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ABSTRACT

The response of linear, viscous damped systems to excitations
having time-varying frequency is the subject of exact and approximate
analyses, which are supplemented by an analog computer study of
single degree of freedom system response to excitations having
frequencies depending linearly and exponentially on time,

The technique of small perturbations and the methods of
stationary phase and saddle-point integration, as well as a novel
bounding procedure, are utilized to derive approximate expressions
characterizing the system response envelope--particularly near
resonances--for the general time-varying excitation frequency.

Descriptive measurements of system resonant behavior recorded
during the course of the analog study--maximum response, excitation
frequency at which maximum response occurs, and the width of the
response peak at the half-power level--are investigated to determine
dependence upon natural frequency, damping, and the functional form
of the excitation frequency.

The laboratory problem of determining the properties of a physical
system from records of its response to excitations of this class is
considered, and the transient phenomenon known as ''ringing' is treated
briefly.

It is shown that system resonant behavior, as portrayed by the
above measurements and expressions, is relatively insensitive to the

specifics of the excitation frequency-time relation and may be
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described to good order in terms of parameters combining system
properties with the time derivative of excitation frequency evaluated at
resonance,

One of these parameters is shown useful for predicting whether
or not a given excitation having a time-varying frequency will produce
strong or subtle changes in the response envelope of a given system
relative to the steady-state response envelope. The parameter is
shown, additionally, to be useful for predicting whether or not a

particular response record will exhibit the '"ringing' phenomenon.
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NOTATION
decay constant used with exponentially sweeping excitation (T_l)
decay constant used with exponentially sweeping excitation (t~ 1)
excitation phase angle expressed as a function of t

excitation phase angle expressed as a function of T

1

- G, the rate of change of excitation frequency for the linearly

sweeping case (cps/s, a constant)
/-1
spring constant

mass (except where noted in Chapter V)

Ji-c
s

natural frequency in cps
th

i"" natural frequency in cps

N2
R

excitation expressed as a function of t
modulus of excitation

excitation expressed as a function of T
Laplace transform variable

time

time at which the excitation frequency equals the ith resonant

frequency

width of the response peak at the half-power level {(dimension-

less, or in cps where noted)

measured W



mod

max

vii

displacement

modulus of displacement

2

X - Mo x (except where noted in Chapter VI)

PO PO
)

modulus of y
maximum of y
maximum steady-state value of y

first secondary maximum of y

instantaneous frequency of excitation, g'(T)

value of o for whichy = vy

Ju - 2c?

J1 - zg:“

damping constant

max

N:ZTrB

B/2/KM

measured (

angular displacement expressed as a function of t
angular displacement expressed as a function of T
wt

value of 7 for which excitation frequency equals resonant

frequency

value of T for whichy = Ymax



viii

Tmax, 2 wvalue of T for whichy =y

max, 2
© = (l-CLZ)2 + 4g2a2
Q(t) . instantaneous excitation frequency, ('}(t)
w baad m
w; th natural frequency in radians/second
@ measured natural frequency

Dots over variables denote differentiation with respect to t;

primes denote differentiation with respect to 7.



I. INTRODUCTION

The first analysis of the response of a vibrating system
influenced by an excitation having a time dependent frequency was
performed by Lewis(l) in 1932. 1In ordcr to obtain a solution in termse
of known functions, Lewis imposed the restrictive requirement that the
excitation frequency be linearly related to time. Succeeding papers
treating the analytical aspect of the problem adhere, in the main, to
Lewis' restriction. Authors of these more recent papers include:
Barber and Ursell(z), Hok(3), and Baker(4).

The excitation used most often in experiment, on the other
hand, has been one in which the frequency depends exponentially on

time. Its use is due primarily to the fact that devides for its synthesis

in service. Papers dealing with the exponentially sweeping excitation
have, in general, been experimentally orientated. Authors of such
works include Crede(S), and Hartenstein(é).

Direct answers to questions concerning the response of a given
system to a sweeping excitation other than the two mentioned would not
be forthcoming from the above references, nor from others uncited.
The wealth of published data for the linearly sweeping excitation fails
to make clear the quantitative effect of damping upon system response,
Little, in addition, may be inferred regarding the effects of differences

in sweeping excitations, since results for the linearly sweeping and the

exponentially sweeping excitations--traditionally associated with the



analytical and experimental aspects of the problem respectively--are
not written to permit ready comparison.

The following chapters deal with the response of linear, viscous
damped systems influenced primarily by specific sweeping excitations.
An effort has been made, however, to present results in such a way as
to permit insight into the nature of system response to any sweeping
excitation. Response envelope behavior near system resonances has
received particular attention, and descriptive measurements of this
behavior have been analyzed to determine the character of their
dependence on damping, natural frequency, and parameters associated

with the sweeping excitation.



II. A PHYSICAL AND MATHEMATICAL DESCRIPTION
OF SYSTEM RESPONSE

When a simple system is forced by a constant amplitude
excitation having a time-varying, or sweeping, frequency, and this
frequency is permitted to pass through an important natural frequency
of the system, the response will manifest characteristics seen in
Figs. 2.1 and 2. 2.

The oscillograph trace shown in Fig. 2.1 represents the end
acceleration of a Lucite cantilever influenced by an excitation with
frequency sweeping exponentially in time through the system's lowest
natural frequency. The record shown in Fig. 2.2 represents the mid-
point displacement of a simply-supported glass bgam influenced again
by an excitation with frequency sweeping exponentially in time through
the lowest natural frequency of the beam,

The most striking feature of the response envelope is the beat
pattern, or ''ringing', succeeding the anticipated response peak in
time. Crede(s) provided the following physical explanation of the
phenomenon:

""A short time interval after the excitation frequency coin-
cides with the natural frequency, the response amplitude is a
maximum. If the excitation were to cease suddenly at this
moment of maximum response amplitude, the subsequent vibra-
tion of the responding system would be free vibration with a
continuously decreasing amplitude as controlled by the damping
of the systemn. However, the excitation continues with a
gradually increasing frequency and the forced vibration of the
system thus has the same frequency as the excitation., The
response of the system thus embodies two frequencies of nearly
equal value, the free vibration continuing from the maximum
response and the forced vibration at the excitation frequency.
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It may be noted that the beat period decreases con-
tinuously with time as the difference between the natural
frequency and the excitation frequency increases during the
sweep pattern, "

Less striking, but of great importance, nevertheless, is the
pronounced effect upon the response peak produced by a sweeping
excitation. A comparison of the curve of response amplitude versus
excitation frequency for the sweeping case to the curve obtained by
plotting the system's steady-state response amplitude as a function of
excitation frequency will show that sweeping generally produces an
attenuated, broadened response péak.

As indicated above, the response maximum for a system
influenced by a sweeping excitation will occur shortly after the excita-
tion frequency equals the system natural frecqucncy. The response peak
center frequency will then be higher or lower than the steady-state
value depending upon whether the excitation frequency passes up or
down through system resonance.

Figures 2. 4 through 2. 8 illustrate the response of an electrical
analog model of a viscous damped single degree of freedom system in-
fluenced by an excitation in which the frequency is a linear function of
time. Figure 2.3 is the steady-state response amplitude versus
excitation frequency curve for the same system provided for the
purpose of comparison. Figure 2. 4 represents the slowest sweep rate
of excitation frequency in this series of illustrations, and it is seen
that the resulting response envelope has a form very similar to the

steady-state curve. For a slightly higher sweep rate, Fig. 2.5, the
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maximum amplitude is attenuated somewhat, and the response peak is
broadened. In addition, a secondary hump appears, marking the onset
of the 'ringing' phenomenon. The response illustrated in Fig. 2.6
represents a still faster sweep rate. The secondary peaks are highly
developed, and the primary peak has been further attenuated and
broadened. When the sweep rate is increased further, the response
assumes the form indicated in Fig. 2.7a. An interesting change has
taken place here, for the response envelope which manifests a con-
cavity both before and after the maximum has been attained in the
preceding illustrations now appears convex on the side corresponding
to times later than the time that the excitation frequency equals the
systenlnaiuralfrgguency. This convexity suggests more the envelope
of a beat pattern produced, for instance, when a system is excited by
two closely spaced frequencies, Fig. 2.7b, than the steady-state
response curve, Fig. 2.3, The last figure, Fig. 2.8, represents the
fastest sweep rate of the series. It illustrates a gross distortion of the
response curve, and a degradation of the response envelope for times
corresponding to times after the excitation frequency coincides with the
system natural frequency. Response curves such.asthe one shown in
Fig. 2.8 are rarely seen in practice, since exciters of physical systems
generally do not sweep in this very rapid fashion.

The notion of a characteristic time--defined as that time
measuring a significant change in the dependent variable under obser-
vation--may help to explain the form of the response curves discussed

- above.
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There will be two characteristic times associated with the
response of ayfreely oscillating damped system--one related to the
period of oscillation, and the other related to the exponential decay.

If the latter is large with respect to the period of oscillation, it will
define a long term, or envelope, behavior of the response.

A harmonic excitation provides another characteristic time
(associated with its period), and the resulting system response will
contain behavior described by all three times. The system times will
appear in starting, or transient behavior.

If the excitation frequency were allowed to vary, a fourth char-
acteristic time, related to the time derivative of excitation frequency,
would be introduced into the response,

When the excitation frequency sweeps very slowly in time, the
characteristic time of sweeping will be large with respect to the
system's characteristic times. Transient behavior will contribute
very little to the response, which will assume the form of Fig. 2. 4
For faster sweep rates, the characteristic time of sweeping will be of
the same order as the time of system decay, and transient behavior
becomes impdrtant, as seen in Figs. 2.5 through 2.8.

In these instances, the system has had insufficient time to
build to its steady-state response maximum; the free decay from the
peak value interferes with the iforced oscillation to form the beat
pattern following the primary peak. Further interference and degra-
dation of the envelope appear, as seen in Fig. 2.8, when the

. dependent characteristic time of beating--proportional to the
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difference between the period of excitation and natural period of the
system--is of the same order as the characteristic time of sweep.

The significance of the effect of sweeping excitation upon the
form of the response envelope as compared to the steady-state curve is
a function of system damping as well as the sweep rate. If two systems
differing only in damping are influenced by an identical sweeping excita-
tion, the response envelope of the more heavily damped system will
bear a stronger rcscmblance to its steady-state curve than will that of
the system with lighter damping.

The effect of increased damping upon the sweeping response
envelowe holds with th notion
since the characte%'istic time of sweeping even for rather fast sweep
rates will be largé with respect to the characteristic time of decay for
a heavily damped system. Significant changes in the sweeping response
envelope of a heavily damped system will then require very fast sweep
rates.

In the remainder of this chaptcr, and in the succeeding three
chapters, the response of a viscous damped single degree of freedom
system influenced by sweeping excitations will be analyzed. Discrete
systems having more than one degree of freedom, and continuous
systems will be discussed briefly in Chapter VI.

The sweeping excitations to be discussed will have the general

form

P(t) = P_ sin G(t) . (2. 1)
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The instantaneous frequency of excitation will be defined
herein as

a( = 4Gl

dt
The equation of motion for the system illustrated in Fig. 2.9

influenced by the excitation (2. 1) is

2
MEZE 42 L K= P_sinGit) (2. 2)

at?
where M, B, and K are respectively the mass, the viscous damping
constant, and the spring constant.

Equation (2. 2) is generally written

2 P
d"x dx 2. _ To .
:i-t—z—' + ZQw(—iF + w x = -I\-—/I sSin G(t) N . (2. 3)

where w = / %\{-}I— is the undamped natural frequency, and where
¢ = E%'I{T is the fraction of critical damping.
It will simplify results if the independent variable is replaced

by a dimensiohless time, T = wt, and if the dependent variable is
szx

replaced by y = —P-x—) = - . The new dependent variable may be
) o
=

thought of as the ratio of dynamic response to static displacement
resulting from application of the force P,
Equation (2. 3) upon substitution of the new dependent and
independent variable becomes
y"'+ 2Cy'+ y = sin g(T) , (2. 4)
where G(t) = g(7), -and where primes denote differentiation wifh

respect to T,
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The instantaneous frequency ratio of the excitation will be
defined as
WT) = g'(T)

Equation (2. 4) has the complementary solution:
v (T) = Ae” ¢ sinmt + Be ¢ cos mT (2.5)

where A and B are arbitrary constants of integration and where

m = l—CZ.

The particular solution of (2. 4) may be written in terms of

Duhamel's integral:

.
yp(r) = [ B(r-11) sin g(r)ar (2. 6)
T
o]
in which
nirorty = &) sin m(r-T)
m

The lower limit of the integral in (2. 6) represents the time of
initial application of the excitation.

The complete solution to (2. 4) may be written using the results
(2. 5) and (2. 6):

T

Y(T) = y(T ) © w(T=T )+ y'(T_ )+ v{(T-7 ) + | B(T-T')sin g(T)dT". (2.7)
; T
0
The functions u(T-To) and v(T-To) are formed from the two homogeneous

solutions. These functions have the properties:
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u(0)

1l
<
/;-
o
e
0
—

u'(0)

1
<
—
o
—
1]
o

Closed-form evaluation of the integral portion of (2. 7) for the
general trigonometric argument, g(T'), is not possible, although the
nature of its behavior may be inferred from the physical discussion at
the start of this chapter. Further knowledge may be gained concerning
the general problem from the following analysis.

It will be helpful to deal in the following with the infinite time
operating system, i.e., the system to which the excitation

p(T) = sin g(7)
is first applied at time equals -oo.

Starting conditions, y(-o0) and y'(-co) will, in addition, be taken

equal to zero in the undamped case. The complete response may then

be written

]
(1) = [ n(r-m) . p(rryart . (2. 8)
- Q0

If the change of variable
u=T-7'
is made in (2. 8), the solution may be written:

QO .
y() = [ hw) -« p(r-u) au . (2. 9)
0

Expressions (2. 8) and (2. 9) will be used interchangeably.
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The response of the undamped system to harmonic excitation
having fréquency equal to system natural frequency can not be bounded,
since, given this circumstance, response grows linearly with time.

For the case in which the excitation frequency is constrained
to sweep once through system resonance at a finite rate, it appears
reasonable to assume that the response of the undamped system will be
bounded, since the excitation frequency will equal system natural
frequency for only a finite period, providing insufficient time for the
build-up of an unbounded response.

This argument may be extended to more general cases where
the excitation frequency is cycled a finite number of times through the
system resonant frequency. For if each pass thro;.}gh resonance
increases the response by a finite amount, then a finite number of
passes cannot produce an infinite response.

It is concluded that the response of an undamped system subject
to any sweeping excitation should be bounded provided only that the
frequency of excitation equals the system natural frequency for a finite"
total time. This conclusion eliminates sweeps in which the frequency
of excitation approaches the system natural frequency asymptotically or
in which the frequency of excitation is cycled through the system
natural frequency an infinite numbér of times (more will be said about
this case later).

Granting the above restrictions on the sweeping excitation, it
should be possible to derive an upper bound for the response in the

undamped case.
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It could be surmised that one of the simplest types of sweeping
excitations would be one in which the frequency, everywhere positive,
is a strictly decreasing function of time. Such an excitation will have
a frequency equal to the system natural frequency at one time during
the interval (taken to be 7= 0, without loss of generality). An excita-
tion of this type will be assumed in the following demonstration.

