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ABSTRACT

Through an analytical-empirical approach, the vortex—excited trans-
verse oscillations of flexibly-mounted circular cylinders in a uniform
flow is studied.

A new model is derived, assuming spanwise constant flow velocity
within the sub=-critical range of Reynolds numbers and using only experi-
mental data obtained from forced cylinders in water.

The steady-state response of flexibly-mounted cylinders is obtained
as 'a function of the structural system and flow parameters and its stabi-~
lity is analyzed. Several characteristics observed experimentally and
also present in the model response are discussed.

The resultant model's capability for predicting structural response
for ; wide range of fluid mediums is illustrated through comparisons
between model predictions and results obtained experimentally from flex—
ibly-mounted cylinders in air and in water.

This model developed is expected to yield better results for struc-
tures in water, by virtue of being based only on experimental results

obtained in water.
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NOTATION

Parameter appearing in the analytical interpolation expression
for Cdl

Wake Oscillator Model constants, 1=0,1,2,....,6
Parameters appearing in the stability matrix, 1,j=1,2
Cylinder amplitude (=1/2 peak-to-peak displacement)

Parameter appearing in the analytical interpolation expression
for Cdl

Normalized cylinder amplitude (=A/D)
Maximum value of the normalized amplitude B
Steady-state normalized cylinder amplitude-response

Parameter appearing in the analytical interpolation expression
for cdl

Structural damping per unit length for the flexibly mounted
cylinder

Drag coefficient, component of F out-of-phase with cylinder
displacement, normalized by (1/2pDV2)

Drag coefficient, component of F out-of-phase with cylinder
displacement, normalized by (1/2pDA2w2)

Inertia coefficient, component of F in-phase with cylinder
displacement, normalized by (1/2pDV2)

Inertia coefficient, component of F in-phase with cylinder
displacement, normalized by (1/20DA2w?2)

Parameter appearing in the analytical interpolation expression
for Cdl

Cylinder diameter

Parameter appearing in the analytical interpolation expression
for C
ml

a, +a, + a

3 5

Parameter appearing in the analytical interpolation expression
for C
ml
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F Experimentally measured force acting on a cylinder being forced
to vibrate transversally to a uniform flow

Fint Wake Oscillator Model prediction of the force acting on a cy~-
linder being forced to vibrate transversally to a uniform flow

k Structural stiffness per unit length for the flexibly mounted
cylinder

m Structural mass per unit length for the flexibly mounted cylinder

R Real part of a complex number

Re Reynolds number

S Strouhal number

v Uniform free stream flow velocity

Va Normalize& flow velocity (= wg/w, = 27SV/w,D)

Ve Reduced flow velocity (= wg/Sw)

Veo Parameter appearing in the analytical interpolation expression
’ for Cpy

y Normalized cylinder displacement (=Y/D)

Y Cylinder displacement

z Normalized fluid oscillator variable in the Wake Oscillator

Model (=Z/D)

Z Fluid oscillator variable in the Wake Oscillator Model
a Perturbation of Q about Qg4

Qg Amplitude of the perturbation a

b, 1/2 power method bandwidth

sz Frequency entrainment bandwidth

z Structural damping ratio (fraction of critical damping)
z Reduced damping (= 2(2w%S)2 z/n)

n Mass ratio (= pD%/m)
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Eigenvalue in the stability analysis
Kinematic viscosity of a fluid
Perturbation of B about Bgg
Amplitude of the perturbation £
Fluid density
Normalized time (= wgt)
Phase angle in the assumed form of the Non-Lock-in Model response
Phase angle of the steady—-state Non-Lock—-in Model response
Perturbation of @ about P g
Amplitude of the perturbation y

Angular cylinder frequency, either in the induced or in the
forced oscillations case

Angular natural frequency of the flexibly mounted cylinder
Angular Strouhal frequency

Angular vortex-shedding frequency

Normalized cylinder frequency (= w/uwg)

Normalized steady-state cylinder frequency response
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CHAPTER I

INTRODUCTION

A bluff structure exposed to a flowing fluid, may be subjected to
vortex induced vibrations. In structural engineering applicatioms,
these strumming oscillations are of great interest not only because of
their potentially large amplitudes which can overstress a structural
member but also because of their equally destructive long term effects,
which may cause failure by fatigue.

The most common examples of structures subjected to this kind of
excitation are structures composed by cables and beams such as power
transmission lines, mooring cables, towers and risers. More complex
structures like bridges may also be subjected to vortex excited oscil-
latioﬁs, however the phenomenon may be even further complicated by

reattachment of the vortices.

1.1 BASIC PHENOMENA

The oscillating forces induced by vortex shedding, are brought
about by the fluid pressure on the structure's surface which fluctuates
as vortices are shed alternately from each side of the structure. A
sequence of this oscillating pressure field on a cylinder is pictured
in Fig. 1.1.1.

The major regimes of flow behavior, in which vortex—shedding from
a stationary cylinder may occur are presented in Fig. 1l.1.2. For low
flow velocities (i.e., Re =.§2 <5) the flow is able to negotiate its way
around the cylinder and thus, no vortices are shed. As the flow velocity

is increased a pair of Foppl vortices is formed in the wake and when
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Fig. 1.1.1
A Sequence of Surface Pressure Fields Around

a Circular Cylinder [5]



—— N Re < 5 REGIME OF UNSEPARATED FLOW

STO 15 < Re < 40 A FIXED PAIR OF FOPPL
VORTICES IN WAKE

40 < Re < 30 AND 90 < Re < 150
TWQ REGIMES IN WHICH VORTEX
STREET IS LAMINAR

156 < Re < 300 TRANSITION RANGE TO TURBU-
LENCE IN VORTEX

300 < Re T 3X10% VORTEX STREET IS FULLY
TURBULENT

3x105  Re < 35 x 106

LAMINAR BOUNDARY LAYER HAS UNDERGONE
TURBULENT TRANSITION AND WAKE IS
NARROWER AND DISORGANIZED

35x 100 < Re

AE-ESTABLISHMENT OF TURBU-
LENT VORTEX STREET

Fig. 1.1.2
Vortex Shedding Regimes from a Fixed Circular

Cylinder [5]
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Re > 40, there is periodic shedding of vortices. Vortex-shedding per-
sists within the entire subcritical range of the Reynolds number. In
the transcritical range, 3 x 105 < Re < 3.5 x 10%, periodic shedding
ceases to exist., It appears again in the supercritical range of the
Reynolds number, [5].

In the absence of structural oscillations, the vortex-shedding
frequency w,, satisfies [29]

wy = Wg (1.1.1)

where the Strouhal frequency (wg) is given by an experimentally deter-
mined relationship {73] as

)]
W, = 2NS e— 1.1.2
. ’ (1.1.2)

V is the free stream flow velocity, D is the diameter of the cylinder,
and é is the Strouhal number. The experimental constant S is a function
of the structure's geometry and of the Reynolds number, as shown in
Fig. 1.1.3. Within the subcritical range of Reynolds number, the
Strouhal number and, consequently, the Strouhal frequency are quite well
defined. But this is not true within the transcritical range, where
the Strouhal number can take on any value between the dashed lines,
resulting in a wide band of shedding frequencies. Finally, in the
supercritical range, the Strouhal number is again quite well defined.
Induced oscillations will occur at some frequency w, when a
structural system with natural frequency w, is exposed to the oscil-
lating forces due to vortex shedding. For sufficiently small amplitudes
of oscillation, the vortex shedding process is undisturbed. 1In this
case, the vortex shedding frequency is equal to the Strouhal frequency

and the system also responds at the Strouhal frequency
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W Wy = wg (1.1.3)
However, in the range of flow velocities V for which the Strouhal
frequency is in the neighborhood of the structural system's natural
frequency, the induced amplitudes of oscillation may be large enough to
establish the lock-in condition. Under the lock-in condition, Eq.
(1.1.1) ceases to hold and the actual vortex shedding frequency is very
close to the natural frequency of the system {29]

W Fowy T owy (1.1.4)

On the other hand, when the structural system exposed to vortex

shedding is forced to oscillate at a frequency w, lock-in occurs when-
ever the flow velocity is such that wg = w and then the actual vortex

shedding frequency is very close to the forcing frequency, i.e.,

w

v = [) (101-5)

N\

04+ /

03+ /

——— e
— —

STROUHAL NUMBER

n(lll n | ¢ IS BT | I PEEETTE B W N
LT 103 10é 108 108 1wl

AEYNOLDS NUMBER

Fig. 1.1.3

Strouhal Number versus Reynolds Number [5]
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1.2. SCOPE OF THIS INVESTIGATION

Reported herein is research done to develop an analytical-empirical
model for the response of elastically mounted cylinders subjected to
vortex shedding. Assuming spanwise constant flow velocity, in the sub-
critical range of Reynolds number (i.e., S = 0,20) and using only experi-
mental data obtained from experiments with forced cylinders in water, a
new approach in the development of the model is followed. The resultant
model's capability for predicting structural response for a wide range
of fluid mediums is illustrated through comparison between model predic-
tions and experimental results from flexibly mounted cylinders in air
and water. Although comparison between experimental results obtained
in air with those obtained in water has been current practice for many
yearé, doubts concerning the appropriateness of such practice are raised.
The model developed is expected to yield better results for structures

in water, by virtue of being based only on experimental results obtained

in water.
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CBAPTER II

DISCUSSION OF PREVIOUS WORK

2.1 A BRIEF HISTORICAL REVIEW

Even though Aeolian tones emitted by taut wires in the wind were
known in ancient time, it was only in 1878 that the first systematic
study on vortex—shedding [73] was published. Experimenting with a
variety of pipes and rods, Strouhal [73] derived the expression
(Eq. (1.1.2)) for the vortex—-shedding frequency and determined constant
S was equal to 0.185. Further experimenting with wires, Strouhal came
across more complex problems, such as frequency entrainment! and modal
interaction. But it was Lord Rayleigh [57] in 1879, who discovered
that vortex shedding oscillations occur primarily in a plane perpendi-
cular to the flow velocity. von Kdrman, in 1912 published his theoreti-
cal work [77] on vortex—-stree: stability which motivated many subsequent
works. Until the early 1940's, however, most of the experimental and
theoretical studies were confined to wakes of fixed cylinders and
development of curves such as drag coefficieant versus Reynolds
number and Strouhal number versus Reynolds number. Then, the first
observations on wakes of vibrating cylinders [41] were published and
subsequent experimental (2, 8, 9, 11, 12, 14, 15, 33, 36, 39, 40, 47,

49-51, 53, 55, 56, 60~62, 74-76], theoretical [1, 3, 4, 17-20, 22, 23,

11t is clear that Strouhal [73] did not understand the frequency
entrainment phenomenon as it is understood today. However, he noted
that when the "friction sound” frequency (i.e., Strouhal frequency)
was equal to the natural frequency of one of the wires, the sound
produced was greatly increased.
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28-32, 34, 42, 45, 59, 62, 65-67, 69] and theoretical-experimental
{16, 37, 54, 58, 70] studies became broader in scope. They ranged from
studies with fixed cylindérs in uniform and sheared flow to studies
with prototype-size cables in almost uniform flow. The extreme
complexity of the problem not only precludes solutions based on first
principles but has also restricted the range of application of approxi-
mate theories and models.

