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Chapter 1

Introduction

Within Performance-Based Engineering, four types of building analysis techniques
are available: linear static, linear dynamic, nonlinear static and nonlinear dynamic.
Nonlinear Static Procedures have become popular because of the appeal to struc-
tural engineers that displacement demands can be calculated which directly take
into account the nonlinear load-deformation characteristics of both the structural
elements and the entire structure without running a nonlinear time history analy-
sis. The Capacity Spectrum Method is a Nonlinear Static Procedure that predicts
a Performance Point displacement demand for a building subjected to earthquakes
by combining structural capacity determined from a push-over analysis with seismic
demand represented as response spectra.

AutoCSM implements a new graphical Performance Point solution procedure,
developed by the authors, that both improves the accuracy of the Performance Point
displacement prediction and gives insight into the sensitivity of the Performance
Point. The solution procedure has been adopted for use in FEMA 440 [3]. It replaces
the conventional CSM solution procedure as set forth in ATC-40 [4]. Determining
the Performance Point for a given capacity spectrum and seismic demand has been
fully automated by AutoCSM with minimal user inputs.

1.1 Capacity Spectrum Method of Analysis (CSM)

The Capacity Spectrum Method (CSM) combines structural capacity with seismic
demand to predict a displacement demand on a structure. Linear response spec-
tra with varying amounts of damping represent inelastic seismic demand. Each
value of damping is associated with a corresponding value of ductility. Structural
capacity is represented by a push-over curve of the building model. For different
displacement values along the push-over curve, bilinear approximations are fit to
the curve which define a yield displacement for the structure. When the demand
and capacity ductilities are equal, the system is in a type of dynamic equilibrium.



The equilibrium point defines the expected performance of the structure, referred
to as the Performance Point.

1.2 Modified Acceleration-Displacement Response
Spectrum

The conventional Capacity Spectrum Method uses the secant period as the effective
linear period in determining the Performance Point [4]. However, the improved
effective linear periods developed by the authors have been found to be different
from the secant period. Therefore, the conventional Capacity Spectrum Method will
be modified in some fashion to enable the use of the effective parameters developed
in this study. The solution is to modify the seismic demand. The seismic demand,
in Acceleration-Displacement Response Spectrum (ADRS) format, will be reshaped
by a modification factor. Every value of acceleration at every displacement will be
multiplied by the ratio of the secant stiffness of the capacity spectrum to the effective
stiffness. An ADRS and modified ADRS (MADRS) are shown in Figure 1.1.

Pseudo-Spectral Acceleration

Spectral Displacement

Figure 1.1: Modified Acceleration-Displacement Response Spectrum (MADRS).

The modification factor, M, is defined as:
M = Agee/Acss (1.1)

Ac sy is the acceleration obtained by the intersection of the ADRS and the radial line
representing T, ss. Asec is the value of acceleration corresponding to the intersection



of the MADRS and the radial line representing the Ty... Acsr and Az may be
expressed as:

2w

Acg = Degs( )? (1.2)
eff
2w

Asec = Deff(T )2 (13)

Substituting Equations 1.2 and 1.3 into Equation 1.1 yields:

M = (EV (1.4)
TSEC
The Modified Acceleration-Displacement Response Spectrum (MADRS) may
now be used in combination with the capacity spectrum to determine the Perfor-
mance Point as shown in Figure 1.2. Through the implementation of the modifica-
tion factor, the Performance Point appears to occur at the secant period, when in
fact it occurs at an effective period which is different from the secant period.
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Figure 1.2: Determining the Performance Point using the Modified Acceleration-
Displacement Response Spectrum (MADRS).

Additional insight can be gained into the Performance Point displacement pre-
diction by creating a Locus of Performance Points. MADRS demand spectra may
be calculated for a range of ductility values. The intersections of the MADRS and
the corresponding secant period lines may be connected together to create a Locus
of Performance Points. The Performance Point is located at the intersection of the
Locus of Performance Points and the capacity spectrum as shown in Figure 1.3.
The complete improved CSM is presented in References [3], [6] and [5].
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Figure 1.3: Determining the Performance Point using the Locus of Performance
Points.

From this new graphical solution procedure, information is available far beyond
just a Performance Point coordinate. The new Performance Point solution proce-
dure gives insight into the sensitivity of the displacement prediction. The procedure
clearly reveals how variations in both the capacity or demand will effect the pre-
diction. If the strength of the capacity spectrum were increased or decreased, the
Performance Point changes, but by how much? The answer depends on the slope
of the Locus of Performance Points near the Performance Point which is directly
observable in this procedure.