The response of the undamped system to the above excitation

will be
A‘T
y = r sin (T-T') sin g(T"HdT' . (2.10)

-00
The instantaneous excitation frequency:
woooalT) = ghi(T)
is such that

a{0)

il
[

and
a!(7) = g"(1) < 0.
Expression (2. 10) may be rewritten by factoring the time

dependence from the integrand, and applying well-known trigonometric

identities:
r (I,-1,)
O P R -134]
-7 (Il IZ) + (13 14) sin iT+tan W s (2.11)

where
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.

I, = j. sin [T'+g(7") ] dr' ,
-0
T

I, = | sinlr'-g(r}]ar ,
-00
.

I, = : cos [T+ g(th]ar' ,
-0
T

I, = J cos [T'-g(Th] ar!
-0

The frequency of the integrands of L and 13 is
By (T = 1+ T)

The frequency of the integrands of 12 and 14 is

B, 47 =1 - (T

The restriction on oT') requires that 01’ 3 and lbz’ 4 will be as indicated
in Fig, 2,10. It is seen that Q)l’ 3 Will never be zero and, in fact, will
never be less than one, The function ¢2’ 4 °" the other hand, will have
a single zero in the region of interest.

The integrals Iip o v vy 14 represent members of a class of
integrals discussed by G. N. Watson(7)in his treatise on the method of
stationary phase. Watson notes that if the frequency of the integrand
is zero somewhere in the interval of integration, then the prime con-
tribution to the integral comes from the neighborhood of the point corre-
sponding to zero frequency. A corollary contention would be that if no

such point exists in the interval of integration then the value of the
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integral is comparatively small.

Of the four integrals making up the expression for the amplitude
of the response, y, only two satisfy Watson's condition. These two
integrals should, and do, as will be seen in the following, make the
prime contribution to the response.

Each of the integrals in (2. 11) may be thought of as an infinite
sequence of integrals taken over sub-intervals defined by the zeros of
the oscillating integrand (plus a residual contribution owing to the fact
that the upper limit of integration, T, need not correspond to a root of
the integrand). The signs of successive terms in the sequence alter-
nate. Convergence of the sequence is thus assured if the Nth term
exceeds the I(N+l)th term in absolute value, and if the Nth term goes
to zero as N goes to 0.

The requirement that o(7') and, consequently, that the
frequency of each integrand increases to oo as time regresses from
T =0, to T = -00 will constrain the separation between the zeros of the
integrand to diminish to zero as time goes to -oo.

The interval of integration of the (N+l)th element in the
sequence will, therefore, be smaller than that of the Nth element
(which succeeds the former in time), and it may be shown that the
absolute value of the ('N+1)th contribution to the sequence will be smaller
than that of the Nth. Furthe rrhore, the Nth contribution will go to zero
as N ~ oo.

The alternating sequences thus satisfy the requirements for

convergence.
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In order to bound the contribution of each of the integrals
forming the response, (2.11), it should be noted that the sum of an
infinite alternating sequence may be predicted by the sum of the first
N terms. The error in such a prediction will have an absolute value
less than that of the first neglected term and will carry the sign of the
first neglected term. Further, the sum of a truncated alternating
series is bounded by the absolute value of the first term provided that
the first term exceeds the second in absolute value, and so on.

The integrals I, and I; may now be bounded after first noting
that the frequency of the integrands strictly increases as time
regresses from T' = T,

The integra,l,l1 over the range (-0, T) is then bounded by

Ty T
I, < l I sin [T'+g(v")Jar' | + J‘ sin [T'+g(T")]dr’ , (2. 123a)
T12 11
and the integral 13 over the range (-o0o, T7) is bounded by
T3l T
I < | ‘[ cos [T'+g(T")ldr' { + ! j cos [T'+g(T")]drt! (2. 12b)
732 31

The T and T2 equal respectively the first and the second zero pre-
ceding 7' = 7 for the relevant integrand, and the second integral in each
of the above expressions represents the residual contribution deriving
from the fact that T need not correspond to a zero of the integrand.

The integrals 12 and 14 over the interval ( -oo, 0) are bounded in

the same fashion. The integrals I2 and 14 over the interval (0, T) may
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be bounded after noting that the frequency of the integrands increases
as time progresses from 7' = 0to 7' = T, Each of these integrals may
then be thought of as the sum of a truncated alternating sequence in
which the first element exceeds the second, and so on.

The integral I2 over (0, T) is then bounded by

T T

22 21
IZ < | J. sin [T'-g(T"]dr' | + ' j sin [T'-g(T")]dT! ) (2.13a)
21 0
and the integral 14 over (0, T) is bounded by
T42 T41
I4< I j‘ coe [T'-g(tyldr'{ + ‘r cos [T'-g(T")dT! (2. 13b)
T41 0

The i1 and Tio equal the first and second zero of the relevant integrand
occurring after 7 = 0. The second integrals again represent residual
terms.

These bounding expressions--integrals taken over specific
small segments of the interval of integration--are easier to work with
than the original integrals, since they may be either estimated or
bounded by very simple functions. Bounds may be further refined by
including additional elements of the sequences described above.

The technique described will now be applied to a particular
problem.

Consider the excitation

p(T) = sin(T - TZ/4Trq) , T<2mq . (2.14)
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The frequency of excitation is
a(t)y =1 - 7/2mq

The excitation will sweep in frequency from +oo at T = -0, through

system resonance at T = 0, to zero at 7 = 2mq.

It is desired to bound the response amplitude maximum of the
.

undamped system subject to this excitation. Response will be written

in the form of expression (2. 11). The integrals appearing in this

formulation will be

T 2
- . T T 1
I1 = J‘ sm(Z"r —-—-—4Trq) dar' ,
-0

T 2
- . T! I
I2 i j sin (4—_“_(1 dT s
(0 0]

- (2. 15)
T
T'Z
—_ 1 1
I3 = I cos(?.'r -—)dT s
-0
T .2
— ! -1
14—J cos I )d.
-0

In the range of interest, T < 2wq, the frequency of the integrands

of Il’ and I, will always be greater than one. It may bhe shown by appli-

3
cation of (2. 12a) and (2. 12b) that these integrals attain their maximum
possible value for T = 2nq, and that the size of these maxima will
be 0017 .

Analysis based on (2. 12a), (2. 12b), (2.13a), and (2. 13b)} shows

that IZ(T) attains its maximum value for
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corresponding to the first root of the integrand occurring after the
stationary phase point, i.e., the point at which excitation frequency
equals system natural frequency.

The integral I2 over (-0, 0) may be bounded as outlined, but

its value is well known and may be written directly:

0 2
I sin (-Z_IT—q) dr' = n/q/2

-0
Over the interval (0, T), IZ(T) is bounded by

2n/q

LT \
J sin (_—4-rrq_ dr )
0

which may in turn be bounded by

2/mq 2 2m/q
‘_T_l 1 ‘[ l
J |\ Trq) dT' + dar' ,
0 2/ mq
o 2 12
since both 1 and (—) bound sin/ |
4nq | 4mq )

The integral IZ is thus bounded by
I, < 6.14 /q .

The above analysis applied to 14(1') shows that it attains its
maximum value for |
T =m/2q
The portion of the integral over (~oo0, 0) may again be written

directly:
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and the bounding integral for the interval (0, T)

TT\/?T(l 2

P&,
j\ Cos&;n'qa ar' ,
0

will be bounded by

m/aq
j‘ dTt! = 11-\/'2—(1
0

The integral 14 over (-co, T) is then bounded by

I4<6.52/E.

-,

The value of g wili\be quite large for cases of interest. The integrals
12 and 14 will then dominate the expression for the response, and the
contributions of L and I3 may be neglected. An upper bound for the
response amplitude may then be written

y X<4. 48 . /q

ma.

Lewis(l) computed the value of these integrals and suggested that the
approximate equality

Yoy =3-67/9 (2.16)

ma

is good for large q. The derived bound differs from this result by 22%.
The quality of this bound was, of course, influenced by the fact that in
the case treated several of the integrals were replaced by their exact
values. In the general case, the infinite integrals would have to be

over-estimated, as in the finite case above.
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In addition to predicting a maximum bound for the undamped
response of a system, the method outlined also predicts the approxi-
mate location in time of the response maximum for, considering

previous remarks, this maximum should lie in the range

m2Zq< T  <2n/q

or

4.45 /q<71 . <6.28/q .

a
Lewis' suggested approximation for the location of this response

maximum, when written in the present notation, is

Tax = 5.36/q . (2.17)

ma.

If the expression (2. 11) is assumed truly valid for times dis-
placed still further from T = 0, the time of resonan'&“e, then the strong
oscillatory behavior of I2 and 14 must determine the form of the
"ringing'' pattern succeeding the response maximum. In the example
under study, the time of occurrence of the first secondary peak would
have as a lower limit the time defining the end of the second positive
swing of the integrand of Iy and as an upper limit the time defining the
end of the second positive swing of the integrand of IZ' The time of

occurrence of the first secondary peak would then lie in the range

2m/2q < Tmax, 2 < 2n/3q

or

8.9/4 < 'Tmax,2< 11.0/q9q .

A comparison to experimental results indicates fair agreement,



-32-

The response of the undamped system may still be over-
estimated by the above technique when the requirement that the
excitation frequency is everywhere pousitive, and strictly decreasing
is relaxed. The intervals of integration will be divided into sub-
intervals in which the frequency of the integrand either increases,
decrcascs, or rcmains constant. Since the truncated alternating
sequence is bounded by the contribution of the first term provided, as
before, that the first term exceeds the second in absolute value,
and.so on, the integrals over the intervals where the frequency
increases, or decreases may be bounded. In intervals in which the
frequency remains constant, the integrale may be computed or may

be bounded by the wsmaller of the following expressions:

b
2 .J‘ sin ,] '
3 = cos!._aT drt .

a
r
°© b

pear = 2narer
a

For the case a = 0, b and a will both be finite as a consequehce of the
condition excluding sweep functions with frequéncy equaling the system
natural frequency for an infinite period.

In the general case permitting multiple passes through the
system natural frequency, the maximum bound will obtain shortly after
the last pass through resonance. The actual response maximum may

occur after some other pass through resonance, but the method,
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dealing as it does only with response amplitude, takes no account of
possible phase cancellation that may occur and requires the ''safe"
choice, from the bounding standpoint, that peak behavior will always
add.

Bounding the response for the damped system subjected to
sweeping excitation presents none of the previous problems, since the
presence of the decaying exponential term in the integral expression

for the response, (2.9), ensures absolute boundedness provided that

| f(r-w)l=q,

where Q is some constant less than infinity., This condition is satis-
fied for the present class of excitations, since the modulus of the

excitation is one. Expression (2. 9) may then be bounded by
v £ 1/m( (2.18)

The bound (2. 18) utilizes none of the convergence properties of
the sweeping excitation, and it might be hoped that the method dis-
cussed in reference to bounding the undamped response could be applied
to give a harder bound for the damped response.

Given non-zero damping, the integrals of (2.11) become
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.
I, = j‘ e 6T gin [Tr+g(Thy] dTmr
-
.
I e T gin triog(r)Tar
-
(2.19)
T
I, = J e ClT=T) cos [T'+g(T")]dT! ,
-0

-

[

Iy = J e T cog riog(rnyTar

- Q0

Each of these integrals may be again thought of as the sum of
an infinite alternating sequence. Convergence of these seque.nces is
assured for any g(7) by the presence of the decaying exponential term,
which attenuates the maximum amplitude of each preceding half-cycle
oscillation of the integrands as a function of the time of its occurrence
measured from the time corresponding to the upper limit of integration,

If an excitation with strictly decreasing frequency is applied to
the system, the integrand frequencies, U1,3(T') and cpz’ 4(T'), take the
form indicated in Fig. 2.10. The integrals I, and I, as well as the

portions of I, and I4 over (-o00, 0) will be overestimated by expressions

2
similar to (2. 12a) and (2. 12b):

’Tll T

A -¢{t-7') sinf_, 0 gt [ -¢(T-1") sin\_ 1 - -‘ !
I < H ¢ cos\i_rr £g(mh) ath 1+ '}T ¢ cos. T 8(T) JdT" |

T il

i2
(2. 20)
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in which T and '7.12 equal the first and second zeros of the relevant
integrand occurring before 7. The second integrals again represent
residual contributions deriving from the fact that T need not corre-

spond to a zero of the integrands.

These bounds should be better than those written for the
undamped case, since the exponential terms ensure more rapid
convergence,

Trouble arises, howecver, in the attempt to bound the integrals
12 and I4 over the interval (0, T) for it is no longer clear that these
integrals are bounded for any T > 0 by expressions similar to (2. 13a)
and (2. 13b). This is true since the importance of each half-cycle of
the integrand to the sum representing the integral over (0,T) is a
function not only of its period, but also of its time rcgf occurrence
measured from the upper limit of integration.

It could be demanded that the excitation frequency be arranged
such that the contribution over the first half-cycle bound the integral
over the interval (0, T) for any 7. It would only be necessary then to
choose T to maximize the size of this contribution. Such a condition,
it may be easily shown, would require that the absolute value of the
integrand frequency of I and 14 take the form

|92, 4] ~ T a>¢t

When this is not the case, the importance of the initial contributions

to I, and I, will be diminished as the upper limit of the integrals is

2 4

raised, and the importance of succeeding terms, although
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representing shorter periods, will be amplified. A great deal of work
would be required to bound these integrals by the method used for the
undamped case, and even more work would be required to prove that
the result obtained was actually a bound and not just an estimate.

It is certainly true that for the damped case the response maxi-
mum obtains a short time after the excitation frequency equals the
system natural frequency, and an estimate could be developed for this
maximum by considering the contributions of L, and 14 near T = 0.

Consider the response of the damped system subject to the
excifation (2.14). The integrals 1, and I4 of (2. 19) will be approximated
by (2. 20) in which the limits of integration will be taken to be equal to
the zeros of the re];t?vant integrand occurring on cither side of 7 = 0, the
point of stationary ‘phase. The integrands will then be approximated by
convenient polynomials.

For I2 the above work leads to an expression:

T
max _ e
I ~J e Winax™) i {——T1 Z)dT'
2 max sin 4mqg
-00
4
—/_il_—_[COSh(ZTFQ\/Ei) - cosh (2w(/q - (;/a)_l (2.21a)
se-2mt/q | 4
_ 2e
2 1 1 .
¢ T cosh(2¢/mq) + 3T sinh (2¢/7q)

and for 14 :
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n -7 'Tl) r 2
I4max = 'J] e max cos(—l—ﬁ—) dr!
-00
(2.21b)
/—2— -TT/Z—(l COSh("TC\/Z—(—:l)
- e
=g —=
¢ - cosh [(m-1)¢/2q ]

These expressions may be combined to form the modulus of the
system response, y, per (2.11) giving an estimate for Ynax® This
estimate is plotted in Fig. 2. 11 expressed as a ratio of the maximum
response under sweeping conditions to the maximum response attained
by a similarly damped system subjected to a fixed frequency excitation,
Ymax, ss The shape of the curve predicts the shape of experimentally
determined curves and constitutes a fair prediction of experimental
results.

The preceding estimating method may, of course, again be
applied to excitations other than the linearly sweeping frequency excita-
tion discussed above.