This subject still generates very much interest not only academi-
cally but also in practice where engineers are faced with problems

caused by vortex induced vibratioms [13].

2.2 EXPERIMENTAL INVESTIGATIONS

By virtue of being relatively more complete, particular interest
is given, herein, to the experimental observations obtained by Sarpkaya
[61, 62] and by Feng [9]. The former, on the forces acting on harmon-
ically forced cylinders in uniform aqueous flow, will serve as the
basis for development of the present model. The latter, on the response
of flexibly mounted cylinders in a uniform flow of air, will be used to

gauge the predictions produced by the model.

2.,2.1 Forced Cylinders

Sarpkaya [61, 62] measured the forces acting on a rigid cylinder
forced to vibrate transverse to a uniform flow, as pictured in Fig. 2,.2.1.
The cylinder was forced to displace harmonically with a displacement
given by

Y = A sin wt (2.2.1)



I

with prescribed amplitude A and frequency w. The component of the
force in the frequency of excitation acting on the cylinder was measured
as a function of time. Since this force closely resembles a sinusoidal
wave, Sarpkaya chose to decompose it into two orthogonal Fourier compon-
ents defined by

F(t) E—i— pD Vz[th sin wt - th cos wt] (2.2.2)

2 )

or alternatively

3 . . 3amal | (2.2.3)
sin wt - - 0S8 wt elsw
v2D dl3y2p2

L .2
F(t) E-—Z—QDV [le

where the reduced velocity V, is defined as

Ve

1
T (2.2.4)
w

Spanwise Rigid

Displacement
Y(t)=Asinwt

Fig. 2.2.1

Forced Cylinder
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The inertla coefficients Cpy and Cpy and drag coefficients C4p and
C41 as presented in [62] are herein reproduced as Figs. 2.2.2 and 2.2.3.
Also reproduced in Fig. 2.2.4 is a comparison between the time
trace of F(t) given by Eq. (2.2.2) and its experimentally measured coun-
terpart. It is noted that this relatively good agreement was attained
only when the cylinder was vibrating under lock-in conditions, i.e.,
when the vortex shedding frequency w, is very close to the frequency
w at which the cylinder is forced to vibrate (i.e., w, = w). However
outside the lock—-in range, vortices are shed at the Strouhal frequency
wg while the cylinder is forced at a frequency w, (i.e., uwy = wg# w).
Thus a frequency-content analysis of the measured F(t) will show energy
concentration around the forcing frequency w and around the Strouhal
frequency wg [33, 70, 71]. This implies that the actual experimental
time trace of F(t), outside the lock-in range would show a beating-like
characteristic, {61, 70, 71] which cannot be accounted for by Eq. (2.2.2).
It is important that this limitation be recognized and if possible
taken into account in any formulation that uses Eq. (2.2.2) to model

the force acting on a cylinder vibrating in a cross flow.

2.2.2 Flexibly Mounted Cylinders

Placing a flexibly mounted cylinder, as shown in Fig. 2.2.5, in a
wind tunnel, Feng [9] measured the cylinder amplitude and frequency
response as a function of the flow velocity. Sample experimental
results for two different values of structural damping are reproduced
in Figs. 2.2.6 and 2.2.7, where the natural frequéncy of the cylinder

is defined as
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-3

Fig. 2.2.4
Comparison of Measured and Calculated

Transverse Force, F(t) [62]

Spanwise Rigid

Displacement
Y(t)

Fig. 2.2.5
Flexibly Mounted Cylinder
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- /k
Yn = /@ (2.2.5)

and the fraction of critical damping is given by

__¢
&= 2 (@ , (2.2.6)

where m, &, and k are the structural mass, damping and stiffness, per
unit length, respectively. The mass ratio is defined as
pD2

m

(2.2.7)

where p is the fluid density. Thus, the mass ratio is proportional to
the ratio of the fluid mass dislocated by the cylinder and the mass of
the cylinder.

IIn Figs. 2.2.6 and 2.2.7, the response is plotted as a function of

the normalized velocity V, defined as

2nS %;
- S .
Vn = mn = wn (2-208)

where S = 0.20 has been assumed. The normalized amplitude B is given

by
1/2 (peak to peak displacement)
D (2.2.9)

B =

The frequency of response w is normalized by w,. Also plotted, is a

reference dashed line w/w, = wg/w, on which will lie all points corres-
ponding to a non-locked-in response. On the other hand, points corres-
ponding to a locked-in response will lie on the horizontal line w/w, =1

within a region where w = w, defined as the lock-in bandwidth.
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2.3 ANALYTICAL MODELING

2.3.1 Introduction

Theoretical studies have, in general, lagged behind their more
numerous experimental counterparts by several years. Theoretical modeling
of wakes behind fixed cylinders began in 1912 [77]. It was only in 1964,
however, that Bishop and Hassan [2] suggested, based on experimental
observations, that the wake behind a vibrating cylinder behaved very much
like a nonlinear self excited oscillator. Many analytical models stemmed
from this suggestion. Hartlen and Currie [28] proposed a Lift-Oscillator
Model using a Van der Pol equation to model the fluid behavior. Iwan
and Blevins [30] proposed a similar model, the Wake Oscillator Model, in
which the Van der Pol equation is tentatively derived from the gross
fluid behavior. Both formulations have been further pursued {29, 31,

65, 66, 67]! with results that can, in general, be considered good.

In the remainder of this section, the Wake Oscillator Model is used
to predict the forces acting on forced cylinders. These forces are
herein, presented in terms of the inertia coefficient Cg, and the drag
coefficient Cy4p, and will be used in later sections as am aid, not only
to understand the experimental data, but also to interpret some of the

results obtained by the present model,

l For other analytical formulations, see papers [48] and [64] where
several formulations are reviewed.



2.3.2 The Wake Oscillator Model

Based on other assumptions besides the fluid momentum equation, Hall

[29] arrived at the following Van der Pol type equation for the fluid

oscillator
) a2z dz D [dz\3 ,
aypD el "al"DV_d':"' 3207 e +agpV'Z = -Fyne(t) (2.3.1)
P (8 2 d2z 42y . v dz dy N b2 d?z (2.3.2)
: t = a p - ap I - SR— a o) ha— sJde
int 3 dt?  ae? 4 dt t S de2

It is noted that by setting ag = 0, Eqs. (2.3.1) and (2.3.2) reduce to the
expressions derived by Blevins {[3]. The comstants a, to a, are model
constants, determined by the fitting of experimental data. Y is the
cyliﬁder displacement and Z is a fluid oscillator variable defined such
that its first derivative with respect to time is "the average vertical
fluid velocity in a unit depth of a control volume surrounding the
cylinder”, [29].

The cylinder displacement, the f£luid oscillator variable and time are

normalized as follows

X _Z.
y=D ; 2 =D (2.3.3)
T o= gt (2.3.4)
d _ d
T g ius () (2:3.5)

then, substituting into Eqs. (2.3.1) and (2.3.2), yields
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pD*u 3 2
aeoD3m% z" - alpDZVms z' + a, (z')° + aspDV z = Fine(T)
(2.3.6)
and
Fine (T) = aapD3m§ (z" =-y") + aquszws (z' =y') + aspD3w§ z"
(2.3.7)
L 2
Dividing by-i-pDV , the above expression can be written as
ﬁ (1)
2 .o 1 ] 3 ry3 - ot
ac(ZnS) z a12(2wS) z' + a22(2nS) (z")* + a2z T 720DV 2
(2.3.8)
and
FinelT) o a;2(218)2 (2" - y") + a,2(21S)(z" ~y') + a;2(218)2 2.
1/2pDV2 (2.3.9)

Substituting Eq. (2.3.9) into Eq. (2.3.8) and rearranging, ylelds

z" - (ZiS) 21 ;la“ z' + ZWS-Z% (z")3 +-§? (zis)zz = (ZiS)-gf y' + Sf A
(2.3.10)

where
e\= a;, +a, +a (2.3.11)

To reproduce conditions similar to those in Sarpkaya's experiment, a

cyiinder is assumed to be harmonically driven with a motion

y =B sin — 1 (2.3.12)
wg
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Eq. (2.3.10) can then be solved for z and the normalized interaction
force determined through Eq. (2.3.9)
Based upon several different data sets obtained from experiments
performed in air and in water, Blevins [3] arrived at the following values

for the model constants

a, = 0.48 a, = 0.20 a, = 0.38 a, = el(ZnS)2

0 )
a, = 0.44 ay = 0 ag = ol (2.3.13)

The resultant predicted inertia coefficient Cy, and drag coefficient
C4h are presented in Fig. 2.3.1, for 4.0 < V. < 7.0. The amplitude and
frequency responses of a rigid flexibly mounted cylinder obtained using
model constants (2.3.13) are shown in Fig. 2.3.2, so to enable future
comparisons.

Whereas Hall [29] used several different data sets obtained from
experiments performed only in air to determine model comstants with the

following values

= 0.4611 a,

, = 0.2824 a; =-0.3000 a; = 0.0985 (2.3.14)

a a 0,0558 a, = 0.2413 ag = e, (218)2

0 4

a

and again, the predicted inertia coefficient Cpy and drag coefficient
Cgn are plotted in Fig. 2.3.3, for 4.8 < V. < 7.8. Plotted in Fig. 2.3.4
are the amplitude and frequency response of the same rigid flexibly

mounted cylinder using model constants given in (2.3.14),

1 As previously explained, setting a5 = 0, reduces Eq. (2.3.9) and
(2.3.10) to those originally derived by Blevins [3].
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CHAPTER III

AN ANALYTICAL-EMPIRICAL MODEL

3.1 INTRODUCTION

The merit of any approximate model resides basically in its ability
to predict structural response, amplitude and frequency, as a function of
the structural system and flow parameters. As a by product of the modeling
process it is hoped that one may be able to better understand some aspects
of the intricate pheﬁomenon of fluid-structure interaction. However, a
total understanding of this phenomenon will only be possible through a
formulation based on first principles. Given the present knowledge,
this still appears to be far away.

‘In view of this situation, approximate models, for either the struc-~
tural response or the fluid response, and ideally involving both reSponseé,
are and will be of interest and value for some time to come. Models
based on the Van der Pol equation for the modeling of the fluid behavior
[3, 28, 29, 66], have been and still are useful, but like any other
approximate model have their drawbacks and shortcomings. Some of the
most important shortcomings are:

1) the model constants are not directly measurable quantities.
Rather, other parameters, functions of these constants, are
evaluated through the solution of a system of differential
equations;

2) the data used to calibrate the models are generally taken
from several different experiments which may not be directly

comparable;
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3) the models rely heavily for calibration on experiments per-
formed in air but are applied without adjustment to water.
Since the model constants, by virtue of approximations
involved in the solution of the system of differential
equations, make use of the nature of the fluid considered,
strictly speaking there should be a reassessment of the
model whenever a new fluid is introduced;

4) the extension of Van der Pol osci.!.tor type models to other
situations of interest, such as spanwise variable flow and
infinite cables has proven extremely difficult, if not
impossible.