Examples of different Loci of Performance Points are shown in Figure 1.4. Fig-
ure 1.4(a) shows a case where Locus is is nearly 90 degrees. In this case, raising
or lowering the capacity spectrum has very little effect on the Performance Point
displacement. The displacement range is very small. However, Figure 1.4(b) shows
a case where the slope of the Locus is between vertical and horizontal. In this case,
raising or lowering the capacity spectrum has a very large effect on the Performance
Point displacement and the corresponding displacement range is large.

While the solution procedures in ATC-40 make no mention of it, the possibility
of multiple Performance Point solutions can clearly be seen in the new procedure.
There may be one, several or zero intersections of the Locus of Performance Points
and the capacity spectrum. Extending the Locus to ductilities beyond the first
intersection will reveal if multiple intersection points exist as seen in Figure 1.5.
Multiple Performance Points require serious attention. A conservative approach is
to use the Performance Point at the largest displacement.
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Figure 1.4: Sensitivity of the Performance Point displacement prediction to changes
in the capacity spectrum.
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(a) A single Performance Point. (b) Multiple Performance Points.

Figure 1.5: Extending the Locus of Performance Points to large values of ductility
clearly reveals multiple Performance Points.



Chapter 2
AutoCSM

AutoCSM is an automated Excel sheet that requires user inputs for both struc-
tural capacity and seismic demand and calculates the Locus of Performance Points.
The intersection of the Locus of Performance Points and the capacity spectrum
is the Performance Point for the structure. The Performance Point is determined
in a completely graphical procedure performed by AutoCSM. Three options exist
for specifying the seismic demand. One option is to obtain a site specific design
spectrum for 5% damping. Spectra for different values of damping are thereby cal-
culated by applying the ASCE 7-02 spectral reduction rules. The second option
is to obtain a family of design spectra for 5%, 10%, 20%, 30% and 40% damping.
These would most likely be obtained from a qualified ground motion consultant.
Linear interpolation will be employed for the necessary damping values needed in
the analysis. The third approach is to use the NEHRP design spectrum as set forth
in FEMA 356 [2].

AutoCSM consists of four worksheets: Inputs - Capacity, Inputs - Demand, Cal-
culations and Solution. No cells on the worksheet Calculations are input cells.
Those cells contain the calculations performed by AutoCSM and may only be ob-
served. The worksheet Solution contains the graphical solution for the Performance
Point.

2.1 Using AutoCSM

1. Open AutoCSM and click on the worksheet labeled Inputs - Capacity. Run
the macro calc_Teff by clicking on the appropriate button at the top of the
worksheet. A graphical user interface will pop-up and begin asking for several
input items. The first item is the capacity spectrum coordinates (step la).
The second item is the bilinear approximations to the capacity spectrum for
different maximum displacements (step 1b). The third item is the seismic
demand spectrum (step 1lc). If at any step, a mistake has been made in



the inputs, the user will be alerted. The program will not proceed until all
mistakes have been properly corrected.

la. Capacity spectrum: For a building designed on a specific site, a com-
puter model of the structure is constructed and a push-over analysis
is performed using the first mode shape load profile. A load-deflection
curve is obtained from the push-over analysis. Convert the push-over
curve into a capacity spectrum using the following equations

Pseudo-Spectral Acceleration = Force a’Ma/(a”MI)? (2.1)

Spectral Displacement = Displacement a’Ma/(a” MI) (2.2)

where a is a column vector of the fundamental lateral mode shape, M is
the square mass matrix for the horizontal degrees of freedom and I is the
identity column vector. Leave no cells blank except the cell after
the last input coordinate.

Pseudo-spectral acceleration and spectral displacement must have con-
sistent displacement units throughout the entire analysis. One may also
use the spectral conversion equations in ATC-40, Section 8, to convert
from a push-over curve to a capacity spectrum. The capacity spectrum
coordinates must be input into columns C and D. The program will ac-
comodate up to 275 pairs of capacity spectrum coordinates.

1b. Bilinear approximations to the capacity spectrum: Along the ca-
pacity spectrum, bilinear approximations must be fit for several values of
maximum displacement, d,. Guidelines for bilinear approximations are
given in ATC-40, Section 8.2.2.1.1. Each bilinear approximation requires
the determination of a yield point (d,, a,) and an end point (d,, a,). The
first bilinear approximation must be for a ductility greater than 1.0 and
the values of ductilities must increase for each subsequent bilinear ap-
proximation. The bilinear approximation coordinates must be input into
columns E thru H. The program will accomodate to input up to 275
bilinear approximations.