It should be pointed out that no effort has been made to bound the
response maximum under sweeping conditions by the steady-state
response maximum. It will be shown in Chapter III that such is not the
case. The steady-state response maximum may estimate the response

maximum for slowly varying excitation frequency, but it will not bound

this maximum.
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III. RESPONSE OF SYSTEMS TO SLOWLY
SWEEPING EXCITATIONS

For cases in which the frequency of excitation is a slowly varying
function of time, it is possible to develop a more orderly approach to the
cstimation of system response by using the technique of small
perturbations.

The small perturbation quantity--related to the rate of change
of the excitation frequency--does not appear in the equation of motion,
(2. 4). Its introduction may be accomplished, however, in the following
straightforward way. |

If the excitation in equation (2. 4) is replaced by the complex

expression
je(T
p(t) = J8T) (3. 1)
the response may be written

y(7) = A(r) 8T (3. 2)

The function A(T) is the complex modulus. Its amplitude represents the
amplitude of the response, and its phase represents the phase difference
of the response.

Substitution of (3. 1) and (3. 2} into equation (2. 4) leads to the

following equation for the complex modulus A(T):
A §(2¢+2ja)A" + (1-aP+ 2jcatjol)A =1 , (3.3)

where a = g', and where primes denote differentiation with respect to

the dimensionless time, T.
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It is assumed that the initial application of the excitation
occurred sufficiently far in the past, and that the frequency of excita-
tion has behaved in such a way as to make the contribution of transient
terms to the solution of (3.3) near T = 0 very small., The latter
assumption requires that the excitation frequency last equaled system
natural frequency a long time in the past. It is assumed further that
near T = 0 the excitation frequency varies slowly and has the form

(I=CL0+€T+€2CT2+... . (3. 4)

The leading term in (3. 4), Ay = A1 - zgz, is the frequency corresponding
to the steady-state response maximum.
Let the complex modulus take the form

. 2
A-AO+aA1+eA2+... . {3.5)

Inserting (3. 4) and (3. 5) into (3. 3) leads to the following set of
equations for the powers of &

1
0 + XAO + QXAO

1
p—
-

-2jTAy - J(XTHA,

1t 1
A+ XA T OIXA
1 i s ! .
A, + XA, + 0XA, = -2jTA; - j(XT+]1) Ay (3. 6)
-ZjCTZAB— JCTXTH2)A,
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In these equations

X = 2C+ 23&0

The zeroth order solution may be written directly:

Ay = — L : (3.7)
2c° + 2jcay

This expression has the modulus

‘AO‘ =—1—— . m:«ll»gz s

Z2Cm

corresponding to the response maximum under steady-state conditions.
The second of the set (3. 6) and the value of AO are used to

obtain Al:

- ! 1 1)
A, = —L . T+ -2, (3. 8)

The third equation of the set (3. 6), and the results (3.7) and

(3. 8) may be used to obtain the coefficient of 62:

hy = ':3‘1“+'2'1“z' “lz(‘:’DTZ
X X ('

(G g2

. 1 2
+ 2_]C<-———4 +——-———3 24}
€ X %

The modulus of A to second order:
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]A]alAl- l+eRe|l5-|+e (Re|l—|+ 5 |Im|— s (3.9)
0 7-98 I L A
0 0 0
may be written
-2 2 ‘
_ %€ 2| % T (4-9¢%) _ . (-20+78¢%-69c%
Al =g (L — e |-y B s 37
® 2Cm 2 m 2("m 8 m
a.T 2a
+ ng .0 +._._O_ (3.10)
2 2 2
{m {Tm
Expression (3. 10) has a single maximum occurring at
2
- £ .{(4-% ) .
"Tmax = % c !
0 LZaUg
corresponding to an excitation frequency of
2
- e | (4-9¢7)
%max = % T 3 2 c
0 |2a.C
0
The maximum value of (3. 10) is
Qs €
]A|maxg2ém L= 2
2(m
¢” 2 4 .6
+t 0 - (-4+3007-72C074+57C) (3.11)
2,4 4 ; © :
8a.C m
0
2
+ —C—e———a (1+onOC)1‘
Zaom ‘J

The modulus of the rcsponse, 1A|, may be approximated use-
fully by the perturbation series to first order in e, provided that ¢ is

chosen sufficiently small. When the excitation frequency decreases
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through the system natural frequency, ¢--the rate of change of excita-
tion frequency to first order--will be negative, and the perturbed
modulus will be larger than the unperturbed expression., It is,
therefore, not possible to conclude that the response of a system to
sweeping excitation is bounded above by the maximum of the steady-
state response.

Observations of systems with damping less than ten per cent of
critical indicate that the response peak for even small negative values
of € is less than the steady-state response maximum. The range of
applicability of the first order approximation is thus too small to make
it generally useful for normally encountered damping ratios.

Given moderate values of C and T, and small values of (, the
coefficient of a particular power of € in the series ex‘pression for the
perturbed solution will be dominated by terms multiplying 1/¢ raised
to the highest power., A study of the complex response expression
indicates that the highest power of 1/ associated with ¢™ will be 2n.
For expressions (3. 10) and (3. 11) to constitute useful approximations
of the response amplitude, it will be necessary to demand that
e/g2 << 1,

It may be seen that for a given value of { there exists a range of
¢ satisfying the given condition and also causing the absolute value of the
second order correction of (3.11) to exceed the absolute value of the
first order correction. In this range, the response maximum under
sweeping conditions will be less than the steady-state response even if

€ takes a minus sign.
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It should be noted in addition that the contribution to the second
order modulus corrector associated with the nonlinear term in the
frequency expression, (3.4), is quite small. The factor C appearing
in the expression for the perturbed response maximum, (3.11), will
multiply a number much smaller than Q4 if e¢ lies in the prescribed
range.

The foregoing analysis provides potentially useful information
concerning system response near resonance, but provides small insight
into the nature of the response for large times and, consequently, for
sweeping excitation frequencies much displaced from system resonance.
One is led to seek a more general perturbation technique.

Such a technifjue proceeds from the observation that the steady-
state response amplitude and phase are functions of the frequency of
excitation, and the oscillatory behavior of the response is a function of
the time integral of the excitation frequency. An appropriate conclusion
would be that, for sufficiently slow sweep rates, time will enter the
response expression in two indirect, distinct ways--through trequency,
and through the time integral of the frequency. In the steady-state case,
frequency and its time integral are independent variables. In the
sweeping case, these variables are linked due to their mutual time
dependence through the perturbation quantity--again related to the time
rate of change of the excitation frequency.

In equation (2. 4):

y"+ 2Cy' + vy = sin g(7) , (2. 4)
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the solution, y, may be written in terms of the variables described
abave:

y(1) = yla(t), g(m)]

The derivatives of y(T) may then be written

dy _ 18 48y
T o= v tag (3.12)
and
2 2 2 2
d—}z’- = (ct.')2 Y 4 200 é?onay + (cn)2 2y
dr da dg

It will be assumed that the excitation was initially applied a long
time in the pa’st, and that the frequency of excitatiori:has varied slowly
throughout its history., The time derivatives of the excitation will be
written

t

o = ef(a) ,

(3.13)

The right-hand side of (2. 4) will be replaced by a more general
complex expression permitting variations in the excitation amplitude as

a function of frequency, and the perturbation quantity e:
£(7) = [1 + ena)] & . (3. 14)

It will be assumed that the solution, y, may be written as the
product of a function of the instantaneous excitation frequency embody-

ing the long-time behavior, and a function of the integral of frequency
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embodying the oscillatory character of the solution:
- B e 3.15
y(a,g) = B(a) - e (3.15)
Substitution of expressions (3. 12) through (3. 15) in equation

(2. 4) leads to the following equation for the complex modulus, B(a}):

2 '
2.2d . 2, dKk} dB
=22 K K bl Pt
K + |2jeok + 2Cek + 7K I

22 &8
do

(3. 16)

+ (1-(3.Z + 2jCa + jek)yB = 1 + en(a)
If B(a) takes the form

B(a) = Bo(a) + eBl(a) + eZBZ(a) + ... )

its substitution in (3. 16) leads to the following set of equations for the

coefficients of thé various powers of €:

O'BO: 1 ,
- dBO
O‘BI: -‘)(K—a—u‘— -JK_BO+n ,
- dBl
2 (3.17)
298y a8
) 2~ da da
da” :

In the above equations
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o= 1-a%+2jca

X

2C + 2jo

The zeroth order solution may be written directly:

1
B, = = . (3.18)

The modulus of B0 is

1
B = —= |,
1Bl = 7

in which
2
¢ = (l-ct.z) + 4(_:,20,2
The second of the set (3. 17) may he solved for B, using the

result (3. 18):

- K .m
B = & - S+, (3.19)
1 g 0‘2 )

and the third of the set (3. 17) may be solved for B, using the results

(3. 18) and (3. 19):

~ ~2
_ 3x? . o% 3 .2
By= -+t ~3|F
) 0 (e}
L 2R a
U ) ;?f da
\ 0 (3. 20)
~2
Y 1
+j - = K-m
@ o
~. d
Tk 3
B 2
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The modulus of B may now be written to second order in € by

inserting the results (3. 18), (3.19), and (3. 20) into expression {3. 9):

2l =7 [1 - 252 [saeatiog- o) o] 6
®

I_ -20¢*(14a?y* g00 (e - o

G"J ™

+ 272a2g (l+0. ) (oco-q.z)z]- «2

[g¥]

+ & [32¢%(1-02) (1402 2_3202(1-a%) e~ oB)?
2

6

(3.21)
+ 144a2c2(1+a2)(a02-a2):]' K
2 -
€ 5 2
+gzl~‘ 7(1@)4‘12"&.1

2 2 2 dn 2
2 Cam . 8Can(l+a )(oco-on ) . ZCE&' (1+a )‘I
J

© o2 ®

-~
N
contribution due to varying excitation amplitude

2
Son(cx
+ %K gi{______cp 3214082 - P(a2- aB)? ]
- 4&...______[(1‘& ) —4Ci]} ]
2
P
“~ . e

contribution duc to varying rate of change of frequency.
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The maximum of the perturbed response may be obtained by
assuming that this maximum occurs at a frequency slightly displaced

from the frequency of the steady-state maximum:

_ 2
0.10—(10+ 551+€ 62+. . .

The expression (3. 21) is differentiated, its derivative set equal
to zero for o = %yge and the component functions are expanded about Qg-

The resulting frequency of the maximum to first order is

2 daKk
(4-9C7) + K{ap) C(-ﬁ% N 2 2' dn

_ m
Agp=ayt e 3 T > (3.22)
ZCaO 0 %y
%
The value of the maximum of (3. 21) to second order is
5 X ek (@) 62[K(ao)lz(-4+30g2-72g4+57g6)
B == (]- +
max 2(m ngz 8&§C4m4
2K (a..) 2 amia.)
N 0'M(2-5¢%) dn | _ 0% ]
Zg L 2 do. I Z
g m
<«
0
2
2 2(dk ‘ )
, 2% & , =18 lso e"‘c(g& gn ]
4m2a0 do 8m2 v 2@0 da a da. a
Ag 0
2 2 2
dn i
+ E_’*z‘_ (d_g ) . (3.23)
24, a
0 0

Constant amplitude sweeping excitations having frequencies

varying linearly, and exponentially in time are of particular interecst.
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Expressions (3.21), (3.22), and (3.23) may be written for these specific
cases.
For the linear sweep

o' = constant = L
2mq

The response amplitude of a system influenced by a slowly
varying, linearly sweeping excitation is approximatcd by

e r4(1+on2)(oc§-on2) +o
Ymod ™ /T Tq - cpz

| S—

. f-4og4(1+a2)4- 200 (ad-a®) 272g2a2(1+a2)2(0.(2)-a2)2j

41-r2q2 cp4

+

2 2
[32g2(1-g‘2)(1+a2)2— 32az(l-a2)(ag-a2)2+ 144&252(1+a2)(a0-a )1

3
)

4+

[- % (1-6%)+ 12¢%7 ]

3.24
+ 5 . ( )
®
The maximum of (3, 24) occurs at
2
4-
Umax =~ % F e ’
4g'rrqd,0
and the value of this maximum is
_ 1 Lo T (=44 300%- 72044 5709 (3. 25)
Ymax = 2{m 2 2224 4 ’
4mrq(m 32w q q,og m

For the exponential sweep

a'/a = constant = y/2nw
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and the response amplitude of a system influenced by a slowly varying,
exponentially sweeping excitation is approximated by

2 4(1+a2)(ag-a2) + o

r:pZ

2.2 [_—40@4(1+<x2)4— 40&4(ag-q2)4+ 272a2g2(1+q2)2(a3-a2)2:\

+
4172 cp4'

2 2 2.2

[Sécz(l-az)(1+q2)2-40a (l-ocz)(ono—a )y - 48(4(1+a2)2

2.2, 2 2

+16a7¢ (cco-o.z)2+ 144¢,
* 3

52(1+a2)(a3—a2)-]

[- -123-(1-a2)2+ 12¢%6% + légz:l
. i , (3. 26)

@

The maximum of (3. 26) obtains for

L la-10c%) .y

a = Q
0 4C'rra.0

max

and the value of this maximum to second order is

2
oy 2 2.69¢%+54¢°
1 ) 0 . y (-4+3Q% -69g +54C ) (3. 27)

v = 1 .
max ~ 2(m 4Trgm2 32 C4m4 .

In Fig. 3.1 typical first order correction functions for the
linear response, (3.24), and for the exponential response, (3.26), are
plotted versus the frequency of excitation. It is seen that both functions

are quite similar, and indeéd, are nearly equal at system resonance.
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For positive rates of change of excitation frequency, both
linear and exponential sweeping reduce the amplitude of the response
for frequencies less than system natural frequency, and increase the
amplitude of the response for frequencies greater than system natural
frequency. Given equal values of the perturbation parameters,
exponential sweeping produces the more significant amplitude increase
in the post-resonance era, and linear sweeping produces the more
significant amplitude reduction in the pre-resonance era.

In Fig. 3.2 typical second order correction functions associated
with (3. 24) and (3. 26) are presented, and again a pronounced simi-
larity, especially near system resonance, is remarked. As mi ght
have been predicted, the second order correction functions are approxi-
mately symmetric about the system natural frequen;y and make their
largest contribution there.

The first order correction terms make a very small contribu-
tion to system response at resonance; they serve p‘rimarily to shapé
the response curve for frequencies displaced from resonance and
provide maximum shaping near resonance. The large negative contri-
bution of the second order correction functions at resonance provides,
in part, the abserved response peak reduction under sweeping conditions.

