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Abstract

In this paper we define nonuniform-demand networks as a useful connection model, in between multicasts and

general connections. In these networks, the source has a pool of messages, and each sink demands a certain number

of messages, without specifying their identities. We study the solvability of such networks and give a tight bound on

the number of sinks that achieve capacity in a worst-case network. We propose constructions to solve networks at, or

slightly below capacity, and investigate the effect large alphabets have on the solvability of such networks. We also

show that our efficient constructions are suboptimal when used in networks with more sinks, yet this comes with little

surprise considering the fact that the general problem is shown to be NP-hard.

I. I NTRODUCTION

Network coding for multicast networks is a well studied, and by now, well understood subject. Starting at the network coding

”big-bang” result of [1] and continuing in a multitude of works, a lot of attention was pointed toward this type of networks, which

remain the paramount application for network coding to date. A multicast connection is depicted in figure 1(a). For general

connections (figure 1(b)), [2] gives algebraic characterizations of solvable networks, but concludes those are hard to check. Linear

network coding was shown to be hard [3] and no alternative coding constructions are known. Other connection models were

studied in [2], and for them solvability is equivalent to different combinatorial properties of the network. The model considered in

this paper is the model ofnonuniform-demandnetworks whose formal definition will follow. In that model, every sink demands a

number of information messages from the pool of messages available at the source, as depicted in figure 1(c). It is different from

multicast in that a sink demands only asubsetof the source messages, and it is different from the general connection model since

only thesizeof the message subset is specified rather than its exact content. This type of connections is motivated by various

applications whereby the emanated information is in a multi-resolution form, allowing sinks to utilize it under different rate

conditions. A multiple description coded source lends itself naturally to such connections. (See [4] for a tutorial and references

on multiple description coding).

Definition 1: A nonuniform-demand network problemis a directed acyclic graphG(V, E) (unit capacity edges) with a node

s distinguished as the source node, together with a demand functionD : V → Z∗ (whereZ∗ denotes the set of non-negative

integers) whose values represent the number of information messages demanded by each node.

The network is said to besolvable, if there exists a network code that satisfies all demands simultaneously. An interesting question

to ask about nonuniform-demand networks is whether, similarly to multicast networks, solvability can be determined based solely

on the minimum cuts between the source and each of the sinks. In section III we pursue a direct generalization of the multicast

theorem (min cut ofd is both sufficient and necessary for multicast ofd units of information) to sinks with different min cutsdi

to the source. We show that such a generalization works when we bound the number of partial demand sinks and that this bound

cannot be improved in a general result. We continue to show that further guarantees can be provided when some sinks operate

slightly below capacity. Also, we argue that for a given network, more can be achieved relative to using the construction used to

achieve the worst case guarantees. In section V we discuss the power of large alphabets in the context of nonuniform-demand

networks and in VI we show that the general nonuniform-demand problem is NP-hard for linear and nonlinear codes.

II. D EFINITIONS AND NOTATIONS

Let d0 = maxv∈V D(v), the maximum demand of a sink in the network. Skipping other possible sinks with demandd0 we

number the sink demandsdi, according to a non-increasing order. In other words we havedi < d0 for all i > 0 and for all
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Fig. 1. Illustration of multicast (a), general connections (b), and nonuniform-demand networks (c)

0 < i < j we havedi ≥ dj (except ford0, a di value may repeat for differenti). Therefore, fori > 0, di can specify both

the sink identity and its demand. For notational compactness we will use both; and the context will make clear the role ofdi

in each instance. We will call the sinksdi for i > 0, partial demandsinks. Denote byc0 the min cut betweens and any of

the sinks with demandd0. ci is the min cut betweens and the nodedi. Using standard linear network coding terminology, the

source emits linear combinations of the information messages on its outgoing edges. The network nodes take linear combinations

of the symbols on their incoming edges and output them on their outgoing edges. The collection of these linear combinations

is referred to as the network code. The yield of this network code is global coding vectors available at the sinks, which are the

resulting linear combinations of the information messages available at the source. In our discussion, we will collect these length

d0 global coding (row) vectors intodi × d0 matrices. For anm × n matrix A = [a1, a2, . . . , an], define the zero column index

setZA = {i : ai = 0}. Also define the nonzero column index setNA = {1, . . . , n} − ZA. For a set of indicesT , defineA(T )
to be the submatrix ofA that consists of the columnsT . We say that a rectangularm × n matrix A is invertible(n > m) when

|ZA| = n−m andA(NA) is an invertiblem×m matrix.