1lc. Design spectrum: Three options exist for specifying the seismic de-
mand. One option is to obtain a 5% damped design spectrum and accept
the ASCE 7-02 spectral reduction rules for different levels of damping as
set forth in Section 9.13.3.3. In this case, the nominal amount of damp-
ing in the structure ({,) must be defined as greater than or equal to
2% and less than or equal to 10% (2% < (, < 10%). The ASCE 7-02
spectral reduction rules are reproduced in Table 2.1. For example, if you
are given the spectral displacement for 5% damping and you want to
calculate the spectral displacement for 30% damping, you divide the 5%
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(a) Bilinear capacity spectrum (b) Curved capacity spectrum
Figure 2.1: Examples of capacity spectrum shapes.

damped spectral displacement by 1.7. For damping values between the
ones given in Table 2.1, linear interpolation is employed. The program
will accomodate up to 300 combinations of spectral displacement and
pseudo-spectral acceleration for the 5% damped design spectrum.

Damping value (%) | Reduction coefficient
2 0.8
5 1.0
10 1.2
20 1.5
30 1.7
40 1.9
50 2.0

Table 2.1: Spectral reduction rules as set forth in ASCE 7-02, Table 9.13.3.3.1.

A second option is to obtain a family of design spectra for 5%, 10%, 20%,
30% and 40% damping. Linear interpolation will be used for damping
values between these spectra. In this case, (, must be defined as greater
than or equal to 5% but less than or equal to 10% (5% < (, < 10%).
The program will accomodate up to 300 combinations of spectral dis-
placement and pseudo-spectral acceleration for each spectrum. Each
spectrum must contain the same number of combinations.

The third option is to use the NEHRP design spectrum as presented in
FEMA 356. The program will prompt you to select a site classification

10



as described in Section 1.6.1.4 of FEMA 356. The mapped BSE-2 short-
period response acceleration parameter, Sy, and the modified mapped
response acceleration parameter at a one-second period, Sy, are also input
at this time. These parameters are described in Section 1.6.1.3 of FEMA
356. The coordinates of the design spectrum and subsequent demand
spectra are automatically calculated by AutoCSM.

Note: If selecting the first or second design spectrum input option, the
following relationship between period (T), pseudo-spectral acceleration
(PSA) and spectral displacement (SD) may be useful: 7' = 27/SD/PSA
where PSA in units of either e¢m/sec? or in/sec’. The values of the
periods associated with the 5% damped demand spectrum coordinates
are shown on the worksheet Inputs - Demand with a grey font under
the heading PerADRS. Often ADRS coordinates are not properly dis-
tinguished between spectral acceleration (SA) and pseudo-spectral ac-
celeration. When damping is equal to zero, SA and PSA are identical.
However, when damping is not zero, the two are not equal. If the ADRS
is spectral acceleration, not pseudo-spectral acceleration, then a radial
line may not represent a constant value of period for all levels of damping.

Two examples of capacity curves are shown in Figure 2.1. Figure 2.1(a)
shows a bilinear capacity spectrum in which the yield point coordinate,
(dy,a,), will not change for different maximum displacement points,
(di,ay). Figure 2.1(b) shows a rounded capacity spectrum which re-
quires separate yield points for different maximum displacement points.
Bilinear approximations are necessary because the equivalent parame-
ter equations have been developed from models with bilinear hysteretic
backbone shapes.

AutoCSM will next ask for the model type of the building. Click on the
appropriate model type. Hysteretic classification of a building is discussed

in Section 2.2. The options are bilinear (BLH), stiffness degrading/strength
degrading (STDG) or pinching (PIN1 or PIN2).

Next, AutoCSM will ask for the percentage of nominal viscous damping in
the building. Use 5% unless information is available that reveals a different
nominal viscous damping value.

All user inputs are summarized on the worksheet Inputs - Capacity.

. Run the macro calc_Disp by clicking on the appropriate button at the top
of the Inputs - Capacity worksheet. The Solution worksheet will now pop-
up onto the screen. Plotted there is the design spectrum for the nominal
damping value ((,), the capacity spectrum and the Locus of Performance
Points. The Performance Point is the intersection of the capacity spectrum

11



and the Locus of Performance Points. Directly observable is the sensitivity of
the Performance Point displacement prediction to slight changes in either the
demand or capacity as discussed in Section 1.1.