Motivated by these drawbacks, an alternate approach to the modeling
of vortex-induced oscillation of structures has been developed, based on
measurements of forced cylinders in uniform flow. As in previous formu-
lations [3, 28, 29, 66], it is not intended to solve the fluid-structure
interaction problem precisely, but rather to give another tool for dealing
with this class of problem. The proposed empirical model makes use only
of "forced cylinder” data to predict behavior of flexibly mounted struc-—
tures. This approach was suggested quite a few years ago [15], but never
fully exploited.

It is hoped that the proposed model will provide another step towards

the understanding of an important physical phenomenon.
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3.2 STEADY-STATE RESPONSE FORMULATION

Based upon experimental results, as the ones discussed in Chapter

II, one may conclude that the phenomenon of flow-induced vibrations of

cylinders can be separated into two distinet categories:

1)

2)

A locked-in oscillation with the following characteristics:

a)

b)

c)

there is vortex shedding frequency entrainment. The
vortex shedding frequency is captured by the frequency
of oscillation of the mechanical system;

the amplitude of vibration of the mechanical system is
large;

the frequency of vibration of the mechanical system is
close to its own natural frequency though unknowm

"a priori”.

A non—-locked-in oscillation with the following character-

istics:

a)

b)

c)

there is no vortex shedding frequency entrainment and
vortices are shed at the Strouhal frequency;

the amplitude of vibration of the mechanical system is
small;

the frequency of vibration of the mechanical system is
essentially the Strouhal frequency, i.e., the system

responds at the frequency of excitation.

The present model is formulated separately for each of the above

categories of response and is based upon experimental data for a forced

cylinder in uniform flow, as reported by Sarpkaya [61].
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In these particular experiments, a rigid cylinder, Qlaced transverse
to the flow, was harmonically driven with a motion
Y = A sin wt (3.2.1)
The force acting on the cylinder, recorded as a function of time, was
decouposed into two orthogonal Fourier components at the frequency of

oscillation and is expressed as
L owv?
F(t) =5 pLDV" {Cpp sin wt - Cyp cos wt] (3.2.2)

The coefficients Cpy and C4p are presented as functions of a normalized

amplitude (A/D) and reduced velocity (V,), where

1
L
w

(3.2.3)
s

1]

Consider the rigid flexibly mounted cylinder of Fig. 2.2.4. It
is important to note, if experimental results (such as those of Sarpkaya)
are used, that built into those results, there is a definite phase between
the displacement and the measured force, for each prescribed amplitude

and frequency of vibration. Thus, in solving the induced vibration case,

this should be and is ‘accounted for by assuming the force as given in Eq.
(3.2.2)! and the response as in Eq. (3.2.1).

The problem of induced vibrations is hereby formulated in terms of

structural parameters per unit length as

1 Refer to discussion on Sarpkaya's experimental results presented in
Chapter 11



-29-

2
mg——zwl- Eg-+ kY =—1—pDV2[th sin wt - Cyy cos wt] (3.2.4)
at? dt 2

with
Y = A sin wt (3.2.5)
where the amplitude and frequency of vibration are unknowns.

The time, displacement, amplitude and frequency are normalized as

follows

= X . = A
y = D ’ B = D (302.6)
Q=2 ; o, -0 (3.2.7)

Wg Wg
T = wgt (3.2.8)

d _ d - .
-a—E = ws d-r = U.\s ( ) (30209)

then, substituting into Eq. (3.2.4) and (3.2.5) yields

¥+ 250,y + Q% y = -2(—2-;;5-)-5[0“ sin@t - Cyy, cosQt ] (3.2.19)
where
y = B sinQt (3.2.11)
Coh = Cpn(2,B) (3.2.12)
Cqn = Cqn(%,8) (3.2.13)

¢ is the fraction of critical damping defined in the usual way; 2, 1is
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the natural frequency of the system, normalized by the Strouhal frequency

w1 [k
Qn a-(-u—;-s —(:‘—s— —a— (3.2.14)

n 18 a dimensionless fluid-structure mass ratio parameter defined [29]

as

n = —-— (3.2.15)

and wg is the Strouhal frequency as defined by Eq. (1.1.2).
Substituting Eq. (3.2.11) and its derivatives into Eq. (3.2.10) and

collecting the sinQt and the cosQt terms, yields

n
2 m O2YR ® e 3.2.16
(4 - a2)B 3(205)2 Cyn(9,B) ( )
n
200,08 = - L Cqn(2,B) (3.2.17)

With respect to the system of Eqs. (3.2.16) and 3.2.17), it is noted
that:

1) the equations form a coupled set of nonlinear algebraic equa-
tions as opposed to a coupled system of nonlinear differential
equations as obtained in the Van der Pol Oscillator formula-
tions [3, 28, 29, 66];

2) a very small ratio n, as well as other approximations are
generally required to solve the system of equations in the

Van der Pol Oscillator formulations. In the present



3)

4)
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formulation, however, no approximations are necessary to
implement the solution scheme. Also, for the first time it
is possible to vary the mass ratio within a range covering
both structures in water and in air, without reassessment
of the model;
analysis of Eq. (3.2.17) indicates that induced oscillations
are restricted to regions where

C4an(%,B8) < 0 (3.2.18)
Should the present approach prove worth pursuing hereupon
more experimental data will be needed and Eq. (3.2.18)
will provide a criterion as to where experimental efforts
should be concentrated. In Fig. 2.2.2 the two regions
where Eq. (3.2.18) is satisfied are given by 3.3 ¢ V. < 4.3
and by V. 3 4.8. This thesis will be concerned with the
second region, V. 3 4.8, where the forces are relatively
larger thus yielding greater amplitudes and where almost
perfect "synchronization", i.e., £ 2 1.0 occurs ;
to implement the solution of the system of Eqs. (3.2.16) and
(3.2.17), Cp(Q,B) and Cyn(R,B) must be defined for all
points where Eq. (3.2.18) is satisfied. But at this stage,
available experimental data are far from sufficient to
allow the interpolation of these points by a numerical
procedure. Instead, one has to resort to what is done in
Section 3.3, i.e., interpolation of these points through

an analytical surface.



-32-

3.2.2 The Non-Lock—~in Model

Assuming the hypotheses presented at the beginning of section 3.2
and by reasoning similar to those for the Lock-in Model, the problem can

again be formulated in terms of structural parameters per unit length, as

follows
2
a8 ¢ g8 4wy =L opv2[cy, sin wgt - Cgp cos wgt] (3.2.19)
de2 dt 2
with

Y = A sin (wgt - §) (3.2.20)

where amplitude and phase of vibration are unknowns. Using Eq. (3.2.6)

to Eq. (3.2.9) gives

' n
"+ 222,y' + Q2 ¥ = =————— [C_, sint = C4 cosT) (3.2.21)
n n 2(218)2 mh dh
y = B sin (1 - 9) (3.2.22)
th = th(ﬂ=l,3) (3.2.24)

It is important to note, that although assuming that the oscillator
will respond at the Strouhal frequency wg, the problem is still non-
linear because of the nonlinearity of the forcing function.

The non—-lock-in problem is substantially simpler than the lock-in
problem. One is required to solve only one nonlinear algebraic equation

under non-locked-in conditions, as opposed to a coupled system of



-33-~
nonlinear algebraic equations under the locked~in condition.
Substituting Eq. (3.2.22) and its derivatives into Eq. (3.2.21) a

solving for B and # yields

(Cf + Cqp) 172
- uf dt (3.2.25)
2(2ws)? [(Q% - 12 + (2;gn)2]1/2
(@% - 1) C4y, + (2z2,)Cpp
= 3.2.26

sinf (Cmﬁ +Cdﬁ)1/2 [(Q% - 1)2 + (chn)z]l/z ( )
2 - 1) C,p - (2 c

cosp = Gy = 1) Cp = (26%,)Cqy (3.2.27)

(Cof + Cqf)*/2 [(R3F - 1)2 + (2z92,)2]1/2

Solution is implemented by first solving Eq. (3.2.25) for B, and

then solving Eq. (3.2.26) and (3.2.27) for .

3.3. STABILITY ANALYSIS OF STEADY-STATE RESPONSE

Multiple solutions are énticipated due to the nonlinear nature of
the present problem [9], so the determination of stability of each solu-
tion becomes essential.

Application of asymptotic methods are rigorously justified for
certain nonlinear systems which, however, do not include the proposed
system. Still, the Method of Slowly Varying Parameters!, developed by

Krylov and Bogoliubov [38], and by Bogoliubov and Mitropolsky [7], does

1 Also known as Method of Averaging or Krylov-Bogoluibov-Mitropolsky
(KBM) Method.
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lend itself to the perturbation approach used in carrying out the afore-
mentioned analyses. The Method of Slowly Varying Parameters, when applied
to the equation of motion of a single degree of freedom oscillator yields
a pair of first order ordinary differential equations given in terms of
precisely the same variables used in section 3.2, that is, the amplitude
and frequency of the system. This analogy primarily motivates the per-—

turbation analysis done herein.

3.3.1 The Lock=in Model

From Eq. (3.2.10), the equation governing the locked—in response is
" [ 2 n
y* o+ 2z0y" + QFy = Ezz;ESQ[th(Q,B) sinQt - Cyp(R,B) cos@r]

Assume
y = B(1) sinQ(1)T (3.3.2)

where the amplitude B and frequency { are slowly varying functions of the
normalized time. Differentiating Eq. (3.3.2) once, with respect to the

time 1 yields
y' = BR cosQT + B' sinQt + BQ't cosQr (3.3.3)

By analogy to the Method of Slowly Varying Parameters, let it be further

assumed that

y' = ﬁn cosQrt (3.3.4)

then from Eq. (3.3.3) it is clear that

B' sinQit + BQ'T cosQTt = 0 (3.3.5)
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Differentiating Eq. (3.3.4), with respect to the normalized time gives
y" = -BQZ sinQT - BQQ'T sinQT + B'Q cosQt + BR' cosQt  (3.3.6)

Substituting Eqs. (3.3.2), (3.3.4) and (3.3.6) into Eq. (3.3.1) then

yields

(23- @2)B sinQt - BQQ't sinQt + B'Q cosQt + BQ' cosQt +

+ 250 0B cosQt = 72 (th 8inQt - Cy4p cosfit) (3.3.7)

—
2(2nS
Equation (3.3.5) together with Eq. (3.3.7) form a coupled system of
first order ordinéry differential equations that replaces Eq. (3.3.1), a
single second order ordinary differential equation. By first, multiplying
Eq. (3.3.5) by cos@t, Eq. (3.3.7) by sinQT and subtracting term by term;
and Ehen multiplying Eq. (3.3.7) by cosQt, Eq. (3.3.5) by sinQt and adding

term by term, the following set of equations results

(Q%— Q2)B sin?Qt - BRQ't + (Q'+ 27Q,2)B sinQt cosQrT =

n

METEETSY: (Cgn sin?Qt - Cgp sinQt cosQrt) (3.3.8)

and

(23- 22)B sinQt cosQt + B'Q + (Q' + 2z2,2)B cos2qr =

n . .
= 2(2"535 (Cpn sinQt cosQt - C4y cos?qt) (3.3.9)

Averaging Eq. (3.3.8) and (3.3.9) over one cycle of oscillation yields
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2m 2w 2%
[ (22- 2)B sin20 d0 - [ BR'0 dO + [ (Q' + 2ZR,2)B sind cos® dO
o) [o] [¢]

27 27
n
= 552 ¢ [ Cun sin®0 d8 = [ Cgp sind coso do) (3.3.10)
and
27 27 2m
/ (ﬂ%- Q2)B sin® cos® do + [ B'Q do + f (Q' + 220,9)B cos20 4o
o ° 5
2m 27
= §?§5§35 ( £ Cph Sino® cosd do - é Cqn cos?0 do) (3.3.11)
where
@ =t (3.3.12)

Assuming that B and Q remain essentially constant over one cycle of
oscillation, they can be replaced by their average values over that cycle,

which will be approximately B and 2. Then Eqs. (3.3.10) and (3.3.11)

yield
n
Q2- Q2)B - 21BQ' = ——— C_.(Q,B 3.
( n ) T 2(2“5)2 mh( ’ ) (3 13)
n
270.0B + 2B'Q + BQ' = = —— (C Q,B 3.3.14
z n 2(2“3)2 dh( ’ ) ( )
Note that under steady-state conditions, that is, 2' = B' = 0, the

system of Eqs. (3.3.13) and (3.3.14) reduces to

(22- 92)B = Cpn (Q,B) (3.3.15)

n
2(218)2
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n
2(2w8)2

which is, as expected, identical to the system of Eqs. (3.2.16) and
(3.2.17) derived directly for the steady state response in section 3.2.
The system of Eqs. (3.2.13) and (3.2.14), by virtue of being more complete
allows for the analysis of stability of these solutions, which is under-
taken as follows.

