
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Proof: First, assume that for each 7,0 <4 < n?+k, W(n+1,1) contains at most one fault.
In this case, given any healthy node 7, W(n + 2,4) contains at most one fault. Therefore,
there is an edge between each healthy node and both the (n — 1)-st healthy node following
it and the n-th healthy node following it. As a result, M;y(n, k) contains a healthy copy of

Tl(n)

Next, assume that there exists an ¢, 0 < ¢ < n? + k, such that W(n + 1,1) contains two or
more faults. Let a be the first healthy node preceding ¢. Let a’ be the node in T7(n) that
maps to a, let &’ be node a’ + n mod n? in Ty(n), and let b be the node to which & maps.
Note that b is the n-th healthy node following a, so b ¢ W(n + 1,7) and @ and b are not
connected to one another. O

Theorem 4.8 The graph M (n, k) tolerates ©(n'/?) random faults.

Proof: The proof is immediate from Lemmas 4.1, 4.2 and 4.7. O

The proof of the following lemma is analogous to that of Lemma 4.7 and is omitted.

Lemma 4.9 Assume that My(n, k) contains k faulty nodes. My(n, k) tolerates the faults
iff for each i, 0 < i < n® +k, W(n +2,i) contains at most two faults.

Theorem 4.10 The graph Ma(n, k) tolerates @(n?/?) random faults.
Proof: The proof is immediate from Lemmas 4.3, 4.5 and 4.9. O

Lemma 4.11 Assume that Ms(n,k) contains k faulty nodes. Ms(n,k) tolerates the faults
if for each i, 0 < i < n?+k, W(n + 1,i) contains at most one fault.

Proof: Given any healthy node i, W(n + 2,14) contains at most one fault. Therefore, there
is an edge between each healthy node and both the first healthy node following it and the
n-th healthy node following it. As a result, M5(n, k) contains a healthy copy of Ty(n). O

Lemma 4.12 Assume that Ms(n, k) contains k faulty nodes. Ms(n,k) does not tolerate
the faults if there exist x and y, where 0 < x,y < n? + k, dist(z,y) > 2n, W(n + 1,2)
contains at least two faults, and W(n + 1,y) contains at least two faults.

Proof: Assume for the sake of contradiction that the faults can be tolerated. Let a be
the first healthy node preceding x and let a’ be the node in T%(n) that maps to a. If there
exists a node o’ in Ty(n) where ' = a’ 4+ n, let b be the node to which & maps. Note that b
is the n-th healthy node following @, so b ¢ W(n + 1,2) and a and b are not connected to
one another. Therefore, no such node b exists, which implies that a’ > n? — n.

Let ¢ be the first healthy node preceding y and let ¢ be the node in T5(n) that maps to c. A
similar argument shows that ¢/ > n?—n. Asaresult, |a'—¢/| < n—1,s0 dist(a,c) < n—1+k
and dist(z,y) <n — 14 2k < 2n, which is a contradiction. O

18



Theorem 4.13 The graph Ms(n, k) tolerates ©(n'/?) random faults.

Proof: If the number of faults is o(n'/?), it follows from Lemmas 4.1 and 4.11 that the
probability of tolerating the faults is 1 — o(1). If the number of faults is w(n!/?), divide
the faults into halves. Let Wy = W(y,0),W(y,y), W(y,2y),...,W(y,qy) and let Wy =
Wiy, (q+2)y), W(y, (¢+3)y), W(y,(g+4)y) ..., W(y,2qy) where y = n+1 and ¢ = [n/4].
Apply Lemma 4.2 to the first half of the faults with W = Wy, apply Lemma 4.2 to the
second half of the faults with W = W5, and apply Lemma 4.12 to complete the proof. O

Definition: Given a circulant graph with a nodes, a block of healthy nodes is a window
W(y,i), where 1 <y < 2 and 0 < ¢ < z, consisting solely of healthy nodes such that both
node ¢ — 1 mod z and node i + y mod z are faulty.

Consider the following algorithm for adding dummy faults to My(n, k):

Algorithm A: Consider each block of healthy nodes separately. Assume a block consists
of y healthy nodes. There are three cases based on the value of .

Case 1: y < n. In this case, do not add any dummy faults to the block.

Case 2: n+ 1 <y < 2n. In this case, add one dummy fault to the block. Place the dummy
fault in the middle of the block so that it divides the block into two subblocks of
healthy nodes, the first of which has [(y — 1)/2] nodes and the second of which has

|(y — 1)/2] nodes.