3. At any time go back to Inputs - Capacity and add more bilinear approxima-
tions to the capacity spectrum. Choosing d, to be the smallest or largest
displacement will increase the length of Locus of Performance Points. Adding
a d, value near the Performance Point displacement will decrease the ductil-
ity gradation along the Locus of Performance Points. Both macros must be
re-run to update the Solution worksheet.

2.2 Structural Models

The capacity spectrum the a structural surrogate for the building model. The capac-
ity spectrum is meant to represent the expected hysteretic backbone curve to cyclic
response. What happens to the hysteresis loops during the cycles of response is un-
known. Different hysteretic models are available to categorize the building model.
Effective linear parameters have been calculated for several hysteretic models. The
hysteretic response of the inelastic single-degree-of-freedom systems subjected to a
sinusoidal acceleration history are shown in Figures 2.2 and 2.3.

2.2.1 Hysteretic Classification

Once a push-over curve has been obtained for a given building model, there still
exists the question as to how the building will behave during the inelastic cycles
of response. Answering this question is left to the judgment of the engineer by
examination of the structural plans and, in the case of a retrofit, an inspection of
the existing building [1].

The capacity spectrum is fit with several bilinear approximations as discussed
in Section 2.1, Step 1. AutoCSM automatically calculates the second slope ratio
for each approximation. When the building is categorized as a hysteretic model
type, there are restrictions on the second slope ratio («) values for each model
type. The bilinear model (BLH) works for a > 0%, the strength and stiffness
degrading (STDG) model for o > —5% and the pinching models (PIN1 and PIN2)
for a > 2%. Discrete values of o have been calculated for each hysteretic model and
linear interpolation is used for any values between the discrete values. Therefore, if
a negative alpha value is present, the STDG categorization must be used.

Most new construction with a well designed lateral force resisting system should
be categorized as a bilinear hysteretic system (BLH). The lateral resisting system
should be free from any non-structural elements that may effect its performance.

12



Hysteretic Model | Range of values for «
BLH >0%
STDG >-5%
PIN1 >0%
PIN2 >0%

Table 2.2: Allowable « values for each hysteretic model type.

For example, non-structural elements should not be constructed such that they will
effect the stiffness of the building upon their failure.

Any existing construction that has a well designed lateral load resisting system
with structural elements that are well detailed and constructed properly should
probably be categorized as stiffness degrading (STDG). The condition of the lateral
load resisting system must be determined through investigation of the structural
plans and if applicable, inspection of the building. The year in which the build-
ing was constructed and the material of construction will have an impact on this
categorization. Older buildings, particularly those built before 1970, should be
examined very carefully since it was the 1971 San Fernando Earthquake that moti-
vated many changes in structural design and building code requirements. Existing
concrete buildings must be extremely well detailed to fit in this category. Design
and detailing of concrete buildings changed significantly after the structural fail-
ures experienced at such buildings as the Olive View Hospital in Sylmar due to the
1971 earthquake. New construction with slightly questionable lateral load resisting
elements may conservatively be categorized as stiffness degrading.

Buildings with poor existing lateral force systems should be categorized as a
pinching hysteretic model. The components making up the lateral resisting sys-
tem may be poorly detailed or are expected to have very poor hysteretic response
properties. The two pinching models (PIN1 and PIN2) reflect different amounts of
dissipated hysteretic energy. For a building that is poorly designed but containing
a large amount of redundancy, perhaps the PIN2 model with less degradation is
best. Any other poorly designed existing building should be categorized as PIN1.
Conservatively, all poorly designed existing buildings may be categorized as PIN1
for the analysis.

Bilinear Hysteretic Model (BLH)

The bilinear hysteretic model (BLH) is shown in Figure 2.2. The force versus
displacement diagram has two slopes: the initial linear stiffness, k,, and the post-
yield stiffness, ak,. The point where the slope changes from the initial linear stiffness
to the post-yield stiffness is the yield point of the structure. The hysteresis loops

13



do not deteriorate in any manner with an increasing number of response cycles.

f (STDG)

- X

Figure 2.2: Force (f) versus displacement (x) for bilinear (BLH) and stiffness and
strength degrading models (STDG).