Since the value of the coefficients multiplying the perturbation
parameter raised to the first aﬁd second power in the expressions
derived above depends upon the frequency of the excitation at which the
response amplitude is desired, the limiting size of e, beyond which

these expressions cease to represent useful approximations, must also
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be thought of as a function of the frequency of interest. For
frequencies displaced from system resonance, it should be required
that the ratio of the absolute values of the first and second order
coefficients be much greater than €. For frequencies near system
resonance, the correction to the peak respohse is primarily second
order, and the demand that e:/g2 << 1 may be substituted for the
above. A caveat should be added here. Exp_ressions (3. 25) and (3. 27)
provide estimates for the response maximum agreeing well with experi-
mental results for values of e/g2~ .2. If, however, an attempt is
made to generate the perturbed response curve near resonance for
such values of ¢ using (3. 24) or (3. 26), the two maxima of the second
corrector, Fig. 3.2, appear in the response. The larger of these
peaks represents the perturbed response maximum of (3.25), and
(3.27); the smaller of these peaks has no physical significance. When
¢ assumes the size indicated above, the expression (3.10), adapted to
the case of interest, provides a better prediction of behavior near

e sonaince,

The similarity of the results obtained for the response maximum
by the first and second perturbation techniques suggests a corre-
spondence between the two methods. It is not difficult to derive the
method one expression for the response envelope near responance,
(3.10), from the more generél result (3. 21), by expanding the
frequency, @, in (3.21) about the frequency of the unperturbed maxi-

mum per (3. 4).
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Some of the more important results of the present section are
given in Figs. 3.3 through 3.7.

Figure 3.3 illustrates amplitude histories for a system sub-
jected to linearly sweeping excitations. On a plot of this type,
differences between exponentially and linearly sweeping excitations
sharing a common value of e would not appear. The steady-state
amplitude -excitation frequency curve (q = ) has been included for the
purpose of comparison.

Figures 3. 4a, b indicate the change in system amplitude peak
response as a function of damping and sweep rate for an exponentially
sweeping excitation. Differences in peak re sponée for linearly and
exponentially sweeping excitation are again very small.

The shift of the frequency corresponding toyéhe response ampli-
tude maximum is presented in Figs. 3. 5a, b for the linear sweep case.

When a system approximating the viscous damped single dégree
of freedom model is influenced by a slowly sweeping excitation having
known characteristics, it is possible to correct the usual estimates of
system damping and natural frequency by using the results of the second
perturbation technique,.

If damping is to be determined by measurement of the level of

the response peak, and solution of

. _ _ 2
1/2 Ce™e = Vnax ° m_ = ,\/1 -Ce o (3.28)
it will be possible to correct the estimated damping, (_, to second

order in the sweep parameter by the following method:
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Let the actual damping, ¢, take the form

2
d =0+ ehy+ e Xz +... . (3.29)

An equation which may be solved for )‘l and KZ is derived by substituting
the right hand side of (3. 29) for (¢ in (3. 23), reexpanding (3.23) in terms
of €, and replacing the left hand side of (3. 23) by the left hand side

of {3.28).

For the linearly sweeping case, the damping to second order

will be
(-4+28c%-63¢c %y 4709
A S e ¢ e (3. 30)
(= Ce " Trqa 27 4.3 32 ’ :
Oe 327 q Age be ™
e e [

in which the quan‘ga;tieé carrying the subscript e are computed using the
estimated damping.

For the case of exponentially sweeping excitation, the damping
to second order will be

2 4 6
(-4+2807 - 64¢  +48C)

32172& 2C3m2
Oe “e e

e L Y2
C_ce 4:Tr+y

(3.31)

The above expressions are related to peak behavior, hence they
should be useful for e/C2<< 1. The ratio g/ge' given by (3. 30) is
plotted as a function of sweep rate for various values of Ce in
Figs. 3. 6a, b. Virtually identical curves will result for the exponen-

tial case, (3.31), if the abscissae in Figs. 3. 6a, b are taken as
AgeV
Oe

&
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Damping is also determined in practice by measuring the width
of the response peak at the half-power points, that is, the width

between the points at which y = Vinax ° since, for the steady-state

/2

response
_ 37
We— de+O[QeJ .

It is again possible to derive a corrected expression for damp-
ing for the case of slowly sweeping excitation.

The response maximum to second order will be given by (3. 23).
The equation for the half-power points of the perturbed curve may be
written by equating (3. 23) divided by /2 to the perturbed expression for
the response amplitude, (3.21). This equation may be solved by

assuming that the roots of interest take the form

2
1 al+€v1+€v2+... ,

2
I

2
2 a2+eu1+eu2+... ,

1%
1

where o, and ., correspond to the half-power points of the unperturbed

1 2
curve.

The equation is easily solved for the first order correction to
1
the measured width, We = CLZ - d.ll , in terms of the actual width,

W=G.2-OE.1:

1 171 |
We=Wte TL-ET-G—ZJJ“E‘;—K(“Z)'K(%)J[ '

L ' [K(O‘z) * K(al)]

2m
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or in terms of the measured damping, ge, and the actual damping, (:

K{ans)
O O 1 1
| —— - _‘\+ rK 1

)W
+ o[g3

o™
i
e}
+

N @

* ‘z‘l'r‘n[““z) + K(O‘l)]

7
It is clear that the quantity € must be of O‘:CZ | multiplying
quantities of O[ 1], since the original expression for the damping is
only good to O[C?ﬂ

For the linear sweep:

C Ce - 4,“_q s (3. 328,)
and for the exponential sweep:
3v
¢ = - o
C=Ce” In . (3.32b)

The corrector for the linear sweep in (3. 32a) agrees closely
with the first order corrector of (3. 30). The exponential corrector in
(3.32b), however, exceeds the first order correction of (3.31) by a
factor of three.

Once the actual system damping has been determined, it will
be possible to determine the system natural frequency from the
measured frequency of the response peak. A first order expression for
the natural frequency, w, in terms of this measured frequency, Wy is

developed from (3. 22):
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r 2
e ‘*’e 1 - ¢ K(ao)' (4-9¢ ) g daK
N 3 T T2 " da
0 L ZQaO ero %

The factor associated with varying excitation amplitude has been

omitted for the sake of simplicity.
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IVv. EXACT SOLUTIONS

The response of a system influenced by linearly sweeping exci-
tation has been, as noted in Chapter I,‘ the prime subject of analysis.
A major reason for the popularity of this particular case is that
undamped response may be written in closed-form in terms of Fresnel

integrals:

Recent tabulations of error integrals of complex argument
(8, 9, 10) also make possible the writing of undamped system response
for linearly sweeping excitation in closed-form.

In equation (2. 4) let the excitation take the form

2
. T <
p(t) = sin (m'T -Er—q-.- N T Z'ﬂ'qm ’
pit) =0 , T > 2mgm

Lxcitation frcquency will be

-
= - ——— <
a{T) = m mq s T 2mgm ,

o
—
3
~
il
o

T 2 2wmgm

The frequency of excitation will thus sweep down from an

infinite value at 7 = -0, through system resonance at 7 = 0, to
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zero at T = 2rgm.

System response for T > 2mqm will be

y'(2rgm) + Ly (2mgm)
m

sin m(T-2wgm)

+ y(2mgm) cos m(T- qum) o~ C(T-2mqm)

For 7 < 2mrgqm, the steady-state response may be written

directly
> 2
v :"rlﬁj\ e-gusinmusin[m('r-u) —(—1%‘(—;—)—.‘ du . (4.1)
0
Equation (4. 1) may be rewritten
o)
v :_er—nj‘ e-Cu cos[mu-m('l’-u)+ (7- u) ] du
0
x 2
- -?.l;n.[ e—gucosrmu-i-m(’r—u)- %};)—] du ,

0

or in complex notation:

O
= %% I exp{-@u+ j[mu -m(T~u)+ (Z;E)Z ]} du

0
(4.2)
Qo
- ‘ZR—;- exp{—gu+j1‘mu+m(’r-—u) (—14-%-] du
0

Completing the square on the exponents in (4. 2}, and making a

suitable change of variables, leads to the result
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y :LZr?l eXPE'C(T"}TTqm)] * Re expj(m’r+7rqg2-4-nqm2+%) .
_jﬂ -
Z] .
-Te . y;
x|
R M Ve mq(2m+ jC)e ‘
Y -1 ; . 2
- Zn? exp[-C«] Re Lepr(mT_wqc - Z) .
-ig m
- 4 j_-|
oerf IS _j/agee 7]
L Z/.n.q =

When the frequency of excitation equals zero at some finite

infinite value in the future, the instantaneous frequency of excitation

may be written *

a(T)

:
:
|

T 2 -Z2wrqm ,

1l
(=)

a(T) s T < -2mgm

The excitation in this case will be

2
. T
p(7) = sin{mT + g +mgqm ) , T = -2rqm ,

i

N
[e]

p(T) R T < -2mgm

Prior to the application of the excitation the system will be at

the state of rest:

y(t) = yYT1) = 0 , T < -2wmqm

For 7> -2wgm, the respohse may be written
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(T+2mgm) 2
(T-u)

-Cu . Lo B _ 2"
I e sin mu s1n!_m(T u) + Irq + wTgm __du ,

8|~

y’:
0

which may be rewritten

(T+2wgm) 2
_ 1 J' -Cu } ) (T-u) 27
Y =33 e cos‘jmu m(T-u}) - Tmq TQm J‘du
0
(T+2mgqm) >
17 -Cu . {(T-u) 2"
ZmJ e cos[mu+ m(T=-u)+ Zrq + mgm J'du )
0
or in complex notation:
(T+27qm) 2
Re - . T- 27
Y =5 exp{-— §u+_]l:mu-m('r-u) - (-4—1_:-2— - Tqm } du
0
(4. 4)
(T+2mqm) > )
- 251% exp{—§u+ j!’mu+m('r-u)+ ‘(TT;F% + nqmzj} du
0

Completing the square on the exponents, and making a suitable

change of variables in (4. 4) leads to the result
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y = T;/jeXP [-¢(T+4mqm)] * Re |expj(mT+ 3“qm2' TquZ_ 7
s 34 i
] T
erf‘- Jralm+ic)e X [ erfr \/’T?(_?L(Zm'I'J'C)e 4~|
) - -
(4. 5)
) 1;.{2 exp(-CT) * Re |lexpj(mT+rqm®+ mqc®+ 1)
g

erf[f'rr—q(m+jg)e-JZ] - erfl—(

=t WTg0)e _‘Z]

Illustrated in Figs. 4.la, b are examples of graphically com-

(1)

puted solutions obtained by Lewis for the response amplitude of a
damped system influenced by excitations sweeping linearly up through
system resonance and down through system resonance.

A

When the aamping equals zero, equation (4. 3) becomes

y = m/q/2 {{%— - C(Zfz_q - VTZ—_;)] cos(T-4mrq)

- [ 5 - S(Z e Zq) sin(T- 41Tq)}

1 }
-m/q/2 1—-7+C(WJT271>-]COST
=1
+§~E+S(n q)|51n'r}

Under the same circumstances, equation (4.5) becomes
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-

y = m/q/2 l.—C( 4+ 2/2q) - C(./’fq)J cos(T+3mq)

L™ "m/2q

+ [s( WTE +2/2q) - S(/Z'El)—_l Sin(T+3’Tq)}

- /972 [C(ﬂ;z_ )+ C (/Za)j cos(T+mq)
q

- {S(W}El) + S(./—Z_q)i\i sin(T+-rrq)>

When a viscous damped single degree of freedom systém is

excited by a rotating mass whose angle of rotation obeys the law

2 wm

H = - L ——
8(t) = wmt - rht™ , t 5

_ wm
®=0 ! > Sm

an expression for the response may be developed in terms of error
integrals of complex argument. This problem is of physical interest
in that its solution may be used to predict the behavior of structures
influenced by decelerating rotating mass exciters. The quality of such
a prediction will depend upon the separation of natural frequencies of

" the structure, and the actual frequency vs. time relation for the
decelerating rotating mass exciter, Which is determined not only by
the physical parameters of the exciter, but in addition, by the influence
of the structure upon the exciter. Nielsen(ll) determined the
frequency-time relation for such a mass exciter and found that it could
be approximated roughly by a decaying exponential function. Since the
decay constant was rather large, it was possible to further approxi-
mate the frequency-time relation in the region of interest, i.e., the

region of system resonance, by a linear relation. Nielsen then used
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(1)

the results of Lewis to predict the experimentally measured res-
ponse with fair accuracy. Since Lewis' results were derived for the
case of constant amplitude excitation, the solution for the response of
a single degree of freedom system under the influence of a linearly
sweeping excitation with amplitude proportional to frequency squared
should provide a better estimate for the response of real structures.

The equation of motion for the system described in

Figs. 4.2a, b is
(M+uU)X+px + Kx = -ur —(%— ((:3 cos ®)

The equation may be rewritten in terms of the dimensionless

time, T = wt, and the new dependent variable z = - Qﬁ-&fl’-{- , after noting
. 2
that 3%:— (® cos®) is equal to 4 (sin @):
at?
d2
2"+ 202'+ 2 = — sin 6(T) , (4. 6)
dr
where
2
= - J
8{(T) = mT Znq
The solution to (4. 6) will be
T 2
' - o
z = lj e ST gin m(r-rty « = sin g(7) dr
m dr

~ QO

Two integrations by parts lead to the result
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2 T
%0
z:sinQ(T)-—rﬁ-J‘ e

- Q0

-‘C(T_T')sin m(T-T") sin B(T')dT'

.
-zgf e U7 o5 m(T-71) sino(Th)dT"
-0

The first integral in (4.7) has already been solved and is represented
by -cxoz multiplying expression (4.3). The second integral may be
solved using the procedure previously employed, and the response
factor z may be written

2

z = sin(mT - Ing

G.éz'rrfq
> expl-C(T-4mq)]

s

-J—

Re expj[m'l’+1'rq(g2—4m2)+%]- l-erf[(—w%+2m/ﬁ+jg/ﬁ)e 4]
d,oz-rr\/‘q_ [ ]
+ o ©XP ~CTde

J

NE!
L i

. 2 m) T .
Re exp;[mT—wqg - %J\ . l—erf[(- ?/_Tc_l- - jC/wq)e

- (n/q expl-(T7] -

~ .

— J i
Im expj[mT—quQZ- %_J\ . l—erfL(— -é—/%—a - j&/mq)e 4J

"+ (n/q exp| -((T-4mqm) | -

e T
. T v -J—
Im eXPJ[mT+1Tq(CZ—4m2)+ %J . l—erf'—(- —2-—T-— +2m/mqtjl/mq)e * ]
- /Trq

L
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It should be noted in the above expression that, if q is large and
¢ small, the result will be dominated by the terms substituted from
expression (4. 3), that is, the solution for the response factor z in this
cé.se will be much like the solution for the response factor y in the case
ol constant amplitude excitation. Recall, however, that

y ~ szx s
and

z ~ Mx

In contrast to the linear sweep treated previously, the exponen-

tial sweep:

p(T) = sin (%— edBT) )
(4. 9)
|G‘(T)| = meiBT ’
has been the subject of very little analytical work., Parker(lz) and

Hawkes(13) developed digital computer programs to handle the problem.,
Parker's method consisted of expanding the Duhamel integral représen-
tation for the response in terms of several infinite series, and
integrating these term by term. Hawkes formed two second order
simultaneous differential equations for the real, and the imaginary
parts of the complex modulus expression for the response and solved
these.

A potentially useful power series solution to equation (2. 4) may
be developed for the case of exponentially sweeping excitation, (4. 9).