Let the steady state solution be denoted by
Yss = Bgg sinflggt (3.3.17)
Then, consider a perturbation to this solution of the following form
B(t) = Bgg + E(1) (3.3.18)
(1) = Qgg + a(1) (3.3.19)

where £(71) and a(t) are small perturbations about Bgg and gg» respec—
tively. Furthermore, expand the forcing terms Cp,(2,B) and C4y(Q,B)

about Bgg and Qgg, as a function of £ and a as

aC aC
mh 'mh
th(Q’B) = th(QSS’BSS) + _ag— . E + _g,_z—-' « O + e ¢ @
0=Qgg ¥ a=0gg
IB=Bss B==B‘,_,'S (3.3.20)
aC4n 3C4n
th(Q,B) = th(QSS’ BSS) + —B-B— . E + '?sz'- A
. Q-ﬂss Qaﬂss

B=B B=Bg (3.3.21)
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where only the first order terms in the expansion are shown.
Substituting Eqs. (3.3.20) and (3.3.21) into Eqs. (3.3.13) and

(3.3.14), retaining only terms of first order in & and @, and making use

of Eqs. (3.3.15) and (3.3.16) one obtains

n [3Cg 3Cqp
(AF- 2g3)E = AggBgg @ = mBgga' = 2(27S)2\ 3B nE T i ; a>
Q’QSS Q=st
B=Bgg B=Bgg
(3.3.22)
. - 0 2Cuh 3222. -G )
ZCQnQSSE -+ ZCQ‘DBSS& + ZQSSE + Bssa 2(21‘.3)2< 3B R-S.Z g + ol Q=0
S8 S8
B=Bgq B=Bgg
(3.3.23)

Eqs. (3.3.22) and (3.3.23) form a coupled system of first order differ-
ential equations in the perturbed variables £ and o, and will be refer-
red to as the perturbed system of equations.

Assume solution of the form

£ =g ert (3.3.24)

o = q et (3.3.25)

where £,, @, and A are constants. The steady state solution will then
be stable if and only if )\ has negative real parts, i.e., R (X)) < 0,
so that the perturbations £ and a decrease in time. Otherwise, the
solution will be unstable. Substitute Eqs. (3.3.24) and (3.3.25) into

Egqs. (3.3.22) and (3.3.23) to obtain



a,, + Zﬂssk a,, + BSSA a,
where
2. .2 i *Cub
a = Q - Q 3.3.27
11 (ﬂ 38) 2(2“3)2 3B Q=0 g ( a)
B=Bg. g
n 3C4n
a = =-20..B - (3.3.27b)
12 58788 2(218)2  sq Qg
B'BSS
n 3C4n
a = 2rQ + (3.3.27¢
21 7 *ntes T oGns)? am |0 )
S8
B=Bggq
n 3th
a = 2 B + 3.3.274
22 CQI'! ss 2(211‘5)2 30 Q=g ( )
B*Bss

The system of Eqs. (3.3.26) will have a nontrivial solution only if the
determinant of the coefficient matrix is zero. This leads to the charac-

teristic equation for A

4mQggBggh? + (Bgga 12

T 0gga,, + ZﬂB55321)A + (allazz- 312321) = 0

(3.3.28)
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3.3.1.1 Stability Boundaries
Analysis of Eq. (3.3.28) leads to the conclusion that a necessary

and sufficient condition for instability is

11 722 12 721

since under this condition, at least one of the roots of Eq. (3.3.28)
will contain a positive real part, R (A) > 0. However, because of the
complexity of each ay (1,j = 1,2) term, no sufficient condition for
instability can be derived in terms of the basic variables involved in
Eq. (3.3.28).

A parametric study has shown that for most of the range of para-
meters considered herein!,the real pért of at least one of the roots is
postive, whenever a,, < 0. Therefore, as an approximation, the stability

boundaries may be given by

n ath
a., = 200 Qca + =0 (3.3.30
21 nTss " o(278)2 3B )
Q=st

B=Bog

Thus, a steady state solution lying on a stability boundary not only has
to satisfy Eqs. (3.3.15) and (3.3.16) but also Eq. (3.3.30). That is,

the stability boundary is the solution for the following set of equations:

n
(Q%— ng)BsS = ——— Cph(QggsBgg) (3.3.31)
2(2wS)?

1 See section 3.4.
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n
250 0ggBgg = ~ EZE;ESE C4n(Rgg»Bgg) (3.3.32)
n aC
20 Rgq + b =0 (3.3.33)
2(278)2 3B =,
B=Bg

Substituting Eq. (3.3.32) into Eq. (3.3.33), the stability boundary

will be given by

n

(23~ Qg3)Bgg = 7oms)Z Cph(Qgs sBsg) (3.3.31)

ac C4n(Rgg,Bgs)

=t - s L (3.3.34)
=Bss

An examination of Eqs. (3.3.31) and (3.3.34) leads to two main con-

clusions, valid within a certain range of the parameters n and g:

1)

2)

The stability of the steady-state response depends only on
C4n (2,B) coefficients, as evidenced by Eq. (3.3.34).
According to the present approximation, stability is inde-
pendent of the Cpj (2,B) coefficient.

Stability boundaries depend only on the mass ratio parameter
n. According to thé present approximation the stability
boundaries are independent of the structural damping ratio

Coe
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3.3.2 The Non Lock-in Model

Consider the non-lock—-in formulation given by Egs. (3.3.21) and
(3.2.22). Bearing in mind ché differences between the Lock-in and the
Non-Lock—-in models with respect to the assumed form of response and of
force coefficients, the perturbation analysis framework laid down in

subsection 3.3.1 yields

" n
y" 4 2Qny' + 0dy = 7(2n5)Z (Cgn sint - Cgp cosT) (3.3.35)
where

.In applying the perturbation approach, the response of the oscil-

lator is assumed to be of the form

y = B(t) sin[t - #(1)] (3.3.38)
with amplitude B and phase ) assumed to be slowly varying functions of

the normalized time. Assuming that
y' = B cos(t =~ §) (3.3.39)

yields

B'sin(t - §) ~ BP* cos(t - P) =0 (3.3.40)

Differentiating Eq. (3.3.39) once with respect to T and substituting it

along with Eq. (3.3.38) and (3.3.39) into Eq. (3.3.25) yields
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(@2- 1)B sin(t = @) + 27Q,B cos(t - §) + B' cos(t - §) +

+ Bf'sin(t ~ 0) = 5?55535 (Cpp sint = C4y cost) (3.3.41)

The system of Eq. (3.3.40) and (3.3.41) must be solved for B(rt) and
#(t). This is domne by first multiplying Eq. (3.3.40) by sin(t - 9),
Eq; (3.3.41) by cos(t = §) and adding term by term; and then multiplying
Eq. (3.3.40) by cos(t - P), Eq. (3.3.41) by sin(t - @) and subtracting

term by term. The resulting set of equations is as follows

(23- 1)B sin(t - @) cos(t - §) + 2zQyB cos?(t - P) + B' =

- 2(225)2 [Cqp sint cos(t - §) - Cgp cost cos(t - §)] (3.3.42)

and

(92-1)B sin?(t - P) + 2z2,B sin (t - P) cos(t ~ §) + BP' =

= ——

2(ang)? (Cun siaT sin(T = ) - Cqp cosT sin(t = )] (3.3.43)

Averaging Eqs. (3.3.42) and (3.3.43) over one cycle of oscillation and
assuming that B and ) remain essentially constant over this cycle of

ogcillation, then Eqs. (3.3.42) and (3.3.43) can be rewritten as

n
(Q%-l)B + 2B9!' = EZE;ESE (Cqn cos® + Cy4p sind) (3.3.44)

n
2z2,8 + 2B = Ez;;g;a (Cpn 8inP - C4qn cosd) (3.3.45)
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Under steady-state conditions B' = §' = 0, Eqs. (3.3.44) and (3.3.45)

become
n
(R%- 1 )B = 2ns) (Cgh cosp + C4p sinp) (3.3.46)
n
2;Q,B 2(2m8)? (Cyn sinp - Cyp cosh) (3.3.47)

If solved for B and @, these equations yield Eqs. (3.2.25), (3.2.26) and
(3.2.27) as expected.

Let the steady state solution be
Yss = Bgg sin(t - fgg) (3.3.48)
Consider small perturbation £(t1) and y(t), such that
B(t) = Bgg + E(1) : (3.3.49)
B(1) = Pgg + (1) (3.3.50)

Expand the forcing terms Cg (Q=1,B) and Cyqy (9=1,B) about Bgg as a
function of £ only and make use of small angle assumption. Then the

resulting perturbed system of first order differential equationsis

obtained as

, n 3Cyp
(5~ 1)E + 2Bggy' = 5(2n5)2 (=Cph sinfgg ¥ +*o8 cosfPgg & +
Q=1
B=Bqg
3Cdh
+ Cqp coshgg ¥ + =B sinfgg &) (3.3.51)
Q=1

B=Bg g
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n 3
250, + 26 = E?E;ESE (th cosﬂss ] -ggh - sinDss £ +
B=Bg,
9C4n
+ Cgp sinfgg ¥ = 3~ cosfgg €) (3.3.52)
Q=1
B=Bg g

Assume a solution of the form
£ =g et (3.3.53)
At
b=, e (3.3.54)

where £,, ¥, and A are constants.

As in the lock-in formulation, the same criteria for stability
apply . Thus the steady state solution is stable if and only if A has
negative real parts, R(A)<0, so that perturbations die out in time.
Otherwise the solution is said to be unstable.