(BLH)

il

Stiffness and Strength Degrading Model (STDG)

The stiffness and strength degrading model (STDG) is shown in Figures 2.2. This
model is based on one developed by Riddell and Newmark [9]. The force versus
displacement diagram has a decreasing stiffness as ductility increases. Once nonlin-
ear response has occurred, a zero-force crossing will always change slope and head
directly to the previous maximum displacement. Translation of the positive yield
point has no effect on the location of the negative yield point and vice verse. Fig-
ure 2.2 shows the system response to a harmonic forcing function. For alpha values
greater than zero, the model is stiffness degrading and for alpha values less than
zero, the model degrades in both stiffness and strength. In general, strength degra-
dation can occur in two ways: in-cycle or out-of-cycle. An in-cycle degradation
model has been used here because it was desired to have a hysteretic model push-
over curve that matches the building push-over curve. This would not be true for
an out-of-cycle degradation model. Building and hysteretic model push-over curves
already match for any non-negative second slope ratio model. To be consistent, it
was decided to have it also occur for the negative second slope ratios.

Pinching Hysteretic Models (PIN)

Pinching hysteretic models (PIN) are shown in Figure 2.3. Models PIN1 and PIN2
were developed by Iwan and Gates [7], [8]. The models consist of a combination
of linear and Coulomb slip elements. The Coloumb slip elements determine the
energy dissipated in a cycle of response which is the area enclosed by the hysteresis
loops. The hysteretic energy dissipated by PIN1 is less than the hysteretic energy
dissipated by PIN2. The resulting hysteresis loops show a pinching shape common
in reinforced concrete component tests.

14
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Figure 2.3: Force (f) versus displacement (x) for pinching models (PIN1 and PIN2).
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Chapter 3

AutoCSM Examples

3.1 Example 1

In this example, a site-specific design spectrum is used in conjunction with the
ASCE 7-02 spectral reduction rules. Discrete data for the 5% damped site-specific
design spectrum and the capacity spectrum is given in Table 3.1. The capacity
spectrum is obtained from the push-over curve which is multiplied by the appropri-
ate matrices and vectors as in Equations 2.1 and 2.2. The design spectrum is given
as pseudo-spectral acceleration values at discrete period values. From the design
spectrum information, spectral displacement (SD) must be calculated by using the
relationship 7" = 27,/SD/PSA. The design spectrum and capacity spectrum are
plotted in Figure 3.1.

The capacity spectrum must be fit with several bilinear approximations. The
bilinear approximations are established for several values of maximum displacement,
d, as seen in Figure 3.2. For each bilinear fit, coordinates for d,,, a,, d, and a, must
be defined. The guidelines for bilinear approximations are given in ATC-40, Section
8.2.2.1.1. The bilinear approximations must be input in ascending ductility order
and the first bilinear approximation must have a ductility value greater than 1.0.

Run the macro calc_Teff by clicking on the button at the top of the Inputs -
Capacity worksheet. A graphical user interface will appear and begin asking you a
series of questions about input information. Carefully read each pop-up and click on
the correct button. The third pop-up entitled, Input: Seismic Demand, defines the
demand options. Select the first option which reads 5% Design Spectrum reduced
by the ASCE 7-02 reduction rules. Additionally, the structure has been determined
to be classified as stiffness degrading (STDG) Select STDG for model type. The
nominal damping value for the structure has been determined to be 5% which
must also be selected on the appropriate pop-up. Issues pertaining to the hysteretic
classification of a structure are discussed in Section 2.2. Figure 3.3 shows the Inputs
- Capacity worksheet and Figure 3.4 shows the Inputs - Demand worksheet with

16
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Figure 3.1: Capacity spectrum and design spectrum for Example 1.

all input values. Note that the ductility values must be in ascending order. Also,
the PerADRS column confirms that the transformation from PSA and period to
SD and PSA was done correctly. After double-checking all the input data, run the
macro calc_Disp. The worksheet Solution will immediately pop-up. The worksheet
Solution for this example is shown in Figure 3.5. As discussed in Section 1.1, the
Performance Point is located at the intersection of the Locus of Performance Points
and the capacity spectrum.
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Figure 3.2: Bilinear approximations to the capacity spectrum for Example 1. The
bilinear approximations determine the values of d,, a,, d. and a,.
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Table 3.1: Capacity spectrum coordinates and design spectrum data for Example
1.