Consider

v+ 20y +y = sin(—rlBl- eB"} : (4. 10)
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Define the new independent variable

m BT
g=Tg|¢€
Then
d _ dg a _ d
dr T dr Eg_Bgfl—g— !
and
a® dg d (dg 4 _.22d°
S ld g B e
ar g g dg

Equation (4. 10) may be written in terms of the new independent

variable:

2
2 24d 2 d .
Bg —dz + (B g+2QBg) _dé + y = sin(g)
g :

Assume a solution

o
_ _;’ a 2n+1
Y=/ %nt+t18 !

n=0

and replace sin(g) by its series representation

o o]

— (_)n 2nt+l
51n(g) :Z ——(Z—I%;—l—)—r
n=0

(4. 11)

(4. 12)

Substitution of (4. 12) into (4. 11) leads to an expression for

Aontl”

()% .1

4ontl T

and the solution to (4. 11) may be written

(2n+1)! rB2(2n+1H2n)+(B2+2QBH2n+1)+1]
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ey ()P g2nt]
Y =2 T Tl Z ’
= (2n+1)! ]:B (2n+1)(2n)+ (B +2¢;B)(zn+1)+1] (4. 13a)
or
2ntl
0 nim B~
= (') - e
¥ z {B ) . (4. 13b)

o (2nt1)! [ B%(2n+1)(2n) + (B“+2¢B)(2nt1) + 1']-

n=

The factorial in the denominator of (4. 13a, b) ensures absolute
convergence of the series for finite values of the numerator. The series
expression is, however, an expression for the complete response. A
more useful expression would be one in which the oscillatory character
of the solution could be factored out, leaving information concerning the
response envelope.

It is noted that the L.aplace transform for
sin(ae't) ,
is equal to

a_pI‘(p) ,!-UP(Za, 0) sina - Up+l(2a, 0) cos a—] , Rep>0

The function Uv(w, z) is the L.ommel function of order v. Itis
defined(14) as
loo)
o\ n,w,vfin
U lw,2) =) (Y L 2) (4. 14)
n=0
In the special case, z = 0, (4. 14) reduces to

(e 0]

. - (—)n(w/Z)V+2n
U, 0) = ) T 20 1)
n=0
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Thus the Liaplace transform of sin (ae-t) in terms of the transform

variable p is

-p (\i.o (__)nap+2n -p f,o nap+2.n+1
a"PT(p)) FsramrTy sinta) - a r(p)z W cos(a). (4.15)
n=0 n=0

The Duhamel integral form for the response of a system subject

to excitation (4. 9) may be written

oo}
1 L] - -l ' - l
y =—-n;l-ImJ e (C-jm)u » Si %eBTe Bu du' , (4. 16)
0
but (4. 16) has as a solution (4. 15) when p = C-Bim, and a = %1— eBT. Then

0 n BT,20 . ,m BT

1 = (=) (me™ ) 51n(-—B-e )
y= "r?IIm:Z (C-jm)(C+B-jm). .. (C+2nB-jm)
n=0

(4. 17)
. _qlo (_)n(meBT)2n+l cos g1 eB'r)
T m Imwo(g FR)(CFB-jm). .. (CF2nt)B-jm) °
n=

The oscillating character of the response may be factored out in

the expression (4. 17) and an envelope expression may be written

n BT.2n
(me™ )

Ym rImZ (’+B -jm). .. (C+2nB-jm)
0

(4. 18)

n,_ BT.2ntl 2172
- me

‘ (=)t )
+ [Im% (C =)+ B jm). - (g+(2n+1)ijm)-_1

Comments concerning the boundedness of the undamped response

in the case where the excitation frequency is cycled an infinite number
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of times through system resonance lead one to inquire into the possi-
bility of obtaining an exact solution for such a case to permit a more
thorough examination of the response.

Consider the excitation

\4

¢ cos CrT)

p(T) = sin (vT +

The frequency of excitation is

a(T) = v(l - sin CT)

System resonance will be included in the range of excitation
frequency if 2v 2 1,
The response

T
y(T) =J sin(T-T') . sin(vT' + Ev cos C 7')dT!

-0
may be rewritten in the form
T

y(7) = sin T. j cos T! sin (v'r'+_é. cos C 7')dT’

-0

(4.19)

-cos T J sin T' sin (v'r'+-1é cos C T7')dT'

- Q0

The integrals of (4. 19) may be decomposed further by trigono-
metric substitution, and the trigonometric functions of trigonometric

argument may be replaced by their well-known Fourier series

representations:
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00

N n
cos {Acos B) = JO(A) + ZZ (-) Jzn(A) cos 2nB ,
n=1
and
o0
. 3 n.
sin (A cos B) = ZZ (-) J2n+1(A)cos(2n+1)B
n=0

A term-by-term integration of the series expressions is

possible, and the final result is

sin vT
2

y =J (&)

1-v

(0 0]
N o (..)nj (_y_) sin{v+2nC)T + sin(v-2nC)T
nZ:l e {_1'("+2nc)2 1-(v-2nC)* (4. 20)

.

@ o
Y ()3 (2) coslv+(2nt1)C]T . cosly-(2nt+1)ClT
E—QO( H ani . {1‘[""'(2114'1)(3]2 1--[v-(2n—!—1)C]2 }

It is seen that (4. 20) diverges if one of an infinite number of
possible conditions exists. Divergence occurs if the center frequency
of the sweep, v, equals the resonant frequency of the system, or if v
and C, the sweep parameters, interact in such a way as to cause the
vanishing of any denominator in the series.

This discussion concerning exact solutions indicates that there
are many particular excitation frequency-time relations for which the
exact solution to the problem at hand may be presented in some poten-

tially useful form or other.
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The quadratic sweep
2
a{T) =b7T +cT+ d

produces a response containing Airy integrals (for particular ratios of
the coefficients), and even more complicated polynomial sweeps may be
(15)

treated using the more general Airy-Hardy integrals

A good table of Laplace transforms suggests further candidates

for analysis.
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V. ANALOG STUDY OF SYSTEM RESPONSE TO LINEARLY

AND EXPONENTIALLY SWEEPING EXCITATIONS

The approximate analytical method‘of Chapter III may be uti-
lized to provide a fairly complete description of system response for
the general slowly sweeping excitation. For faster sweep rates, these
methods fail to give useful results. The techniques outlined in
Chapter II may still be used, but more detailed knowledge requires
analysis by digital or analog means. In the present problem, the
choice of either digital or analog computation may be justified for a
variety of reasors. The latter was chosen for the current investiga-
tion primarily because of the availability of a good analog computer,
and quality recording gear.

The choice of analog computation presented the immediate
problem of generating the required sweeping excitations. To be sure,
the laboratory had available a Briuel and Kjaer Automatic Vibration
Exciter Control Type 1018 capable of providing excitations with
exponentially varying frequency, but the need for a wider range of
sweep rate, and for a selection of frequency-time relationships
necessitated the design and construction of the electronic function
generator detailed in Appendix A.

In the experiment, the function generator was programmed to

excite an analog model of a viscous damped single degree of freedom
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system with forcing voltages having frequency sweeping both linearly
and exponentially in time.

The time histories of excitation frequency and system response
were recorded on an oscillograph for various sweep rates and damping
ratios. A typical response history for the linearly sweeping case is
given in Fig. 5, la; Fig. 5. lb illustrates a similar record for the
exponentially sweeping case. Records of this type were analyzed to
give the results presented below.

The experimental set-up (Fig. 5.2) was designed to permit
determination of significant parameters--system damping, system
natural frequency, and the excitation frequency sweep rate--to within
plus or minus one percent.

The error in measurement of response characteristics depended
on the excitation frequency sweep rate, for envelope behavior became
more difficult to determine at faster sweep rates, since fewer re'sponse
maxima defined the envelope in the range where significant changés
took place. Comparison to published resulls indicated that the ratio
of the maximum response amplitude under sweeping conditions to the
steady-state response maximum, for instance, was determined to
within plus or minus three percent. For all but the fastest sweeps,
the same accuracy was assumed to apply to the measurement of the
other response characteristics.

The laboratory model represents a finite time operating system,
and the assumption that the present experimental results are

generally applicable, i.e., that they closely approximate the response
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characteristics of the infinite time operating system, will require a
demonstration that the contribution of the starting conditions to
system response near resonance is small.

Most experimental models had non-zero damping and were
excited for a long period of time prior to each run by a forcing voltage
of constant frequency corresponding to either the lower or upper
limit of operation of the function generator depending upon whether
it was desired during the run to sweep up or down in frequency
through system resonance,.

If @ is taken as the initial frequency of the excitation, the
system response before time equals zero may be written

R sin[ET-tan-l(%ﬂ.

Yy = v3
Vg% actal 1-a

For times after the start of the run, T > 0, system response

may then be written

.
y = j h(7-7') sin g(7')dT'+
0 mf (1-82)° + ac%a?

o . e-gT. sin[m'l‘-ta.nn1 (—%E—n—

EY

(5.1)

For the infinite time operating system, an analogous expres-

sion will be

.
v - J' n(T-7") sin g(71)d1' + Ce %" sin(mT + V) (5.2)
0

where
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0
Ce " sin(m+ ) = JF h(T-7') sin g(7")dT"
-0
The factors C and ¥ may be estimated by the method of Chapter II,
and C will be small if the frequency of the excitation on the interval
{-00, 0) is far removed from system resonance.

Measured systems response at resonance will be written

_ 148

in which % is a peak reduction factor, O[1], and the results (5. 1),
(5.2), and (5.3) may be combined to form an estimating expression
for the fractional change in the maximum response arnplitude. due to

the contribution of the present starting conditions:

Ymax~ Yoo max ~ 2(m

ymax "

|C| + lal e_gTr

2
m\/(l-az) + ac?g?

The time Ty represents the time of resonance and is a function of the
sweep rate, initial excitation frequency, and system natural
frequency.

If the excitation frequency is sufficiently displaced from system
resonance, the sweeping response amplitude will not differ greatly
from the steady-state response for the same instantaneous frequency,

and

|& |

c| = >
mV (1-5 %) + 40552



-93-

0.6

Yumoo
Yuax,ss
0.4}—

[_ ] L l | 1 Il L il . l ! | ; | !

0=—5s 06 104 102 o o%8 096 o8 092 090 088
a

FIG. 5.3a

y s - 0.00196

0.8 y * —0,000645
y1—-0.00354

0.6

Yuop
Ymax,ss

0.4

02 § = 0,086

i J
096 094 0.92 0390

L

0 L | L L I | L | L L
1.08 1.06 1.04 .02 1.00 0.98

a

F1G. 5.3b



-94-

A more tractable estimale for the fractional change in the

maximum response amplitude may then be written

- | -CT
Ymax~ Yoo max > 4C __lg | - : i . (5. 4)
v n
max ,\/‘1_-&-2 +4 2&'2
) +4¢

The largest value of (5. 4) obtained during the experiment was
about two tenths of one percent. The assumption that the experi-
mentally derived response characteristics closely approximate those
of the infinite time operating system is a good one.

Response versus excitation frequency curves for the sweeping
excitation case may be constructed from the time histories exempli-
fied in Figs. 5. lg, b. Such curves have been presented by Lewis(l),
Parker(lz), and garber and Ursell(z). Additional examples are pro-
vided in Figs. 5. 3a, b.

Figure 5. 4 illustrates the fractional reduction of the maximum
response amplitude of a single degree of freedom system influenced by
linearly and exponentially sweeping excitations as a function of sweep
rate and system damping.

It is observed that, within the limits of accuracy of the present
investigation, a system influenced by a linearly sweeping excitation
will experience the same peak attenuation as will the identically damped
system influenced by the exponentially sweeping excitation provided

that the linear sweep factor introduced in Chapter II:

1/q = constant = 2ra!

is equal to the exponential sweep factor defined in Chapter III:
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vy = constant = 2m(a'/a)

It is observed, in addition, that the level of the response peak
depends only upon the relevant sweep factor divided by the square of
the system damping.

Experimental results illustrated in Fig. 5.4 indicate no
measurable difference between the peak response of a system influ-
enced by an excitation sweeping up through resonance, and that of a
system influenced by an excitation sweeping at the same rate down
through resonance. (The 80 cps system was influenced by the former
excitation; the 40 cps system was influenced by the latter.) The
results of Chapter III predict a difference, but it is apparently small
for the range of 'd:amping and sweep rate covered in the present study.

Figure 5.4 shows that peak reduction as a consequence of
sweeping is a rather strong effect. The broadening of the response
peak under sweeping conditions is, however, an even stronger effect
as seen in Figs. 5.5a, b. These figures illustrate the change in the
width of the response peak measured at the half-power points as a
function of damping and sweep rate expressed in terms of the ratio of
measured damping to actual damping.

Measured damping is defined by an approximate expression,

truly applicable only for the steady-state case, as
S (5.5)

in which sy and o, represent the frequency ratios where
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1
Y A Ymax

Experimental results indicate that the width of the response
peak measured at the half-power points is a function only of the
relevant sweep factor divided by the square of the actual system
damping. Comparison of Fig. 5.5a to Fig. 5. 5b indicates further that

for

tgc® , vicd < 100,

there will be no measurable difference between the width of the re-
sponse peak for a system forced by a linearly sweeping excitation, and
that of a similarly damped system forced by an exponentially sweeping
excitation provided that the sweep factors are equal. |

Figure 5. 5b may also be used to estimate M, the number of
response maxima exceeding ymax/fz_, for the exponential sweep case,
since the number of response maxima occurring in the interval (tl’ t2)
will be approximately twice the number of cycles of the excitation

occurring in the interval:

1 &
M = }—J Q(t)at ,
£y
or
M = 1[at,) - ate) ] (5. 6)

For the exponential sweep case

G(t) = —= € 2
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and

Qt) = wme®t = BG(t) .

Then (5. 6) becomes

M= lae,) - o]

L
B
or in the presently used notation:

~ 2

=3 (@, - &) . (5.7)
Insertion of the definition {5, 5) in {5, 7) leads to the result

M= 25, /0)

Examination of Figs. 5.4 and 5. 5a, b reveals that the two
common methods for the experimental determination of the damping of
a linear system--measurement of the peak response and solution of

the approximate expression

=1

zlge ~ Ymax ’
and measurement of the width of the response peak at the half-power
points and solution of (5. 5)--will lead to quite different results if these
measurements are made from a record of system response.under
sweeping conditions.

The families of curves given in Figs. 5. 6a, b, and Figs. 5.7a,
b illustrate the shift in frequency of the resonance peak as a function
of system damping and sweep rate expressed as a ratio of the

dimensionless peak frequency, % ax’ to the steady-state dimension-

less peak frequency, g :N/ 1>—2g2 . As stated in Chapter II, the



-101-

maximum response amplitude for a system influenced by sweeping
excitation occurs after the excitation frequency equals the system
natural frequency. For negative sweep rates, the frequency corre-
sponding to peak response will thus be smaller than the steady-state
value, and for positive sweep rates, the frequency corresponding to
peak responsc will be larger than the stcady-state value.

In Figs. 5.6a, b the prediction derived from (2. 17) for the peak

shift in the undamped system:

®max . (. 852)

= ]+ .
- sgn(q) Jlar

is included for comparison to data taken for the undamped system.

The difference between this prediction and experim?ntal results is
within one percent.

