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ABSTRACT 

In many engineering applications, it is a formidable task to construct a mathematical model 

that is expected to produce accurate predictions of the behavior of a system of interest.  

During the construction of such predictive models, errors due to imperfect modeling and 

uncertainties due to incomplete information about the system and its input always exist and 

can be accounted for appropriately by using probability logic. Often one has to decide 

which proposed candidate models are acceptable for prediction of the target system 

behavior. In recent years, the problem of developing an effective model validation 

methodology has attracted attention in many different fields of engineering and applied 

science. Here, we consider the problem where a series of experiments are conducted that 

involve collecting data from successively more complex subsystems and these data are to 

be used to predict the response of a related more complex system. A novel methodology 

based on Bayesian updating of hierarchical stochastic system model classes using such 

experimental data is proposed for uncertainty quantification and propagation, model 

validation, and robust prediction of the response of the target system. After each test stage, 

we use all the available data to calculate the posterior probability of each stochastic system 

model along with the quality of its robust prediction. The proposed methodology is applied 

to the 2006 Sandia static-frame validation challenge problem to illustrate our approach for 

model validation and robust prediction of the system response. Recently-developed 

stochastic simulation methods are used to solve the computational problems involved. 
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1 INTRODUCTION 

In recent years, the problem of model validation for a system has attracted the attention of many 

researchers (e.g. Babuška and Oden, 2004; Oberkampf et al. 2004; Babuška et al. 2006) because 

of the desire to provide a measure of confidence in the predictions of a system model. In 

particular, in May 2006, the Sandia Model Validation Challenge Workshop brought together a 

group of researchers to present various approaches to model validation (Hills et al. 2008). The 

participants could choose to work on any of three problems; one in heat transfer (Dowding et al. 

2008), one in structural dynamics (Red-Horse and Paez 2008) and one in structural statics 

(Babuška et al. 2008). The difficult issue of how to validate a model is, however, still not settled; 

indeed, it is clear that a model that has given good predictions in tests so far might perform 

poorly under different circumstances, such as an excitation with different characteristics. 

Our philosophy when predicting the behavior of a system of interest is that one should 

develop candidate sets of probabilistic predictive input-output models to give robust predictions 

that explicitly address errors due to imperfect models and uncertainties due to incomplete 

information. For model validation, it is then desirable to check based on system test data 

whether any of the proposed candidate model sets are highly probable and whether they provide 

high quality predictions of the system behavior of interest. 

Sometimes the full system cannot be readily tested because it is too expensive or too large, 

or due to other limitations, but some of its subsystems may be tested. Here we introduce the 

concept of hierarchical stochastic system model classes and then propose a Bayesian 

methodology using them to treat modeling and input uncertainties in model validation, 

uncertainty propagation and robust predictions of the response of the full system. The Sandia 
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static-frame validation problem is used to illustrate the proposed methodology. The results of 

other researchers’ studies of this problem are presented in a special issue of the journal 

Computer Methods in Applied Mechanics and Engineering (Chleboun 2008; Babuška et al. 

2008; Grigoriu and Field 2008; Pradlwarter and Schuëller 2008; Rebba and Cafeo 2008). 
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2 STOCHASTIC SYSTEM MODEL CLASSES AND THEIR 

POSTERIOR PROBABILITIES 

There always exist modeling errors and other uncertainties associated with the process of 

constructing a mathematical model of a system. A fully probabilistic Bayesian model updating 

approach provides a robust and rigorous framework for these applications due to its ability to 

characterize modeling uncertainties associated with the system and to its exclusive foundation 

on the probability axioms. In our applications of the Bayesian approach, we use the Cox-Jaynes 

interpretation of probability (Cox 1961; Jaynes 2003) as an extension of binary Boolean logic to 

a multi-valued logic of plausible inference where the relative plausibility of each model within a 

class of models is quantified by its probability. 

A key concept in our approach is a stochastic system model class M which consists of a set 

of probabilistic predictive input-output models for a system together with a probability 

distribution, the prior, over this set that quantifies the initial relative plausibility of each 

predictive model. For simpler presentation, we will usually abbreviate the term “stochastic 

system model class” to “model class”. Based on M, one can use data D to compute the updated 

relative plausibility of each predictive model in the set defined by M. This is quantified by the 

posterior PDF p(θ|D,M) for the uncertain model parameters θ D   which specify a 

particular model within M. By Bayes' theorem, this posterior PDF is given by: 

 1( | , ) ( | , ) ( | )D M D M Mθ θ θp c p p  (2.1) 
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where c = p(D|M) = ∫p(D|θ,M)p(θ|M)dθ  is the normalizing constant which makes the 

probability volume under the posterior PDF equal to unity; p(D|θ,M) is the likelihood function 

which expresses the probability of getting data D based on the predictive PDF for the response 

given by model θ within M; and p(θ|M) is the prior PDF for M which one can freely choose to 

quantify the initial plausibility of each model defined by the value of the parameters θ. For 

example, through the use of prior information that is not readily built into the predictive PDF 

that produces the likelihood function, the prior can be chosen to provide regularization of ill-

conditioned inverse problems (Bishop 2006). As emphasized by Jaynes (2003), probability 

models represent a quantification of the state of knowledge about real phenomena conditional 

on the available information and should not be imagined to be a property inherent in these 

phenomena, as often believed by those who ascribe to the common interpretation that 

probability is the relative frequency of “inherently random” events in the “long run”. 

Based on the topology of p(D|θ,M) in the parameter space, and, in particular, the set {θ : 

θ=arg max p(D|θ,M)} of MLEs (maximum likelihood estimates), a model class M can be 

classified into 3 different categories (Beck & Katafygiotis 1991, 1998; Katafygiotis & Beck 

1998): globally identifiable (unique MLE), locally identifiable (discrete set of MLEs) and 

unidentifiable (a continuum of MLEs) based on the available data D. Full Bayesian updating 

can treat all these cases (Yuen et al. 2004). 

Model class comparison is a rigorous Bayesian updating procedure that judges the 

plausibility of different candidate model classes, based on their posterior probability (that is, 

their probability conditional on the data from the system). Its application to system 

identification of dynamic systems that are globally identifiable or unidentifiable was studied in 
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Beck & Yuen (2004) and Muto & Beck (2008), respectively. In these publications, a model 

class is referred to as a Bayesian model class. 

Given a set of candidate model classes M={Mj: j=1,2,…NM}, we calculate the posterior 

probability ( , )jP MM |D  of each model class based on system data D by using Bayes’ 

Theorem: 

 
( ) ( | )

( , )
( | )

j j
j

p P M
P M

p M


D|M M
M |D

D
      (2.2) 

where P(Mj |M) is the prior probability of each Mj and can be taken to be 1/NM if one considers 

all NM model classes as being equally plausible a priori; p(D|Mj) expresses the probability of 

getting the data D based on Mj and is called the evidence (or sometimes marginal likelihood) for 

Mj provided by the data D and it is given by the Theorem of Total Probability: 

 ( ) ( ) ( | )j j jp p p d  θ θ θD|M D| ,M M  (2.3) 

Although θ  corresponds to different sets of parameters and can be of different dimension for 

different Mj, for simpler presentation a subscript j on θ is not used since explicit conditioning on 

Mj indicates which parameter vector θ is involved. 

Notice that (2.3) can be interpreted as follows: the evidence gives the probability of the 

data according to Mj (if (2.3) is multiplied by an elemental volume in the data space) and it is 

equal to a weighted average of the probability of the data according to each model specified by 

Mj, where the weights are given by the probability p(θ|Mj)dθ of the parameter values 

corresponding to each model. The evidence therefore corresponds to a type of integrated global 



 

 6

sensitivity analysis where the prediction p(D|θ,Mj) of each model specified by θ  is 

considered but it is weighted by the relative plausibility of the corresponding model. 

The computation of the multi-dimensional integral in (2.3) is nontrivial. Laplace’s method 

of asymptotic approximation (e.g. Beck & Katafygiotis 1991, 1998) has been proposed for its 

evaluation (e.g. Mackay 1992; Beck & Yuen 2004), which, in effect, utilizes a weighted sum of 

Gaussian PDFs centered on each MLE as an approximation to the posterior PDF. However, the 

accuracy of such an approximation is questionable when (i) the amount of data is small, or (ii) 

the chosen class of models turns out to be unidentifiable based on the available data. Under 

these circumstances, only stochastic simulation methods are practical and the Hybrid Gibbs 

TMCMC method presented in Appendix B is used later in the illustrative example. 

It is worth noting that from (2.3), the log evidence can be expressed as the difference of two 

terms (Ching et al. 2005; Muto & Beck 2008):  

 
( | , )

ln[ ( | )] [ln( ( | , )] [ln ]
( | )

j
j j

j

p
p E p E

p
 

θ
θ

θ

D M
D M D M

M
 (2.4) 

where the expectation is with respect to the posterior p(θ|D,Mj). The first term is the posterior 

mean of the log likelihood function, which gives a measure of the goodness of the fit of the 

model class Mj
  to the data, and the second term is the Kullback-Leibler divergence, or relative 

entropy (Cover & Thomas 2006), which is a measure of the information gain about Mj
 from the 

data D and is always non-negative. The importance of (2.4) is that it shows that the log evidence 

for Mj, which controls the posterior probability of this model class according to (2.2), explicitly 
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builds in a trade-off between the data-fit of the model class and its “complexity” (how much 

information it takes from the data). 
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3 ROBUST PREDICTIVE ANALYSIS USING STOCHASTIC 

SYSTEM MODEL CLASSES 

One of the most useful applications of Bayesian model updating is to make robust 

predictions about future events based on past observations. Let D denote data from available 

measurements on a system. Based on a candidate model class Mj, all the probabilistic 

information for the prediction of a vector of future responses X is contained in the posterior 

robust predictive PDF for Mj given by the Theorem of Total Probability (Papadimitriou et al. 

2001): 

 ( | ) ( | , , ) ( | )j j jp p p d X X θ θ θD,M D M D,M  (3.1) 

The interpretation of (3.1) is similar to that given for (2.3) except now the prediction p(X|θ,D,Mj) 

of each model specified by θ  is weighted by its posterior probability p(θ|D,Mj)dθ because 

of the conditioning on the data D. If this conditioning on D in (3.1) is dropped so, for example, 

the prior p(θ|Mj) is used in place of the posterior p(θ|D, Mj), the result p(X|Mj) of the integration 

is the prior robust predictive PDF. 

Many system performance measures can be expressed as the expectation of some function 

g(X) with respect to the posterior robust predictive PDF in (3.1) as follows: 

 [ ( ) | ] ( ) ( | , )j jE p d g X g X X XD,M D M  (3.2) 

Some examples of important special cases are:  
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1) g(X)=IF(X), which is equal to 1 if XF and 0 otherwise, where F is a region in the response 

space that corresponds to unsatisfactory system performance, then the integral in (3.2) is equal 

to the robust “failure” probability P(F|D, Mj);  

2) g(X)=X, then the integral in (3.2) becomes the robust mean response;  

3) g(X)=(X-E[X|D, Mj])(X-E[X|D, Mj])T, then the integral in (3.2) is equal to the robust 

covariance matrix of X. 

The Bayesian approach to robust predictive analysis requires the evaluation of multi-

dimensional integrals, such as in (3.1), and this usually cannot be done analytically. Laplace’s 

method of asymptotic approximation has been used in the past (e.g. Beck and Katafygiotis 1998; 

Papadimitriou et al. 2001), which utilizes a Gaussian sum approximation to the posterior PDF, 

as mentioned before for (2.3). Such an approximation requires a non-convex optimization in 

what is usually a high-dimensional parameter space, which is computationally challenging, 

especially when the model class is not globally identifiable and so there may be multiple global 

maximizing points (Katafygiotis & Lam 2002). Thus, in recent years, focus has shifted from 

asymptotic approximations to using stochastic simulation methods in which samples are 

generated from the posterior PDF p(θ|D,Mj). There are several difficulties related to this 

sampling: (i) the normalizing constant c in Bayes’ Theorem in (2.1), which is actually the 

evidence in (2.3), is usually unknown a priori and its evaluation requires a high-dimensional 

integration over the uncertain parameter space; and (ii) the high probability content of p(θ|D,Mj) 

occupies a much smaller volume than that of the prior PDF, so samples in the high probability 

region of p(θ|D,Mj) cannot be generated efficiently by sampling from the prior PDF using direct 

Monte Carlo simulation.  
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To tackle the aforementioned difficulties, stochastic simulation methods, such as multi-

level Metropolis-Hastings (e.g. Beck & Au 2002; Ching & Cheng 2007), Gibbs sampling (e.g. 

Ching et al. 2006), and Hybrid Monte Carlo simulation (e.g. Cheung & Beck 2007, 2008a) have 

been used recently to perform Bayesian model updating for dynamic systems. For the 

illustrative example later, we use a variant that we call Hybrid Gibbs TMCMC method (see 

Appendix B). In these methods, all the probabilistic information encapsulated in p(θ|D, Mj) is 

characterized by posterior samples ( )kθ , k=1,2,...,K, and the integral in (3.1) can be 

approximated by:  

 ( )

1

1
( | ) ( | , , )

K
k

j j
k

p p
K 

 X X θD,M D M  (3.3) 

Samples of X can then be generated from each of the ( )( | , , )k
jp X θ D M  with equal probability. 

The probabilistic information encapsulated in ( | )jp X D,M is characterized by these samples of 

X. 

If a set of candidate model classes M={Mj: j=1,2,…NM} is being considered for a system, 

all the probabilistic information for the prediction of future responses X is contained in the 

hyper-robust predictive PDF for M given by the Theorem of Total Probability: 

 
1

( | ) ( | , ) ( | , )
MN

j j
j

p M p P M


X XD, D M M D        (3.4) 
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where the robust predictive PDF for each model class Mj is weighted by its posterior probability 

P(Mj|D, M) from (2.2). Equation (3.4) is also called posterior model averaging in the Bayesian 

statistics literature (Raftery et al. 1997, Hoeting et al. 1999). 
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4 HIERARCHICAL STOCHASTIC SYSTEM MODEL 

CLASSES AND MODEL VALIDATION 

In this section, a novel model validation methodology based on a new concept of hierarchical 

stochastic system model classes is proposed (building on the theoretical foundations presented 

in the previous sections) so that a rational decision can be made regarding which proposed 

model classes should be used for predicting the response of a target system. The proposed 

methodology is based on using full Bayesian updating to investigate multiple important aspects 

of the performance of the candidate model classes, including their quality of prediction, their 

posterior probabilities and their contribution to response predictions of the final system. We do 

not make a binary reject/accept step but instead provide the decision maker with information 

about these important aspects, which can be combined with other considerations when making a 

decision related to the target system; for example, should the current target system design be 

accepted or modified? 