Case 3: 2n + 1 < y. In this case, add two dummy faults that divide the block into three
subblocks of healthy nodes, the first of which has n — 1 nodes, the second of which has
z =y — 2n nodes, and the third of which has n — 1 nodes. Let a and b denote these
two dummy nodes. Then add an additional 2 = |z/(n 4 1)] dummy faults between «
and b. This leaves w = z — x healthy nodes in the block, which are divided into x + 1
subblocks of healthy nodes by the & dummy faults. Distribute the dummy faults so
that each subblock has length |w/(z + 1)] or [w/(z + 1)].

The following lemmas establish properties of Algorithm A.
Lemma 4.14 Given w, x and z in Case 3 above, an < w < (z 4 1)n.

Proof: Because z = [z/(n+1)]|, 2 > 2(n+ 1) and w = z — & > an. Because z =
|z/(n+ )], z<an+nt+zandw=z—z<azn+n=(zx+ 1)n. O

Lemma 4.15 After applying Algorithm A, no block of n + 1 or more healthy nodes exists.

Proof: If there is a block of n + 1 < y < 2n healthy nodes prior to applying Algorithm
A, the algorithm adds a dummy node that divides the block into subblocks of at most
[(y — 1)/2] < n healthy nodes each. If there is a block of 2n + 1 < y healthy nodes
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prior to applying Algorithm A, the algorithm adds dummy nodes @ and b that divide
the block into subblocks of n — 1, 2 = y — 2n, and n — 1 healthy nodes, each. Then
x = |z/(n+1)] dummy faults are added to the subblock of z healthy nodes, leaving
w = z — x healthy nodes. These w healthy nodes occur in subblocks of length at most

[w/(z+1)] < [(z 4+ n/(x+1)] <n. O

Lemma 4.16 After applying Algorithm A, no dummy fault is consecutive with another
(actual or dummy) fault, provided that n > 2.

Proof: If there is a block of n + 1 < y < 2n healthy nodes prior to applying Algorithm
A, the algorithm adds a dummy node that divides the block into subblocks of at least
|(y — 1)/2] > |[n/2] > 1 healthy nodes each. If there is a block of 2n + 1 < y healthy
nodes prior to applying Algorithm A, the algorithm adds dummy nodes @ and b that divide
the block into subblocks of n — 1, 2 = y — 2n, and n — 1 healthy nodes, each. Then
x = |z/(n+1)] dummy faults are added to the subblock of z healthy nodes, leaving
w = z — x healthy nodes. If v = 0, there are w = 2z — 0 = y — 2n > 1 healthy nodes
between dummy faults @ and b. If & > 1, the w healthy nodes occur in subblocks of at least
|lw/(z+1)] > |an/(z + 1) > [n/2] > 1 nodes each. O

Lemma 4.17 Consider any configuration of actual faults such that no two faults are con-
secutive and there does not exist a node i such that W(2n + 3,1) contains three or more
faults, where n > 2. After applying Algorithm A to this configuration of faults, no two
(actual or dummy) faults will be consecutive and there will not exist a node j such that
W(n+ 2,7) contains three or more (actual or dummy) faults.

Proof: The fact that no two faults will be consecutive follows immediately from the
preceding lemma. Now assume for the sake of contradiction that after applying Algorithm
A, there exists a node j such that W(n 4 2,J) contains three or more faults. Clearly,
W(n + 2,7) must contain at least one dummy fault. Select one such dummy fault and
denote it as d, and let C' denote the block of y originally healthy nodes containing d.
Clearly, y > n + 1.

If n+1 <y < 2n,then dis the only dummy fault in C, so either W(n + 2, j) contains two
actual faults or W(n + 2, j) contains some other dummy fault located in some other block
of originally healthy nodes. First, consider the case where W(n + 2, j) contains two actual
faults. Let e and f denote these actual faults. Either y lies between e and f or it does not.
If y lies between e and f, W(n + 2,7) must contain at least y + 2 > n + 3 nodes, which
is a contradiction. Thus y does not lie between e and f. Now let ¢/ denote the number of
nodes between e and f. Because W(n 4 2, j) contains only n 4+ 2 nodes and because there
are at least |(y — 1)/2] > y/2 — 1 nodes between d and every actual fault, it follows that
y' 4+ y/2+2 < n+ 2, which implies that ' < n — y/2 and there were three actual faults
within a window of y + ¢’ +3 < n+y/2+ 3 < 2n + 3 nodes, which is a contradiction.

