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Abstract

In this paper we define nonuniform-demand networks as a useful connection model, in between multicasts and
general connections. In these networks, the source has a pool of messages, and each sink demands a certain number
of messages, without specifying their identities. We study the solvability of such networks and give a tight bound on
the number of sinks that achieve capacity in a worst-case network. We propose constructions to solve networks at, or
slightly below capacity, and investigate the effect large alphabets have on the solvability of such networks. We also
show that our efficient constructions are suboptimal when used in networks with more sinks, yet this comes with little
surprise considering the fact that the general problem is shown to be NP-hard.

I. INTRODUCTION

Network coding for multicast networks is a well studied, and by now, well understood subject. Starting at the network coding
"big-bang” result of [1] and continuing in a multitude of works, a lot of attention was pointed toward this type of networks, which
remain the paramount application for network coding to date. A multicast connection is depicted in figure 1(a). For genera
connections (figure 1(b)), [2] gives algebraic characterizations of solvable networks, but concludes those are hard to check. Line
network coding was shown to be hard [3] and no alternative coding constructions are known. Other connection models wer
studied in [2], and for them solvability is equivalent to different combinatorial properties of the network. The model considered in
this paper is the model efonuniform-demandetworks whose formal definition will follow. In that model, every sink demands a
number of information messages from the pool of messages available at the source, as depicted in figure 1(c). It is different fro
multicast in that a sink demands onlgabsebf the source messages, and it is different from the general connection model since
only the sizeof the message subset is specified rather than its exact content. This type of connections is motivated by variou
applications whereby the emanated information is in a multi-resolution form, allowing sinks to utilize it under different rate
conditions. A multiple description coded source lends itself naturally to such connections. (See [4] for a tutorial and reference
on multiple description coding).

Definition 1: A nonuniform-demand network problema directed acyclic grap8é(V, E') (unit capacity edges) with a node
s distinguished as the source node, together with a demand funitior — Z* (where Z* denotes the set of non-negative
integers) whose values represent the number of information messages demanded by each node.

The network is said to beolvable if there exists a network code that satisfies all demands simultaneously. An interesting question
to ask about nonuniform-demand networks is whether, similarly to multicast networks, solvability can be determined based solel
on the minimum cuts between the source and each of the sinks. In section Il we pursue a direct generalization of the multica
theorem (min cut ofl is both sufficient and necessary for multicast/afnits of information) to sinks with different min cuts

to the source. We show that such a generalization works when we bound the number of partial demand sinks and that this bou
cannot be improved in a general result. We continue to show that further guarantees can be provided when some sinks oper
slightly below capacity. Also, we argue that for a given network, more can be achieved relative to using the construction used t
achieve the worst case guarantees. In section V we discuss the power of large alphabets in the context of nonuniform-dema
networks and in VI we show that the general nonuniform-demand problem is NP-hard for linear and nonlinear codes.

II. DEFINITIONS AND NOTATIONS

Let dy = max,cy D(v), the maximum demand of a sink in the network. Skipping other possible sinks with defpavel
number the sink demands, according to a non-increasing order. In other words we hiave d, for all i > 0 and for all



Fig. 1. lllustration of multicast (a), general connections (b), and nonuniform-demand networks (c)

0 < i < j we haved; > d; (except fordy, ad; value may repeat for differer. Therefore, fori > 0, d; can specify both
the sink identity and its demand. For notational compactness we will use both; and the context will make clear thé;role of
in each instance. We will call the sinkk for ¢ > 0, partial demandsinks. Denote by, the min cut betweer and any of
the sinks with demand,. ¢; is the min cut betweer and the nodel;. Using standard linear network coding terminology, the
source emits linear combinations of the information messages on its outgoing edges. The network nodes take linear combinatic
of the symbols on their incoming edges and output them on their outgoing edges. The collection of these linear combinatior
is referred to as the network code. The yield of this network code is global coding vectors available at the sinks, which are th
resulting linear combinations of the information messages available at the source. In our discussion, we will collect these leng
dy global coding (row) vectors intd; x d, matrices. For amn x n matrix A = [ay,as, . .., ay,], define the zero column index
setZ, = {i : a; = 0}. Also define the nonzero column index 96 = {1,...,n} — Z4. For a set of indiced’, define A(T)
to be the submatrix ofl that consists of the columrB. We say that a rectangulat x n matrix A is invertible (n > m) when
|Z4| =n—mandA(Ny) is an invertiblem x m matrix.