Suppose during construction of the system, a series of I experiments are conducted where 

data Di, i=1,…, I, are collected from each of I similarly complex, or successively more complex, 

subsystems and these data are to be used to predict the response of the more complex target 

system. The i-th level subsystem is either a standalone subsystem (especially in lower levels) or 

one comprised of a combination of some (or all) tested subsystems from the previous levels, 

together, possibly, with new untested subsystems. 
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4.1 Analysis and full Bayesian updating of i-th subsystem 

The presentation in this subsection is very general and the reader may find it helpful to 

look at the example illustrating the hierarchical concepts in the last subsection of this section. 

We assume that a set Mi ={Mj
(i): j=1,2,…Ni} of model classes is proposed for the i-th subsystem 

which are either newly defined or built-up by extending the model classes for some (or all) 

tested subsystems in the previous levels. In the latter case, a model class for the i-th subsystem 

is built-up by extending at most one model class for each relevant lower-level subsystem since 

candidate model classes for each such subsystem are supposed to be competing. Denote 

uncertain model parameters for the model class Mj
(i) by θ(i, j)=[φ(i, j), ξ(i, j)] where φ(i, j), if any, are 

the new uncertain model parameters and ξ(i, j) , if any, are the uncertain model parameters 

corresponding to a model class for some subsystems in the previous levels, that is, these 

parameters of Mj
(i) are also in model classes of subsystems of the ith subsystem. In the proposed 

hierarchical approach, the model class Mj
(i) is based on the “prior” (prior to the ith subsystem test 

but posterior to all previous tests):  

 ( , ) ( ) ( , ) ( ) ( , )
1 1 1 1( | ,..., , ) ( | ) ( | ,..., )i j i i j i i j

i j j ip p p θ φ ξD D M M D D  (4.1) 

where p(φ(i, j)|Mj
(i)) quantifies the prior uncertainties in the new parameters φ(i, j) in model class 

Mj
(i) and p(ξ(i, j)|D1,…, Di-1) is the most updated PDF of ξ(i, j) given data collected from all 

subsystems in the previous levels. For simplicity, the conditioning of p(ξ(i, j)|D1,…, Di-1) on the 

model classes previously considered which contain components of ξ(i, j) are left implicit. For i=1, 

p(θ(i, j)|D1,…, Di-1,Mj
(i)) = p(θ(1, j)|Mj

(1)).  
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At the end of the experiments on the i-th subsystem where data Di are collected, the 

following procedure is used to check the prediction quality of each candidate model class being 

considered for the i-th subsystem. For each model class Mj
(i) in Mi and for each measured 

quantity in Di, the consistency of the predicted response is first investigated by calculating the 

difference of the measured quantity in Di and the mean of the corresponding prior robust 

predicted response. The robust predicted response given by Mj
(i) is consistent if this difference is 

no more than a certain number of standard deviations (e.g., no more than 2 to 3 standard 

deviations). An alternative way of investigating the consistency is to check whether each 

measured quantity in Di is within q percentile and (100-q) percentile of the robust predicted 

response (e.g., q can be 1). The mean and standard deviation of the prior robust predicted 

response can be calculated using (3.2) and (3.3) but with samples drawn from the prior in (4.1). 

Next, the accuracy of the prediction is investigated by calculating the probability that the 

prior robust predicted response using Mj
(i) (again based on p(θ(i, j)|D1,…, Di-1,Mj

(i)) in (4.1)) is 

within a certain b% (e.g. 10%) of the measured quantity using (3.2) and (3.3). This probability 

is related to the prediction error of each model class for the i-th level subsystem and reflects the 

predictability of these models before being updated using data Di. Note that a model class may 

give consistent predictions but not accurate ones because, for example, it has a relatively large 

standard deviation. 

Next, for each model class Mj
(i) in Mi, the uncertainties in the model parameters θ(i, j) are 

updated using all the available data, as quantified by p(θ(i, j)|D1,…, Di, Mj
(i)) through Bayes’ 

Theorem: 
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 ( , ) ( ) 1 ( , ) ( ) ( , ) ( )
1 , 1 1( | ,..., , ) ( | , ) ( | ,..., , )i j i i j i i j i

i j i j i j i jp c p p
θ θ θD D M D M D D M  (4.2) 

where the data D1,…, Di-1 are modeled as irrelevant to the probability of getting Di when θ(i,,j) is 

given since this parameter vector defines the predictive probability model for the model class 

Mj
(i). Recall that ξ(i, j) are the uncertain model parameters corresponding to some model classes 

of subsystems already considered in the previous levels. A subtle point to be noted is that 

sometimes uncertainties for some other model parameters Φ(i, j)  corresponding to the model 

classes containing components of ξ(i, j) will also be updated when updating uncertainties in ξ(i, j) 

using D1,…, Di-1. Since Φ(i, j) and ξ(i, j) are not stochastically independent given D1,…, Di, the 

uncertainties in both θ(i, j) and Φ(i, j) need to be updated together from Bayes’ Theorem: 

( , ) ( , ) ( ) 1 ( , ) ( ) ( , ) ( , ) ( , ) ( )
1 , 1 1( , | ,..., , ) ( | , ) ( , | ,..., ) ( | )i j i j i i j i i j i j i j i

i j i j i j i jp c p p p
 θ θ ξ Φ φD D M D M D D M

 (4.3) 

where θ(i, j)=[φ(i, j), ξ(i, j)] and the data D1,…, Di-1 are modeled as irrelevant to the probability of 

getting Di given θ(i,,j), as before. Finally, p(θ(i, j)|D1,…, Di, Mj
(i)) can be obtained as the marginal 

PDF of p(θ(i, j), Φ(i, j)|D1,…, Di, Mj
(i)). 

    The posterior probability P(Mj
(i)|D1,…, Di, Mi) of each model class in Mi can be calculated as 

follows to evaluate the relative plausibility of each model class. If a model class Mj
(i) is built-up 

by extending or using model classes which have been updated using data from subsystems in 

the previous levels k1, k2,…, km where k1< k2<…< km and 1≤m<i, P(Mj
(i)|D1,…, Di, Mi) is equal 

to P(Mj
(i)|

1
,...,k km

D D , Di, Mi). The most up-to-date evidence p(
1
,...,k km

D D , Di|Mj
(i)) for Mj

(i) that 

is provided by the data 
1
,...,k km

D D , Di, and which is required for calculating P(Mj
(i)|

1
,...,k km

D D , 

Di, Mi), is given by: 
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 ( ) ( ) ( )

1 1 1
( ,..., , | ) ( ,..., | ) ( | ,..., , )i i i

k k i j k k j i k k jm m m
p p pD D D M D D M D D D M  (4.4) 

In this equation, p(Di| 1
,...,k km

D D ,Mj
(i)) is given by: 

 ( ) ( , ) ( ) ( , ) ( ) ( , )
1 11

( | ,..., , ) ( | , ) ( | ,..., , )i i j i i j i i j
i k k j i j i jm

p p p d  θ θ θD D D M D M D D M  (4.5) 

which can be determined using a stochastic simulation method, such as the Hybrid Gibbs 

TMCMC method presented in Appendix B. The other factor in (4.4), ( )

1
( ,..., | )i

k k jm
p D D M , is 

given by a product of the evidences which have already been determined at the end of previous 

experiments. This point will be more clear in the example illustrating the hierarchical concepts 

in the last subsection of this section. Based on (4.4), P(Mj
(i)|D1,…, Di, Mi) = P(Mj

(i)|
1
,...,k km

D D , 

Di, Mi) can be calculated using (2.2) with Mj replaced by Mj
(i), M replaced by Mi and D by 

1
,...,k km

D D , Di. 

In the special case that Mj
(i) is newly defined, i.e., not built-up by extending any model 

classes for subsystems in the previous levels, the posterior probability P(Mj
(i)|D1,…, Di, Mi) is 

given by P(Mj
(i)|Di, Mi), which can be calculated using (2.2) with Mj replaced by Mj

(i), M 

replaced by Mi and D by Di where the evidence p(Di|Mj
(i)) for Mj

(i) is given by: 

 ( ) ( , ) ( ) ( , ) ( ) ( , )( | ) ( | , ) ( | )i i j i i j i i j
i j i j jp p p d  θ θ θD M D M M  (4.6) 

which can be determined using a stochastic simulation method. 

Based on all the data, D1,…, Di, so far, the posterior robust prediction of the response 

vector X for the target system can be calculated using (3.3) and (3.4). If a model class Mj
(i) is 
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very improbable compared to the others in Mi, so that its contribution to the hyper-robust 

response prediction of the target system is negligible in (3.4), it can be neglected when building 

the candidate model classes for higher level subsystems in order to save computations. Note that 

(3.4) allows calculation of the most robust predictions for the i-th subsystem based on all the 

available information and viable model classes.  

For each model class Mj
(i) in Mi and for each measured quantity in Di, the consistency of the 

predicted response is again investigated by examining the difference of the measured quantity in 

Di and the mean of the corresponding posterior robust predicted response (again judged in terms 

of the number of standard deviations of the posterior robust predicted response). The robust 

predicted response is based on the “posterior” p(θ(i, j)|D1,…, Di, Mj
(i)) given by (4.2) or (4.3) and 

its mean and standard deviation are calculated using (3.2) and (3.3). One can also check whether 

each measured quantity in Di is within q percentile and (100-q) percentile of the posterior robust 

predicted response. Next, the accuracy of the prediction is investigated by calculating the 

probability that the robust predicted response (again based on p(θ(i, j)|D1,…, Di, Mj
(i))) is within a 

certain b% (e.g. 10%) of the measured quantity using (3.2) and (3.3). 

4.2 Example to illustrate hierarchical model classes 

The following example is presented to illustrate the above theory on how to propagate 

uncertainties in parameters and calculate the posterior probability for a hierarchical stochastic 

system model class. Figure 4.1 shows the hierarchical structure of some of the model classes for 

the illustrative example. The ellipses show the subsystems for different levels; a black dot inside 
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an ellipse shows a candidate model class corresponding to that subsystem; the lower end of an 

arrow points to a model class which is used to build another model class pointed to by the top 

end of the same arrow. Shown next to an arrow is the set of data used to update the lower level 

model classes, along with the posterior PDF for the previous model class and the evidence 

required for calculating the posterior probability of this model class. 

 

Figure 4.1: Schematic plot for an illustrative example of hierarchical model classes 

Recall that M1
(1)  in M1 is the first candidate model class with uncertain parameters θ(1, 1) for 

the first level subsystem from which data D1 is collected. The posterior PDF p(θ(1, 1)|D1, M1
(1)) 

for M1
(1) is given by (4.2) with the chosen prior PDF p(θ(1, 1)| M1

(1)). The evidence p(D1|M1
(1)), 

which is required for calculating the posterior probability P(M1
(1)|D1, M1) for M1

(1), is given by 

(4.6) with i=1 and j=1. 
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Suppose that D2 is collected from a second level subsystem that is independent of the first 

level subsystem and M1
(2)  in M2 is a newly defined candidate model class with new uncertain 

parameters θ(2, 1). The posterior PDF p(θ(2, 1)|D1, D2, M1
(2))=p(θ(2, 1)|D2, M1

(2)) for M1
(2) is given 

by (4.2) with the chosen prior PDF p(θ(2, 1)| M1
(2)). The evidence p(D2|M1

(2)), which is required 

for calculating the posterior probability P(M1
(2)| D1,D2, M2) = P(M1

(2)|D2, M2) for M1
(2), is given 

by (4.6) with i=2 and j=1.  

Suppose that the third level subsystem contains the first level subsystem but not the second 

level subsystem. Assume that the first candidate model class M1
(3)  in M3, with uncertain 

parameters θ(3, 1) for the third level subsystem from which D3 is collected, is built-up by 

extending the model class M1
(1) (i.e., existing parameters ξ(3, 1) = θ(1, 1)) and  φ(3, 1) are the new 

uncertain model parameters, so θ(3, 1) = [θ(1, 1), φ(3, 1)]. The posterior PDF p(θ(3, 1)|D1, D2, D3, M1
(3)) 

for M1
(3) is given by (4.2) with the prior PDF p(θ(3, 1)|D1, D2, M1

(3))=p(θ(1, 1)|D1, M1
(1)) p(φφ(3, 

1)|M1
(3)) and so this posterior is independent of D2, as expected. The evidence p(D1,D3|M1

(3)), 

which is required for calculating the posterior probability P(M1
(3)|D1, D2, D3, M3) = P(M1

(3)|D1, 

D3, M3) for M1
(3), is equal to p(D1|M1

(3)) p(D3|D1,M1
(3)) by (4.4) where p(D3|D1,M1

(3)) is given by 

(4.5) which becomes here: 

  (3) (3,1) (3) (3,1) (3) (3,1)
3 1 1 3 1 1 2 1( | , ) ( | , ) ( | , , )p p p d  θ θ θD D M D M D D M   ((44..77)) 

and  p(D1|M1
(3)) = p(D1|M1

(1)), since 1) M1
(3) is built-up by extending M1

(1); 2) prior to the 

collection of D3, D1 is used to update M1
(1). Recall that p(D1|M1

(1)) has already been determined.  
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Suppose that the fourth level subsystem is a combination of the first and second level 

subsystems but not the third one. Assume that the first candidate model class M1
(4)  in M4, with 

uncertain parameters θ(4, 1) for the fourth level subsystem from which D4 is collected, is built-up 

by using the model classes M1
(3) and M1

(2) (i.e., ξ(4, 1) = [[θ(1, 1), θ(2, 1)]]) and  there are no new 

uncertain model parameters. Thus  θ(4, 1) ==  ξ(4, 1)  ==  [[θ(1, 1), θ(2, 1)]]  aanndd  Φ(4, 1) =φ((3, 1)  since when 

updating  M1
(3),,  φ((3, 1) and θ(1, 1) are both updated and D1 and D3 are used to update both of them..  

The posterior PDF p(θ(4, 1), Φ(4, 1)|D1, D2, D3, D4, M1
(4)) = p(θ(1, 1), θ(2, 1), φ((3, 1)|D1, D2, D3, D4, 

M1
(4)) for M1

(4) is given by (4.3) with the prior PDF p(θ(4, 1), Φ(4, 1)|D1, D2, D3, M1
(4))= p(θ(1, 1),  φ((3, 

1)|D1, D3, M1
(3)) p(θ(2, 1)|D2,M1

(2)). The evidence p(D1, D2, D3, D4|M1
(4)), which is required for 

calculating the posterior probability P(M1
(4)|D1, D2, D3, D4, M4) for M1

(4), is equal to p(D1, D2, 

D3|M1
(4)) p(D4|D1, D2, D3, M1

(4)) by (4.4) where p(D4|D1, D2, D3, M1
(4)) is given by (4.5) which 

becomes here: 

  (4) (4,1) (4) (4,1) (4) (4,1)
4 1 2 3 1 4 1 1 2 3 1( | , , , ) ( | , ) ( | , , , )p p p d  θ θ θD D D D M D M D D D M   ((44..88)) 

where  p(θ(4, 1)|D1, D2, D3, M1
(4))= p(θ(1, 1)|D1, D3, M1

(3)) p(θ(2, 1)|D2,M1
(2)) and p(θ(1, 1)|D1, D3, M1

(3)) 

is the marginal PDF of the posterior PDF p(θ(3, 1)|D1, D2, D3, M1
(3)) for M1

(3) while  p(D1, D2, 

D3|M1
(4))= p(D1, D3|M1

(3))p(D2|M1
(2)), since 1) M1

(4) is built-up by using M1
(3) and M1

(2); 2) prior 

to the collection of D4, D1 and D3 are used to update M1
(3) and D2 is used to update M1

(2). Recall 

that p(D1, D3|M1
(3)) and p(D2|M1

(2)) have already been determined. 