Now, consider the case where W(n 4 2, j) contains a dummy fault located in another block
of originally healthy nodes. Let d’ denote such a dummy fault and let C’ denote the block of
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y' originally healthy nodes containing d’. Clearly, y’ < 2n, because otherwise there would
be at least n — 1 healthy nodes between d’ and the nearest actual fault. However, note
that if C” follows C' then there are at least |(y — 1)/2| > |n/2] consecutive healthy nodes
following d and at least [(y" — 1)/2] > [n/2] consecutive healthy nodes preceding d’, which
implies that W(n + 2,7) contains at least n 4+ 3 nodes, which is a contradiction. The case
in which C’ precedes C' is analogous.

If 2n +1 < y, then either W(n + 2,j) contains at least one actual fault and at least
one dummy fault, or else W(n 4 2,j) contains three dummy faults and no actual faults.
If W(n + 2,7) contains at least one actual fault and at least one dummy fault, then it
must contain the n — 1 healthy nodes which separate the dummy faults in C' from the
actual faults. Furthermore, because no two (actual or dummy) faults are consecutive,
W(n+2,7) must contain at least n+ 3 nodes, which is a contradiction. On the other hand,
if W(n + 2,7) contains three dummy faults and no actual faults, let a, b, w, z, and 2z be
as defined in Case 3 of Algorithm A. It follows that 2 > 1 and that W(n + 2, j) contains
at least two blocks of |w/(z + 1)| or more healthy nodes in addition to the three dummy
faults. However, the fact that z > 1 implies that z > n 4+ 1. Therefore, the dummy faults
designated a and b cannot both be in W(n + 2,j), so it follows that z > 2. Therefore,
lw/(z+1)] > |an/(z+1)] > [2n/3] > n/2, so W(n + 2,j) contains at least n healthy
nodes and three dummy faults, which is a contradiction. O

Lemma 4.18 After applying Algorithm A, at least n? healthy nodes remain.

Proof: First, we will show that Algorithm A adds at most one dummy fault per n + 1/3
originally healthy nodes. In Case 2 of Algorithm A, one dummy fault is added to a block
of at least n + 1 originally healthy nodes. In Case 3 of Algorithm A, if two dummy faults
are added there are at least 2n + 1 originally healthy nodes in the block, so at most one
dummy fault is added per n + 1/2 originally healthy nodes. In Case 3 of Algorithm A, if
¢ > 3 dummy faults are added there are at least in 4+ ¢ — 2 originally healthy nodes in the
block, so at most one dummy fault is added per n+ (i — 2)/i originally healthy nodes. This
quantity is minimized when ¢ = 3, at which point one dummy fault is added per n + 1/3
originally healthy nodes.

Now consider the case in which exactly k actual faults exist. In this case there must be n?+n
originally healthy nodes, so at most [(n? + n)/(n + 1/3)| < n dummy faults are added, and
at least n? healthy nodes remain. Now consider the case in which k& — z actual faults exist,
where 2 > 1. At most [(n® +n+2)/(n+1/3)] < [(n? +n)/(n+1/3)] + [2/(n+ 1/3)] <
n 4+ 2 dummy faults are added, and at least n? healthy nodes remain. O

The proofs of the following two lemmas are analogous to those of Lemmas 4.11 and 4.12,
and are omitted.

Lemma 4.19 Assume that M4(n, k) contains f < n+k (actual or dummy) faults. My(n, k)
tolerates the faults if no two faults are consecutive and for each i, 0 < i < n?> + n + k,
W(n + 1,17) contains at least one fault and W(n + 2,1) contains at most two faults.
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Lemma 4.20 Assume that M4(n, k) contains [ faulty nodes. My(n,k) does not tolerate
the faults if there exist @ and y, where 0 < x,y < n® 4+ n + k, dist(z,y) > 4n, W(n + 2,2)
contains at least three faults, and W(n + 2,y) contains at least three faults.

Theorem 4.21 The graph My(n, k) tolerates ©(n*/®) random faults.

Proof: First, consider the case where the number of faults is o(n?/3). It follows from
Lemmas 4.3 and 4.6 that with probability 1 — o(1), no two actual faults are consecutive
and there does not exist a node ¢ such that W(2n + 3,7) contains three or more faults.
Therefore, it follows from Lemmas 4.18, 4.17 and 4.19 that after applying Algorithm A, the
faults can be tolerated with probability 1 — o(1).