Substituting Eqs. (3.3.53) and (3.3.54) into Eqs. (3.3.51) and

(3.3.52) yields

(ZBSSA + a 1) a Yo
1 12 -0 (3.3.55)
az) ' =
(2x + azz) €
with
n
a,,* = T (~Cyp sinfgg + Cyqp cosPgg) (3.3.56a)

2(218)2
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n acmh 3Cqn
a, = @~ 1) - S—— (‘“—" cosfgg + —— sinf )
12 o 2 ss ss
2(2x5S) 3B Qul 3B Qa1
B=Bgg B=Bgg (3.3.56b)
n
21 " Z(ars)? (Cuh ©98fsg + Can sinfge) (3.3.56¢)

Bthl

ETH
= ZCQn - ( —...g‘-t—l
22 2(2n8)2 3B

sinfgg - o3 cosﬂss>
Q=1 Q=1

B=Bgg B=Bgg (3.3.564)

a

Note that by using Eqs. (3.3.46) and (3.3.47), Eqs. (3.3.56a) and

(3.3.56c) can be further simplified to give

a;, = 2z,B5¢ (3.3.57a)

BHy T T (@3- 1)Bgg (3.3.57b)

The system of equations Eq. (3.3.55) will have a nontrivial solu-
tion, only if the determinant of the coefficient matrix is zero. This

yields the characteristic equation for A

ABSSAZ + Z(a11 + Bgg azz?k + (alla22 - = 0 (3.3.58)

a),3,1)
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3.3,2.1 Stability Boundaries
Analysis of Eq. (3.3.58), again leads to the conclusion that a

necessary and sufficient condition for instability is

3135 T 8153 <0

Once more, due to the complexity of the quantities involved, the
above condition cannot be translated in terms of the basic variables
present in Eq. (3.3.58). However, a parametric study has shown that no
instability occurs within the range of parameters considered herein.

Ideally, the regions of stability of each model would be mutually
exclusive allowing the stable solution in each region to be considered
the only solution in that particular region, i.e., the criteria for
transition between the responses of the Lock—-in and the Non-Lock-in models
would be based upon the stability character of each response., But due to
the lack of instability in the Non-Lock-In model response, the afore-~
mentioned criteria will apply only whenr tramnsitioning from the Lock-in
model to the Non-Lock=-in model. Neverthelegs, this is understood not to
be a severe shortcoming, since from the practical point of view, interest
lies primarily in the larger amplitude response that may be induced under
lock—-in conditions. Therefore, at this time no alternate criterion has

been developed.
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CHAPTER IV

ANALYSIS OF THE MODEL

4.1 INTRODUCTION

It has been suggested [15], that results from the forced cylinder
experiments could be used in understanding the case of induced oscil-
lations. Sarpkaya [61], besides obtaining experimental data, also
attempted to use these data to predict the induced response of cylinders,
but restricted himself to predictions of the maximum amplitude of
vibration. Rather recent research [29], however, casts some doubts on
the analogy between the forced cylinder and the spring mounted cylinder,
and the experimental use of one situation to understand the other. '
Despite these doubts, the present approach is directly applied to forced
cylinder experimental data in order to illustrate its potential and to
uncover possible inconsistencies in the data. To further emphasize the
potential of this formulation, suitably interpolated experimental data are

used to produce continuous .model response curves,

4.2 A PURELY EMPIRICAL APPROACH

The actual experimental data points for coefficients Cpn and Cyp, as
published in [61], have been digitized and reproduced in Figs. 4.2.la and
4.2.1b. They are shown as functions of reduced velocity V., but could
just as well have been plotted as functions of the frequency of vibra-
tion . Note that in each of these figures, only the region of interest,
i.e., where Eq. (3.2.18) is satisfied, has been reproduced.

To apply the Lock-in Model, Eqs. (3.2.16) and (3.2.17) must be



—49-

Q
(%]
B 1 3
b
B =0.13
o
_Cc
£ o -
[#S]
—
20
UJO
r—od" =
o
u
.
Wwo
= R=]
O 2 -
E 0@0
— o
o
wa 0
Z -
QO ®
[
[« ]
‘4. 00 5. 00 6.C0 7.00
REBUCED VELBCITY, Vr
o]
[4)
. ] L
B = 0.3
=]
I
<=1 B
Re
[4]
=3 w I
Q
w 2 o o
o &
=3
W) L
[} 1
Q
o
To
IC’
o i
!
o
N
‘4. 00 5.00 6.C0 7.20
REDYCED VELOGCITY, Vvr
Fig. 4.2.1a

Actual Experimental Data Points of Cnh and th Coefficients [61]

Q
[ ]
. 1 1
-
B =0.25
o
o
€ ml o
(48]
iy
Z
LLJQ
b—t(\"- e
(45
T
o
wl
=15 dﬁ%
O - & -
[ong
—t
— u]
o Q
we
Z 57 & -
o ° O0
Q
Q
's. co 5. C0 6. CO 7.00
REDUCED VELQCITY., Vr
Q
[
1 L
B = 0.25
(=]
e
=3 i
he)
[ ]
=8 ° 1
we o
—— [v] o
o & 8@)
w e &
U_J,
W o L
EI
Q
o
Tro
oo
=y i
1
[=)
Nyl
's.c0 5.¢C0 6.c0  7.C0
REDUCED VELOCITY, Vr



co
co

-50-

1 1 L ! . 1 ) 1 L

o~ ~
[& [&
- >
1) Ovl., wn .UVI;
~ O — ~ ﬁc_l.
G i G w =
[ 5] (@)
" © © ' ©
® -1 m -t
ul [IS]

35 s
2 e 8~ o ) 8=
5] o 1&0 7] o © n 2
5} © uJ ui
(5,0 O © © o O
D e |
o o0
ol ol
oo o

T T T T ™ T T T T -

02 ¢ 00 'z 00°1 0’0 00 "1- 00"t 050 030 0s "0- 031~ 0s " 1-

e “INJIJII44300 HILHANI UpJ “IN3IJI44300 9vHO

=) =]

(3} o

1 1 1 L . ’ 1 i _ .

o~ ~
C L
-~ >
[=] OYU o o
uy Q) i Oy
o o rs.ﬁ 1 o [0
n () " o (=]
@ & ~J o 23} -
18] ul
(5] (2] o> & O@ Qﬁ wv

o © ©

25} o © 8 Fy O 1 0@ Y Fin O
8 Wi 3} o © wi
o ® (] o w
©% o -
-] [ ]
oWl oty
oo (3%

T T T ¥ ™ T T T T )

00t 00°¢ 0ot 000 00" 1- 00"t 0s 0 000 0§ "0 03 "1- 0s " 1-

YW “INITII44307 HILHINI UPJ "IN3JIJT44303 9HYO

Fig. 4.2.1b
Actual Experimental Data Points of th and th Coefficients [61]



..51..
solved simultaneously for B and Q, given the other parameters 2,, n, 2,
and S. However, since B is known only at four discrete points, those
equations are solved instead for @, and 2, given B, n, %, and S. From

Eqs. (3.2.16) and (3.2.17), one obtains two different expressions for

Qn’ 172
(Q,B) /
R e z[cth +92]
(27$) (4.2.1)
which does not contain the coefficient C4n, and
Ci(22,B)
n gh''

which does not contain the coefficient Cpn. Through Eqs. (4.2.1) and
(4.2.2), iy 1s evaluated as a function of Q for each of the four values
of B’and at each experimental data point for Cpn and Cyy given in Figs.
4.2.1a and 4.2.1b. Q, is plotted as a function of @ in Figs. 4.2.2a to
4.2.2g, for values of parameters S, n, and ¢ chosen as follows:

Table 4.2.1

Values of Parameters for Purely Empirical Approach

Case Figure S n c }
1 4.,2.2a 0.20 .00514 .00103

2 4,2.2b 0.20 .00514 ,00145

3 4,2.2¢ 0.20 .00514 .00181

4 4.,2.2d 0.20 .05 .01

5 4,2.2e 0.20 .50 .10

6 4,2,2F 0.20 .20 .05

7 4.2,.2¢g 0.20 .20 .005

In cases 1 to 3, the parameters were chosen so to enable direct

comparison with Feng's experiments [9]. By maintaining the ratio n/g
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constant in cases 4 and 5, the effect of n on the solutions could be
verified. Finally, the manner in which 7 affects the solution is shown
in cases 6 and 7,

For each of the four B values, Eq. (4.2.1) and (4.2.2) may at most
intersect at two points. Just to aid visual interpretations of those
intersections, interpolation curves (dashed lines) were also drawn in
Fig. 4.2.2g. The intersection points obtained in the case considered in
Fig. 4.2.2g form the amplitude and frequency response curves plotted in
Fig. 4.2.3. These curves, though rather sketchy, show the same quali-
tative behavior encountered experimentally [9, 27, 46] and are the first
indications that indeed forced vibration data can be used to generate the

response of the induced vibration case.

4.2.1 Observations on the Available Data

Based on the results of Fig. 4.2.2 it is observed that:

1) What appeared to be an extensive set of Cph(®,B) and C4n(2,B)
coefficient data for the purpose of response prediction is,
in fact, not so. As indicated by Figs. 4.2.1, there are
only four values for the variable B that yielded meaningful
results. Even so, the considerable scatter of data points
makes defining a smooth interpolation curve difficult.

2) In past experiments, the total force acting on the cylinder
was measured and then decomposed into its orthogonal compon-
ents, as given by Eq. (3.2.2). In this manner, each experi-
ment, for a certain amplitude B and reduced velocity Ve,

yielded only one value for each foreing coefficient Cah
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and Cgp. Thus, the resulting Cyn and C4p values when
plotted should align under their corresponding V, value.
But close examination of the actual experimental data points
[61] shows that there appears to be a shift between the Cpp
and Cqp coefficients obtained within each experimental run.
From Figs. 4.2.2, it is noted that if the experimental points
Cph and Cgp were aligned under the same V. value, then
instead of plotting the results from Eq. (4.2.1) and (4.2.2)
separately, one could have plotted the difference between
these two equations. After all, the sole purpose of the
procedure ié to determine the simultaneous solution of Egs.
(3.2.16) and (3.2.17) in terms of Q and Q.
Upon examining Figs. 4.2.2b and 4.2.2c, it appears that
either there is something wrong with the data, or else,
there is a new characteristic of the vortex induced vibra-
tion phenomenon never before encountered or reported experi-
mentally. Fig. 4.2.2b shows that Eqs. (3.2.16) and (3.2.17)
barely have a solution for B = 0.13, have no solution for
B = 0.25 and B = 0.75 and have some sort of a solution for
B = 0,50. In terms of amplitude response, this would trans-
late into having a plot similar to that in Fig. 2.2.6 but
with an added closed loop of solutions above those shown
for values B 2 0.50 and no solutions in between. A similar
reasoning applies to Fig. 4.2.2c. Recently, Staubli [70]
found some analytical results similar to the aforementioned.

Based on other sets of experimental data [3], however,
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it still seems that there must be something wrong with the
present data set and that in fact, Figs. 4.2.2b and 4.2.2¢c
should not exhibit any solution for B = 0.50.
It is observed that the maximum amplitudes of vibration

obtained by the present approach are substantially smaller

than those obtained experimentally by Feng [9], as can be seen

from Table 4.2.2.