Suppose that the fifth level subsystem contains third and fourth level subsystems. Assume 

that the first candidate model class M1
(5)  in M5, with uncertain parameters θ(5, 1) for the fifth 
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level subsystem from which D5 is collected, is built-up by using the model class M1
(4) with no 

new uncertain model parameters. Thus, θ(5, 1) ==  ξ(5, 1)  ==  [[θ(1, 1), θ(2, 1),, φ(3, 1)] since when updating  

M1
(4),,  θ(1, 1), θ(2, 1)  and φ(3, 1) are updated and D1, D2, D3 and D4 are used to update them..  The 

posterior PDF p(θ(5, 1) |D1, D2, D3, D4, D5, M1
(5)) = p(θ(1, 1), θ(2, 1), φ((3, 1)|D1, D2, D3, D4, D5, M1

(5)) 

for M1
(5) is given by (4.2) with the prior PDF p(θ(5, 1)|D1, D2, D3, D4, M1

(5))= p(θ(1, 1), θ(2, 1), φ((3, 

1)|D1, D2, D3, D4, M1
(4)). The evidence p(D1, D2, D3, D4, D5|M1

(5)), which is required for 

calculating the posterior model probability P(M1
(5)|D1, D2, D3, D4, D5, M5) for M1

(5), is equal to 

p(D1, D2, D3, D4|M1
(5)) p(D5|D1, D2, D3, D4, M1

(5)) by (4.4) where p(D5|D1, D2, D3, D4, M1
(5)) is 

given by (4.5) which becomes here: 

  (5) (5, 1) (5) (5, 1) (5) (5, 1)
5 1 2 3 4 1 5 1 1 2 3 4 1( | , , , , ) ( | , ) ( | , , , , )p p p d  θ θ θD D D D D M D M D D D D M   ((44..99))  

where  p(θ(5, 1)|D1, D2, D3, D4, M1
(5))= p(θ(1, 1), θ(2, 1), φ((3, 1)|D1, D2, D3, D4, M1

(4)) while p(D1, D2, D3, 

D4|M1
(5))= p(D1, D2, D3, D4|M1

(4)), since 1) M1
(5) is built-up by using M1

(4); 2) prior to the 

collection of D5, D1, D2, D3 and D4 are used to update M1
(4). Recall that p(D1, D2, D3, D4|M1

(4)) 

has already been determined.  
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5 ILLUSTRATIVE EXAMPLE BASED ON A VALIDATION 

CHALLENGE PROBLEM 

For illustration, the static-frame validation challenge problem (Babuška et al. 2008) is 

considered. It is one of the problems presented at the Validation Challenge Workshop at Sandia 

National Laboratory on May 27-29, 2006. The purpose of this particular challenge problem is to 

predict the probability of the event F (regulatory assessment): |wp|≥3mm, where wp is the 

vertical displacement of the midpoint P of beam 4 of the frame structure (our target system) 

shown in Figure 1 of Babuška et al (2008) and Figure 5.1 in this report. The structure is 

subjected to a uniform load q = 6kN/m on beam 4. Information regarding the geometry of the 

frame structure is shown in Table 1 of Babuška et al (2008) and in Tables 5.1 and 5.2 in this 

report. Also, in the definition of the challenge problem, the structure is given to be linear elastic 

with a one-dimensional tension model for each of the rods and a one-dimensional Bernoulli 

beam model for the bending of the beam. The coupling of bending and compression is given to 

be negligible for beam 4. It is given that all the bars are made of the same inhomogeneous 

material but come from independent sources and so can have variable material properties; in 

fact, the only uncertainty considered in this challenge problem is Young’s modulus E (or 

compliance S=1/E) along each of the bars. Given Young’s modulus variation along each of the 

bars, wp can be predicted using the equations in Babuška et al (2008) and in Appendix A in this 

report. 
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Figure 5.1: The frame structure for the prediction case 

Table 5.1 Joint coordinates of the frame structure (prediction case) (from Babuska et al. 

2008) 

Point x(m) y(m) 

A 0 0.2 

B 0.2 0 

C 2.2 0 

D 1.5 1.0 

Table 5.2: Geometry information of the bars, tensile force and bending moment along the 

bars of the frame structure (prediction case) (from Babuska et al. 2008) 

Bar A(cm2) I(cm4) Tensile force (kN) Moment (kNm) 

1 16 Not required 2.214  

2 16 Not required 7.274  

3 16 Not required 7.324  

4 80 5333 -4.200 3(2.2-x)(x-0.2) 

 

The simulated experiments are set up to resemble a typical situation in which data are 

collected from a hierarchy of successively more complex subsystems that become “closer” to 

P P
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the final system and the amount of data reduces in the higher levels of the hierarchy. Data from 

three experiments which involve systems of increasing complexity are presented as part of the 

challenge problem: 

1. The first experiment is referred to as the calibration experiment. It involves Nc bars where 

each bar has a cross section area Ac =4.0cm2 and length Lc= 20 cm, is fixed rigidly at one 

end and is loaded by a tensile axial force Fc=1.2kN at the other end. The available data D1 

from this experiment are the elongation δLc
(i), i=1,2…, Nc, of the bars from the initial length 

and the Young’s modulus Ec
(i)(Lc/2) at the midpoint of the bars. 

2. The second experiment is referred to as the validation experiment. The set-up is similar to 

the first experiment. The only difference is that the bars have longer length Lv= 80cm and 

only the total elongation δLv
(i), i=1,2…, Nv, is measured. Let D2 denote the data in this case. 

3. The third experiment is referred to as the accreditation experiment. It involves a frame 

structure (Figure 4 in Babuška et al (2008) and Figure 5.2 in this report) subject to a point 

load Fa=6kN at the midpoint Q of bar 1. The available data D3 are the vertical displacement 

wa
(i), i=1,…, Na, of the point Q. Information regarding the geometry of the frame is shown in 

Table 3 in Babuška et al (2008) and Tables 5.3 and 5.4 in this report. Notice that the system 

here is not a subsystem of the target system.  
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Table 5.3 Joint coordinates of the frame structure in the third experiment  (from Babuska 

et al. 2008) 

Point x(m) y(m) 

A 0 0.5 

B 0 0 

C 0.5 0 

D 0.5 0.5 

Table 5.4 Geometry information of the bars of the frame structure in the third experiment 

(from Babuska et al. 2008) 

Bar A(cm2) I(cm4) Tensile force (kN) Moment (kNm) 

1 16 333.3 -3.000 3x, 0<x<0.25 

3(0.5-x),0.25<x<0.5 

2 16 Not required 4.243  

3 16 Not required 0.000  

4 20 Not required 4.243  

 

Figure 5.2: The frame structure in the accreditation experiment 
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Data collected from the above three experiments are shown in Tables 5.5, 5.6 and 5.7 

respectively. Three cases of Nc, Nv and Na, as shown in Table 5.8, are considered. For instance, 

for case 1, Nc = 5, Nv = 2 and Na = 1 correspond to the first five, the first two and the first of the 

measurements listed in Tables 5.5, 5.6 and 5.7 respectively. A superscript is added to Di to 

denote different data cases. For instance, D1
(1)

 denotes data collected from the calibration 

experiment with Nc = 5, D2
(1) denotes data collected from the validation experiment with Nv = 2 

and D3
(1) denotes data collected from the accreditation experiment with Na = 1. Given Young’s 

modulus of each of the bars, the elongation of the bars in the first and second experiment and 

the vertical displacement in the third experiment can be predicted using the equations in 

Babuška et al (2008) and in Appendix A in this report. For convenience, the superscripts in θ(i,j) 

are omitted in this section. 

Table 5.5 Data D1 for the calibration experiment (from Babuska et al. 2008) 

Sample i δLc
(i) (×10-2mm) E(Lc/2) (GPa)

1 5.15 13.26 

2 5.35 10.86 

3 5.24 14.77 

4 5.51 10.94 

5 5.14 11.05 

6 5.38 11.06 

7 4.97 11.97 

8 5.41 11.66 

9 4.95 12.09 

10 5.42 11.30 

11 5.47 10.98 

12 5.74 11.92 

13 5.36 11.12 
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14 5.42 12.00 

15 5.34 10.98 

16 5.60 10.71 

17 5.06 10.91 

18 4.99 11.89 

19 5.22 11.43 

20 5.57 10.87 

21 5.28 11.75 

22 5.10 13.47 

23 5.48 11.44 

24 5.35 12.44 

25 4.92 12.13 

26 5.51 11.38 

27 5.27 10.75 

28 5.14 11.92 

29 5.61 10.82 

30 5.56 11.04 

Table 5.6 Data D2 for the validation experiment (from Babuska et al. 2008) 

Sample i δLv
(i) (×10-1mm)

1 2.01 

2 2.06 

3 2.01 

4 2.08 

5 2.04 

6 2.01 

7 2.06 

8 2.11 

9 1.98 

10 2.08 
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Table 5.7 Data D3 for the accreditation experiment (from Babuska et al. 2008) 

Sample i u(i) (×10-1mm)

1 -6.50 

2 -6.73 

Table 5.8 Number of samples for different cases 

Case Nc Nv Na

1 5 2 1

2 20 4 1

3 30 10 2

5.1 Using data D1 from the calibration experiment 

For the quantification of the uncertainties in Young’s modulus E(x), 0≤x≤L, of a bar of 

length L using data D1 from the calibration experiment, a set M1 of four candidate model classes 

Mj
(1), j=1,2,3,4, is considered as follows: 

Model class M1
(1): The compliance S(x)=S=1/E is constant along a bar and the value for each 

bar is assumed to be a sample from a Gaussian distribution with mean μs and variance σs
2. The 

elongation δLc of a bar of length Lc is given by δLc= FcLcS/Ac+εc where εc is the prediction error, 

assumed to follow a Gaussian distribution with mean zero and variance σε
2. The term εc is 

needed since from D1, it can be seen that δLc is obviously not proportional to S. The prior PDF 

for θ =[μs σs
2 σε

2]T is chosen as three independent probability distributions: μs follows a truncated 

Gaussian distribution (constrained to be positive) which is proportional to a Gaussian 

distribution with mean equal to the sample mean of measurements of the mid-point compliance 

Sc(Lc/2) and c.o.v. (coefficient of variation) of 1.0; σs
2
 follows an inverse gamma distribution 

with mean μ equal to the sample variance of measurements of Sc(Lc/2) and c.o.v. δ =1.0, i.e., 



 

 29

p(σs
2) (σs

2)−α−1exp(−β/σs
2) where α=δ−2+2, β=μ(α−1); ls follows an inverse gamma distribution 

with mean equal to 10-11 m2 (slightly more than the mean-square of the elongation 

measurements) and c.o.v. equal to 1.0. The prior c.o.v. of all of the uncertain parameters is 

chosen to be 1.0 to reflect a large uncertainty in the values of these parameters. If the type of 

material of the bars had been known in advance, the prior mean for μs could have been chosen to 

be the nominal value of the compliance obtained from previous tests performed on such 

material and the prior mean for σs
2
 could have been chosen to be the prior mean for μs multiplied 

by a coefficient of variation chosen to reflect previously observed variability in the material 

compliance. 

Model class M2
(1): The compliance S(x) is assumed to follow a stationary Gaussian random field 

with mean μs and correlation function Cov(S(x1),S(x2)|σs
2, ls, r)= σs

2exp(-(|x1-x2|/ls)
r) where r is 

equal to 1. The prior PDF for θ =[μs σs
2
 ls]

T is chosen as three independent distributions: the 

prior PDFs for the mean μs and the variance σs
2
 follow the same distributions as in M1

(1); the 

correlation length ls follows a uniform distribution on the interval [10-5L, L] where we choose 

L=0.5m to give a reasonable range. 

Model class M3
(1): Everything is the same as M2

(1)
 except r is equal to 2.  

Model class M4
(1): Everything is the same as M2

(1)
 and M3

(1)
 except that r is uncertain. The prior 

PDF for θ =[μs σs
2
 ls r]T is chosen as four independent distributions: μs, σs

2, ls follow the same 

distributions as in M2
(1)

 and M3
(1) and r follows a uniform distribution on [0.5, 3].  

Babuška et al. (2008) and Grigoriu and Field (2008) also study the static-frame challenge 

problem using Bayesian updating. The perfectly-correlated Gaussian model for the compliance 

in M1
(1) and the partially-correlated stationary Gaussian random field model for the compliance 
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in M3
(1) are also considered in Babuška et al. (2008). The partially-correlated Gaussian random 

field model for the compliance in M2
(1)

 is considered in Grigoriu and Field (2008). M2
(1)

 and 

M3
(1)

 are included here for comparison purposes only. In practice, when r is uncertain, only M4
(1)

 

needs to be considered. For r=0, the correlation coefficient between the compliance at one 

position on the bar and that at another position is always equal to e-1. This model is thought to 

be unreasonably constrained and so it is not considered. This is why the lower bound of r is 

taken to be positive.  

Babuška et al. (2008) find point estimates of μs and σs
2
 in M1

(1)
 by matching the first two 

sample moments of the compliance data Sc
(i)(Lc/2), i=1,2…, Nc, and ls in M3

(1)
 by matching the 

sample variance of the elongation data δLc
(i), i=1,2…, Nc, and the sample covariance of δLc

(i) 

and Sc
(i)(Lc/2), i=1,2…, Nc. Grigoriu and Field (2008) approximate the uncertain parameters by 

point estimates by matching the sample moments similar to Babuška et al (2008) except that 

they do not consider the sample covariance of δLc
(i) and Sc

(i)(Lc/2), i=1,2…, Nc. In Grigoriu and 

Field (2008), the uncertainties in the model parameters μs, σs
2 and ls are not considered and not 

directly propagated into the predictions so probabilistic information in these parameters is not 

subsequently characterized. Babuška et al. (2008) quantify the uncertainties by using kernel 

density estimation to reconstruct the joint PDF of δLc and Sc(Lc/2) from the data for δLc
(i) and 

Sc
(i)(Lc/2) and then using the bootstrapping method to generate additional “data”.  

Appropriate quantification of uncertainties in the parameters (i.e. obtaining complete 

probabilistic information in terms of the posterior PDF for each model class) is desirable since it 

significantly affects the effectiveness and robustness of model class updating, comparison and 

validation, as well as the prediction of the responses and the failure probability of the target 
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structure. Here we use the challenge problem to illustrate how the uncertainties can be 

quantified appropriately and effectively by exploiting the full power of Bayesian analysis using 

the proposed concept of hierarchical stochastic system model classes and recently-developed 

computational tools. Later, when we present the analysis results, it will be clear that given the 

calibration data, the uncertainty in μs is quite small but the uncertainties in other parameters and 

data-induced correlation between the parameters are not negligible; the complete probabilistic 

information is, however, encapsulated in the samples from the posterior. 