Definition 2: A (elementary) column operation on a matriis called Z 4-contaminatingf it adds a nonzero multiple of a
columninN4 to a column inZ 4. A column operation which is ndt 4-contaminating will be called ,-non contaminating

Ill. GENERALIZATION OF MULTICAST NETWORKS
A. Two partial demand sinks

The following theorem gives the best possible generalization of the multicast capacity to the nonuniform-demand problem.
Theorem 3:A nonuniform-demand connection with sinks, each with demant) and 2 sinks with demands < dg, ds < do,
is solvable using linear codes if and only if the minimum cut between the source and eacoftBesinks is greater or equal
to its demand.
For the case ofn = 1 we get the following corollary.
Corollary 4: Any three demands in a network can be simultaneously satisfied using linear codes if and only if the minimum
cut between the source and each of the sinks is greater or equal to its demand.
Proof of theorem:
We prove the constructive part. Assume= d; for all i. We show that taking a linear multicast code for theusers with
demandsl, (such a code exists and can be found in polynomial time [5],[6]), one can transform it into a codesior &llusers
using linear operations on the information symbols. The proof will use the following argument. If the network code encodes &
message vectar and provides a sink with a matri¢ of global coding vectors, and if that sink prefers having a maiii< M P
instead (for any invertiblé®), then the source that has access to all messages can encode the'vectos and provide the sink
with that desired~. Of course all the sinks’ global coding vectors will change appropriately. The code construction algorithm
of [6] can be directly extended to provide each sink with= d; linear independent global coding vectors of lengghNote that
in generak; < d, so that stage alone only guarantees the satisfaction aftdemands. Group thé, coding vectors for uset;
into ady, x dp matrix A. Similarly, group thel, coding vectors for usef; into ads x dy matrix B. Using Gaussian elimination
on the columns oft we getA) = AP whereP(") is ad, x d, invertible matrix and soi(*) has exactlyl; nonzero columns
and rankd;. The matrixA(") is thus invertible and/; information messages can be recovered at the sink. We now show that a
similar invertible matrix can be resulted for useusing Z 4)-non contaminating column operations thus maintaining the zero
columns ofA(!) along the process. First we defilé!) = BP(). Letr = rank (B (Z41))). We distinguish two cases.



Caselr =dsy

If BN (Z40)) has a maximal rank, a Gaussian elimination can be carried out withZply-non contaminating column opera-
tions, leaving exactlyly — ds all zero columns.

Casell: r < dy

In this case Gaussian elimination can contaminate columis,in since column exchanges may be necessary betégen
and N ). We will then use the following process. Using only column operationBGﬁ(ZA<1)) we can zerdZ 4| — r of
its columns. By adding multiples of columns froR{")(Z 41)) to columns inB™M (N ,)) we can zera- rows of B (N 4)).
Denote this modification of submatriz*) (N 1)) by B. That ensures that

rank(B) <dy — 7

Now Gaussian elimination oB alone using column operations can zéM, )| — rank(B) of its columns. The aggregate
column operations performed @) result in a matrixB(2) = B P(2) whereP® is invertible and includes onlg ,,-non
contaminating column operations. We can sum up the zero columB&band get

1 Zp>| = (1Zs0| —7) + (|[Ngw| — rank(B)) >

Z|ZA(1)|—T—|—|NA<1)|—d2—|-T=d0—d2

Sincerank(B) = ds, using invertible column operations we need hg¥g.) | < dy — d2 S0 we finally get
| Zp=| =do —do

Therefore bothB(?) and A are invertible. o
Note that thedentitiesof the messages received By cannot be determined freely. Those may depend on the network and the
specific code the construction started with. Therefore, this result is unique to the nonuniform-demand case as defined above. \
next use a network example to prove that the above construction cannot be improved, in general.