Definition 2: A (elementary) column operation on a matrixB is calledZA-contaminatingif it adds a nonzero multiple of a

column inNA to a column inZA. A column operation which is notZA-contaminating will be calledZA-non contaminating.

III. G ENERALIZATION OF MULTICAST NETWORKS

A. Two partial demand sinks

The following theorem gives the best possible generalization of the multicast capacity to the nonuniform-demand problem.

Theorem 3:A nonuniform-demand connection withm sinks, each with demandd0 and 2 sinks with demandsd1 < d0, d2 < d0,

is solvable using linear codes if and only if the minimum cut between the source and each of them + 2 sinks is greater or equal

to its demand.

For the case ofm = 1 we get the following corollary.

Corollary 4: Any three demands in a network can be simultaneously satisfied using linear codes if and only if the minimum

cut between the source and each of the sinks is greater or equal to its demand.

Proof of theorem:

We prove the constructive part. Assumeci = di for all i. We show that taking a linear multicast code for them users with

demandsd0 (such a code exists and can be found in polynomial time [5],[6]), one can transform it into a code for allm + 2 users

using linear operations on the information symbols. The proof will use the following argument. If the network code encodes a

message vectoru and provides a sink with a matrixM of global coding vectors, and if that sink prefers having a matrixG = MP

instead (for any invertibleP ), then the source that has access to all messages can encode the vectoru′ = Pu and provide the sink

with that desiredG. Of course all the sinks’ global coding vectors will change appropriately. The code construction algorithm

of [6] can be directly extended to provide each sink withci = di linear independent global coding vectors of lengthd0. Note that

in generalci ≤ d0 so that stage alone only guarantees the satisfaction of thed0 demands. Group thed1 coding vectors for userd1

into ad1 × d0 matrixA. Similarly, group thed2 coding vectors for userd2 into ad2 × d0 matrixB. Using Gaussian elimination

on the columns ofA we getA(1) = AP (1), whereP (1) is ad0× d0 invertible matrix and soA(1) has exactlyd1 nonzero columns

and rankd1. The matrixA(1) is thus invertible andd1 information messages can be recovered at the sink. We now show that a

similar invertible matrix can be resulted for user2 usingZA(1) -non contaminating column operations thus maintaining the zero

columns ofA(1) along the process. First we defineB(1) = BP (1). Let r = rank
(
B(1)(ZA(1))

)
. We distinguish two cases.
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Case I: r = d2

If B(1)(ZA(1)) has a maximal rank, a Gaussian elimination can be carried out with onlyZA(1) -non contaminating column opera-

tions, leaving exactlyd0 − d2 all zero columns.

Case II: r < d2

In this case Gaussian elimination can contaminate columns inZA(1) since column exchanges may be necessary betweenZA(1)

andNA(1) . We will then use the following process. Using only column operations onB(1)(ZA(1)) we can zero|ZA(1) | − r of

its columns. By adding multiples of columns fromB(1)(ZA(1)) to columns inB(1)(NA(1)) we can zeror rows of B(1)(NA(1)).
Denote this modification of submatrixB(1)(NA(1)) by B̃. That ensures that

rank(B̃) ≤ d2 − r

Now Gaussian elimination of̃B alone using column operations can zero|NA(1) | − rank(B̃) of its columns. The aggregate

column operations performed onB(1) result in a matrixB(2) = B(1)P (2), whereP (2) is invertible and includes onlyZA(1) -non

contaminating column operations. We can sum up the zero columns ofB(2) and get

|ZB(2) | = (|ZA(1) | − r) + (|NA(1) | − rank(B̃)) ≥

≥ |ZA(1) | − r + |NA(1) | − d2 + r = d0 − d2

Sincerank(B) = d2, using invertible column operations we need have|ZB(2) | ≤ d0 − d2 so we finally get

|ZB(2) | = d0 − d2

Therefore bothB(2) andA(2) are invertible. 2

Note that theidentitiesof the messages received byd2 cannot be determined freely. Those may depend on the network and the

specific code the construction started with. Therefore, this result is unique to the nonuniform-demand case as defined above. We

next use a network example to prove that the above construction cannot be improved, in general.