To quantify the uncertainties of θ using Bayesian analysis and D1
(l), the elongation data 

δLc
(i) and the compliance data Sc

(i)(Lc/2), i=1,2,…, Nc should be considered simultaneously since 

they are correlated to each other given θ and the proposed model classes.  

The posterior PDF for model class Mj
(1), for j=1,2,3,4, is given by Bayes’ Theorem: 

p(θ|D1
(l),Mj

(1)) = p(D1
(l)|θ,Mj

(1))p(θ|Mj
(1))/p(D1

(l)|Mj
(1)) where the prior PDF p(θ|Mj

(1)) is described 

above and the likelihood function p(D1
(l)|θ,Mj

(1)) is given by the following. The likelihood 

function for M1
(1) is: 
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For M2
(1) and M3

(1), the likelihood function is the same as that for M4
(1)

 with r=1 and 2, 

respectively. The likelihood function for M4
(1) is given by: 
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where y(i) and μ(θ1) are given by (5.2) and (5.3) and C(ls, r) is given by: 
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where the entries 11C and 12C  of C are given by: 
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2
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For M2
(1), r is equal to 1 and thus the above integrals can be evaluated analytically to give: 

 2
11( ,1) 2( ) ( exp( ))c c

s s c s s
c s

F L
C l l L l l

A l
     (5.9) 

 12 ( ,1) 2( ) (1 exp( ))
2

c c
s s

c s

F L
C l l

A l
    (5.10) 

For M3
(1), r is equal to 2 and thus the above integrals can be expressed in terms of the error 

function to give: 

 2 2 2
11( , 2) ( ) [ erf ( ) (1 exp( ( ) ))]c c c

s c s s
c s s

F L L
C l L l l

A l l
     (5.11) 

 12 ( , 2) erf ( )
2

c c
s s

c s

F L
C l l

A l
  (5.12) 

Since the computer always has a precision limit in representing numbers, when performing the 

analysis, we make sure ls is such that ( , )sl rC is positive definite, i.e., 11( , )sC l r and 

| ( , ) |sl rC = 2
11 12( , ) ( , )s sC l r C l r  are both positive. The interval of ls for its prior PDF in M2

(1),  

M3 
(1) and M4

(1) satisfies this constraint. 

Before updating the above model classes, it is instructive to first study the effect of using 

only the compliance measurements Sc
(i)(Lc/2), i=1,…, Nc (denote this data as D0 which is a 

subset of D1) on the quantification of the uncertainties of the mean μs and variance σs
2
 of the 
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stationary Gaussian random field models for the compliance. Let M0 represent the model class 

for the mid-point compliance which uses a Gaussian model with mean μs and variance σs
2 where 

the prior PDF for μs and lnσs
2 is chosen as the product of independent noninformative priors that 

are constant over a broad range. The likelihood function p(D0| μs, σs
2,M0) is given by: 

 ( ) 2
0 0 22

1

1 1
( | , , ) exp( ( ) )

2( 2 )

c

c

N
i

s s c sN
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p S  
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The MAP (maximum a posteriori) estimates ˆ s , 2ˆ s  (i.e., the values of μs, σs
2 that globally 

maximize p(μs, σs
2| D0,M0)) are equal to the sample mean and very close to the sample variance 

of the Sc
(i), i=1,…, Nc, respectively: 
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It can be shown that given M0 and D0, (μs- ˆ s ) cN /vs follows Student’s t distribution with Nc-1 

degrees of freedom and σs follows a distribution as follows (Box & Tiao 1973): 
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Thus μs has a mean equal to the sample mean ˆ s  and c.o.v. equal to δ1 as follows (which is very 

close to the sample c.o.v. of Sc
(i) divided by cN  for sufficiently large Nc): 
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From (5.15), it can be shown that given M0 and D0, σs
2 follows an inverse gamma distribution: 
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Thus, given M0 and D0, σs
2 has a c.o.v. equal to δ2 given as follows for Nc >5: 

 2

2

5cN
 


 (5.18) 

For large Nc, the c.o.v. of both μs and σs
2

 decrease at the rate of approximately cN . Table 5.9 

shows the results for the MAP estimates ˆ s , 2ˆ s  based on data D0 along with the coefficients of 

variation 1  and 2  for μs and σs
2
 respectively, from their posterior PDFs. 

Table 5.9 Statistical results obtained using data D0 

Case ˆ s  2ˆ s  1  2  

1 8.34×10-11 1.00×10-22 5.4% 63.2%

2 8.68×10-11 3.85×10-23 1.6% 31.6%

3 8.64×10-11 3.60×10-23 1.3% 25.8%

  

Tables 5.10, 5.11 and 5.12 shows the statistical results using the calibration data D1
(1) , D1

(2) 

and D1
(3) for three cases of Nc = 5, 20 and 30, respectively. The (j+1)-th column gives the results 
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obtained using a full Bayesian analysis for model class Mj
(1), j=1,2,3,4. Usually stochastic 

simulation methods are to be preferred because they are applicable for any case and are more 

robust but the results obtained by Laplace’s asymptotic approximation are also given this report 

because of their common use in past work (e.g., Beck & Katafygiotis 1991, 1998, Beck & Yuen 

2004). For the stochastic simulation methods, we used the Hybrid Gibbs TMCMC algorithm 

presented in Appendix B for simulating samples from the posterior p(θ|D1
(l),Mj

(1)) and for 

calculating the evidence p(D1
(l)|Mj

(1)) which is required for the calculation of the probability 

P(Mj
(1)|D1

(l),M) of each model class conditioned on the data D1
(l). This algorithm is used for 

simulating samples from the posterior p(θ|D1
(l),Mj

(1)) because of its ability to handle the case 

where we do not know apriori whether there may be several separated neighborhoods of high 

probability regions of p(θ|D1
(l),Mj

(1)) between which the transition using a Markov chain of 

samples is not efficient. This algorithm is in general more efficient than the common 

Metropolis-Hastings algorithm for problems in higher dimensions. For the rest of this report, for 

the tables where both the results obtained using Laplace’s asymptotic approximation and 

stochastic simulation methods are shown, “AA” is used to refer the results obtained using the 

former and “SS” is refer to denote the results obtained using the latter. The results are obtained 

using stochastic simulation methods if neither “AA” nor “SS” appears in the tables. 

The second row of the tables gives the MAP (maximum a posteriori) estimate θMAP (that is, 

θ that globally maximizes p(θ|D1
(l),Mj

(1))). The results of the third, sixth to ninth, and eleventh 

and twelveth rows are obtained using stochastic simulation methods. The third row gives the 

mean (the number before the semicolon), c.o.v. (the number after the semicolon) and the 

correlation coefficient matrix R from the posterior samples for θ where the (i,j) entry of R is the 
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correlation coefficient between θi and θj. Only the upper diagonal entries of R are presented 

since it is symmetric. Compared with the prior uncertainty in the parameters, the posterior 

(updated) uncertainty is reduced since the data provide information about these parameters. For 

all three data cases and four model classes, μs has a lot smaller uncertainty than the other 

parameters which have significant uncertainties. It can be seen that the posterior mean of σs
2 

given data D1
(l)

 is quite different from the sample variance of the compliance measurements Sc
(i), 

i=1,…, Nc since the elongation data δLc
(i)  in D1

(l)
 give extra information about this parameter. 

Because the challenge problem assumes an exact theory for the deformation analysis, prediction 

errors for each model class are accounted for by the modeling parameters such as σs
2. In general, 

prediction errors can be explicitly accounted for by adding them to the output equation (Beck 

and Katafygiotis 1998), as done in M1
(1). 

It can be seen from the correlation coefficient matrix that there is only weak correlation 

between pairs of parameters, although one must be careful since a small correlation coefficient 

between two uncertain parameters only implies weak linear dependence and does not 

necessarily imply weak dependence between them unless the parameters are jointly Gaussian. A 

simple example for this is W=Z2 and a standard normal variable Z which are uncorrelated but 

strongly dependent. To investigate dependence between different pairs of parameters, sample 

plots of some pairs of the components of θ from the posterior p(θ|D1
(l), Mj

(1)) obtained using 

stochastic simulation methods are shown in Figures 5.3-5.5 (for j=2), Figures 5.6-5.8 (for j=3) 

and Figures 5.9-5.11 (j=4). Each axis corresponds to an uncertain parameter θi divided by its 

posterior mean μi given D1
(l)

 and a specific model class Mj
(1), which can be estimated as follows:  
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  D M  (5.19) 

where [ (1) ( ),..., K
i i  ] are K posterior samples for θi from p(θ|D1

(l), Mj
(1)). All the other parameters 

have significantly larger uncertainties than θ1. The reduction of parameter uncertainties with 

increasing amount of data is also obvious from these figures. It can be seen that p(θ|D1
(l), M2

(1)) 

and p(θ|D1
(l), M3

(1)) are not close to a multivariate Gaussian PDF, especially when the amount of 

data is very small for M2
(1) and M3

(1) (e.g., case 1 where Nc=5); p(θ|D1
(l), M4

(1)) departs 

substantially from a multivariate Gaussian PDF and is of a very complex shape. For M4
(1), the 

samples for r show truncation due to the choice of truncated uniform priors for r.  

Figures 5.12, 5.13 and 5.14 give the histograms of posterior samples for r from p(θ|D1
(l), 

M4
(1)). These figures suggest that p(r|D1

(l), M4
(1)) is multi-modal and every value of r is of non-

negligible plausibility. The above results exhibit the strength of the stochastic simulation 

method in capturing the full characteristics of the complex posterior PDF p(θ|D1
(l), Mj

(1)) 

represented by the generated posterior samples.  

The stochastic simulation estimate for log evidence, posterior mean of the log likelihood 

function (a datafit measure), expected information gain and the probability P(Mj
(1)|D1

(l),M1) of 

the model classes are shown in the sixth through ninth rows, respectively, of Tables 5.10, 5.11 

and 5.12. Based on the calibration data, for all 3 data cases, M1
(1) is very improbable compared 

with the other model classes M2
(1), M3

(1) and M4
(1)

 which have similar posterior probabilities and 

have essentially the same posterior mean of the log likelihood function which shows that they 

give a similar fit to the data on average and they also have similar expected information gains. 
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The fourth row of Tables 5.10-5.12 gives the estimate for the log evidence lnp(D1
(l)|Mj

(1)) 

obtained by Laplace’s asymptotic approximation assuming there is only one global optimum for 

p(θ|D1
(l), Mj

(1)). Although this assumption is not true for M4
(1), as shown by Figures 12-14, all 

these estimates agree well with the corresponding stochastic simulation estimates. Using these 

asymptotic log evidence estimates, the probability P(Mj
(1)|D1

(l),M1) of each model class 

conditioned on the data D1 is computed as shown in the fifth row. Compared with the results 

obtained using stochastic simulation methods, as expected, the posterior probability estimate 

obtained by Laplace’s asymptotic approximation for model class M4
(1) is not accurate since M4

(1)
 

is almost unidentifiable. It can be seen that the accuracy of the estimates obtained by Laplace’s 

asymptotic approximation for the other model classes increases as the amount of data increases. 

Once again, the results show that stochastic simulation methods are preferable. 

 Grigoriu and Field (2008) perform model selection by calculating the posterior model 

probabilities of the MLE (maximum likelihood estimate) models (rather than the posterior 

probability for the whole model class) in which the modeling parameters are obtained by 

matching the moments calculated from the data. Such an approach considers the magnitude of 

the likelihood functions of the MLE models and no uncertainties in the parameters are 

considered when performing model selection. The fact that there exists many plausible models 

in a model class is not considered, in contrast to our full Bayesian treatment. In particular, when 

the evidence for the model class is not employed, there is no automatic downgrading of more 

“complex” models that extract more information from the data, so this can lead to what is 

commonly called “data overfitting” (Bishop 2006). Note that one cannot simply count the 

number of uncertain parameters in a model class to judge reliably its complexity; for example, 
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one should use the evidence for the model class and not the simplified version known as BIC 

(Bayesian information criterion) for model selection (Beck and Yuen 2004, Muto and Beck 

2008). 

For each of the four model classes Mj
(1), given θ, it can be shown that the response wp of 

interest for the target frame structure follows a Gaussian distribution with mean μp =Kpμs and 

variance σp
2= σs

2Vp,1 for M1
(1) and σs

2Vp,j(ls) for Mj
(1), j=2,3 and σs

2Vp,j(ls, r) for M4
(1) where Kp 

and Vp,j are given as follows (the values of the force Fp,i, the cross-sectional area Ap,i and the 

length Lp,i of rod i and the cross-sectional moment of inertia Ip of beam 4 are given in Table 5.2): 
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where the vector a is given by: 

   11
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i pa T  a  (5.21) 
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where for j=2 and 3,  
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For j=4, 
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where r=1 for j=2, r=2 for j=3. It should be stressed that wp is not Gaussian (in this case, it 

follows a distribution which a weighted infinite sum of Gaussian PDFs) and it is Gaussian only 

when given θ. 
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The tenth row in Tables 5.10-5.12 gives the failure probability P(F|θMAP, D1
(l), Mj

(1)) of the 

target frame structure with θ= θMAP based on the calibration data D1
(l)

 and each model class, 

which can be expressed in terms of the CDF of a standard Gaussian random variable Φ(z): 
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The eleventh row gives the predicted robust failure probability P(F|D1
(l), Mj

(1)) (the number 

outside the parenthesis) of the target frame structure with the uncertainty in θ taken into account 

for each model class, and it is calculated using: 

 

( ) (1) ( ) (1) ( ) (1)
1 1 1

( ) ( )

( ) ( )
1

( | , ) ( | , , ) ( | , )

0.003 ( ) 0.003 ( )1
1 [ ( ) ( )]

( ) ( )

l l l
j j j

k kK
p p

k k
k p p

P F P F p d

K

 
 



  
   





θ θ θ

θ θ

θ θ

D M D M D M

 (5.31) 

where ( )kθ , k=1,2,...,K, are posterior samples from p(θ|D1
(l), Mj

(1)). The number inside the 

parenthesis gives the estimate of the coefficient of variation (c.o.v.) of the above predicted 

robust failure probability estimate. It can be seen that P(F|D1
(l), Mj

(1)) is orders of magnitude 

different from P(F|θMAP, D1
(l), Mj

(1)) showing that the effects of the uncertainties in the 

parameters on the failure probabilities is substantial. In fact, ignoring the uncertainty in θ would 

be disastrous since P(F|θMAP, D1
(l), Mj

(1)) greatly underestimates the failure probability for all 

model classes and it varies greatly from one model class to another, in contrast with the robust 

case P(F|D1
(l), Mj

(1)). Figure 5.15 shows P(F| ( )kθ ,D1
(3),Mj

(1)) corresponding to each posterior 

sample model ( )kθ , sorted in increasing order. Figure 5.16 shows the CDF of P(F|θ, D1
(l), Mj

(1)) 
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estimated using posterior samples from p(θ|D1
(3), Mj

(1)). Figures 5.15 and 5.16 confirm that there 

is a large variability in P(F|θ, D1
(3), Mj

(1)) due to the uncertainties in θ. 