. When the method derived in Chapter II for predicting the upper
and lower limit of the time of resonance for the undamped system is
applied to the exponential sweep case, two transcendental equations
result. If the sweep factor, v, is small, these equations may be
simply approximatcd and solved, The frequency of excitation
evaluated at the average of the resulting limiting times is given by
“max
—5 = 1+ sgn(y). (.854) Jiy| . (5. 8)

Expression (5. 8) is plotted in Figs. 5.7a, b for comparison to
data taken for the undamped system. The difference is again within

one percent.
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A discussion of the results presented here would be incomplete
without a few words concerning the similarity between the response
characteristics of a system influenced by linearly sweeping excitation,
and those of a system influenced by exponentially sweeping excitation.
The interesting dependence of both the peak attenuation, and the
response peak width upon the sweep factor divided by the square of
system damping also deserves attention.

It will be helpful to the discussion to analyze the sweep factors
1/q or q, and Y more carefully.

| The linear sweep factor, q, is defined as

NZ
1° 3

in which N is the system natural frequency in cps, and h is the real
time derivative of the excitation frequency (cps/s).

(

Hawkes 13) first defined a parameter related to y and stressed
its lack of connection to q. This is unfortunate, for such a connection

may be casily cstablished. If a system having the natural frequency N

is subjected to an excitation having the instantaneous frequency

the ratio defining q will be
Q —
q(t) = Nz/——(-)- Belt

The value of this expression evaluated at steady-state resonance will

then be
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q(t)) = N/B
but
1/Y = —— = N/B
Q
ZF(-E-)
and
q(t.) = 1/v

Both g and Y are similarly defined parameters and are related
in a non-dimensional way to the rate of change of excitation frequency
evaluated at system resonance.

The results of the experiment then indicate that, within the
limits of experimental accuracy, the measured response characteris-
tics depend only upon the system damping, and thenon-dimensionalized
rate of change of excitation frequency evaluated at system resonance
for sweep rates up to and including the fastest generally attained in
practice, and for normally encountered damping ratios (( < .1).

It will be recalled that 1/qg2 and y/g2 first appear as impor-
tant quantities in the Chapter III perturbation series expressions for
the system maximum response amplitude.

In thé envelope expression of Chapter II, (2.11), the two
integrals of (2. 19) making the primary contribution to system response
near resonance, for the linear sweep case, will be

:
! IZ
=] ST i () ar (5. 9a)

- Q0
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and
! , 12

14=J e G- (g (——)dT' . (5. 9b)
- Q0

The change of variables in (5. 9a, b):

u' = il )
2,/mq
leads to the expression:

Ymod

T = 2/7.0/q.
Ymax, ss

u ' 2
‘[ 2/m « 0/q (u-u) sin u' du') (5. 10)

-0
1/2

2
cos u' du

S “u -2/r . ¢/q(u-u')

-0

and the grouping of factors (/q again appears important to system
response near resonance,

The grouping of factors (/ vy will obtain when (5. 10) is
rewritten for the exponential sweep case, provided the e.xperirnentally
justified assumption is made that the excitation frequency may be
replaced by the first two terms of its Taylor series expansion about

the time of resonance.

The above assumption may only be used to predict behavior
associated with the response peak. For excitation frequencies dis-
placed by a moderate amount from system resonance, differences

between the response of a system excited by a linearly sweeping
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excitation, and that of a system excited by an exponentially sweeping
excitation may be observed.

Figure 5. 8 illustrates, for instance, that the level of the first
y“max, 2

secondary peak, , for the value of the characteristic param-

max, Ss
" cter associated with the first appearance of the 'ringing'' phenomenon,

is different. The level of the primary response peak at the onset of

"ringing'', it may be concluded with less certainty, is also different.

Log Sweep Linear Sweep
Value of 2 2
* v/C° = 1/qC™ =

Characteristic 2346 £.13 23,73 £, 14

Parameter

Ymax

—— . 949 +,002 . 937,005

Ymax, S8

ymax 2

il . 352,003 .314%, 009

Ymax, 58

Fig. 5.8

It is seen in Fig. 5.8 that for a value of the characteristic
parameter between three and four, the beating phenomenon makes its
first appearance for both types of sweeping excitation. At the onset of
"ringing', as mentioned in Chapter II, the first beat appears as a
secondary hump on a response curve that looks otherwise much like
the steady-state response curve,

The beat amplitude at first appearance represents the largest

attained for any sweep rate--about thirty-five percent of the maximum
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steady-state response. As the sweep rate is increased, the ampli-
tude of the first beat decreases to a minimum as seen in Fig. 5. 9.
For faster sweeping, the amplitude of the first beat then increases to
a maximum, and "ringing" may be said to be fully developed. Still
faster sweep rates bring about post-resonance degradation of the
response curve, and the beat pattern is gradually destroyed.

In Fig. 5.9, the amplitude of the first beat relative to the

. . ' Ymax, 2
amplitude of the maximum steady-state response, ————— , and the
max, ss

amplitude relative to amplitude of the sweeping response maximum,

Ymax, 2

. Ymax
rate.

, are presented for a typical system as a function of sweep
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VI. RESPONSE OF MULTI-DEGREE OF FREEDOM AND

CONTINUOUS SYSTEMS TO SWEEPING EXCITATIONS

When a continuous or discrete system is excited by a set of
forces sharing a mutual harmonic, or slowly sweeping quasi-
harmonic time dependence, the system response for an excitation
frequency equal to an important natural frequency will consist pri-
marily of the mode of vibration associated with that natural frequency
pr.ovided that system resonances are widely spaced, and that the set
of forces has a spatial description involving approximately equal
amounts of all system eigenvectors. Since such a system acts
essentially as thgfugh it had a single degree of freedom near these
important resonances, it should be possible to apply previously dis-
cussed methods to a simplified mathematical model to predict
amplitude peak behavior at points in the system for the case of
sweeping excitation. It should be further possible to predict steady-

state response amplitude peak characteristics from the response

history of the system subjected to sweeping excitation by application

d

of corrections suggested in Cha

1S su ted i apter III, and in Chapter V.

o

Many systems combine light modal damping with closely spaced
resonances. Steady-state response measured at a representative point
in such a system influenced by an excitation of frequency equal to one
of the resonant frequencies will, in general, contain sizeable

contributions from the modes of vibration associated with nearby
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resonances. When the excitation sweeps in frequency, the response for
an instantaneous excitation frequency equal to one of the system reso-
nances will, in addition, contain transient contributions from the modes
of vibration corresponding to resonances occurring earlier in time.
These transients may be quite large and may lead to sweeping
excitation response histories bearing small resemblance to steady-
state response versus excitation frequency curves.

Consider, for example, a lightly damped two degree of freedom
system, having closely spaced resonances of approximately the same
strength at w and w + A, influenced by an excitation sweeping rapidly
from Ql >uwt > wto QZ < w. The first response peak occuri'ing in
time--corresponding to w + A--will be attenuated, broadened, and
shifted in center frequency in accord with previous statements. The
beat pattern, or transient behavior, associéted with this peak may
interact, however, with forced response corresponding to w, producing
aniplification, attenuation, or complete destruction of the second ‘_
reéponse peak. McCann and Bennett(lé) noted this behavior when per-
forming an analog study of a two degree of freedom torsional
pendulum.

It will still be possible to predict the response of a general
system to sweeping excitation by the method of Chapter II if the system
can be approximated by a classically damped N degree of freedom
model, since the integrals solving the decoupled equations of motion
will be similar to those previously treated. It will also be possible

to predict the influence of the transient behavior associated with one
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resonance peak on other resonance peaks.

This estimating method may be applied, for instance, to
analyzc rcsponse charactcristics of the rotating system shown in
Fig. 6.1, influenced by a prescribed angular acceleration.

It will be assumed that the system may be approximated by a
two mass model in which the masses, M, and MZ’ having centers of
gravity displaced from the shaft axis by e and e,, re spectively, are
firmly affixed to a weightless, non-twisting shaft, and are con-
strained to move in planes perpendicular to the line defining the rest
poéition of the shaft axis. The motion of each mass will then be
completely described by the coordinants of Fig. 6. 2.

The shaft segments I, 'II, and I in Fig. 6.1 will be replaced
by equivalent spring-dashpot pairs acting in the x, and in the y
directions.

The equations of motion will be written
4 )
M1 ;—2 {xl+elcos[®(t)+ o ]J‘ :‘-KIXI-KH(XI-XZ) - BIXI -BH(XI—XZ) )
2 N
M ‘L{ te sinl@tH oy It = Koy -Kooly1-Y5) = Bry 1 =Brel¥1-75)
1,201 %1 (th oy 1) = Ky -Kpgly) -yp) - B -Ppy(F97) »
(6. 1)

2 }
d o o [
M2 d—t-z {x2+ezcos[@(t)+ 62]} = -KIXZ-KII(XZ-XI) - BIXZ—[SH(XZ-xl) s

2
d - \L — . -] o
M, 2 ‘[3’2*3251“[@“”r 03 1) = -Kyyp-Kp(y,-v1) - By, -Br(¥,-9) -



(He




-116-

FIG. 6.2
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The set (6. 1) in matrix form is

[MI{X} + [BI{ X} + [KI{X) = {F} ; (6. 2)
Ml\! 0 FsI’Lﬁn\| 'pn\
| |
M) =f--=---"7------ [B]l= [\~~~ -~ |
AN AN AN
o, M, By v BBy
B ! N L '. N
B AN )
T, | g
N ™~
[K]=-\--——l—\———- s
|
"B KprEppoy
i AN N\
M dz [ ]\
- 161:1-;2 cos L@(t)+ 9
*1
a¢
v —M]Le;‘:2 s1n[®(t)+01] $
{X} = ’ {F} =
x 2
2 -Mzezé—z cos [B(t)+ 02_\
v dt
2
| ¢’ [8(t)+ o, ]
~-M.,e, = sin t)+ o
22 2 2

Expressions to follow will be simplified if it is assumed that
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Premultiplication of (6. 2) by [M]-l gives

(11X} + [BI{X}+ (RMx) =M1 YF)

(6.3)

It may be shown that the necessary and sufficient condition for

17)

classical normal modes( prevails, i,e., that

(RI[B] = [BUR] .

Equation (6. 3} is thus diagonalized by the transformation
diagonalizing [K] .

The eigenvalues of [K] are
Ag i 3\4 = (KI+ ZKII)/ M .
corresponding to éystem natural frequencies:

Wy = f JSI/M s

w, = \/(KI+ ZKH)/M

System eigenvectors may be obtained directly:

N\

1 0
1 1 0 2 1 1
n ] ’ 'r] - )
\/—Z 1 \/-Z 0
0 L)
0
\/'2_ -1 ’ /.Z 0 ’

0 -1)

(6. 4)
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and the transformation
1 2 3 4
[HJ = [n s M T, T 1 )
formed from (6.4), will diagonalize [K] and [B].

In (6. 3) let
{x}=[ul{zZ} ,

and premultiply by [H]T The following decoupled set of equations

obtains:
(1323 + [ace | {2+ D {2} - tdTimr MFy . (605)

Solutions to (6. 5) may be written in the form

t
{z} = f (ht-t)1CHIT MY H{F(E)} at (6. 6)
- Q0

[h(t-th] = |-~~~ —- T\—— - . .

0 f hz(t-t')
L | \._
"gimi(t't')
s s (e !
hi(t-t') - © sin mywi(t-t") , i=1,2
ml(dl

The response, {X}, may now be written after premultiplying

(6.6) by [H]:
t
{x} = Jr [H1Ch(e-t) CHITIM T {F (e e

-0
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The elements of the response, {x}, are:

t

. - 2
x) = %J ellrhl(t—t')+h2(t-t') | . —cl—z-{cos[@(t')+01]}
- - dat! '
-0
+ l-h t-t') - h(t t'] &’ f [e(t")+ }} dt’
el 1 ) - 2( -t') | dt_lz Lcos (t") g, )
t 2
Y1 =—é—] el!—hl(t-t')+ hz(t-t')-'J . —@—2 {sin[@(»t')+ 01]}
o - dt!
rh 'Y-h ). & { Lot ]}d’
+ ezh l(t-t }- Z(t-t )—l . (—it—l'z sin{ B(t")+ UZ t,
t 2
X, = -é— [l elrhl(t-t')--hz(t—t')—! . —d-—z{cos[®(t')+ 01]}
. - bl dtl

2
+ e, by (et ny (et | - dit'z{cos[@(t% o, }at
t 2 N
v, = 5] el hye-t)-hy (et ] —i—'—z{sin[®(t')+ 0,1}
-0

.2
+ ey| by (t-t')4 by (-t | -i'_z{sin[@)(t% o, }at! .

It will suffice to treat the typical element x Its integral

1

representation may be recast in the form
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A, L.t 2
5
x) = --Z]-'I hl(t-t') —g—'—z{cos[®(t')+ ﬂ!l]J‘ dt!
o dt
(6.7)
t
Ap a®
+ —Z—j hz(t-t‘) ggl—z{COS[@(t'H‘ lliz]} dt! ;
-0
1/2
2 2
A1 = [el+ e, + Zelezcos (01-02)] ,
1/2

2 2
A2 = ‘e1+e2 - Zele2 cos(ol-cz)] s

q;l = tan llj(elsin o, + ezsin 0'2)/(e1 cosg+e,cos 02)] s
U, = tan” 1‘—(e sin g, - e, sing,)/(e, coso, -e., cosC )]
2 | (e 8in 95 = ey 8inoy)/(e) cos oy -8,y cos 0,

If the mass center of M, relative to M, is disposed such that

Al ~ A_, then 3 will manifest resonant behavior of the same order for

21
excitation frequencies equal to Wy and w, .

The first mode, associated with @y, and with the integral
multiplying A is shown in Fig. 6. 3a; the second mode, associated

with Wss and with the integral multiplying A’Z’ is shown in Fig. 6. 3b.

Two integrations by parts in (6. 7) lead to the result

X, = 'Zl {cos[@(tH— $,1-— sin[mlml(t—t')-l-@l] .

|

A w, t - Qo (t-t!)
[ e
-Q0

cos[@(t')+¢1]ét'}
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t
A -Cow, (t-t")
+ ——;{cos[@)(th 1h2] - —:1;21—2 I e 272 sin[mzwz(t-_-t')+62'_\ N
-0
cos[O(t") + wzj_dt'} )
(6. 8)
2¢.m 2C,m
-1 171 -1/ 552772
§, = tan . 6, = tan .
! (\1-2g12 ) 2 ( 1-2g22)

After a trigonometric substitution, each of the integrals in

(6. 8) may be written

t ]
- 1J‘ -Gy (t-th)

ful ; l A+ 1
i3 e sin !—miwi(t -t )+ 8" + éi+ lbi] dt
-0

(6.9)

¢
1 J’ - (o (t-th)
e

: sin| m q(t-t')-8(t')+ 8,-y, Jar

i=1,2

Trigonometric time dependence may be factored from the
integrands of {6.9), and I, may be written per (2. 11) as the product of

a time varying modulus and a trigonometric term:
L= +cC (t) » sinflom,t + B (t)]
i 2 i i i ’
The modulus, Ci’ will consist of the four integrals

gty o
J e {m.m.t'-f). =[Ot + U, ]} dt' . (6.10)
cos\{ ii i i
-00
If it is required that the excitation frequency, ®'(t), sweeps

monotonically from +oo att = -0, to 0 at some time to in the future,
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then the instantaneous frequency of the integrands of (6. 10):

1
m.w, + ety ,

m,w, - |'(t)

S
)
N

It

will appear as represented in Fig. 2. 10,
The integrals

t '
[ JGlEt) i

cos{mi“it" 6+ [B(e") + ;] }dt' ’ (6. 11)

-0

having integrand frequency

Py,3 =y O

will attain their maximum value at the end of the interval of interest,
t = to. These maxima will be bounded by expression (2. 20), modi-
fied slightly to suit the present situation, and will be O[l/wi:]. These
integrals will be still smaller for t < t, as indicated below.