Theorem 5:There exist unsolvable nonuniform-demand networks that consispaftial demands and all its demands satisfy
di < Ci.
Proof:
Consider the example in figure 2 (in all figures assume edges are pointed downward). Dendoddoandd; force the source
to emit pure symbols on both its outgoing edges. The additional demadiddiallows nodeC to perform coding. Without
coding, at least one of the demantjsdy, cannot be satisfied. We conclude that the network is not solvable. O
Theorem 3 shows that any nonuniform-demand network with at most two partial demands is solvable. The example in theorem

Fig. 2. Unsolvable connection with three partial demands

shows that the number of solvable nonuniform demands cannot exceed two, in general. The code modification construction tr
was used to attain capacity in theorem 3 is weak in the sense that itaakdimear multicast code for thd, demand sinks,

and transforms it into a network code for all the sinks, using appropriate linear operations on the information symbols. It is thu:
surprising that this construction guarantees the maximum possible partial demand sinks in a nonuniform-demand problem.



B. More than two partial demand sinks

Theorem 5 deems impossible any attempt to provide further guarantees for capacity achieving nonuniform-demand network
However, more guarantees can be obtained once we operate a subset of the sinks below their best-cagé,;capagityl his
concept of achieving more by relaxing the strict capacity requirement has already appeared in the network coding literature, ar
was found significantly useful [7],[8]. Here the idea is that with three or more partial demand sinks, for some sink we may exhaus
the ways of zeroing columns using non-contaminating column operations. In such cases, if that sink has more coding vectors th.
its demand, it turns out that clever column, and now asooperations can guarantee satisfying its demand. As one instance of
that method, we shall state (without proof) a theorem concerning networks wihuniform-demand sinks.

Theorem 6:A nonuniform-demand connection with sinks, each with demant} and 3 sinks with demandg < dy < d; <
dyp, is solvable using linear codesdf = d; for i = {0,1,2} andcs = d3 + (do — d1).

As an example, theorem 6 guarantees solvability of any network with demand ¥eetd, 6, 5, 4, 3] if the corresponding min

cut vector is element-wise at least= [6, 6, 5,4, 4]. Theorem 6 requires sink;, the smallest demand sink, to have a min cut
larger than its demand. However, this is a special case and in the more general one, other sinks can be required to have large |
cuts. Moreover, this method can be generalized to more 3hzartial demand sinks, though formulating the exact guarantees
becomes tedious when increasing the number of sinks.

IV. SUBOPTIMALITY OF THE CODE MODIFICATION CONSTRUCTION

Although we showed that the code modification construction given in the proof to theorem 3 is optimal for general networks,
for a particular network using it might render suboptimal results. Indeed, for networks with mor2 gaatial demand sinks,
more can be achieved by considering the partial demands as well during the design of the network code. We will show this usir
the network in figure 3. In figure 3(a), an extension of the multicast code construction algorithm is run, providing each sink with
. . . . 0 0 1
d; linearly independent vectors of lengthThe two independent vectors obtained by sinlare T 11 (these correspond
to C andA + B + C shown in figure 3(a)). It is easy to see that it is impossible to maketki8 matrix invertible using column
operations that are non-contaminating for béthandds; adding columnl to column2 would contaminate sink, and adding
column?2 to columnl would contaminate sinks. That means this network code which is obliviousitocannot be modified to
satisfy its demand. In figure 3(b), on the other hand, a network code is given that satisfies all demands.

(@) (C)

Fig. 3. Code modification (a) fails in achieving network capacity achieved in (b).