Posterior model averaging can be carried out to obtain the predicted hyper-robust failure 

probability P(F|D1
(l), M1) given the set of candidate model classes M1 as shown in the last row 

of Tables 5.10-5.12: 
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P(F|D1
(1),M1), P(F|D1

(2),M1) and P(F|D1
(3), M1) are estimated to be 1.13×10-2, 6.68×10-4, 

2.48×10-4, respectively, showing that the predicted failure probability of the target system 

depends on the uncertainties in the model parameters which in turn depends on the amount of 

data and the model classes under consideration.   

Figures 5.17-5.19 show the CDFs of the predicted vertical displacement wp at point P in the 

target frame structure corresponding to each sample ( )kθ , k=1,2,…,4000, from p(θ|D1
(3), Mj

(1)). 

The robust posterior CDF of the response wp of interest for the target frame structure can be 

obtained using the Theorem of Total Probability, as the previous section. Samples of wp can be 

obtained as follows: For each ( )kθ , k=1,2,...,K, which are the posterior samples from p(θ|D1
(l), 

Mj
(1)), generate a sample wp

(k) for wp from a Gaussian distribution with mean μp(θ
(k)) and 

variance σp
2(θ(k)). These samples can also be used to find the probability in (5.31) by 

approximating the robust failure probability P(F|D1
(l), Mj

(1)) as the proportion jp  of failure 

samples out of the K samples: 
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where ( ) ( ) 2 ( )~ ( ( ), ( ))k k k
p p pw N  θ θ  and ( )kθ , k=1,2,...,K, are posterior samples from p(θ|D1

(l), 

Mj
(1)). It can be shown that the estimator in (5.31), which implicitly integrates over wp, is always 

of a smaller c.o.v. and thus is more accurate than jp . A very efficient stochastic simulation 

method called Subset Simulation (Au and Beck 2001) can also be used for the robust posterior 

CDF. Here, the CDF for wp is obtained based on the samples for wp generated as described 

above for each model class. The results for M2
(1), M3

(1)
 and M4

(1)
 are shown in Figures 5.20-5.25 

for the three data cases. Figures 20-22 show that the CDFs for the three model classes are very 

close to each other in the high probability region but differ somewhat in the tails so the 

predicted failure probability is quite different (though still within the same order of magnitude), 

as shown in Tables 5.10-5.12. Figures 5.23-5.25 show that the CDFs for data cases 2 and 3 for 

each of these three model classes are very close to each other in the high probability region. 

From the results in Tables 5.10-5.12, it can be seen that P(F|D1
(l), M1

(1))P(M1
(1)|D1

(l), M1) is 

negligible compared to P(F|D1
(l), M1) for data case 3 and so the contribution of M1

(1) is 

negligible to the prediction of interest, the failure probability of the target frame structure. Also, 

having a posterior model class probability P(M1
(1)|D1

(l),M1) that is several orders of magnitude 

smaller than those for the other model classes implies M1
(1)

 is relatively improbable conditioned 

on the data D1
(l). Thus, M1

(1) is dropped in the subsequent analyses. 

Note that the posterior probability P(Mj
(1)|D1

(l),M1) for each model class conditioned on the 

data D1
(l)

 gives the plausibility of each Mj
(1) given the set of candidate model classes M1={Mj

(1), 
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j=1,2,3,4} and P(F|D1
(l), Mj

(1))P(Mj
(1)|D1

(l), M1) gives the contribution of each model class to the 

desired response prediction. These probabilities do not give information regarding the 

predictability of each model class for the response of other systems, including the target system. 

It is shown in the following sections how the data from the validation and accreditation 

experiments are used to evaluate the prediction consistency and accuracy of the calibrated 

model classes. 
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Table 5.10 Statistical results using data D1
(1) from the calibration experiment 

 M1
(1) M2

(1) M3
(1) M4

(1) 

μs (Pa-1)              
σs

2(Pa-2) 
σε

2*(m2);ls(m) 

MAP          
              

r 

8.34×10-11 
7.69×10-23 
1.76×10-11* 

8.80×10-11 
8.24×10-23 
0.00652 

8.80×10-11 
8.24×10-23 
0.00727 

8.80×10-11 
8.26×10-23 
0.0035 
0.5 

μs (Pa-1)              
σs

2(Pa-2) 
σε

2*(m2);ls(m) 
r 

Parameter 
Statistics  
(SS) 

 
 R 

8.36×10-11;5.9% 
1.24×10-22;43.0% 
2.07×10-11*;34.1%
 
 

1 0.05 0.06

1 0.15

1

 
  
  

 

8.81×10-11;2.2% 
1.06×10-22;48.8%
0.0217;97.8% 
 
 

1 0.01 0.17

1 0.16

1

 
 
 
  

 

8.80×10-11;2.2% 
1.13×10-22;50.6% 
0.0175;66.4% 
 
 

1 0.03 0.12

1 0.10

1

 
  
  

 

8.80×10-11;2.4% 
1.11×10-22;40.8% 
0.0203;144.2% 
1.40;52.4% 

1 0.15 0.07 0.22

1 0.34 0.13

1 0.03

1

 
  
 
 
 
 

Log evidence  
(AA) 

166.45 170.92  171.02  171.83 

P(Mj
(1)|D1

(1),M1)  
(AA) 

2.49×10-3 0.217 0.240 0.540 

Log evidence  
(SS) 

167.13 172.06 172.01 172.34 

E[lnp(D1
(1)|θ,Mj

(1))] 170.70 177.66 177.83 177.76 
Expected 
information gain  

  3.57   5.60   5.82   5.41 

P(Mj
(1)|D1

(1),M1)  
(SS) 

2.20×10-3  0.305  0.290  0.403 

P(F| θMAP, D1
(1), Mj

(1)) 5.32×10-2 0 0 0 
P(F|D1

(1), Mj
(1)) 0.253(2.1%) 1.48×10-2(12.6%) 6.58×10-3(16.5%) 1.07×10-2(14.1%) 

P(F|D1
(1), M1) 1.13×10-2 
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Table 5.11 Statistical results using data D1
(2) from the calibration experiment 

 M1
(1) M2

(1) M3
(1) M4

(1) 
μs (Pa-1)                 
σs

2(Pa-2) 
σε

2*(m2);ls(m) 

MAP          
              

r 

8.68×10-11 
3.33×10-23 
1.17×10-11* 

8.86×10-11 
5.11×10-23 
0.0263 

8.86×10-11 
4.98×10-23 
0.0287 

8.86×10-11 
4.94×10-23 
0.0286 
3 

μs (Pa-1)                 
σs

2(Pa-2) 
σε

2*(m2);ls(m) 
r 

Parameter 
Statistics  
(SS) 

 
 R 

8.69×10-11;1.6% 
3.88×10-23;26.9% 
1.32×10-11*;25.4%
 
 

1 0.12 0.003

1 0.03

1

 
  
  

 

8.87×10-11;0.90%
5.61×10-23;24.7%
0.0336;34.6% 
 
 

1 0.001 0.06

1 0.09

1

 
  
  
 

8.87×10-11;0.97% 
5.63×10-23;23.5% 
0.0318;27.3% 
 
 

1 0.08 0.03

1 0.12

1

 
  
  

 

8.86×10-11;1.0% 
5.78×10-23;23.8% 
0.032;38.6% 
1.47;47.5% 

1 0.14 0.07 0.05

1 0.13 0.01

1 0.10

1

 
   
 
 
 
 

Log evidence  
(AA) 

702.43 710.04 710.18  712.03 

P(Mj
(1)|D1

(2),M1)  
(AA) 

5.23×10-5 0.106 0.122 0.773 

Log evidence  
(SS) 

702.95 709.20 710.03 710.40 

E[lnp(D1
(2)|θ,Mj

(1))] 707.77 717.85 718.18 718.02 
Expected 
information gain  

4.82 8.65 8.15 7.62 

P(Mj
(1)|D1

(2),M1)  
(SS) 

2.92×10-4 0.151 0.347 0.502 

P(F| θMAP, D1
(2), Mj

(1)) 4.52×10-2 1.77×10-7 6.91×10-10 3.87×10-13 

P(F|D1
(2), Mj

(1)) 0.137(1.9%) 5.84×10-4(13.5%) 2.58×10-4(26.7%) 8.98×10-4(12.6%) 
P(F|D1

(2), M1) 6.68×10-4 

 



 

 48

Table 5.12 Statistical results using data D1
(3) from the calibration experiment 

 M1
(1) M2

(1) M3
(1) M4

(1) 

μs (Pa-1)             
σs

2(Pa-2) 
σε

2*(m2);ls(m) 

MAP          
              

r 

8.64×10-11 
3.24×10-23 
1.11×10-11* 

8.87×10-11 
4.87×10-23 
0.0284 

8.87×10-11 
4.76×10-23 
0.0307 

8.87×10-11 
4.72×10-23 
0.0305 
3 

μs (Pa-1)             

σs
2(Pa-2) 

σε
2*(m2);ls(m) 

r 

Parameter 
Statistics  
(SS) 

 
 R 

8.64×10-11;1.2% 
3.69×10-23;26.0% 
1.24×10-11*;23.7% 
 
 

1 0.09 0.11

1 0.09

1

 
  
  

 

8.88×10-11;0.83% 
5.19×10-23;19.5% 
0.0319;27.5% 
 

1 0.05 0.20

1 0.10

1

 
  
  

 

8.87×10-11;0.69% 
5.37×10-23;20.4% 
0.0327;23.6% 
 

1 0.10 0.04

1 0.21

1

 
  
  

 

8.88×10-11;0.8% 
5.20×10-23;19.9% 
0.0328;27.8% 
1.79;40.5% 

1 0.01 0.15 0.07

1 0.05 0.14

1 0.01

1

 
   
 
 
 

 

Log evidence  
(AA) 

1059.27 1071.33 1071.47 1073.22 

P(Mj
(1)|D1

(3),M1)  
(AA) 

6.60×10-7 0.114 0.131 0.755 

Log evidence  
(SS) 

1059.63 1071.34 1071.66 1071.87 

E[lnp(D1
(3)|θ,Mj

(1))] 1064.89 1079.75 1080.15 1079.82 

Expected 
information gain  

5.27 8.41 8.49 7.95 

P(Mj
(1)|D1

(3),M1)  
(SS) 

2.01×10-6 0.245 0.338 0.416 

P(F|θMAP,D1
(3),Mj

(1)) 3.61×10-2 3.56×10-7 3.19×10-9 6.70×10-12 

P(F|D1
(3), Mj

(1)) 9.81×10-2(1.9%) 3.58×10-4(16.1%) 1.30×10-4(26.1%) 2.79×10-4(16.5%) 

P(F|D1
(3), M1) 2.48×10-4 
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Figure 5.3: Pairwise sample plots of posterior samples for p(θ| D1

(1), M2
(1)) normalized by 

posterior mean 

 
Figure 5.4: Pairwise sample plots of posterior samples for p(θ|D1

(2), M2
(1)) normalized by 

posterior mean 
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Figure 5.5: Pairwise sample plots of posterior samples for p(θ|D1

(3), M2
(1)) normalized by 

posterior mean 

   

Figure 5.6: Pairwise sample plots of posterior samples for p(θ|D1
(1), M3

(1)) normalized by 

posterior mean 
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 Figure 5.7: Pairwise sample plots of posterior samples for p(θ|D1
(2), M3

(1)) normalized by 

posterior mean 

   

 Figure 5.8: Pairwise sample plots of posterior samples for p(θ|D1
(3), M3

(1)) normalized by 

posterior mean 
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Figure 5.9: Pairwise sample plots of posterior samples for p(θ|D1
(1), M4

(1)) normalized by 

posterior mean 

 

Figure 5.10: Pairwise sample plots of posterior samples for p(θ|D1
(2), M4

(1)) normalized by 

posterior mean 
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Figure 5.11: Pairwise sample plots of posterior samples for p(θ|D1
(3), M4

(1)) normalized by 

posterior mean 

 
Figure 5.12: Histogram for posterior samples for p(r|D1

(1), M4
(1)) 
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Figure 5.13: Histogram for posterior samples for p(r|D1
(2), M4

(1)) 

 
Figure 5.14: Histogram for posterior samples for p(r|D1

(3), M4
(1)) 

r 

r 
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Figure 5.15: The failure probability (sorted in increasing order) conditioned on each 

posterior sample θ(k)  for model class Mj
(1), i.e. P(F|θ(k),D1

(3), Mj
(1)), for j=2,3,4 

 
Figure 5.16: CDF of failure probability P(F|θ,D1

(3),Mj
(1)), j=2,3,4, estimated using posterior 

samples for model class Mj
(1) 
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Figure 5.17: CDF of predicted vertical displacement wp at point P in the target frame 

structure conditioned on each sample from p(θ|D1
(3), M2

(1)) 

 
Figure 5.18: CDF of predicted vertical displacement wp at point P in the target frame 

structure conditioned on each sample from p(θ| D1
(3), M3

(1))  
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Figure 5.19: CDF of predicted vertical displacement wp at point P in the target frame 

structure conditioned on each sample from p(θ| D1
(3), M4

(1))   

 
Figure 5.20: Robust posterior CDF of predicted vertical displacement wp at point P in the 

target frame structure using posterior samples for p(θ|D1
(1), Mj

(1)), j=2,3,4 
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Figure 5.21: Robust posterior CDF of predicted vertical displacement wp at point P in the 

target frame structure using posterior samples for p(θ|D1
(2), Mj

(1)), j=2,3,4  

 
Figure 5.22: Robust posterior CDF of predicted vertical displacement wp at point P in the 

target frame structure using posterior samples for p(θ|D1
(3), M j

(1)), j=2,3,4  
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Figure 5.23: Robust posterior CDF of predicted vertical displacement wp at point P in the 

target frame structure using posterior samples for p(θ|D1
(l), M2

(1)) for 3 different data cases  

 
Figure 5.24: Robust posterior CDF of predicted vertical displacement wp at point P in the 

target frame structure using posterior samples for p(θ|D1
(l), M3

(1)) for 3 different data cases  
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Figure 5.25: Robust posterior CDF of predicted vertical displacement wp at point P in the 

target frame structure using posterior samples for p(θ|D1
(l), M4

(1)) for 3 different data cases 

wp 
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5.2. Using data D2 from the validation experiment 

Candidate model classes for the subsystem in the validation experiment are Mj
(2), j=1,2,3. 

The only difference between the subsystem here and that in the previous experiment is the 

longer beam length. The uncertain parameters θ(2, j) for Mj
(2) are the same as θ(1, j+1) for Mj+1

(1). 