6)

Table 4.2.2

Comparison Between Maximum Amplitudes of Vibration Obtained
Experimentally and from Purely Empirical Approach

max
n z Fengl Model?
.00514 .00103 .524 = ,25
.00514 .00145 .396 z ,13
.00514 .00181 .204 < .13
.00514 .00257 »146 < .13
.00514 .00324 .082 < .13

! Feng's results [9] as digitized by Hall [29].

2 Purely empirical approach.
It is noted that the maximum amplitude of vibration occurs
for V. = 5.00; that is, where C4y(V.,B) is a minimum.
This also corresponds to the point where C (V. ,B) = 0.
It will be shown later that this feature will allow mixing
the present experimental data with other sets of experimental
observations.,

In spite of all the possible problems related to the



-53-
presently available experimental data, it is believed
that these data still carry the basic information necessary
to predict, at least qualitatively, the behavior of the
induced vibration of cylinders. A method for accomplishing

this is presented.

4.3 AN ANALYTICAL-EMPIRICAL APPROACH

It is clear from the foregoing that some appropriate interpolation
of the data will be required in order to produce reasonable model response
curves. Sarpkaya, in presenting the experimental data, also included a
smoothed version, reprodﬁced in Figs. 2.2.2 and 2.2.3. However, no
mention was made as to how this version was obtained from the raw data.
As is obvious at this point, the surfaces Cp;(Q,B) and C4,(Q,B) must be
well‘defined and continuous in both 2 and B in order to ensure a contin-
uous solution for the system of Eqs. (3.2.16) and (3.2.17). .If tﬁere
were enough data points in both B and V., (or Q), and if these data had a
relatively smooth behavior, a numerical interpolation could be employed
and the purely empirical approach described in the previous section
applied. But this is not the case for the available data and may still
not be, even when a more complete experimental set of data becomes avail-
able., One must, therefore, resort to some analytical interpolation
schenme.

Ideally, the interpolation expressions should be chosen to reflect
the very nature of the vortex induced vibration phenomenon. A least
square fit in two dimensions could then be applied to the experimental

data so as to select the constants appearing in the interpolation
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expressions. But if the nature of the fluid-structure interaction was

known, there would be no need for an approximate model.

4.3.1 Fitting of Experimental Data

Considering the observations made with respect to the available
experimental data, the situation is far from ideal. Instead of attemp-
ting to interpolate the actual data points through two dimensional
surfaces, which could prove fruitless, an alternate interpolation scheme
is adopted based on the smoothed data of Figs. 2.2.2 and 2.2.3.

In this procedure, an expression for the curves in the V. direction
is chosen, in order to retain the characteristics deemed most important,
but no attempt is made to make a best fit of the actual data points.

“In particular, analysis of C41(V.,B) curves presented in Fig. 2.2.3,
for the range where Eq. (3.2.18) is satisfied, shows that
1) all curves have a first zero crossing practically at about
Ve = 4.80;
2) all curves reach a minimum at about the same point, Ve = 5.00;
3) there is a second zero crossing for V. > 5.00, that is depen-
dent on B.

Accordingly, an expression for Cy; (V.,B) is chosen as follows:

2 X (4.3.1
- , < sJde
[d(x-a)? + bx] e >
Cq1(Vr,B) =4 x-a \2
_x[1- ( c-a) ] | xa (4.3.1b)
[d(x-a)? + bx]

where
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and the other parameters are defined as

a=0.2 ,

N2
]

b(B) ,

c(B) ,

n
W

d = 0.1 ,

considered constant. x = a is where the minimum occurs in

" the local coordinate system.

function of the amplitude and an approximate value for the
inverse of the minimum.

function of the amplitude, x = ¢ where the second zero cros—
sing occurs in the local coordinate system.

controls the broadness of curves.

The relationship between these parameters and the C4; curve is shown

in Fig. 4.3.1.

A similar examination of the behaviour of the C,;(V.,B) curves,

presented in Fig. 2.2.3, shows that

Y

2)

3)

all curves have a zero crossing practically at V. = 5.15;
the slope of the curves at the zero crossing point is depen-
dent on B

the curves tend to have a practically constant behavior for

values of V. slightly greater than 5.5.

The expression for C,;(V.,B) is chosen as

. e (Vp - Vo)
- s Vo> Vo (4.3.2a)
V. -V )2 172
1 T ro
Cp1(Vp,B) = ¢ [ fle J
L—e (Vp = Vro)
L VoSV (4.3.2b)

where the parameters are defined as

V'

ro , 2zero crossing of the curves
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e = ekB) » slope of the Cp,, curves at Ve = Vg
f = £(B) , assumed as an asymptotic value that Cpp would tend to, for
relatively large values of V..

The relationship between these parameters and the Cp; curve is shown in

Fig. 4.3.2.

controlled
by d

c

Fig. 4.3.1 Parameters for definition of C4q1(Vy,B) surfaces

Cmye
tanB = e

Fig. 4.3.2. Parameters for definitiom of Cpy; (V,.,B) surfaces
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The C4qj(Ve¢,B) and Cpy (Vy,B) curves, being smoother than the Cyy(Vy,B)
and th(Vr,B) curves, have been chosen for interpolation. However,
one set of coefficients can easily be recovered from the other by using

the following equations:

238
r
B2
th(Vr,B)' = v > Cdl(Vr,B) (4.3.4)
r

It should be stated that the above expressions have been arrived at
after a relatively extensive examination of other possible expressions.
Among all the possibilities considered, it is felt that Eqs. (4.3.1) and
(4.3.2) are the ones that best match the smoothed data of Fig. 2.2.3,

As has been indicated, several of the parameters appearing in Eq.
(4.3.1) and (4.3.2) were defined as functions of B so the complete two-
dimensional surfaces for Cp;(V.,B) and C41(V,,B) surfaces can be gener-
ated. These functions were chosen, bearing in mind the simplest possible
expressions and considering only the present set of experimental data to

the extent possible.

Specification of the parameter b.

As can be seen from Table 4,2.2, the present experimental data
yield maximum amplitudes of vibration far below the values experimentally
found by Feng [9]. Since the prediction of amplitude is one of the most
important aspects of the capability of any model, it is felt that some

improvement should be made in this area. Experimental datalexactly simi-

l As of this writing Staubli [70] has not published his complete work.
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lar to the present set have not, as of yet, been published . However, as
mentioned before, the maximum amplitude of vibration occurs at V, = 5,00,
corresponding to minimum values of C4p (V,,B) and close to zero values
of Cpp (V.,B). Data corresponding to forces acting at peak response on
flexibly mounted cylinders are used to supplement Sarpkaya's data, based
upon the assumption that both phenomena are similar. Mixing of the
results from forced cylinder experiments with those obtained from flex-
ibly mounted cylinder experiments is, admittedly, not a very desirable
procedure. Nevertheless, in doing so, the prediction capability of the
model is so greatly enhanced that this by far offsets any of the proce-
dure's undesirable effects.

Evaluating Eq. (4.3.1) for V. = 5.0 and using Eq. (4.3.4), yields

327B2 1

b(B) = -3 Cqn(5-0,B)

(4.3.5)

Values for C4y(5.0,B) from Blevins [9] are mixed with corresponding
values from Sarpkaya and a smooth curve, given by the expression that

follows, drawn through the experimental points.
C4n(Vy = 5.0,B) = -1.375B2 + 1.483B + 0.200 (4.3.6)

This curve is shown, along with the experimental points, in Fig. 4.3.3.
Note that the empirical relationship gives results which are larger than
 those obtained by Sarpkaya, for B = 0.13 and B = 0.25, and gives a smaller

coefficient for B = 0.50.
For all the other parameters, function of B, appearing in Egs.

(4.3.1) and (4.3.2) no similar measurements have been found. Consequently,
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Force Coefficients at Peak Amplitude Response

all remaining interpolation functions are based only on the experimental
results obtained by Sarpkaya. This necessarily implies some degree of
arbitrariness since there are, at most, five experimental data points to
be interpolated. Nevertheless, there is the indirect constraint of what
the amplitude and frequency response should look like for given value of
n and 7. Within this framework, some altermatives have been tried and

the expressions chosen for the present model are hereupon presented.

Specification of the parameter c

The parameter ¢ represents the second zero crossing of Cdl(Vr,B)
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curves in the local coordinate system. An interpolation expression of

the form

1
C(B) = m (4.3.7)

has been selected. The constant was determined through a least square
fit of the data. Table 4.3.1 compares experimental and predicted values

for the parameter c.

Table 4.3.1

Experimental and Predicted Values for Parameter c

c(B)

B experimental predicted
0.13 2.70 1 2.40
0.25 1.60 1.25
0.50 0.65 0.63
0.75 0.40 0.42

l Egtimated

Specification of the parameter e

The parameter e controls the slope at the zero crossing V., of
(V,.,B) curves. Let
r

1

4.3.8
2.043B3 - 2.560B%2 + 1.105B ( )

e(B) =

The comnstants in the expression above were determined through a least
square fit of the experimental data. Experimental and predicted values

are compared in Table 4.3.2.
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Table 4.3.2

e(B)

B experimental predicted
0.13 15,0 ! 9.54
0.25 7.50 6.75
0.50 6.00 5.96
0.75 3.70 3.99
1.03 1.30 1.53
l Estimated

Specification of the parameter f

The parameter f controls the "asymptotic” value of Cp;(V.,B). The

following expression has been selected and the constants determined

through a least square fit.

f(B) = 2.076B2 - 3,173B + 1.767

A}

Experimental and predicted values are presented next

Experimental and Predicted Values for Parameter f

Table 4

.3.3

£(8)

B experimental predicted
0.13 1.40 1.39 -
0.25 1.00 1.10
0.50 0.75 0.70
0.75 0.60 0.56
1.03 0.70 0.70

(4.3.9)
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Specification of the parameter V.,

In section 4.2.1, it is mentioned that close examination of the
actual experimental data shows that there is a shift between the Cy and
C4n coefficients obtained for a same V.. But solely based upon the
analysis of these coefficients, one cannot tell which coefficient is
actually shifted with respect to which.

In comparing results, obtained in Chapter II, for the Wake Oscil-
lator with those obtained by Sarpkaya, it is clear in Fig. 2.3.1, that if
the C4p coefficients, as obtained by the latter, are assumed correct,
then the Cp; coefficients should be shifted to the left. A left or right
shift in the analytical interpolation expression for Cp is accomplished
by varying the value of the parameter Vp,. Thus, if V., = 5.15 is
chosen, the interpolated Cyn curves will cross the V., axis at the same
point as the Cph curves published in [61].

Based agaiﬁ on the results of Chapter II, the aformentioned shift
can be com?ensated by choosing V., = 5.00, which will be assumed herein.
It will be noted whenever the parameter V., takes on a different value.