Next, consider the case where the number of faults is w(n?/%). In this case, divide the faults
into halves. Let Wy = W(y,0),W(y,y),W(y,2y),...,W(y,qy) and let Wy = W(y,(q+

4)y), Wy, (¢ +5)y), W(y,(¢+6)y)...,W(y,2qy) where y = n + 2 and ¢ = [n/4]. Apply
Lemma 4.5 to the first half of the faults with W = Wy, apply Lemma 4.5 to the second half
of the faults with W = W, and apply Lemma 4.20 to complete the proof. O

The following theorems follow immediately from Theorems 4.13 and 4.21.
Theorem 4.22 The graph Ms(n, k) tolerates ©(n'/?) random faults.
Theorem 4.23 The graph Mg(n, k) tolerates ©(n?/>) random faults.

Table 4.3 summarizes various characteristics, including the asymptotic fault-tolerance, of
the six fault-tolerant constructions.

| Construction | Symbol | Deg. | No. spares | Offsets | Asymp. FT |
M,y circ6 6 k {n—-1,n,n+1} O(n'/?)
M, circ8 8 k {n—1,n,n+1,n+2} O(n?/3)
M diag8 8 k {1,2,n,n+ 1} O(n'/?)
My diag8r 8 k+n {1,2,n+ 1,n+ 2} @(nZ/B)
Ms diag6 6 4k Ms 4 submesh 0O(n'/?)
Mg diag6r 6 4k + 2n My + submesh @(n2/3)

Table 1: Comparison of characteristics of the 6 FT meshes.

Notice that My(n,k) and My(n,k) both have degree 8 and tolerate @(n?/?) faults, but
My(n, k) requires more spares than does My(n, k). Thus, the technique of adding dummy
faults does not in itself provide a more practical fault-tolerant network. Similarly, notice
that M;(n,k) and Ms(n, k) both have degree 5 and tolerate ©(n'/?) faults, but Ms(n, k)
requires more spares than does Mj(n, k). Thus, the technique of using 2 by 2 submeshes
does not in itself provide a more practical fault-tolerant network. However, by combining
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these two techniques, Mg(n,k) is the only degree 6 network that is capable of tolerating
O(n?*/?) faults.

Finally, we will consider laying out the fault-tolerant graphs presented in this section using
Thompson’s VLSI model [27]. The following theorem shows that, just like the mesh itself,
all of the fault-tolerant constructions can be laid out with constant length wires.

Theorem 4.24 [t is possible to lay out each of the graphs M;(n,k) where 1 < ¢ < 6 using
only wires with length O(1).

Proof: The layouts for graphs My(n, k), My(n, k), Ms(n, k) and My(n, k) follow immedi-
ately from the techniques presented in the proof of Theorem 3.12. The layouts for graphs
Ms(n, k) and Mgs(n, k) follow from the layouts for Ms(n/2, k) and M4(n/2, k), respectively,
by replacing each node by a square of four nodes. O

4.4 Simulation Results

Figures 7 to 9 show the simulation results for the fault tolerance of an n X n target mesh
for n = 16, 64 and 256, respectively. When n = 16 or 64, the probability given for each
construction and each value of £ is the result of 10,000 simulation trials. When n = 256, the
probability given for each construction and each value of k is the result of 1,000 simulation
trials.

For each figure, the probability of reconfiguration for each construction of the FT meshes,
M;(n,k) where 1 < i < 6, is plotted as a functions of k. Each curve has a name of the
form “xyz”, where “x” is either “circ” for circulant graph or “diag” for diagonal graph (as
the basic target graph), “y” denotes the degree (6 or 8), and “z” is either “r” (designating
an extra row of spare nodes or supernodes) or an empty string. The solid lines denote the

degree-6 F'T meshes while the dotted lines denote the degree-8 FT meshes.

Note that the FT meshes for the three curves from the left tolerate ©(n'/?) random faults,
while the remaining three curves on the right can tolerate @(n?/?) random faults. Thus
the asymptotic bounds proven above do appear to describe the behavior of these networks
for realistic values of n. Also, note that the graph Mg(n, k) (designated “diag6r” in the
figures) performs the best out of the degree-6 networks studied, and that it has over a 90%
chance of tolerating 12 faults when n = 64.
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Figure 7: Simulation results of fault tolerance for a 16 x 16 target mesh.
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results of fault tolerance for a 64 x 64 target mesh.
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Figure 9: Simulation results of fault tolerance for a 256 x 256 target mesh.
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