The “prior” PDF p(θ(2,j)|D1
(l), Mj

(2)) for Mj
(2) is given by the “posterior” PDF p(θ(1, j+1)|D1

(l), 

Mj+1
(1)) for Mj+1

(1). Data D2
(l)

 = {δLv
(i), i=1,2…, Nv} from the validation experiment are used to 

investigate the predictive performance, including the prediction consistency and accuracy of the 

model classes. 

To evaluate prediction accuracy, we compute the probability that the response δLv,p, which 

is the elongation of the bar in the validation experiment, predicted using the model classes 

updated by data from the previous experiment (i.e. data D1
(l)

 from the calibration experiment), is 

within a certain b% (b=5 and 10) of the measured quantity δLv
(i) in the validation experiment. 

This probability is given by the following updated robust predictive PDF conditioned on D1
(l): 

 

( ) ( ) (2) ( ) (2, ) (2) (2, ) ( ) (2) (2, )
, 1 , 1

( ) (1, 1) (2) (1, 1) ( ) (1) (1, 1)
, 1 1

( % | , ) ( % | , ) ( | , )

( % | , ) ( | , )

i l i j j l j
v p j v p j j

i j j l j
v p j j

P e b P e b p d

P e b p d  


  

 




θ θ θ

θ θ θ

D M M D M

M D M
 (5.34) 

where  

 
( )

,( )
, ( )

i
v p vi

v p i
v

L L
e

L

 



  (5.35) 



 

 62

For convenience, the superscripts in θ(i,j) will now be omitted. For the model class Mj
(2), j=1,2,3, 

given θ, it can be shown that the response δLv,p follows a Gaussian distribution with mean μv 

=Kvμs and variance σv, j
2= σs

2sv, j(ls,r) where Kv and sv,j are given as follows: 

 v v
v

v

F L
K

A
  (5.36) 

 2
, 0

( , ) 2( ) ( ) exp( ( ) )
vL rv

v j s v
v s

F x
s l r L x dx

A l
    (5.37) 

For j=1, r is equal to 1, and sv, j(ls,r) is given by (5.9) with subscript ‘c’ replaced by ‘v’ and for 

j=2, r is equal to 2, and sv, j(ls,r) is given by (5.11) with subscript ‘c’ replaced by ‘v’. Thus, the 

probability P(ev,p
(i) ≤b%|D1

(l), Mj
(2)) in (5.34) becomes:  

( ) ( ) (2)
, 1

( ) ( )

( ) (1)
1 1

, ,

( ) ( ) ( ) ( )

( ) ( )
1 , ,

( % | , )

(1 ) ( ) (1 ) ( )
100 100[ ( ) ( )] ( | , )

( ) ( )

(1 ) ( ) (1 ) ( )1 100 100[ ( ) ( )]
( ) ( )

i l
v p j

i i
v v v v

l
j

v j v j

i k i k
K v v v v

k k
k v j v j

P e b

b b
L L

p d

b b
L L

K

   

 

   

 







   
  

   
  





θ θ
θ θ

θ θ

θ θ

θ θ

D M

D M  (5.38) 

where ( )kθ , k=1,2,...,K, are posterior samples from p(θ(1, j+1)|D1
(l), Mj+1

(1)). Similar to before, 

samples of δLv,p can be obtained as follows: For each ( )kθ , k=1,2,...,K, which are the posterior 

samples from p(θ|D1
(l), Mj+1

(1)), generate a sample δLv,p
(k) for δLv,p from a Gaussian distribution 

with mean μv(θ) and variance σv,j
 2(θ). These samples can also be used to find the above 

probability by approximating it as the proportion of samples that satisfies the condition 



 

 63

ev,p
(i)≤b% out of the K samples. It can be shown that the estimator in (5.38) is always of a 

smaller c.o.v. and thus more accurate than the latter approximation.  

The average prediction error probability, denoted P(ev,p≤b%|D1
(l), Mj

(2)), for a model class 

updated using data D1
(l)

 can be obtained by taking the arithmetic mean of P(ev,p
(i) ≤b%|D1

(l), 

Mj
(2)), i=1, 2…, Nv. Tables 5.13, 5.14 and 5.15 show the results for P(ev,p

(i) ≤b%|D1
(l), Mj

(2)) (the 

numbers outside the parenthesis) and their average P(ev,p ≤b%|D1
(l), Mj

(2)) (the numbers inside 

the parenthesis) and for j=1, 2, 3, and b=5 and 10 using D1
(1), D1

(2) and D1
(3), respectively. It can 

be seen from these tables that the model classes Mj
(2) (and so Mj+1

(1) updated using D1
(l)), for  j=1, 

2, 3, are sufficiently accurate. It is noted that the averages P(ev,p ≤5%|D1
(l), Mj

(2)) for each  j=1, 2, 

3, are larger than 0.5 implying that it is more likely than not for the response prediction by the 

model classes to be accurate within 5% of the actual response. The averages P(ev,p ≤10%|D1
(l), 

Mj
(2))  are all very close to 1, showing that it is very probable that the prediction errors for each 

model class are less than 10%. 

To evaluate prediction consistency, we calculate the difference of the measured quantity 

δLv
(i) and the posterior mean ( ) (2)

, 1[ | , ]l
v p jE L D M  of the robust predicted response (measured in 

terms of the number of posterior standard deviations ( ) (2)
, 1[ | , ]l

v p jVar L D M ) as follows: 

 
( ) ( ) (2)

, 1( )
, ( ) (2)

, 1

[ | , ]

[ | , ]

i l
v v p ji

v j l
v p j

L E L
c

Var L

 






D M

D M
 (5.39) 

where 
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( ) (2) ( ) (2) ( ) (2)
, 1 , 1 1

( ) (1) ( ) (1) ( )
1 1 1 1

1

[ | , ] [ | , , ] ( | , )

( ) ( | , ) ( , )

l l l
v p j v p j j

K
l l kv

v j v s s j s s
k

E L E L p d

K
p d K p d

K

 

     




  



 

θ θ θ

θ θ θ

D M D M D M

D M |D M
 (5.40) 

where ( )k
s  is the first component of θ(k), where θ(k), k=1,2,...,K, are posterior samples from  

p(θ|D1
(l), Mj+1

(1)). ( ) (2)
, 1[ | , ]l

v p jVar L D M  is given by:   

 ( ) (2) 2 ( ) (2) 2 ( ) (2)
, 1 , 1 , 1[ | , ] [ | , ] [ | , ]l l l

v p j v p j v p jVar L E L E L   D M D M D M  (5.41) 

where 

2 ( ) (2) 2 ( ) (2) ( ) (2)
, 1 , 1 1

2 2 ( ) (1) 2 ( ) 2 ( )
, 1 1 ,

1

[ | , ] [ | , , ] ( | , )

1
( ( ) ( )) ( | , ) [ ( ) ( )]

l l l
v p j v p j j

K
l k k

v v j j v v j
k

E L E L p d

p d
K

 

   




   





θ θ θ

θ θ θ θ θ θ

D M D M D M

D M
 (5.42) 

where θ(k), k=1,2,...,K, are posterior samples from p(θ|D1
(l), Mj+1

(1)). The last rows of Tables 5.13, 

5.14 and 5.15 show the results for cv,j
(i), for j=1, 2, 3 using D1

(1), D1
(2) and D1

(3), respectively. It 

can be seen from these tables that for all three data cases, the model classes Mj
(2) (and also 

Mj+1
(1)) updated just using data D1

(l),  j=1, 2, 3, are sufficiently consistent since the results are all 

within about 3 standard deviations. 

    Using data D2
(l), which is modeled as stochastically independent of D1

(l)
 given θ, one can 

update uncertainties in θ for all surviving model classes using Bayes’ Theorem with  

p(θ|D1
(l), Mj

(2)) as the prior (recall that in this case, p(θ|D1
(l), Mj

(2)) = p(θ|D1
(l), Mj+1

(1))): 

 ( ) ( ) (2) 1 ( ) (2) ( ) (2)
1 2 2 2 1( | , , ) ( | , ) ( | , )l l l l

j j jp c p pθ θ θD D M D M D M  (5.43) 
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where the likelihood function is given by: 

 ( ) (2) ( ) 2
2 / 22 2

1, ,

1 1
( | , ) exp( ( ( ))

(2 ( ) ) 2 ( )

v

v

N
l i

j v vN
iv j v j

p L 
  

  θ θ
θ θ

D M  (5.44) 

and the evidence p(D1
(l),D2

(l)|Mj
(2)) for model class Mj

(2) provided by the data D1
(l) and D2

(l) is 

given by: 

 ( ) ( ) (2) ( ) (2) ( ) ( ) (2)
1 2 1 2 1( , | ) ( | ) ( | , )l l l l l

j j jp p pD D M D M D D M  (5.45) 

where p(D1
(l)|Mj

(2)) is equal to p(D1
(l)|Mj+1

(1)), which has already been determined from previous 

analyses, while p(D2
(l)|D1

(l),Mj
(2)) is given by: 

 ( ) ( ) (2) ( ) (2) ( ) (2)
2 1 2 1( | , ) ( | , ) ( | , )l l l l

j j jp p p d  θ θ θD D M D M D M  (5.46) 

which is determined using the stochastic simulation method in Appendix B as before. The 

samples from the prior p(θ|D1
(l), Mj

(2)) (calibration test posterior p(θ|D1
(l), Mj+1

(1))) obtained from 

the previous analyses, are used.  

Tables 5.16, 5.17 and 5.18 show the statistical results using data D2
(l)

 in addition to D1
(l)

 for 

the three validation cases of Nv = 2, 4 and 10 datapoints, respectively. Compared to Tables 5.10, 

5.11 and 5.12, it can be seen that the posterior c.o.v. of the parameters updated using additional 

data D2
(l)

 is reduced somewhat for σs
2, ls () for data cases 1 and 3 but for a somewhat lesser 

amount for data case 2. For data case 2, D2
(l) provides only 20% additional data while for data 

cases 1 and 3, D2
(l)

 provides 40% and 33% additional data respectively (see Table 5.8). For all 

data cases, the posterior means of the parameters σs
2 and ls using D1

(l)
 and D2

(l) are significantly 
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higher than the means using only D1
(l). There are several possible reasons: 1) additional 

information is provided by the additional data D2
(l); and 2) uncertainties of the estimators due to 

a finite number of samples used in the stochastic simulation. Similar to before, it can be seen 

from the posterior correlation coefficient matrix that there is only weak correlation between 

most pairs of parameters. The posterior means of r in M3
(2)

 are very close for all 3 data cases: 

1.81, 1.83 and 1.79 but the corresponding uncertainty in r is still significant. The results show 

that given both D1
(l) and D2

(l), for all 3 data cases, M1
(2), M2

(2) and M3
(2)

 are significantly probable. 

Thus, based on the calibration data and validation data, all the model classes M1
(2), M2

(2) and 

M3
(2) are considered in subsequent analyses. 

It can also be seen that the predicted robust failure probability P(F|D1
(l),D2

(l),M2
(2)) of the 

target frame structure using model class M2
(2)

 is smaller than that using model classes M1
(2) and 

M3
(2). For data cases 1, 2 and 3, the predicted hyper-robust failure probabilities P(F|D1

(l),D2
(l),M2) 

are estimated to be 1.44×10-3, 2.25×10-4 and 1.25×10-5, respectively, showing that the predicted 

failure probability of the target system depends on the uncertainties in the model parameters, 

which in turn depends on the amount of data and the model classes under consideration. By 

comparing Tables 5.10-5.12 and Tables 5.16-5.18, it can be seen that the predicted hyper-robust 

failure probability is significantly smaller than that based on only data D1
(l) for all data cases. 

Table 5.19 shows the results for checking, using the following index, the consistency of the 

model classes Mj
(2), j =1, 2, 3, in predicting the response δLv using data D1

(l)
 and D2

(l):  

 
( ) ( ) ( ) (2)

, 1 2

( ) ( ) (2)
, 1 2

[ | , , ]

[ | , , ]

i l l
v v p j

l l
v p j

L E L

Var L

 



 D D M

D D M
 (5.47) 
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where ( ) ( ) (2)
, 1 2[ | , , ]l l

v p jE L D D M  and ( ) ( ) (2)
, 1 2[ | , , ]l l

v p jVar L D D M  can be determined using 

(5.40), (5.41) and (5.42) except that the samples from the most recently updated posterior PDF 

p(θ|D1
(l),D2

(l),Mj
(2)) are used instead of p(θ|D1

(l),Mj
(2)). By comparing Tables 5.13-5.15 and Table 

5.19, it can be seen that the consistency of the model classes improves over the case without 

data D2
(l). 

The accuracy of the model classes Mj
(2), j =1, 2, 3, in predicting δLv using data D1

(l)
 and D2

(l) 

can be assessed, similar to the case without data D2
(l), by evaluating i) P(ev,p

(i)≤b%|D1
(l), D2

(l), 

Mj
(2)), i=1, 2…, Nv, which can be determined using (5.38) except that the samples from the most 

recently updated posterior PDF p(θ|D1
(l),D2

(l),Mj
(2)) are used instead, and ii) the average 

prediction error probability P(ev,p≤b%|D1
(l), D2

(l), Mj
(2)) of a model class updated using data D1

(l)
 

and D2
(l) which can be obtained by taking the arithmetic mean of P(ev,p

(i) ≤b%|D1
(l), D2

(l), Mj
(2)), 

i=1, 2…, Nv. The corresponding results are not shown here for brevity but they show high 

probability that the prediction errors for each model class will be less than 5%, with even higher 

probabilities for 10%.. 