Once all parameters are defined, Cyy(Vy,B) and C41(V.,B), and
corresponding Cpp(Vy,B) and C4up(Vye,B) can be plotted, as in Fig. 4.3.4
and 4.3.5 for comparison with Fig. 2.2.3 and 2.2.2. Although, the inter-
polation procedure had a smoothing effect upon the experimental data,
it may be easily verified that the overall fitting is reasonable. It is
still observed that the fitting approach used herein, being modular,

allows for independent changes in each of the parameters.
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4.,3.2 Amplitude and Frequency Responses

Having characterized Cp(V,.,B) and Cy4,(V.,B) at all points where
Eq. (3.2.18) is satisfied, the locked-in response and the non-locked-in
response given by Eq. (3.2.16) and (3.2.17) and Eqs. (3.2.25), (3.2.26)
and (3.2.27), respectively, can be solved for each set of parameters n, g,
and wy. To enable direct comparison with the experimental results from
Feng [9], the model predictions for amplitude and frequency are plotted

versus the normalized velocity V,, defined as

2rS V

n
Wy wnD

(4.3.10)

Furthermore, the frequency is normalized by w, so the response curves

for the lock-in case (i.e., w % wy), may lie along the horizontal

w/wy = 1 and for the non-lock-in case (i.e., w = wg), on the diagonal

n

w/wy ¥ wg/wy.

In Figs. 4.3.6 to 4.3.10, the mass parameter n is kept constant
while the damping ratio 7 is varied so as to cover all cases studied by
Feng. The results from one case to another are very similar and one can
note that the model exhibits many of the characteristics associated with
the vortex induced vibration phenomenon. The lock-in response presents
large amplitudes of vibration at w 2 w,, where the vortex shedding
frequency is known to lock onto the structural frequency of vibration.
Relatively smaller amplitudes of vibration are yielded by the non-lock-in
model, at a frequency of vibration equal to the Strouhal frequency. The

lock~in model clearly exhibits a region of double responses. In this

particular region, the stability analysis developed in section 3.3 shows
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that the response corresponding to the smaller amplitudes is always
unstable, However, the same stability analysis applied to the non-locked-
in response shows that solutions are stable everywhere. A jump in the
solution is expected when transition from the locked-in to the non-locked-
in solution occurs at increasing flow velocities.

The model predicted and experimentally observed maximum amplitudes
of vibration are summarized in Table 4.3.4, It shows that maximum

amplitudes are fairly accurately predicted by the present model.

Table 4.3.4

Comparison Between Experimental and Model Predictions
for Maximum Amplitudes of Vibration

Bpax
n z Feng ! Model 2
.00514 .00103 «524 .468
.00514 .00145 .396 .288
.00514 .00181 .204 .198
.00514 .00257 <146 .110
.00514 .00324 .082 077

1 Feng's results [9] as digitized by Hall [29].
2 Analytical-empirical approach
In spite of the good agreement between predicted and experimentally
measured maximum amplitudes of vibration, the overall amplitude response
curve for the model is consistently shifted to the left with respect to
the experimental data. Furthermore, the lock-in band is roughly centered
about wg/wn = 1. At this time, there is no totally convincing expla-

nation as to why this difference occurs. Yet, some possible hypotheses
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are, hereby, discussed:

1) It is possible that the forced cylinder experimental data
have the "centered” lock—in bandwidth characteristic built
in, thus, not allowing for a skewed lock-in band such as
exhibited by the flexibly mounted experiments [9]. Koopman's
[36] experimental results for a forced cylinder inm air alsa
show lock bandwidths centered about w/wg = 1. This tend to
lend support to this hypothesis.

2) In an attempt to compensate for the relative shift between
experimental C,;, and C4, points, the present model
considers C4y coefficients correct and shifts Cp; coeffici-
ents accordingly to the left. Then, the Cpy and Cy4p coef~
ficients, around V, = 5.00, look rather like those predicted
by the Wake Oscillator Model and presented in Fig. 2.3.1.
Force coefficients with these characteristics, however,
are bound to yield responses centered about w = wy=ug,
similar to those shown in Fig. 2.3.2. A correction in
Cgn coefficients (instead of in Cpp coefficients) has
not been attempted but it 1s anticipated that such a cor-
‘rection would shift the model predictions to the right of
these model predictions presented herein.

Although one could go on discussing other hypotheses that may help
establish why the shift occurred, it is also important to look into why
the model consistently underestimates the size of the lock-in bandwidth
as showm in Figs. 4.3.6 to 4.3.10. If Feng's and Sarpkaya's experimental

data are completely accurate, then this difference of almost 50% between
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the size of the experimental and the predicted lock—in bandwidth seem to
suggest that the results obtained in air may not be compared with those
obtained in water after all. In principle, there seems to be no reason
to believe that the force coefficients Cy and Cy4p would attain the same
values for the same experiment performed in different fluid mediums (e.g.
air, water).

In order to assess the differences of model response in ailr and in
water, parameters n and ¢ are varied according to Table 4.3.5 to simulate
several fluid mediums ranging from a light fluid like air to a heavier

one like water and these results are shown in Figs. 4.3.11 to 4.3.13.

Table 4.3.5

Values for n and £ Parameters Used to Simulate Varying Fluid Media

Fluid
Case # Medium n 4
1l Light .0070 .0001
2 0700 .0010
3 Heavy .7000 .0100

In case 1, the mass parameter value adopted is within the range Feng
used in his experiments and behavior of the model is essentially similar
to that previously described. The lock-in bandwidth and amplitude are,
as expected, larger since the damping ratio assumed is an order of mag-
nitude smaller than the values used by Feng, but the overall shape of the
amplitude response does not look at all like the previous model response
curves pictured in Fig. 4.3.6 to 4.3.10.

The results obtained in case 2 are similar to those in case 1. The

lock-in bandwidth is slightly larger and one can observe in the frequency
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plot, the incipient unfolding of the branch of unstable solutions from
that of stable soiutions.

Model behavior in case 3, however, is considerably different from
that of cases 1 and 2. The amplitude respomse shows a much wider regiomn
of relatively larger amplitudes of vibration. The frequency response has
a very small lock-in region (where w 2 w,) next to a substantially
largé region of frequency entrainment within which the system responds at
a frequency that is neither w % w, (lock-in frequency) nor w = wg
(non-lock-~in frequency). One can also note that the branch of unstable
solutions has completely unfolded from that of stable solutions. These
characteristics of case 3, although not present in Feng's [9] observa-
tions, are qualitatively very similar to those of the response curves of
an experiment performed in water reported by Griffin [27] and reproduced
in Fig. 4.3.14. The fact that the model response curves of structures in
water show a better qualitative agreement with experimental data than
their counterparts in air raises some doubts concerning the current
practice of comparing results obtained by experiments done in water with
those done in air. But only more experimental observations will dispel
this doubt., However, it is believed that the present model will perform

best in predicting response for structures in water.

4.3.3 An Approximate Model for the Maximum Lock-in Amplitude Response

Whether the maximum steady state amplitude of a flexibly mounted
cylinder is determined by the ratio of the parameters n and 7 or by each
parameter separately is a debatable point [61]. Based upon Egs. (3.2.16)

and (3.2.17), one may easily conclude that the overall response is a
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function of each parameter separately. Yet, it seems impossible to derive
or to conclude any dependency between the maximum amplitude and the
parameters n and Z.

A closer look at Fig. 4.3.6 to Fig. 4.3.13 reveals that maximum
amplitude occurs at wg/wp * 1 and w/wy, = 1, for the range of n
and 7 used herein. Under these conditions, Eq. (3.2.16) can be considered
approximately satisfied and one is left with Eq. (3.2.17) to solve for

the amplitude, as follows,

n
2Bpax = = Ji775)2  Cdn(@=1,B) (4.3.11)

Therefore, at least in an approximate sense, one may conclude that the
maximum amplitude of vibration is indeed a function of the ratio g/n. It
should be emphasized that in the previous equation, the structural frac-
tion of critical damping Z must be measured in vacuum.

Since, Eq. (4.3.11) will clearly only predict approximately the
maximum amplitude of vibration, a parametric study in n and ¢ is under-
taken in the next section, with the purpose of determining how good an
approximation is this. One may verify in Figs. 4.3.11 to 4.3.13 that the
parameters n and Z were intentionally varied so to maintain a constant
ratio z/n. In all three cases, the complete analysis yields approximately
the same maximum amplitude.

So that the solution of Eq. (4.3.11) can be directly compared with
other published results [25], the variable reduced damping ; is defined

as follows

. = 2(2m8)2 = (4.3.12)
n
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Then, Eq. (4.3.11) i8 rewritten as
2ZB . + Cqp(9=1,B) = 0 (4.3.13)

The predicted maximum amplitude response obtained as a function of reduced
damping is plotted in Fig. 4.3.15 along with experimental results compiled
by Griffinl [25]. Agreement among the results seem quite reasonable.
This is expected because, after all, this model was developed based upon
the fitting of experimental values of C4,(Q=1,B). Anyway it is still
remarkable that such a simple expression (Eq. (4.3.13)) can yield such
good results.

By virtue of the approximations introduced, Eq. (4.3.13) will always
yield the correct value for the amplitude at wg/w, = 1, even though,
it may or may not coincide with that of the maximum amplitude. This

will be seen in the next subsection.

4.,3.4 A Parametric Study in n and

To evaluate prediction capabilities of the Lock-in Model and to
appraise the approximate solutions for the stability boundaries (Eq.
3.3.34)) and for the maximum amplitudes (Eq. (4.3.13)) a parametric study
is, hereby, undertaken. The results obtained are presented in Figs.
4.3.16 to 4.3.20.

In Fig. 4.3.16, while the mass ratio n is kept constant, equal to

0.00514, the fraction of critical damping ¢ is varied within the range

1 According to private communication, only structural damping measured
in still air has been used in compiling these results.
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considered by Feng [9] in his experiments. Approximate results for
both the maximum amplitudes and the stability boundaries, are virtually
coincident with those obtained by exact analysis.

In Figs. 4,3.17 to 4.3.20, the mass ratio n takes on the values
0.05, 0.10, 0.20, and 0.50, respectively. In each of the four figures,
the corresponding n is kept constant while the fraction of critical
damping ¢ is varied so the ratio g/n takes on the values given in the
first column of Table 4.3.6. In this manner, Eq. (4.3.13) for predicting
the approximate maximum amplitudes is thoroughly tested for a wide range
of values of n., How these results compare with those obtained from the

exact analysis is shown in Table 4.3.6.

Table 4.3.6

Comparison of Approximate and Exact Maximum Amplitudes

P4
(exact)
z/n Brax °
(approximate) n = 0.05 n =0,10 n = 0.20 n = 0.50

1.00 .041 041 .041 .041 .048
50 .109 .109 .110 112 .138
.30 «260 <260 .262 .268 <304
.20 .469 469 470 474 494
.10 .800 .800 .800 .800 .802
.06 .955 .955 +955 .955 .955

l  obtained from Eq. (4.3.13).
2 obtained through the complete analysis.,

In general, maximum amplitudes are predicted very well by Eq.
(4.3.13), but the results deteriorate as n and ¢ increase. The worst

results occur where structural damping is high, over 10%. This, however,
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does not pose a severe problem since structures, in practice, do not
present such large damping. Therefore, it appears reasonable to con-
clude that maximum amplitudes predicted by Eq. (3.4.15) may be used for
all practical purposes.

As for the stability boundaries, the region delimited by Eq. (3.3.34)
is, in general, coincident with the actual unstable region. Again,
results deteriorate as n and ¢ increase, yet all unstable solutions are

contained within the approximate stability boundary given by Eq. (3.3.34).