Capacity Spectrum

Design Spectrum

Accel Disp Period PSA Period PSA
(in/sec?) (in) (sec) | (in/sec®) | (sec) | (in/sec?)
0 0 0.1 233 3.3 60
26 .25 0.2 272 3.4 58
52 .50 0.3 294 3.9 56
78 .74 0.4 306 3.6 54
90 .85 0.5 314 3.7 52
98 .95 0.6 319 3.8 52
104 1.00 0.7 317 3.9 52
115 1.16 0.8 306 4.0 52
123 1.35 0.9 288 4.1 52
130 1.55 1.0 267 4.2 52
135 1.70 1.1 239 4.3 52
140 1.87 1.2 216 4.4 52
143 2.02 1.3 196 4.5 52
146 2.20 1.4 180
151 2.50 1.5 166
153 2.65 1.6 153
157 2.89 1.7 140
160 3.10 1.8 129
162 3.30 1.9 121
165 3.65 2.0 113
168 4.02 2.1 105
170 4.38 2.2 99
173 4.87 2.3 94
176 5.50 24 89
178 6.00 2.5 84
180 7.00 2.6 80
183 8.5 2.7 76
186 10.00 2.8 73
187.5 11.00 2.9 70
189 12.00 3.0 67
189.5 13.00 3.1 65
190 14.00 3.2 62
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1. Click here for macro: calc_Teff 2. Click here for macro: calc_Disp

| Model Nominal |~ Capacity Spectrum | Bilinear approximations to Cap Spec |
Type |Damping (%)| disp | accel | dy | ay | da | a |
STDG 5 0 0 1.05 112 1.8 137
0.25 26 1.16 120 2.25 147
0.5 52 1.24 126 3.2 160
0.74 78 1.25 136 5 174
0.85 90 1.35 143 6.5 178
0.95 98 14 149 8 182
1 104
1.16 115
1.35 123
1.55 130
1.7 135
1.87 140
2.02 143
2.2 146
2.5 151
2.64 153
2.89 157
3.1 160
33 162
3.65 165
4.02 168
4.38 170
4.87 173
55 176
6 178
7 180
8.5 183
10 186
1 187.5
12 189
13 189.5
14 190

Figure 3.3: Inputs - Capacity worksheet for Example 1.
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[[Design Spectrum 5% | _Design Spectrum 10% | _Design Spectrum 20%_] Design Spectrum 30% | Design Spectrum 40% |

eI _acoal G | accel | disp | accel | disp | accel | dep ] accel |
0.06 233
028 272
067 294
1.24 306
1.99 314
2.91 319
3.93 317
496 306
591 288
676 267
7.33 239
7.88 216
8.39 196
8.94 180
9.46 166
9.92 153
1025 140
1059 129
11.06 121
11.45 113
11.73 105
1214 %
12.60 %4
12.99 89
1330 84
1370 80
14.03 76
14.50 73
14.91 70
1527 67
15.82 65
16.08 62
16.55 60
16.98 58
17.38 56
17.73 54
18.03 52
19.02 52
20.03 52
21.07 52
2214 52
23.23 52
2435 52
25.50 52
26.67 52

Figure 3.4: Inputs - Demand worksheet for Example 1.
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Figure 3.5: Solution worksheet for Example 1.
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3.2 Example 2

In this example, the capacity spectrum and bilinear approximations are exactly the
same as Example 1. The seismic demand is the NEHRP design spectrum. Run
the macro calc_Teff by clicking on the button at the top of the Inputs - Capacity
worksheet. On the pop-up window entitled, Input: Seismic Demand, select the
third option which reads NEHRP Deisgn Spectrum (as set forth in FEMA 356).
The site classification is C' and the values of S; and S; are 1.5 and 0.6, respec-
tively. These parameters are discussed in FEMA 356, Sections 1.6.1.3 and 1.6.1.4.
Additionally, the units are designated as inches. Run the macro calc_Disp. The
worksheet Solution for this example is shown in Figure 3.6.

Performance Point Solution

700.0

=——Locus of Performance Points
e Design Spectrum

600.0 Capacity Spectrum

500.0 !

400.0

300.0 \
200.0 \<

\ \\

Pseudo-Spectral Acceleration

100.0

0.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Spectral Displacement

Figure 3.6: Solution worksheet for Example 2.
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3.3 Example 3

This example will use a family of ADRS for the seismic demand. A picture of the
family of ADRS and the capacity spectrum is shown in Figure 3.7. The capacity
spectrum data and the bilinear approximations are given in Figure 3.8. On the
pop-up window entitled, Input: Seismic Demand, select the second option which
reads 5%, 10%, 20%, 30% and 40% damped spectra input by the user. The family
of ADRS is obtained from a ground-motion specialist for the building site. Some of
the spectra coordinates are displayed in Figure 3.9. The hysteretic model type is
bilinear (BLH) and the nominal damping is set at 5%.