The integrals

t
-r -t!
J‘ o Cioy(t-t )sin{

cosl @ymyt' - 8- [@(t')wi]} dt' , (6.12)

1
-Q0

on the other hand, have a stationary phasc point when
P 4, =0 , @Ut) =mo
and will be OI' 1/\/@"(ti)]shortly after t = t.. For cases of interest,

the integrals (6. 12) will be much larger than the integrals (6. 11)

neart =1t. .
1
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The modulus, Ci’ may then be approximated near the ith mode
resonance by the square root of the sum of the squares of the integrals
(6. 12) which, in turn, may be approximated per Chapter II by Ri’ equal
to the square root of the sum of the squares of expressions similar to
(2.21a) and (2. 21b). The modulus of Ii near t. may then be estimated by

1

Lit) oq™ 3 By - (6. 13)

The frequency of the prescribed sweeping excitation will first

pass through w, att =t, and then through wpatt=t, >t,. The

estimated second mode contribution to the response amplitude, Xy g’
mo

for excitation frequency near w, may be written using (6. 8) and (6. 13),

A0, R,

tm,

The integrals (6. 11) associated with the first mode will be

1 ~ o .
O[wlhoz:ll for t= t, and the remaining integrals, (6. 12), corresponding

to w, will be bounded by expression (2. 20), again appropriately

1

modified; their bound, r,, will be 0[ ] <R, .
1 ©y- wz 1

The response amplitude for t =t in terms of these Chapter II

2

expressions then will be approximated by

Azsz2 Alwlr1

4m2 4m1

Estimating the response amplitude for times shortly after the
excitation has a frequency equal to w;, t>1t, presents some difficulty.
To be sure, the resonant mode contribution, coming now from the

first mode, will be estimated as before by (6. 13), and the integrals
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-

J. The

(6. 11) associated with the second mode will be 0 [ T
integrals (6. 12) corresponding to w, will, however, no longer be
bounded by an expression similar to the ry used above, since the
significant portion of the integrals comes not only from the end-point of
the interval, t;, but also from the neighborhood of the included station-
ary phase point t2--solving @'(tz) = m,w, . The latter contribution will,
like any other transient behavior, be diminished exponentially in

importance as a function of the time difference (tl - tz), the frequency

Wa s and the coefficient of damping ,» whereas the former contribution,

1

like T will be O[wl_w2J<R2. |
It will be assumed in view of the above that the modulus of IZ

near t; will be app‘x:oximated by

1T Cawplt1-ta)
2

Iz(tl) 2= RZ + rz:\ )

in which r,, computed as before, estimates or bounds the integral I2
over (tz,tl) excluding stationary phase behavior.

The response amplitude for t = 1:1 may then be estimated by

g 0 e WO Az‘“’z[e'gzwz(tl'tz)R vx]
*1 T T dm) 4m, 27 "2

The peak corresponding to the first mode will be influenced by
the pass through the second mode resonant frequency to an extent

determined by the factor

Agep ~Gaupltr-ty)
e . R
4m 2

™o
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This factor has no counterpart in the expression for steady-state
response amplitude as a function of excitation frequency. Its size will
depend on the level of the response peak corresponding to w5 the
separation of resonant frequencies, sweep rate, second mode damping
ratio, and second mode natural frequency.

It should be added parenthetically that, when the excitation

frequency sweeps linearly in time:

a(t) = mht® + P+ Q , (6. 14)

the integrals (6.7) will be quite similar to the solution integral obtained
for the unbalanced mass exciter problem of Chapter IV. The solution
to the present problem, given (6.14), may then be written in terms
of tabulated functions.

The value of such an exercise may be questioned, however, since
rotating systems influenced by constant angular acceleration are rarely
found in practice, Macchia.(ls) points out, though, that for small values
of the radius of imbalance, e, the solution to the constant angular
acceleration case approaches that of the more important constant
applied torque case.

The outlined estimating {and bounding) method may be extended
to those systems most appropriately approximated by certain simple
continuous models.

Consider, for instance, a clamped, uniformly stretched
membrane S bounded by the closed curve T', and forced by an excita-

tion F(xl, xZ) sin G(t). The equation of motion for the system will be
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2
Tv2u + F(x ,x,) sin G(t) = o(x,,x,) 22 | (6. 15)
2 1" 72 1’72 atZ
Yr=o0 ,
where
T the tension
v;‘ the Laplacian operator in the planar
coordinants x,,Xx
1’72
u the membrane deflection in a direction

perpendicular to the plane of X)1%,

p(xl, xz) the mass per unit area

The solution to the homogeneous equation:

2
2 0 u
TV, u = pl{x,, %x,) — ,
2 "‘Al ZdtZ

may be obtained by the Ansatz: u = X(xl,xz) eJut .
The separation constant wz will have an infinity of values, taken

. . 2 .
here as distinct, w o Mmn= 1,2,3,..., corresponding to an

infinity of solutions X to
mn

2 2
TV2 an + wmnp(xl,xz) an =0 , (6.16)

satisfying the boundary condition

It may be shown that, when properly normalized, the an will

have the orthonormality property

I p(xl,xz) anXk}Lds = 95 5

S

mk “nd
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If, in the inhomogeneous case, the solution

N

v = 2_ gmn(t) an(xl : XZ) !
m,n

is assumed, (6.15) becomes
T 2 , 3}
TZ gmn Vo X nt Flxy,%5) sin G{t) = p(xl,xz)z 8 o mn (6.17)
m,n o

In (6.17) TVZZan may be replaced by its equivalent expression,

- wnfnp(xl,xz) X on? from (6. 16), Premultiplication of (6.17) by Xpt, ?

and integration over S give the equation for %k&:

. 2 _ ) . .

Skt O Spe T 2y, SR GUE)

ap = | X Flxpox,) ds

S
The steady-state solution for gk{,:
t
_ 7 sin w_,(t-t")
IR e <AL R
-0 “kt

provides an expression for the steady-state response:

o sin wk&(t—t')
u =‘>-J ak'f/ JI T S11 G(t')dt' Xk'{; N
k,t - Q0

‘which may be treated by a mode-by-mode application of the method of

Chapter II.
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VII. SUMMARY AND CONCLUSIONS

SUMMARY

It was shown that, although formal solutions for the response of
viscous damped, linear systems to general sweeping excitations can
often be written, closed-form solutions are possible only in certain
cases. These and other cases, for which potentially useful series
expressions may be devéloped, were discussed briefly in Chapter IV,
and .in Chapter VI.

The failure of exact énalysis for the general sweeping excitation
suggested analysis‘_by approximate techniques, in addition to direct
solution for several sufficiently different excitations as to permit
intelligent inferences concerning the response of known systems sub-
ject to any sweeping excitation.

Approximate analysis in the present study included the
following:

1. A method developed in Chapter II for deriving a hard, time
dependent bound on the response of an undamped single degree of free-
dom system to sweeping excitations was used to estimate the response
of a damped single degree of freedom system. It was shown in
Chapter VI that the method could aléo be applied to estimate the
response of classically darﬁped multi-degree of freedom systems, and

simple continuous systems.
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2. Two perturbation schemes were derived in Chapter III and
were used to formulate expressions describing response envelope
behavior for a single degree of freedom system influenced by the general
slowly sweeping excitation. The experimental aspect of the problem was
considered, and expressions were formulated for estimating system
damping and natural frequency using guantities measured from a record
of system response to slowly sweeping excitation.

3. In Appendix B, .the methods of stationary phase and saddle-
point integration were applied to estimate the maximum response of
damped and undamped systems. Failure of the methods was discussed
and ascribed to the fact that neither took into account the important
end-point contributions of the integrals forming the expression for
system response.

To complement the approximate analysis, a study was performed
to investigate--by analog means--the response of viscous damped single
degree of freedom systems to excitations sweeping linearly and
exponentially in time. Experimental curves were presented providing
information concerning response behavior near system resonance.
Curves were given to provide a means whereby sweeping response

records may be employed to determine system damping.

CONCLUSIONS

The discussion of Chapter II indicates that the response of an

undamped system will be bounded provided that the excitation frequency
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equals the system natural frequency (frequencies) for a finite total
time.

Accordingly, sweeping excitations producing an unbounded
response would include those in which the frequency of excitation
approaches a system natural frequency asymptotically, or cycles an
infinite number of times through a system natural frequency. Actual
response in the latter case, as has been shown in Chapter IV, will be
bounded except for specific values of the sweep parameters.

The criterion applied to undamped continuous systems suggests
also that response will be unbounded when the system is influenced by
an excitation sweeping from zero frequency to infinite frequency in an
infinite time.

A common contention has long been that the maximum response
of a damped system to sweeping excitation will be bounded by the
system's steady-state response maximurm. It was shown in Chapter III
that response maxima exceeding steady-state values may be obtained by
pe rmitting the excitation frequency to sweep slowly down through
resonance. These excessees will be very emall, however, for lightly
damped systems and, in addition, will occur over a very limited range
of sweep rate.

The perturbation analysis and the experimental study of
Chapter V indicate that, for useful damping ratios (¢ <. 10), and for
sweep rates ranging to the fastest generally attained, the measured

response behavior--resonance peak amplitude, center frequency of the
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peak, and width of the peak--for identically damped systems, excited
by linearly and exponentially sweeping excitations, will be identical, for
all practical purposes, provided that the relevant sweep fa.cforstare
equal.

The dissimilarity in the time dependence of exponentially, and
linearly sweeping excitations constrasts with the similarity of the above
results, suggesting the insensitivity, again for practical purposes, of
the system to the manner in which the excitation frequency sweeps
through resonance. One is led to conclude that two identically damped
systems, excited by smoothly sweeping but otherwise different excita-
tions, will manifest identical resonance peak amplitude, center

frequency of peak, and width of peak if

dQl 1 1 sz
tr N22 2w dt tr
1 2

(7. 1)

L S

le 2m dt

dqQ,
in which N.1 is the natural frequency of the system in cps, —Z?_H_ti is

the real time derivative of the excitation frequency in cps/s, and tr- is
1
the time of resonance. It will be required here and in the following that

dQ
o F O

It may by concluded further that, since system response near
resonance appears to depend primarily upon the first two terms of the
Taylor series expansion of the excitation frequency about system
resonance for a wide range of sweep rate and damping, analytical
results for the linear sweep may be applied to obtain response charac-

teristics of systems subject to any smoothly varying excitation.
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Analytical and experimental work suggest, in addition, the

importance of the factor

1 1 dG
. ‘—22 . ﬂ 'a']:" ? (7- 2)

in relation to the resonance peak amplitude and peak width., Experi-
mental results predict that, within the ability to measure, resonance
peak amplitude and peak width are functions only of the parameter (7. 2)
for both linearly and exponentially sweeping excitations.

It is then concluded that the above resonant response behavior of
a viscous damped single degree of freedom system influenced by a
smoothly sweeping excitation will be the same as that of any other
viscous damped si‘%igle degree of freedom system influenced by any other
smoothly sweeping excitation provided that the parameters (7. 2) are
equal. Functional depzndence of the resonance peak amplitude on (7. 2)
will be given in Fig. 5. 3; dependence of the peak width on (7. 2) will be
given in Figs. 5.5a, b.

The conclusion may be extended, per Chapter VI, to the
resonant behavior of classically damped multi-degree of freedom
systems provided that system resonances are widely separated.

It should be added here that for damping ratios less than ten per-
cent of critical, the resonance peak amplitude will depend on the abso-
lute value of the time rate of change of excitation frequency. For all
practical purposes, sweeping up through resonance will give the same

peak amplitude as will sweeping down through resonance,
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The similarity of the estimates developed per the analysis of
Chapter II for the peak center frequency of the undamped system
influenced by linearly and exponentially sweeping excitations leads to
an expression for the peak center frequency, Nmax' for the undamped

system influenced by the general sweeping excitation:

. ,/l—gtg—lt__l- (7. 3)

T iy

2|

N =N+ .34 sgn It

max

Experimental results indicate that (7. 3) may be used to aver-
estimate the peak shift, IN - Nmaxl , for damped systems.

The phenomenon of beating was treated only briefly in the pre-
ceding chapters. Such experimental evidence as was gathered leads to
the conclusion, however, that beating will appear in response records
when the parameter (7. 2) exceeds a value between three and four. The
level of the first peak in the beat pattern at first appearance will be the
highest attained for any practical sweep rate--about thirty-five percent
of the steady-state response maximum. Its value relative to that of
the resonance peak will generally increase as the sweep rate increases
but will not exceedy / /2 for > .01.

The question of what excitation sweep rates qualify as slow may
be answered on the basis of the foregoing work. The effect of sweep
rate upon the response of a system depends not only upon the time
derivative of excitation frequency, but also upon system natural fre-

quency and damping. It should be required for slow sweeping that
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1 di2

1
—_— g < 1 (7. 4)
NZC,Z 2m dt

t
r

Sweeping excitations satisfying (7. 4) will produce amplitude of response
records approximating steady-state response amplitude-excitation
frequency curves to good order, Corrections to these records may be
made by application of the perturbation methods of Chapter III.

For multi-degree of freedom and continuous systems it should

be required, additionally, that

1
- > [

t ty. 77 TN,
1 1 1

where t. is the time at which the excitation frequency equals the ith

i
resonant frequency, Ni’ to be cxcited during a particular test, and
where {; is the modal damping associated with the ith mode to be
excited. The time difference, tri+1- tri , will depend upon modal
separation and sweep rate.

REMARKS

Several interesting possibilities for sweep testing physical
structures are suggested by the included work:

1. Modal damping determination in the field has always pre-
sented difficulties. Suppose, however, that an experimenter had the
means to sweep exponentially at various speeds through the resonance
for which the modal damping were desired. He could then vary the

rate of sweeping until beats appeared and, if he accepted the linear

viscous damped model as representative of his system, solve the
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equation based on Fig. 5, 8:

1 1 40
22 I Ei =346
N¢ ty
. " dfl . .
for {, using the quantities N and T which may, in general, be

determined to good order,. d

2.. Sweeping excitations other than those described in the fore-
going might be of potential use in the laboratory. Suppose, for instance,
that the experimenter desired to determine modal damping and steady-
state peak response of a system directly by application of constant
corrections multiplying peak amplitudes and peak widths measured from
the record of system response to a rapid--in the sense of (7. 4)--sweep

test. Previous work indicates that this would require, for the ith mode,

that
1 1 d@
s m— = constant (7.5)
N1'2~C1'2 2m dt ;
i i=1,2,3,...