Theorem 5:There exist unsolvable nonuniform-demand networks that consist of3 partial demands and all its demands satisfy

di ≤ ci.

Proof:

Consider the example in figure 2 (in all figures assume edges are pointed downward). Demands of1 for d2 andd3 force the source

to emit pure symbols on both its outgoing edges. The additional demand ofd1 disallows nodeC to perform coding. Without

coding, at least one of the demandsd0, d
′
0 cannot be satisfied. We conclude that the network is not solvable. 2

Theorem 3 shows that any nonuniform-demand network with at most two partial demands is solvable. The example in theorem 5
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Fig. 2. Unsolvable connection with three partial demands

shows that the number of solvable nonuniform demands cannot exceed two, in general. The code modification construction that

was used to attain capacity in theorem 3 is weak in the sense that it takesany linear multicast code for thed0 demand sinks,

and transforms it into a network code for all the sinks, using appropriate linear operations on the information symbols. It is thus

surprising that this construction guarantees the maximum possible partial demand sinks in a nonuniform-demand problem.
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B. More than two partial demand sinks

Theorem 5 deems impossible any attempt to provide further guarantees for capacity achieving nonuniform-demand networks.

However, more guarantees can be obtained once we operate a subset of the sinks below their best-case capacity(di < ci). This

concept of achieving more by relaxing the strict capacity requirement has already appeared in the network coding literature, and

was found significantly useful [7],[8]. Here the idea is that with three or more partial demand sinks, for some sink we may exhaust

the ways of zeroing columns using non-contaminating column operations. In such cases, if that sink has more coding vectors than

its demand, it turns out that clever column, and now alsorow operations can guarantee satisfying its demand. As one instance of

that method, we shall state (without proof) a theorem concerning networks with3 nonuniform-demand sinks.

Theorem 6:A nonuniform-demand connection withm sinks, each with demandd0 and 3 sinks with demandsd3 ≤ d2 ≤ d1 <

d0, is solvable using linear codes ifci = di for i = {0, 1, 2} andc3 = d3 + (d0 − d1).
As an example, theorem 6 guarantees solvability of any network with demand vectord̄ = [6, 6, 5, 4, 3] if the corresponding min

cut vector is element-wise at leastc̄ = [6, 6, 5, 4, 4]. Theorem 6 requires sinkd3, the smallest demand sink, to have a min cut

larger than its demand. However, this is a special case and in the more general one, other sinks can be required to have large min

cuts. Moreover, this method can be generalized to more than3 partial demand sinks, though formulating the exact guarantees

becomes tedious when increasing the number of sinks.

IV. SUBOPTIMALITY OF THE CODE MODIFICATION CONSTRUCTION

Although we showed that the code modification construction given in the proof to theorem 3 is optimal for general networks,

for a particular network using it might render suboptimal results. Indeed, for networks with more than2 partial demand sinks,

more can be achieved by considering the partial demands as well during the design of the network code. We will show this using

the network in figure 3. In figure 3(a), an extension of the multicast code construction algorithm is run, providing each sink with

di linearly independent vectors of length3. The two independent vectors obtained by sinkd1 are

[
0 0 1
1 1 1

]
(these correspond

to C andA + B + C shown in figure 3(a)). It is easy to see that it is impossible to make this2× 3 matrix invertible using column

operations that are non-contaminating for bothd2 andd3; adding column1 to column2 would contaminate sinkd2 and adding

column2 to column1 would contaminate sinkd3. That means this network code which is oblivious tod1 cannot be modified to

satisfy its demand. In figure 3(b), on the other hand, a network code is given that satisfies all demands.
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Fig. 3. Code modification (a) fails in achieving network capacity achieved in (b).