Family of ADRS

1400

1200 -

N o ® o

o o o o

=] o (=] =]
L . L i

Pseudo-Spectral Acceleration

N

o

=]
L

o

0 10 20 30 40 50 60

Spectral Displacement

Figure 3.7: Family of ADRS and capacity spectrum for Example 3.
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1. Click here for macro: calc_Teff 2. Click here for macro: calc_Disp

| Model Nominal | Capacity Spectrum | Bilinear approximations to Cap Spec |
Type |Damping (%)]  disp | accel | dy | ay | d | a |
BLH 5 0 0 3.6 288 4 291
1.5 130 3.6 288 6 296
22 190 3.6 288 8 305
3.1 265 3.6 288 10 312
3.35 280 3.6 288 12 318
3.6 288 3.6 288 14 325
43 293 3.6 288 16 330

5 295

8 305

1" 315

16 330

20 344

23 355

25 360

30 380

36 400

Figure 3.8: Inputs - Capacity worksheet for Example 3.

[_Design Spectrum 5% | Design Spectrum 10% | Design Spectrum 20% | Design Spectrum 30% | Design Spectrum 40% ]
disp accel disp coel disp coel disp | accel disp | accel

a a & a
01812 715.348927 0.15384 607.3359764 0.14004  552.8557601 01314 518.7464073 01314 518.7464073
03186 873.4599895 027012 7405493169 022104 6059937102 0.19872  544.8021629 0.19872  544.8021629
04812 969.2354363 0387 7794973272 031896  642.4508204 02814 566.7972813 02814 566.7972813
06636 1023.354606 054732 844.0362314 043848 676.1912715 0.37656  580.7028489 0.37656  580.7028489
100236 1221345268 076416 931.10579 057456 700.0839389 048036 585.3040951 048036 585.3040951
114408 1129.1617 092628 914.2017165 070956  700.3076499 059652 588.7416417 059652 588.7416417
147324 1201677354 11586 9450350131 0.86892  708.7517898 072288 589.6313743 072288 589.6313743
187512 1285186986 142212 974.7056813 1.0308 7064991817 084948 582.224413 084948 582.224413

21324 1245322155 150792 933.1856961 118776 693.6521493 0.97824 5712924148 097824 5712924148
236784 1192.32878 182664 919.8068461 1341 6752622195 11148 5613589279 11148 5613589279
274956 1206.091977 211968  920.7956914 152316 668.1327395 1.2588 5521714676 1.2588 5521714676
3.00048  1160.249104 2.40084 920.0690418 173052 667.1698363 14148 5454498557 14148 5454498557
351252 1199.5565 269928 9218278812 19326 6599999123 157932 539.3516824 157932 539.3516824
3.91248  1191.809563 2.98872 9104161749 2.13552 6505165923 174576 531.7889068 174576 531.7889068
429096 1173132346 330336 903.1262159 234852 642.0765465 191028  522.2633766 191028  522.2633766

47148 1163.330271 357204 8813655426 255684  630.8749829 207612 5122620772 207612 5122620772
481152 1076.820838 376188 8419108255 275004  617.4746786 22368 500.5970776 22368 500.5970776
5.25804 1072.206089 402372 820.506707 295392 602.355823 2.38584  486.5144001 2.38584  486.5144001
567528 1058.842504 427716 797.9938972 3.12708 5834223541 25248 471.0543893 25248 471.0543893
573192 982.149008 4.46688 7653878213 3.28824 5634310412 265428 454.8037078 265428 454.8037078
585648 924.8182525 46656 736.7620207 343008 5416565226 27744 438.1156872 27744 438.1156872
6.35064  928.507854 4.93296 7202124812 3.60492 5263185547 29022 423.7213889 29022 423.7213889

6.8418  926.2806501 51624  698.914208 378672 5126670559 3.03264 4105755431 3.03264  410.5755431
6.94176 8738820725 53472 673.1473043 3.9564 4980625364 3.17508 399.7038717 3.17508  399.7038717

7.0224  824.1178353 5553 6516755439 41148 482.8947466 332232 380.8927954 3.32232 380.8927954