V. THE POWER OF LARGE ALPHABETS

Many known results connect the solvability of networks to the alphabet size used for coding [6],[2],[9],[3] (and more). In
this section we seek to contribute to the above discussion, considering nonuniform-demand networks. We will show that fo



nonuniform-demand networks, alphabets which are sufficient to provigliigear independent vectors to each sink, are insuf-
ficient to solving the nonuniform-demand problem. That implies that the upper boufid @he number of sinks), given in [6]
for the required field size, may not apply to nonuniform-demand solvable networks. For a given networkQdefilmebe the
smallest field size capable of provididg linear independent global coding vectors to each sink. Dedipg, to be the smallest
field size capable of satisfying the nonuniform demadyds each sink. Since having linear independent vectors is a necessary
condition to satisfying the demands, we h&yg; < Qnp. Beyond satisfying that necessary condition, it is unclear whether large
alphabets can solve nonuniform-demand networks that are unsolvable using smaller alphabets. The following theorem answ
this question to the affirmative.

Theorem 7:There exist networks whe@,; < Qnp.
Proof:
We will show a network for which a binary alphabet is sufficient to provide each sinkdyitimear independent vectors, but
insufficient to solve the network. The network will be shown to be solvable using larger alphabet&/{€3y). For a binary
network code, we can force an edge to carry the symbeal Y using the gadget given in figure 4. We will use such gadgets to
obtain the network in figure 5. Using a binary code, edgan carry an element fromthe §¢t, B+ C, B+ D, C + D} or
an element fromthesd¢td+ B, A+ C, A+ D, A+ B+ C + D}. An element from the first set will provide at least one
of the sinks with linearly dependent vectors. An element from the second set will provide each sigKinérly independent
vectors, but none of them will result in a valid solution. Taking the message symbols to be from tideAigil edgee can carry
(A+B)+(A+C)+ (A+ D) = (B + C + D) mod 3. This combination allows both sinks to obtain messageS, D. O
We remark that the network used in the proof is solvable using any alphabet gfsi2e Yet it is unknown whether this threshold
effect is true in general.

Fig. 4. Gadget to forceX + Y in a binary network code

A+B A+C A+D

M&/\%w

3 3

Fig. 5. Solvable network where alphabet of sié required



VI. HARDNESS OF THE NONUNIFORMDEMAND PROBLEM

In [3] it has been shown that it is hard to find linear codes for connections where sinks demand arbitrary sets of informatior
messages. However, this result does not establish the hardness of the nonuniform-demand case since [3]'s reduction assumes ¢
demandspecificmessages while in the nonuniform-demand problem onmtyraberof messages can be demanded. Evidently,
specifying just the number of messages demanded by a sink imposes a milder objective for the network code, compared wi
the specific messages case. However, as it turns out, the general nonuniform-demand problem is NP-hard as well, even when
restricted to linear codes. To show that, we will use a simple reductionf6mMT'. Given a3-C N F' formula f over Xy, ..., X,,
we construct a corresponding nonuniform-demand network. For every variable define a gadget consisting of three sources.
One has access fd;, one toM; and another one to both;, M;. In addition, the variable gadget has a node with demarigl of
connected to the source with access to btath M, (see figure 6). For a clausg, vV X, V X3 we define a clause gadget with a
single sink connected as shown in figure 6. We assign a demahtbahe node in each clause gadget.

M, OM,OM,

Fig. 6. network corresponding to the clauig v X» vV X3

Proposition 8: f is satisfiable if and only if the corresponding nonuniform-demand network is solvable.
Proof:
(=) Let X = (x1,29,...,z,) be a satisfying assignment ¢f Then each of the left nodes in each variable gadget can output
M; if z; = 1 andM; if z; = 0. In that case it is obvious that all the clause sinks will be able to recover atilezstsages.
(<) If the network is solvable each of the demansinks has exactly one dff; andAZ;. We can assign; = 1 if it has message
M; andz; = 0 if it has M;. This assignment satisfigissince in every clause at least one of the variables contributes a message
not obtained using the direct links, and this message is consistent across all clauses. |
It is not hard, though space consuming, to show that the reduction works even in the single source case where we use a su
source node’ in a similar fashion to [3].

VIlI. CONCLUSION

In an attempt at generalizing the multicast model, we have seen special cases in which the hard nonuniform-demand problen
guaranteed to be solvable, irrespective of the network structure. Some understanding was gained of the nature of these netwc
in comparison to other, more often studied network connection models. Still, as an interesting and useful generalization of th
multicast model, it motivates the design of good algorithms.
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