Since the system involved in this experiment is just a longer bar subjected to the same load 

with the same boundary conditions and other geometrical properties, it is reasonable to use the 

data collected in the most recent experiment to update the uncertainties in the model parameters 

considered in the previous experiment. However, if the system in the validation experiment was 

very different from that in the previous experiment, additional parameters may have to be 

introduced to take into account the additional uncertainties involved. 
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Table 5.13 Results of predicting δLv using data D1
(1) from the calibration experiment 

 M1
(2) M2

(2) M3
(2) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤5%|D1
(1),Mj

(2)) 0.469,0.775 

(0.622) 

0.481,0.778 

(0.629) 

0.470, 0.769 

(0.620) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤10%| D1
(1),Mj

(2)) 0.928,0.968 

(0.948) 

0.930;0.981 

(0.955) 

0.924,0.976 

(0.950) 

5 percentile/95percentile of δLv,p 2.00×10-4,2.22×10-4 2.00×10-4,2.23×10-4 1.99×10-4,2.23×10-4

( ) (1) (2)
, 1

(1) (2)
, 1

[ | , ]

[ | , ]

i
v v p j

v p j

L E L

Var L

 



 D M

D M
 

-1.40,-0.73 -1.55,-0.82 -1.30,-0.66 

 

Table 5.14 Results of predicting δLv using data D1
(2)

 from the calibration experiment 

 M1
(2) M2

(2) M3
(2) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤5%|D1
(2),Mj

(2)) 0.372,0.729, 

0.372,0.835 

(0.577) 

0.347,0.752, 

0.347,0.862 

(0.577) 

0.374,0.744, 

0.374,0.849 

(0.585) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤10%|D1
(2),Mj

(2)) 0.931,0.992, 

0.931,0.995  

(0.920) 

0.944,0.995, 

0.944,0.998 

(0.970) 

0.932,0.992, 

0.932,0.997  

(0.963) 

5 percentile/95percentile of δLv,p 2.04×10-4,2.22×10-4 2.04×10-4,2.21×10-4 2.04×10-4,2.22×10-4

( ) (2) (2)
, 1

(2) (2)
, 1

[ | , ]

[ | , ]

i
v v p j

v p j

L E L

Var L

 



 D M

D M
 

-2.17,-1.26, 

-2.17,-0.90 

-2.31,-1.34, 

-2.31,-0.95 

-2.31,-1.22, 

-2.13,-0.86 
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Table 5.15 Results of predicting δLv using data D1
(3)

 from the calibration experiment 

 M1
(2) M2

(2) M3
(2) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤5%|D1
(3),Mj

(2)) 0.325,0.732,  

0.325,0.844, 

0.579,0.325, 

0.732,0.943, 

0.149,0.844 

(0.579) 

0.368,0.774,  

0.368,0.882, 

0.624,0.368, 

0.774,0.956, 

0.160,0.882 

(0.615) 

0.327,0.730,  

0.327,0.846, 

0.579,0.327, 

0.730,0.944, 

0.137,0.846 

(0.579) 

P(|δLv,p−δLv
(i)|/|δLv

(i)|≤10%|D1
(3),Mj

(2)) 0.940,0.994, 

0.940,0.997, 

0.984,0.940, 

0.994,0.999, 

0.815,0.997 

(0.960) 

0.956,0.997,  

0.956,0.998, 

0.988,0.956, 

0.997,0.999, 

0.854,0.998 

(0.970) 

0.943,0.993, 

0.943,0.999, 

0.984,0.943, 

0.993,0.999, 

0.817,0.999 

(0.961) 

5 percentile/95percentile of δLv,p 2.05×10-4,2.22×10-4 2.05×10-4,2.21×10-4 2.05×10-4,2.21×10-4

( ) (3) (2)
, 1

(3) (2)
, 1

[ | , ]

[ | , ]

i
v v p j

v p j

L E L

Var L

 



 D M

D M
 

-2.40,-1.42 

-2.40,-1.02 

-1.81,-2.40 

-1.42,-0.43 

-2.99,-1.02 

-2.40,-1.38 

-2.40,-0.97 

-1.79,-2.40 

-1.38,-0.35 

-3.01,-0.97 

-2.41,-1.42 

-2.40,-1.03 

-1.82,-2.41 

-1.42,-0.44 

-3.00,-1.03 
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Table 5.16 Statistical results using data D2
(1) from the validation experiment in addition to 

D1
(1) 

 M1
(2) M2

(2) M3
(2) 

μs (Pa-1)    

σs
2(Pa-2) 

ls(m) 

r 

Parameter 

Statistics 

  

 

 

R 

8.60×10-11;1.7% 

1.11×10-22;39.8%

0.0238;82.0% 

 

 

1 0.03 0.22

1 0.09

1

 
 
 
  

8.60×10-11;1.5% 

1.14×10-22;44.5% 

0.0229;51.2% 

 

 

1 0.01 0.02

1 0.10

1

 
  
  

8.60×10-11;1.4% 

1.08×10-22;37.1% 

0.0218;66.7% 

1.81;44.1% 

1 0.10 0.03 0.10

1 0.08 0.02

1 0.04

1

 
 
 
 
 
 

 

Log evidence  192.08 192.07 192.81 

E[lnp(D1
(1),D2

(1)|θ,Mj
(2))] 198.58 198.67 198.77 

Expected 

Information gain  

  6.51   6.60   5.96 

P(Mj
(2)|D1

(1),D2
(1),M2)  0.246  0.244  0.510 

P(F|D1
(1),D2

(1), Mj
(2)) 3.47×10-3(14.4%) 4.42×10-4(17.7%) 9.32×10-4(17.7%) 

P(F|D1
(1),D2

(1), M2) 1.44×10-3 
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Table 5.17 Statistical results using data D2
(2) from the validation experiment in addition to 

D1
(2) 

 M1
(2) M2

(2) M3
(2) 

μs (Pa-1)    

σs
2(Pa-2) 

ls(m) 

r 

Parameter 

Statistics 

 

  

 

 

  R 

8.72×10-11;0.90% 

6.04×10-23;23.5% 

0.0386;33.3% 

 

 

1 0.15 0.11

1 0.03

1

 
  
  

8.71×10-11;0.84% 

6.40×10-23;22.8% 

0.0341;25.2% 

 

 

1 0.08 0.22

1 0.29

1

 
  
  

8.74×10-11;0.89% 

6.17×10-23;22.6% 

0.036;35.5% 

1.83;45.2 % 

1 0.005 0.15 0.25

1 0.15 0.14

1 0.16

1

  
   
 
 
 

Log evidence  749.95 750.84 751.41 

E[lnp(D1
(2),D2

(2)|θ,Mj
(2))] 758.44 758.92 758.73 

Expected 

Information gain  

8.48 8.08 7.32 

P(Mj
(2)|D1

(2),D2
(2),M2)  0.129 0.315 0.556 

P(F|D1
(2),D2

(2), Mj
(2)) 1.82×10-4(16.5%) 1.84×10-5(24.8%) 3.51×10-4(15.5%) 

P(F|D1
(2),D2

(2), M2) 2.25×10-4 
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Table 5.18 Statistical results using data D2
(3) from the validation experiment in addition to 

D1
(3) 

 M1
(2) M2

(2) M3
(2) 

μs (Pa-1)    

σs
2(Pa-2) 

ls(m) 

r 

Parameter 

Statistics 

 

  

 

 

  R 

8.70×10-11;0.62% 

6.00×10-23;17.2% 

0.0383;25.4% 

 

 

1 0.02 0.08

1 0.14

1

 
  
  

8.68×10-11;0.63% 

5.80×10-23;17.8% 

0.0384;19.0% 

 

 

1 0.04 0.10

1 0.10

1

 
  
  

8.68×10-11;0.6% 

5.70×10-23;20.1% 

0.0398;25.6% 

1.79;39.6% 

1 0.02 0.10 0.13

1 0.28 0.26

1 0.41

1

  
  
 
 
 

 

Log evidence  1174.56 1173.82 1173.83 

E[lnp(D1
(3),D2

(3)|θ,Mj
(2))] 1182.70 1182.83 1182.72 

Expected 

Information gain  

8.14 9.01 8.90 

P(Mj
(2)|D1

(3),D2
(3),M2)  0.510 0.244 0.246 

P(F|D1
(3),D2

(3), Mj
(2)) 1.32×10-5(20.6%) 3.43×10-6(32.1%) 1.99×10-5(22.2%) 

P(F|D1
(3),D2

(3), M2) 1.25×10-5 

Table 5.19 Consistency assessment of model classes in predicting δLv using data D2
(l) from 

the validation experiment in addition to D1
(l) from the calibration experiment 

 M1
(2) M2

(2) M3
(2) 

Data case 1, l=1 -0.79,-0.06

 

-0.82,-0.05

 

-0.87,-0.08 

Data case 2, l=2 -1.39,-0.55,

-1.39,-0.21

-1.49,-0.57,

-1.49,-0.20

-1.50,-0.64,

-1.50,-0.29

Data case 3, l=3 -1.30,-0.43,

-1.30,-0.08,

-0.78,-1.30,

-0.43,0.44,

-1.83,-0.08

-1.34,-0.42,

-1.34,-0.05,

-0.79,-1.34,

-0.42,0.50,

-1.90,-0.05

-1.33,-0.43,

-1.33,-0.07,

-0.79,-1.33,

-0.43,0.47,

-1.87,-0.07
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5.3 Using data D3
(l) from the accreditation experiment 

Candidate model classes for the subsystem in the accreditation experiment are Mj
(3), j=1,2,3. 

The uncertain parameters θ(3, j) for Mj
(3) are the same as θ(2, j) for Mj

(2). The “prior” PDF p(θ(3, 

j)|D1
(l), D2

(l), Mj
(3)) for Mj

(3) is given by the “posterior” PDF p(θ(2, j)|D1
(l), D2

(l), Mj
(2)) for Mj

(2). 

Similar analyses to before are carried out as follows. Data D3
(l)

 = {wa
(i), i=1,…, Na} from the 

accreditation experiment are used to investigate the predictive performance of the model classes. 

The probability that the response wa,p (the vertical displacement of point Q of the frame 

structure in the accreditation experiment) predicted using the model classes updated by data 

from the previous two experiments is within a certain b% of the measured quantity wa
(i) is given 

by the following updated robust predictive PDF conditioned on D1
(l)and D2

(l):  

 

( ) ( ) ( ) (3) ( ) (3) ( ) ( ) (3)
, 1 2 , 1 2

( ) (3) ( ) ( ) (2)
, 1 2

( % | , ) ( % | , ) ( | , , )

( % | , ) ( | , , )

i l l i l l
a p j a p j j

i l l
a p j j

P e b P e b p d

P e b p d

  

 




θ θ θ

θ θ θ

D D ,M M D D M

M D D M
 (5.48) 

where  

 
( )

,( )
, ( )

i
a p ai

a p i
a

w w
e

w


  (5.49) 

For the model class Mj
(3), j=1, 2, 3, given θ, it can be shown that the response wa,p follows a 

Gaussian distribution with mean μa =Kaμs and variance σa, j
2= σs

2sa, j(ls,r) where Ka is given as 

follows: 
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3

11 1 2 2 4 4

1 2 4

1
[ 2( )]

2 48
a

a

F LF L F L F L
K

A A A I
     (5.50) 

The expression for sa,j is given in the Appendix C. Thus, 

( ) ( ) ( ) (3)
, 1 2

( ) ( )

( ) ( ) ( ) (2)
1 2

, ,

( ) ( ) ( ) ( )
( )

( )
,

( % | , , )

(1 ) ( ) (1 ) ( )
100 100sgn( ) [ ( ) ( )] ( | , , )

( ) ( )

(1 ) ( ) (1 ) ( )sgn( ) 100 100( ) (
( )

i l l
a p j

i i
a a a a

i l l
a j

a j a j

i k i k
i a a a a

a
k

a j

P e b

b b
w w

w p d

b b
w ww

K

 

 

 





   
  

   
  


θ θ

θ θ
θ θ

θ θ

θ

D D M

D D M

( )
1 ,

)
( )

K

k
k a j
 θ

  

(5.51) 

where ( )kθ , k=1,2,...,K, are posterior samples from p(θ|D1
(l),D2

(l),Mj
(2)).  

Tables 5.20, 5.21 and 5.22 show the results for P(ea,p
(i)≤b%|D1

(l),D2
(l),Mj

(3)) (the numbers 

outside the parenthesis) and the average prediction error probability P(ea,p≤b%|D 1
(l),D2

(l),Mj
(3)) 

(the numbers inside the parenthesis), for j=1, 2, 3, and b=5 and 10 using D1
(l)

 and D2
(l)

 data cases 

1, 2 and 3, respectively. It can be seen from these tables that for all three data cases, the model 

classes Mj
(3) (and so Mj

(2)),  j=1, 2, 3, updated using D1
(l)

 and D2
(l), are sufficiently accurate. It is 

noted that all P(ea,p≤5%|D 1
(l),D2

(l),Mj
(3)) are larger than 0.84 implying that there is a high 

probability for the response prediction by the model classes to be within 5% of the actual 

response measurements. 
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The difference between the measured quantity wa
(i) and the posterior mean 

( ) ( ) (3)
, 1 2[ | , , ]l l

a p jE w D D M  of the robust predicted response (measured in terms of the number of 

posterior standard deviations ( ) ( ) (3)
, 1 2[ | , , ]l l

a p jVar w D D M ) is given by: 

 
( ) ( ) ( ) (3)

, 1 2( )
, ( ) ( ) (3)

, 1 2

[ | , , ]

[ | , , ]

i l l
a a p ji

a j l l
a p j

w E w
c

Var w




D D M

D D M
 (5.52) 

where ( ) ( ) (3)
, 1 2[ | , , ]l l

a p jE w D D M  is given by: 

( ) ( ) (3) ( ) ( ) (3)
, 1 2 1 2

( ) ( ) (2)
1 2

( ) ( ) (3) ( )
1 2

1

[ | , , ] ( ) ( | , , )

( ) ( | , , )

( , , )

l l l l
a p j a j

l l
a j

K
l l ka

a s s j s s
k

E w p d

p d

K
K p d

K





   






 






θ θ θ

θ θ θ

D D M D D M

D D M

|D D M

 (5.53) 

where ( )k
s  is the first component of ( )kθ , where ( )kθ , k=1,2,...,K, are posterior samples from 

p(θ|D1
(l),D2

(l),Mj
(2)). ( ) ( ) (3)

, 1 2[ | , , ]l l
a p jVar w D D M  is given by:   

 ( ) ( ) (3) 2 ( ) ( ) (3) 2 ( ) ( ) (3)
, 1 2 , 1 2 , 1 2[ | , , ] [ | , , ] [ , , ]l l l l l l

a p j a p j a p jVar w E w E w D D M D D M |D D M  (5.54) 

where 2 ( ) ( ) (3)
, 1 2[ | , , ]l l

a p jE w D D M  is given by: 

2 ( ) ( ) (3) 2 2 ( ) ( ) (3)
, 1 2 , 1 2

2 2 ( ) ( ) (2) 2 ( ) 2 ( )
, 1 2 ,

1

[ | , , ] [ ( ) ( )] ( | , , )

1
[ ( ) ( )] ( | , , ) [ ( ) ( )]

l l l l
a p j a a j j

K
l l k k

a a j j a a j
k

E w p d

p d
K

 

   


 

   





θ θ θ θ

θ θ θ θ θ θ

D D M D D M

D D M
 (5.55) 
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The last rows of Tables 5.20, 5.21 and 5.22 show the results for ca,j
(i), j=1, 2, 3, using D1

(l)
 and 

D2
(l) data cases 1, 2 and 3, respectively. It can be seen from these tables that for all three data 

cases, the model classes Mj
(3) (and so Mj

(2)), j=1, 2, 3, updated using D1
(l)

 and D2
(l) are 

sufficiently consistent since the results are all within a standard deviation. 