4,3.5 Amplitude Response Bandwidth

From the aforementioned it is now clear that large amplitudes of
vibration and frequency entrainment.may occur over a wide range of nor-
malized velocities.

In order to have an expeditious way of predicting the characteristics
of the amplitude response curvés, the following bandwidths are defined:

1) According to the classical half power method, the bandwidth
Amlis determined from the frequencies at which the response

1s reduced to Bpa,/v/2, as
W
/b

where at both points (ms/wn)a and (ws/mn)b, the
amplitude response is Bp../v2.

2) Alternately, the bandwidth may be defined as the region where
the frequency of vibration differs substantially from the
Strouhal frequency (i.e., w #wg). The frequency entrain-

ment bandwidth Auz is then given by



where (wslmn)a is the smaller of the normalized frequen-
cies at which amplitude response is Bg,y /Y2 and (ms/mn)c
corresponds to the normalized frequency at which the ampli-
tude response lies on the stability boundary.

A pictorial representation of each definition is shown in Fig. 4.3.21.

In Fig. 4.3.22, plots for both bandwidths B, and bw, as functions
of n and ¢ are presented. In general; one can infer that, for small
damping and large mass ratio (e.g. light cylinder in water), the ampli-

. tude response curve will be narrow at Bmax//f (Awl 2 0.15) while assoc~
iateq with a relatively larger frequency entrainment region (Am2 >> 0.60).
As damping increases, one bandwidth tends to the other, then much smaller
regions of frequency entrainment can be expected. Note that amplitude
and frequency responses for structures in water, that is, for values of

n > 0.10, are expected to be more accurately predicted.
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CHAPTER V

SUMMARY AND CONCLUSIONS

Using an analytical-empirical approach in this thesis, the problem
of vortex-induced vibration of circular cylinders has been undertaken.
A new model has been derived, based solely upon measurements of forces
acting on a cylinder forced to vibrate in a uniform aqueous flow. This
model predicts response of flexibly-mounted cylinders as a function of
the structural system and flow parameters. The predicted model response
has been compared to that obtained from flexibly mounted cylinder experi-
ments in a wind tunnel, In Chapter I, the basic phenomena of vortex
shedding and lock-in have been reviewed for both structural configur-
ations of interest to this research effort, namely, forced and flex-
ibly mounted cylinders in uniform flow.

Experimental results [61] that constitute the basis for development
of the present model have been reviewed and discussed in Chapter II,.
Also reviewed and discussed in this chapter are the experimental data [9]
used to evaluate the response curves predicted by the present model. A
short review of previous analytical models for flow induced vibrations
with emphasis on the Wake Oscilliator Model has also been included. The
latter model has been used to predict the forces acting on a cylinder
forced to vibrate, in a harmonic motion, transverse to a uniform flow.
Subsequently, these predicted forces have been used in the discussion of
model results.

In Chapter III, the new model for flow induced steady-state response

has been developed. Response under lock-in and non-lock-in conditious
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has been treated separately. Model response has been determined to be a
function of the following parameters: mass ratio (n), structural damping
ratioc (g), structural natural frequency (w,), Strouhal frequency (uwg)
and the Strouhal number (S), each of which can be independently varied.
Analysis of model equations has shown that induced oscillations are
possible only within certain ranges of reduced velocity, hence better
defining the range where necessary experimental efforts should concentrate.

In anticipation to multiple responses, a stability analysis of the
steady-state response has been carried out through a perturbation approach
that closely resembles the Method of Slowly Varying Parameters. In addi-
tion, an expression for an approximate stability boundary, under lock=in
conditions has been derived and shown to be dependent only on the mass
ratio parameter.

In Chapter IV, the present model has been fully analyzed. First, by
a purely empirical approach in which only the actual experimental data
points have been used. This analysis has shown that force measurements
from forced cylinders experiments can be used to predict amplitude and
frequency responses of flexibly mounted cylinders. It has also shown
the relative role played by the mass ratio and the structural damping
ratio. Furthermore, it has evidenced inconsistencies in the available
experimental data allowing some corrective measures to be incorporated
into the analytical-empirical approach.

In this analytical-empirical approach, analytical expressions have
been used to interpolate the experimental data in order to obtain con-
tinuous model prediction curves. Model amplitude and frequency responses

have been compared with those observed in flexibly mounted cylinder
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experiments in a wind tunnel and have been shown to exhibit several experi-
mentally observed characteristics. Maximum amplitude of vibration is
attained within the entrainment band, where the vortex shedding frequency
wy is entrained by the natural frequency w, of the cylinder. Further-
more, amplitude and frequency jumps are observed at the upper end of the
entrainment band.

Comparison between model and experimental responses also has shown
that even though maximum amplitudes of vibration are fairly accurately
predicted, the amplitude response curves are consistently shifted to the
left with respect to the experimental ones, while entrainment bandwidths
are underestimated. Such discrepancies have lead to doubts concerning
the validity of comparihg results obtained in experiments performed in
water with those performed in air. These doubts were further substan-
tiated by the striking similarities observed between model response curves
and those obtained from an experiment performed in water. Hence, the
model will best predict for structures in water.

An expression to predict maximum amplitudes of vibration as a function
of the reduced damping z has been derived based on model response pre-
dictions. Then a parametric study undertaken has shown this expression
to yield results with virtually no errors for a relatively large range of
damping values (0%<z<10%). The maximum amplitudes predicted by the
expression compares well with experimental results compiled elsewhere.

Directed toward a better understanding of the manner in which ampli-
tude response curves vary as a function of n and g, frequency entrainment
bandwidth and the half power bandwidth have been plotted as functions of

these parameters.
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Suggestions for further research

As an immediate extension of this work, it is suggested that the
methodology involved in the application of this present model be extended
to flexible structures (i.e. cables and beams). More subtle, however, is
the possible application of this model to uniform structures in spanwise
sheared velocity flow or spanwise non-uniform structures in uniform velo-
city flow. It is strongly suggested that this be also pursued.

Certainly, when more experimental data become available, several
doubts raised within the context of this work, particularly, concern
expressed over the validity of comparing results obtained from experi-
ments done in water with those done in air, will be dispelled. There-
fore experimental work directed towards this objective is also suggested.

’From the structural engineering point of view, it is important to be
able to predict the nature of flow induced vibration whether or not the
basic fluid mechanics is completely understood. It is hoped that the
present model as well as the proposed future research will make a posi-

tive contribution towards this goal.
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Implementation", EERL 80-07, August 1980, PB-

120. Krousgri]], Charles Morton Jr., "A Linearization Technique For The
Dynamic Response of Nonlinear Continua“, EERL 80-08, September .1980, PB-

121. Cohen, Martin, “Silent Boundary Methods For Transient Wave Analysis",
EERL 80-09, September 1980, PB-

122. Hall, Shawn A., "Vortex-Induced Vibrations of Structures"
EERL 81-01, January 1981, PB-

123. Psycharis, Ioannis N., “Dynamic Behavior of Rocking Structures Allowed
to Uplift", EERL 81-02, August 1981, PB-

124. Shih, Choon-Foo, "Failure of Liquid Storage Tanks Due to
Earthquake Excitation", EERL 81-04, May 1981, PB-
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California Institute of Technology
Earthquake Engineering Research Laboratory

The following reports of the Earthquake Engineering Research lLaboratory
from 1970 on can be obtained from the National Technical Information
Service, Springfield, Virginia 22121:

Strong -Motion Earthquake Accelerograms
Digitized and Plotted Data

Volume I
NTIS

Part Report No. Accession No.
A EERL 70-20 PB-287 847
B EERL 70-21 PB-196 823
C EERL 71-20 PB-204 364
D EERL 71-21 PB-208 529
E EERL 71-22 PB-209 749
F EERL 71-23 PB 210619
G EERL 72-20 PB-211 357
H EERL 72-21 PB-211 781
I EERL 72-22 PB-213 422
J EERL 72-23 PB-213 423
X EERL 72-24 PB-213 424
L EERL 72-25 PB-215 639
M EERL 72-26 PB-220 554
N EERL 72-27 PB-223 023
@) EERL 73-20 PB-222 417
P EERL 73-21 PB-227 481/AS
Q EERL 73-22 PB-232 315/AS
R EERL 73-23 PB-239 585/AS
S EERL 73-24 PB-241 551/AS
T EERL 73-25 PB-241 943/AS
U EERL 73-26 PB-242 262/AS
v EERL 73-27 PB-243 483/AS
W EERL 73-28 PB-243 497/AS
X . EERL 73-29 PB-243 594/AS
Y EERL 73-30 PB-242 947/AS
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Volume II

Report No.

EERL 71-50
EERL 72-50
EERL 72-51
EERL 72-52
EERL 73-50
EERL 73-51
EERL 73-52
EERL 74-50
EERL 74-51
EERL 74-52
EERL 74-53
EERL 74-54
EERL 74-55
EERL 74-56
EERL 74-57
EERL 75-50
EERL 75-51
EERL 75-52
EERL 75-53

Strong -Motion Earthquake Accelerograms
Digitized and Plotted Data

Corrected Accelerograms and Integrated
Ground Velocity and Displacement Curves

NTIS
Accession No.

PB-208 283
PB-220 161
PB-220 162
PB-220 836
PB-223 024
PB-224 977/9AS
PB-229 239/AS
PB-231 225/AS
PB-232 316/AS
PB-233 257/AS
PB-237 174/AS
PB-236 399/AS
PB-239 586/AS
PB-239 587/AS
PB-241 552/AS
PB-242 433/AS
PB-242 949/AS
PB-242 948/AS
PB-243 719
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Analyées of Strong-Motion Earthquake Accelerograms
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Response Spectra

Volume III

Report No.

EERL 72-80
EERL 73-80
EERL 73-81
EERL 73-82
EERL 73-83
EERL 73-84
EERL 73-85
EERL 74-80
EERL 74-81
EERL 74-82
EERL 74-83
EERL 74-84
EERL 74-85
EERL 74-86
EERL 75-80
EERL 75-81
EERL 75-82
EERL 75-83

NTIS
Accession No.

PB-212 602

PB-221 256

PB-223 025

PB-227 469/AS
PB-227 470/AS
PB-227 471/AS
PB-231 223/AS
PB-231 319/AS
PB-232 326/AS
PB-236 110/AS
PB-236 400/AS
PB-238 102/AS
PB-240 688/AS
PB-241 553/AS
PB-243 698/AS
PB-242 950/AS
PB-242 951/AS
PB-243 492/AS
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Analyses of Strong-Motion Earthquake Accelerograms
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Fourier Amplitude Spectra

Volume IV

Report No.

EERL 72-100
EERL 73-100
EERL 73-101

"EERL 73-102

EERL 73-103
EERL 73-104
EERL 73-105
EERL 74-100
EERL 74-101
EERL 74-102
EERL 74-103
EERL 74-104
EERL 75-100
EERIL 75-101

NTIS
Accession No.

PB-212 603

PB-220 837

PB-222 514

PB-222 969/AS
PB-229 240/AS
PB-229 241/AS
PB-231 224/AS
PB-232 327/AS
PB-232 328/AS
PB-236 111/AS
PB-238 447/AS
PB-241 554/AS
PB-243 493/AS
PB-243 494/AS