It will be possible to satisfy (7. 5) with an excitation having a
frequency defined by

[ - Gevp

2 2
() . Q
The proper sweeping excitation thus requires knowledge of the law
governing the modal damping of the system to be tested.
The above suggests an iterative process in which the experi-

menter assumes a damping law, carries out the test, and tries the
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validity of his assumption by applying

N_¢C w
m°m . m
N T T W ?
n'n n

where W is the width of the m_th peak measured between the half-
power points and expressed in frequency, and where Qm is the mth
modal damping computed from the assumed damping law. If the approx-
imate equality holds, the experimenter has guessed the applicable damp-
ing law and may apply a constant correction for the chosen value of

(7. 5) from Fig. 5.4 to all the measured peaks for the purpose of

determining steady-state peak response,
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APPENDIX A

AN ELECTRONIC DEVICE FOR PRODUCING LOW
FREQUENCY SWEEPING SINUSOIDAL
EXCITATIONS IN THE LABORATORY

The device to be described was designed and built by the author
and Mr. A. N. Schmitt, then a technician in the Vibration Laboratory
at the California Institute of Technology.

A prototype model was completed on October 9th, 1963, and a
patent disclosure form was filed with the Institute on November 6th,
1963. At the time, no such device was commercially available.

The sweeping function generator consists of a modified com-
mercial function generator, the Hewlett-Packard 202A, and associated
circuitry. The input to the device may be any low frequency voltage
varying between zero and two volts peak. The output will be an oscil-
lating signal with a frequency proportional to the instantaneous level of
the input voltage. The relation between input voltage and output fre-
guency is linear to within + one percent over the range 10 < f < 110 cps.
The output, for a fixed input voltage, will be sinusoidal with less than
one percent total harmonic distortion, and its amplitude may be varied
from zero to thirty volts peak-to-peak into a load of 3000 ohms or
greater,

The block diagram, Fig. A.l, indicates the essential com-

ponents of the Hewlett-Packard function generator. The generator
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synthesizes its sine-wave output from a square-wave produced by a
bi-stable circuit of the Eccles-Jordan type. In its first stable mode of
operation, the bi-stable circuit produces a positive D, C. signal of
fixed level. This signal is attenuated by the frequency controlling
potentiometer and passes to the linear integrator through Ra' The
iinear integrator produces a ramp signal with a slope proportional to
the level of the input. The instantaneous level of the linear integrator
output is compared to a reference signal by a '""Multiar'" voltage
comparitor. When these two signals are equal, the '""Multiar' issues a
pulse switching the wi-stable circuit to its alternate stable mode in which
a negative D. C. voltage of fixed level is produced. During the course of
the process described above, the input to the sine-synthesizing circuit
will be a positive-éoing ramp. The duration of the foregoing process
will be determined by the absolute value of the D. C. input to the linear
integrator. |

The process will be similar for the alternate stable mode of the
bi-stable circuit except that the input to the sine-synthesizing circuit
will be a negative-going ramp. Switching back to the first stable mode
will reinitiate the cycle and continuous repetition will produce a
triangular-wave input to the sine-synthesizer. The latter is a nonlinear
circuit which presents the input signal with an apparent resistance that
is related to input voltage level.

A more thorough description of circuit operation may be found

(19)

in the operating and service manual for this instrument
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The modification to the circuit described above, permitting
frequency modulation of the output signal, provides an additional current
path at point "A'" in Fig. A.l. An increased current flow in Ra due to
this additional path causes an increased voltage drop across R and the
signal presented to the integrator is attenuated accordingly. In the
circuit illustrated in Fig. A.2, connected at point "A" in Fig. A. 1, the
tube and transistor are arranged to provide a current flow that is pro-
portional to the applied control voltage, EC. Since the frequency of the
output of the function generator is linearly related to the voltage level
of the input to the integrator, it will thus be linearly related to the
control voltage, Ec' The associated circuitry illustrated in Fig. A.3
simply provides a means for producing the required floating voltage,
EC, proportional to the input voltage, Es. The voltage ES is used to
modulate the amplitude of a 5000 cps square-wave produced by the
T-104 free-running multivibrator. This modulated A.C. signal is
applied to the primary of an isolation transformer. The output of the
transformer is full-wave rectified, and filtered to produce Ec'
Capacitances in this circuit have been kept small to produce a small
overall time constant.

The value of the speed-up capacitor Cp in Fig. A.3 is chosen to
provide the cleanest square-wave output from the D. C. amplifier. The
values of R, and R; depend upo'n the impedances of the D.C. amplifier
and the volt-meter. For an Alinco 516-Al1 D. C. amplifier with 51-1

attenuator, Rs is 300K. For a 1000 Q/volt voltmeter, R'S is 1. 5K.
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The sweeping function generator is illustrated in Fig. A. 4.

A device for producing the input frequency control voltage, Es’
was also designed and constructed. Its operating principle is similar to
that of the spectrum analyzer described by Caughey, Hudson and
Powell(zo) insofar as the required frequency behavior is plotted radially
as a function of 8 on a disc. The disc is rotated about a vertical axis,
and the radial displacement, proportional to Es’ ig read by an optical
displacement follower. The filtered, amplified output voltage of the
displacement follower is supplied to the sweeping function generator
de scribed above.

The block diagram, Fig. A.5, illustrates the components of
this device,

The circuit diagram of the single revolution passing device is
given in Fig. A.6., The cam-operated micro-switches, "B, in
Fig. A.6 may be seen in the photograph, Fig. A.7. This circuit is
designed to pass, on command, the output of the optical displacement
follower for one revolution of the disc. At other times the circuit
passes an adjustable base voltage to the sweep function generator,

Rotational speed of the disc may be controlled over the range
2 rpm < N < 200 rpm to provide a one parameter family of Es for a
given record.

Records are drawn twice size and photographically reduced. The
resulting positive transparencies are backed up by a polished, chrome-

plated disc to present the optical displacement follower with a high
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quality target. The back-up disc in Fig. A, 7 is vacuum metalized

Lucite. It proved to be unsuitable due to surface dust inclusions, and

susceptivity to scratches,

This optical device for producing input frequency control voltages

was not used in the experiments discussed in Chapter V,
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APPENDIX B

APPROXIMATE ANALYSIS OF SYSTEM RESPONSE TO SWEEPING
EXCITATIONS BY THE METHODS OF STATIONARY
PHASE AND SADDLE-POINT INTEGRATION

It was implied in Chapter II that the integrals (2. 11) or (2. 19)
constituting the response, y, are likely candidates for approximation
by the method of stationary phase. It is indeed true that the method
may be used to predict behavior of undamped systems in the late post-
resonance era of the excitation, and also to provide an estimate for
the response maximum in undamped and lightly damped systems under
sweeping conditions. The former knowledge is of little practical value,
since all physical systems possess a finite amount of damping. The
stationary phase estimate of the peak response will be generally inferior
to one derived by careful use of the method outlined in Chapter II.

The method does, however, warrant discussion not only because
of its historical significance in the approximate evaluation of the type of
integrals at hand, but because its shortcomings may serve to clarify

the behavior of these integrals.

The result of Kelvin(ZI) as generalized by Watson(7) may be
summarized per Erdelyi(zz):
b
Jxh(t) .. _2m l; C T
[y X2 ae ~ic(n) [ o2 axn[ ey +5 21 (B. 1)
a

X ™
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The integration is taken along the real axis and h(t) is a real
function. Erdelyi requires that: ¥ is a large positive variable; k(t) is
continuous; h(t) is of the class CZ; there exists a single point, p,
within the interval (a,b) where h'(t) = 0; and h''(p) > 0. This is not the
most general statement of the Watson result but it will suffice for the
present,

The method assumes that the prime contribution to the integral
over the interval (a,b) comes from the neighborhood of p, the point at
which the frequency of the trigonometric portion of the integrand is zero.
Positive and negative contributions for t displaced from p in (a,b) will
tend to cancel one another.

The functi?n k(t) and the trigonometric argument, h{t), are
replaced by their "faylor series expansions about p; the first term of the
series for k(t) is preserved, and the first three terms of the series for
h(t) are preserved (recall that h'(p) = 0). Since it is argued that con-
tributions for t displaced from p are small, the integral will be rela-
tively insensitive to the upper and lower limits of integration, and the
range of integration is taken (-0, ®). The result (B. 1) follows
immediately.

The exprcession for the response:

Q0
y = %j‘ e-gu sin mu . sin g(T-u)du (2. 9)
0

is expanded by trigonometric substitution:
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oo fo'e}
J e-gu cos[mu-g(T-u)ldu - J e S%cos [mutg(T-u)ldu). (B.2)
0 0

-1
Y =%2m

As in the discussion of Chapter II, the excitation will be taken
such that its instantaneous frequency will be everywhere positive, and
will equal the system natural frequency only once for -co < T < co. It
may be shown, then, that over the interval (0, ) only the latter of the
integrals in (B. 2) has a stationary phase point, p = T~-u. By previous
arguments, the contribution of the other integral will be small, and the

method will yleld the approximate expression

-C(7-u)
y = - € — f > T ‘ ., CO8 [m’r—mp+g(u)i£—] , (B. 3)

lg"(w)

for: T>>y . A positive phase factor w/4 in (B. 3) corresponds to
g'"(u) > 0, and a negative phase factor w/4 to g''(u) < 0.
'The response of the undamped system for times long after the

excitation frequency equals system natural frequency will be approxi-

o [T - r
y = AP cos[T W+ g(u) :t4]

The response maximum obtains for T = 4. It will be equal to

- 1 ¢ ™
= . B. 4
max m 2|gn(u) | ( )

The expression (B. 4) suggests that for infinitely slow sweep

matcd by

~

rates {g''(4) — 0), the response of even the undamped system w_ill

become unbounded,
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If an excitation with linearly decreasing frequency is applied

to the system, the peak response approximation will be

Ymax = mvd - (B. 5)

max

The estimate (B.5) may be compared to the estimate for the
undamped system,(2. 16). The present expression under-predicts (2. 16)
by ~ 15%,

As may be seen in (B. 3), the stationary phase approximation
applied to the present problem suggests that prior to the time the exci-
tation frequency equals the system natural frequency, the system is at
the state of rest. When the excitation frequency is equal to the system
natural frequency, the system is displaced from rest with the initial

conditions

1 ™ T
y(u) = - E“/ml cos [g(u} iz] ,

¢
Y'(LL) = 2 ‘g?;(u) . JL';‘C_n cos [g(u) i%] + sin [g(u) i%]} .

After resonance, the excitation makes no further contribution to
the system, and the system oscillates freely; the amplitude of oscilla-
tion decays at a rate prescribed by the damping,

The method may be generalized, of course, for a finite number

of passes through system resonance. Expression (B.3) then becomes

N 'Q(T‘Hi)

y%-i E.ZE._.____._
mY2 L g, |

=1

. cos [m(T—ung(uiHSgng”(ui)« %] , (B.6)
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for

T>>uN>uN_l>. . e >u1

and related predictions are altered accordingly.

The fact that the addition of damping to the system has little
effect on the estimate for the response maximum is not surprising,
since the decaying exponential behavior conferred on the integrand of
(2. 9) by non-zero damping is factored out of the integral. The integral
from which the approximate expression (B. 1) is derived depends not on
the behavior of k(t) for convergence, but on h(t) the argument of the
trigonometric portion of the integrand.

The discussion concerning expression (B. 3) indicates why the
expressions (B.3) and (B. 6) repreéent unrealistic pictures of the post-
resonant system response. The sum contribution of the excitation is
expressed in terms of starting conditions for damped free oscillation.
The actual form of the response for times after the excitation frequency
equals the system natural frequency will, of course, be determined by
the persisting excitation, and the decaying free vibration associated
with the high amplitude response near system resonance,.

Since a quadratic function is identical to the first three terms of
its Taylor series expansion about any value of the independent variable,
the stationary phase approximation for the response of an undamped
system influenced by a linearly sweeping excitation will differ from the
actual expression for the response only in the limits of integration. The

disparity between the estimate for the response maximum (B. 5) and Lhe
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estimate (2. 16) must then be a consequence of this change in the end
points of integration.

It may be seen in (B. 1) that the contribution to the integral from
the neighborhood of the stationary phase point is 0[-—}3—(;] . The contribu-
tion over the remainder of the interval may be written in terms of the
large variable X by an integration by parts:

p-€ b

; . jxh(b) jxh(a)
J¥Xh(t) 1xh(t) 1 k(b)eJX k(a)e 1 1
f k(t)e dt + I k(t)e dt NT)-(_:_ 5] - ) _J+ 0[_X2] .
a ote

(B.7)

The stipulation succeeding (B. 1) requires that h'(t) # 0 over the
interval of (B. 7). The error in extending the limits of integration is
then 0[%] , providing that k(a) and h'(a) are 0[1]. The response maxi-
mum, however, obtains shortly after the excitation frequency equals the
system natural frequency, and the lower limit of integration in the exact
expression for the response maximum is close to the stationary phase
point. For this reason h'(a) will be quite small. The error in neglect-
ing this end point contribution will then be rather large.

One is led, by the failure of the stationary phase approximation in
the present study, to sugge.st that the more sophisticated saddle-point
method be used. This method certainly appears to take damping more
fully into account, since it does preserve the decaying exponential
behavior within the integral. It would be expected then that a better
representation for the damped response and the damped response maxi-

mum would result.
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Saddle-point integration consists of deforming the original path

of integration of

I=J eH2) g,

C
in which z = x + jy and f(z) = u(x, y} + jv{x,y), into an equivalent path

passing through the point p, where

The new path of integration is chosen such that u{x, y) has a maxi-
mum at p. The prime contribution to the integral is assumed to come
from this point, and the same simplifications as made in the stationary
phase method .are introduced.

The details of the method are rather complicated and are

(22) (23)

discussed by many authors including: Erdelyi , and

(24)

Copson
Cerrillo
It is unfortunate that saddle-point integration fails to signifi-
cantly improve on the previously discussed method for predicting system-

response.
A comparison of the methods may be carried out by rewriting the

latter integral of (B, 2} in complex form:

Q0
1 , |
y = - EﬁlReJ‘ exp{- gu+J[111u+ g(T-u)]_} du ,
0

and noting that the stationary phase point, Py = T-Hys will satisfy
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g'{py)=m . (B. 8)
The point at which dé(zz) =0, py =7T-4,, will satisfy
g'(py) = m+iC . (B.9)

The envelope for the stationary phase approximation is given in
(B. 3) as
v - 1_ / T e";(""'l-ll)
mod1 m 2 \ _

2" tey)

The corresponding envelope for the saddle-point approximation

may be derived after a small amount of work:

o 1 i - _ _ - Tm 1
Ymod,, ~ —r'ﬁ‘\/‘z—m - € P{ CRe(p,)-mIm(p,)-T [g(uz)]) ]

(B. 10)

An alteration to the path of integration merely serves to intro-
duce an additional phase factor which has no effect on the envelope

expression,

The identity

m

g'(py) = g'(py) + (py-pq) « &"(F)
may be applied to (B. 8) and (B. 9) to produce the result

gIm[g"('g)] s jCRe[ji”(E)] ‘ (B.11)
PEG) lg"(®)]

pz = pl+

An expansion of g(uz) and g"(uz) about My in (B. 10) and substi-

tution of (B. 11) lead to the following expression
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-¢{r-p,+ofcl}
L d 2l ,
=1 [ cqi+ol |
Ymodz—__r-n_« 2|g"(Ll)|

and

= y + 01'52]
ymodz_ mod.1
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