V. THE POWER OF LARGE ALPHABETS

Many known results connect the solvability of networks to the alphabet size used for coding [6],[2],[9],[3] (and more). In

this section we seek to contribute to the above discussion, considering nonuniform-demand networks. We will show that for
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nonuniform-demand networks, alphabets which are sufficient to providingdi linear independent vectors to each sink, are insuf-

ficient to solving the nonuniform-demand problem. That implies that the upper bound of|T | (the number of sinks), given in [6]

for the required field size, may not apply to nonuniform-demand solvable networks. For a given network, defineQLI to be the

smallest field size capable of providingdi linear independent global coding vectors to each sink. DefineQND to be the smallest

field size capable of satisfying the nonuniform demandsdi in each sink. Since havingdi linear independent vectors is a necessary

condition to satisfying the demands, we haveQLI ≤ QND. Beyond satisfying that necessary condition, it is unclear whether large

alphabets can solve nonuniform-demand networks that are unsolvable using smaller alphabets. The following theorem answers

this question to the affirmative.

Theorem 7:There exist networks whereQLI < QND.

Proof:

We will show a network for which a binary alphabet is sufficient to provide each sink withdi linear independent vectors, but

insufficient to solve the network. The network will be shown to be solvable using larger alphabets (e.gGF (3)). For a binary

network code, we can force an edge to carry the symbolX + Y using the gadget given in figure 4. We will use such gadgets to

obtain the network in figure 5. Using a binary code, edgee can carry an element from the set{0 , B + C , B + D , C + D} or

an element from the set{A + B , A + C , A + D , A + B + C + D}. An element from the first set will provide at least one

of the sinks with linearly dependent vectors. An element from the second set will provide each sink with3 linearly independent

vectors, but none of them will result in a valid solution. Taking the message symbols to be from the fieldGF (3), edgee can carry

(A + B) + (A + C) + (A + D) = (B + C + D) mod 3. This combination allows both sinks to obtain messagesB,C, D. 2

We remark that the network used in the proof is solvable using any alphabet of sizeq > 2. Yet it is unknown whether this threshold

effect is true in general.
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VI. H ARDNESS OF THE NONUNIFORM-DEMAND PROBLEM

In [3] it has been shown that it is hard to find linear codes for connections where sinks demand arbitrary sets of information

messages. However, this result does not establish the hardness of the nonuniform-demand case since [3]’s reduction assumes sinks

demandspecificmessages while in the nonuniform-demand problem only anumberof messages can be demanded. Evidently,

specifying just the number of messages demanded by a sink imposes a milder objective for the network code, compared with

the specific messages case. However, as it turns out, the general nonuniform-demand problem is NP-hard as well, even when not

restricted to linear codes. To show that, we will use a simple reduction from3-SAT . Given a3-CNF formulaf overX1, . . . , Xn,

we construct a corresponding nonuniform-demand network. For every variablexj we define a gadget consisting of three sources.

One has access toMj , one toM̄j and another one to bothMj , M̄j . In addition, the variable gadget has a node with demand of1,

connected to the source with access to bothMj , M̄j (see figure 6). For a clauseX1 ∨X2 ∨ X̄3 we define a clause gadget with a

single sink connected as shown in figure 6. We assign a demand of4 to the node in each clause gadget.
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Fig. 6. network corresponding to the clauseX1 ∨X2 ∨ X̄3

Proposition 8: f is satisfiable if and only if the corresponding nonuniform-demand network is solvable.

Proof:

(⇒) Let X = (x1, x2, . . . , xn) be a satisfying assignment off . Then each of the left nodes in each variable gadget can output

Mj if xj = 1 andM̄j if xj = 0. In that case it is obvious that all the clause sinks will be able to recover at least4 messages.

(⇐) If the network is solvable each of the demand1 sinks has exactly one ofMj andM̄j . We can assignxj = 1 if it has message

Mj andxj = 0 if it has M̄j . This assignment satisfiesf since in every clause at least one of the variables contributes a message

not obtained using the direct links, and this message is consistent across all clauses. 2

It is not hard, though space consuming, to show that the reduction works even in the single source case where we use a super

source nodes′ in a similar fashion to [3].

VII. C ONCLUSION

In an attempt at generalizing the multicast model, we have seen special cases in which the hard nonuniform-demand problem is

guaranteed to be solvable, irrespective of the network structure. Some understanding was gained of the nature of these networks

in comparison to other, more often studied network connection models. Still, as an interesting and useful generalization of the

multicast model, it motivates the design of good algorithms.
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