74586 817.9270154 5.85864 6424717681 432588 474.3858254 346212 379.6639421 346212 379.6639421
7.97628 819.1751113 6.24048  640.9060237 453984 466.2479172 362316 3721035992 362316 3721035992
832668 802.5491951 6.58548  634.7273671 473376 456.253306 3.78816 3651136778 3.78816 3651136778
876588  794.4514952 6.90408  625.7166056 4.93968 447.6830805 3.96324 359.1883466 3.96324 359.1883466

92172  786.9387343 7.18584 6135069039 5.13912 438.7636797 4.13904 3533796488 4.13904 3533796488
975768 786.1587059 7.488 6032946756 53466 430.7659338 430632 346.9524475 430632 346.9524475

10.10244  769.3448016 77358 589.114859 556668 4239269246 448032 3411958796 448032 3411958796

1034064  745.4932509 7.96152 573.9740893 5.76468 4155961366 464376 334.7850558 464376 334.7850558
10674 7205578766 816828 558.2942676 593724 4058047786 479772 327.9196567 479772 327.9196567

1084128 703.478927 8.442 5477922443 6.08736 3950022028 4.94268  320.7251564 4.94268  320.7251564

10.95876  675.991412 86736 5350312546 6.25032 385.5511611 5.07876 3132834503 5.07876 3132834503

11.05296  648.9490938 884088 519.0719105 6432 377.6400685 520848 3058039092 520848 3058039092

11.22048  628.2909594 8.9622 501.4363297 6.60132  369.3447671 533052 298.2433314 533052 298.2433314

11.39004  607.9783067 9.05064  483.1056591 675276 3604492689 545448 2911495934 545448 2911495934

1143696 5830489192 9.12252  465.0602456 6.89268 3513844259 558804 284.8747117 558804 284.8747117

1140744 555.9847903 9.16308  446.5974059 7.02072 342.1813778 571548 278.5655633 571548 278.5655633

1143708 5334567822 9.18984  428.6393446 7.14456 3332418753 583836 2723171245 583836 2723171245

1156872 516.8795375 9.25884  413.6762699 7.2624  324.4772069 5.96244  266.3962158 5.96244  266.3962158

11,6706 499.9314458 945312 404.9416439 7.40376  317.1535689 6.09396  261.045896 6.09396  261.045896

11.90976  489.5652633 969252 398.422899 7.56552 3109899604 6.22692 2559651688 6.22692 2559651688

Figure 3.9: Inputs - Demand worksheet for Example 3.
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Performance Point Solution
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Figure 3.10: Solution worksheet for Example 3.

3.4 Example 4

This example uses a capacity spectrum with a negative post-yield stiffness. The
capacity spectrum and the bilinear approximations are shown in Figure 3.11. The
coordinates of both the capacity spectrum and the bilinear approximations are
displayed in Figure 3.12. The hysteretic model type is set as strength/stiffness
degrading (STDG). The nominal damping value is set at 5%. The seismic demand
is the NEHRP design spectrum for site class C with values S5 and S as 1.5 and 0.6,
respectively. The units are specified as inches. The solution is shown in Figure 3.13.
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Figure 3.11: Bilinear approximations to the capacity spectrum for Example 4. The
bilinear approximations determine the values of d,, a,, d. and a,.
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1. Click here for macro: calc_Teff 2. Click here for macro: calc_Disp

Model Nominal | Capacity Spectrum | Bilinear approximations to Cap Spec |
| Type |Damping (%)] disp | accel | dy | ay | Cl S |
STDG 5 0 0 1.8144 118.8 2.4624 129.6
Site Class 0.9504 62.64 1.944 124416 3.456 136.08
(o} 1.296 86.4 2.0304 131.76 4752 134.352
Ss 1.7712 114.48 2.1168 136.08 5.7456 129.24
1.5 1.944 120.96 2.16 138.24 7.344 122.4
S1 2.1168 124.416 216 139.68 9.072 117.36
0.6 2.2464 126.576 2.16 138.96 10.368 113.04

units 2.5056 129.6

in 2.7216 131.76

2.9376 133.92

3.24 135.216

3.5856 136.08

3.888 136.08

4.32 134.784

4.752 133.92

5.184 131.76

5616 129.6

6.048 128.16

6.48 126.72

6.912 124.56

7.344 122.4

8.208 118.8

8.64 115.2

9.072 114.48

9.504 113.76

10.368 110.88

Figure 3.12: Inputs - Capacity worksheet for Example 4.
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Figure 3.13: Solution worksheet for Example 4.
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