    Using data D3
(l), which is modelled as stochastically independent of D1

(l)
 and D2

(l) given θ, 

one can update the uncertainties in θ for all the model classes using Bayes’ Theorem with the 

previous posterior PDF p(θ|D1
(l),D2

(l),Mj
(2)) as the prior p(θ|D1

(l),D2
(l),Mj

(3)): 

 ( ) ( ) ( ) (3) 1 ( ) (3) ( ) ( ) (3)
1 2 3 3 3 1 2( | , , , ) ( | , ) ( | , , )l l l l l l

j j jp c p pθ θ θD D D M D M D D M  (5.56) 

where the likelihood function is given by: 

 ( ) (3) ( ) 2
3 / 22 2

1, ,

1 1
( | , ) exp( ( ( ))

(2 ( ) ) 2 ( )

a

a

N
l i

j a aN
ia j a j

p w 
  

  θ θ
θ θ

D M  (5.57) 

The evidence p(D1
(l),D2

(l),D3
(l)|Mj

(3)) for model class Mj
(3) that is provided by the data D1

(l), D2
(l) 

and D3
(l)

 is given by: 

 ( ) ( ) ( ) (3) ( ) ( ) (3) ( ) ( ) ( ) (3)
1 2 3 1 2 3 1 2( , , | ) ( , | ) ( | , , )l l l l l l l l

j j jp p pD D D M D D M D D D M  (5.58) 

where p(D1
(l),D2

(l)|Mj
(3)) has already been determined and p(D3

(l)|D1
(l),D2

(l),Mj
(3)) is given by: 

 ( ) ( ) ( ) (3) ( ) (3) ( ) ( ) (3)
3 1 2 3 1 2( | , , ) ( | , ) ( | , , )l l l l l l

j j jp p p d  θ θ θD D D M D M D D M  (5.59) 

which is determined using the same stochastic simulation method as before. The samples from 

the prior p(θ|D1
(l),D2

(l),Mj
(3)) obtained from the previous analyses are used.  
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The system involved in this accreditation experiment is a lot more complicated than the 

one in the validation experiment. In practice, one may want to consider introducing additional 

parameters to take into account the additional uncertainties involved. Nonetheless, for 

illustration, we have kept the same number of uncertain parameters as before, which is 

consistent with the statement of the validation challenge problem, and use data D3
(l)

 to update 

the uncertainties in the parameters. Tables 5.23, 5.24 and 5.25 show the statistical results using 

data D3
(l)

 in addition to the data from the previous experiments D1
(l) and D2

(l) for the three data 

cases of Na = 1, 1 and 2 respectively. Compared to Tables 5.16, 5.17 and 5.18, some of the 

differences observed in the posterior mean, c.o.v. and correlation coefficient of parameters are 

due to: 1) additional information provided by the additional data D3
(l); and 2) uncertainties of the 

estimators due to a finite number of samples used in stochastic simulation. Similar to before, it 

can be seen from the posterior correlation coefficient matrix that there is only weak correlation 

between most pairs of parameters. The posterior mean of r in M3
(3)

 is very close for all 3 data 

cases: 1.77, 1.90 and 1.81 but the uncertainty in r is still significant since D3
(l) provides only 1 

or 2 additional data. The results show that given D1
(l), D2

(l)
 and D3

(l), M1
(3), M2

(3) and M3
(3)

 are 

significantly probable and the posterior probabilities are essentially unchanged from Tables 5.16, 

5.17 and 5.18,. Thus, all of the model classes M1
(3), M2

(3) and M3
(3) are utilized to make robust 

predictions. 

It can also be seen from Tables 5.23, 5.24 and 5.25 that the predicted robust failure 

probability P(F|D1
(l),D2

(l),D3
(l),M2

(3)) of the target frame structure using model class M2
(3)

 is 

again smaller than that using model classes M1
(3) and M3

(3)
, especially for data cases 2 and 3. For 

data cases 1, 2 and 3, the predicted hyper-robust failure probabilities P(F|D1
(l),D2

(l),D3
(l),M3) are 
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4.18×10-4, 1.48×10-4 and 1.51×10-5, respectively, showing that the predicted failure probability 

of the target system depends on the uncertainties in the model parameters, which in turn 

depends on the amount of data and the model classes under consideration. By comparing Tables 

5.16-5.18 and Tables 5.23-5.25, it can be seen that the predicted hyper-robust failure probability 

changes little compared to that based on only data D1
(l) and D2

(l)
 for the large data cases 2 and 3. 

P(F|D1
(l),D2

(l),D3
(l),M2

(3))P(M2
(3)|D1

(l),D2
(l),D3

(l),M3) is small compared to P(F|D1
(l),D2

(l),D3
(l),M3) 

and thus the contribution of M2
(3) to the prediction quantity of interest is small.  

Table 5.26 shows the results for checking the consistency of the model classes Mj
(3), j =1, 2, 

3, in predicting the response wa using data D1
(l)

, D2
(l) and D3

(l):  

 
( ) ( ) ( ) ( ) (3)

, 1 2 3

( ) ( ) ( ) (3)
, 1 2 3

[ | , , ]

[ | , , ]

i l l l
a a p j

l l l
a p j

w E w

Var w

 D D D ,M

D D D M
 (5.60) 

where ( ) ( ) ( ) (3)
, 1 2 3[ | , , ]l l l

a p jE w D D D ,M  and ( ) ( ) ( ) (3)
, 1 2 3[ | , , , ]l l l

a p jVar w D D D M  can be determined 

by using (5.53), (5.54) and (5.55) except that the samples from the most recently updated 

posterior PDF p(θ|D1
(l),D2

(l), D3
(l), Mj

(3)) are used instead. By comparing Tables 5.20-5.22 and 

Table 5.26, it can be seen that the consistency of the model classes is similar to the case without 

data D3
(l) since D3

(l) provides only one or two additional data. 

The accuracy of the model classes Mj
(3), j =1, 2, 3, in predicting wa using data D1

(l), D2
(l) and 

D3
(l) can be assessed, similar to the case without data D3

(l), by evaluating i) P(ea,p
(i)≤b%|D1

(l), 

D2
(l), D3

(l), Mj
(3)), i=1,…, Na, which can be determined using (5.51) except that the samples from 

the most recently updated posterior PDF p(θ|D1
(l),D2

(l), D3
(l),Mj

(3)) are used instead, and ii) the 

average prediction error probability P(ea,p≤b%|D1
(l), D2

(l), D3
(l), Mj

(3)) of a model class updated 
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using data D1
(l), D2

(l) and D3
(l) which can be obtained by taking the arithmetic mean of 

P(ea,p
(i)≤b%|D1

(l), D2
(l), D3

(l), Mj
(3)), i=1, 2…, Nv. The corresponding results are not shown here 

for brevity but they show high prediction accuracy (high probability of prediction errors less 

than 5%). 

Table 5.20 Results of predicting wa using data D2
(1) from the validation experiment in 

addition to D1
(1) from the calibration experiment 

 M1
(3) M2

(3) M3
(3) 

P(|wa,p−wa
(i)|/|wa

(i)|≤5%|D1
(1),D2

(1),Mj
(3)) 0.866 0.879 0.884

P(|wa,p−wa
(i)|/|wa

(i)|≤10%|D1
(1),D2

(1),Mj
(3)) 0.982 0.988 0.989

( ) (1) (1) (3)
, 1 2

(1) (1) (3)
, 1 2

[ | , , ]

[ | , , ]

i
a a p j

a p j

w E w

Var w

 D D M

D D M
 

-0.05 -0.07 -0.04

Table 5.21 Results of predicting wa using data D2
(2) from the validation experiment in 

addition to D1
(2) from the calibration experiment 

 M1
(3) M2

(3) M3
(3) 

P(|wa,p−wa
(i)|/|wa

(i)|≤5%|D1
(2),D2

(2),Mj
(3)) 0.865 0.895 0.863 

P(|wa,p−wa
(i)|/|wa

(i)|≤10%|D1
(2),D2

(2),Mj
(3)) 0.996 0.998 0.995

( ) (2) (2) (3)
, 1 2

(2) (2) (3)
, 1 2

[ | , , ]

[ | , , ]

i
a a p j

a p j

w E w

Var w

 D D M

D D M
 

0.37 0.38 0.46 
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Table 5.22 Results of predicting wa using data D2
(3) from the validation experiment in 

addition to D1
(3) from the calibration experiment 

 M1
(3) M2

(3) M3
(3) 

P(|wa,p−wa
(i)|/|wa

(i)|≤5%|D1
(3),D2

(3),Mj
(3)) 0.896,0.788

(0.842) 

0.907,0.782

(0.844) 

0.902,0.795 

(0.848) 

P(|wa,p−wa
(i)|/|wa

(i)|≤10%|D1
(3),D2

(3),Mj
(3)) 0.997,0.992

(0.994) 

0.999,0.995,

(0.997) 

0.9995,0.994 

(0.997) 

( ) (3) (3) (3)
, 1 2

(3) (3) (3)
, 1 2

[ | , , ]

[ | , , ]

i
a a p j

a p j

w E w

Var w

 D D M

D D M
 

0.26,-0.89 0.24,-0.96 0.26,-0.94 

Table 5.23 Statistical results using data D3
(1) from the accreditation experiment in addition 

to D1
(1) and D2

(1) 

 M1
(3) M2

(3) M3
(3) 

μs (Pa-1)     

σs
2(Pa-2) 

ls(m) 

r 

Parameter 

Statistics 

 

 

 

R 

8.60×10-11;1.2% 

1.08×10-22;39.1% 

0.0197;73.7% 

 

 

1 0.01 0.06

1 0.18

1

 
  
  

8.61×10-11;1.2% 

1.08×10-22;44.4% 

0.0190;55.0% 

 

 

1 0.06 0.06

1 0.13

1

 
  
  

8.61×10-11;1.1% 

1.02×10-22;34.9% 

0.0175;60.6% 

1.83;42.4% 

 

 

1 0.15 0.01 0.10

1 0.04 0.03

1 0.02

1

 
  
 
 
 

Log evidence  202.03 202.07 202.84 

P(Mj
(3)|D1

(1),D2
(1),D3

(1),M3)  0.233 

 

0.243 0.524 

P(F|D1
(1),D2

(1),D3
(1), Mj

(3)) 7.39×10-4 (26.9 %) 1.95×10-4(25.9%) 3.06×10-4(27.1%) 

P(F|D1
(1),D2

(1),D3
(1), M3) 3.80×10-4 
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Table 5.24 Statistical results using data D3
(2) from the accreditation experiment in addition 

to D1
(2) and D2

(2) 

 M1
(3) M2

(3) M3
(3) 

μs (Pa-1)     

σs
2(Pa-2) 

ls(m) 

r 

Parameter 

Statistics  

 

 

  R 

8.71×10-11;0.8% 

6.03×10-23;23.9% 

0.0364;33.1% 

 

 

1 0.16 0.13

1 0.14

1

 
  
  

8.71×10-11;0.82% 

6.25×10-23;22.9% 

0.0339;24.7% 

 

 

1 0.12 0.19

1 0.30

1

 
  
  

8.73×10-11;0.8% 

6.01×10-23;22.1% 

0.0358;34.7% 

1.92;41.9% 

 

 

1 0.03 0.11 0.28

1 0.10 0.13

1 0.17

1

  
   
 
 
 

Log evidence  759.79 760.73 761.24 

P(Mj
(3)|D1

(2),D2
(2),D3

(2),M3) 0.128 0.327 0.545 

P(F|D1
(2),D2

(2),D3
(2), Mj

(3)) 8.34×10-5(21.0%) 1.21×10-5(20.4%) 1.94×10-4(18.0 %) 

P(F|D1
(2),D2

(2),D3
(2), M3) 1.20×10-4 
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Table 5.25 Statistical results using data D3
(3) from the accreditation experiment in addition 

to D1
(3) and D2

(3) 

 M1
(3) M2

(3) M3
(3) 

μs (Pa-

1)             

σs
2(Pa-

2) 

ls(m) 

r 

Parameter 

Statistics  

 

 

  R 

8.69×10-11;0.57% 

5.88×10-23;18.0% 

0.0374;25.5% 

 

 

1 0.04 0.06

1 0.17

1

 
  
  

 

8.69×10-11;0.59% 

5.75×10-23;17.5% 

0.0378;18.9% 

 

 

1 0.06 0.09

1 0.19

1

 
  
  

 

8.69×10-11;0.6% 

5.61×10-23;20.0% 

0.0392;26.5% 

1.81;40.4% 

1 0.06 0.16 0.18

1 0.30 0.21

1 0.36

1

  
  
 
 
 

 

Log evidence  1193.94 1193.21 1193.21 

P(Mj
(3)|D1

(3),D2
(3),D3

(3),M3) 0.510 0.245 0.245 

P(F|D1
(3),D2

(3),D3
(3), Mj

(3)) 8.98×10-6(11.8%) 1.29×10-6(16.6%) 2.68×10-5(20.0%) 

P(F|D1
(3),D2

(3),D3
(3), M3) 1.14×10-5 

 

Table 5.26 Consistency assessment of model classes in predicting wa using data D3
(l) from 

the accreditation experiment in addition to D1
(l) from the calibration experiment and D2

(l) 

from the validation experiment 

 M1
(3) M2

(3) M3
(3) 

Data case 1, l=1 -0.0745 

 

-0.0398 -0.0316 

Data case 2, l=2 0.3507 0.3534 0.4214 

Data case 3, l=3 0.2975,-0.8822 0.2771,-0.9396 0.2843, -0.9177 
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6 CONCLUDING REMARKS 

A novel methodology based on Bayesian updating of hierarchical stochastic system model 

classes is proposed for uncertainty quantification, model updating, model selection, model 

validation and robust prediction of the response of a system for which some subsystems have 

been separately tested. It uses full Bayesian updating of the model classes, along with model 

class comparison and prediction consistency and accuracy assessment. In the proposed 

methodology, all the results are rigorously derived from the probability axioms and all the 

information in the available data are considered to make predictions. The concepts and 

computational tools of the proposed methodology are illustrated with a previously-studied 

validation challenge problem, although the methodology can handle a more general process of 

hierarchical subsystem testing. 

As shown by the illustrative example, within a model class, there are many plausible 

models and the predictions of response and failure probability of the final system can often vary 

greatly from one model to another, showing that the consequences of the uncertainties in the 

parameters are significant. Ignoring the uncertainty in the modeling parameters and solely 

relying on the MAP model (corresponding to the maximum of the posterior PDF) or the MLE 

model (corresponding to the maximum likelihood parameter value) for predictions can be 

dangerous and misleading since such predictions can greatly underestimate the failure 

probability and the uncertainty in the response. It is shown how more robust predictions by a 

model class can be obtained by taking into account the predictions from all the plausible models 

in the model class where the plausibilities are quantified by their respective posterior PDF 

values. 
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Multiple model classes are investigated for the illustrative example. The response and 

failure probability prediction vary greatly from one model class to another. Hyper-robust 

predictions of response and failure probability are also obtained by a weighted average of the 

robust predictions given by each model class where the weight is given by the posterior 

probability of the model class. The posterior probability of one of the candidate model classes is 

so small based on the calibration data that its contribution to the prediction is negligible, so it is 

discarded from further predictive analysis after the calibration tests. 

The computational problems resulting from full Bayesian updating of hierarchical model 

classes, as well as model class comparison, can be challenging, especially for problems with 

many uncertain parameters. A number of powerful computational tools based on stochastic 

simulation are used to solve efficiently the computational problems involved; in particular, for 

the illustrative example studied, the Hybrid Gibbs TMCMC algorithm worked well. 

If a model class performs well in predicting the response for the subsystems involved in all 

of the experiments, one can gain more confidence in its predictive performance for the final 

constructed system. However, it should be stressed that 1) whether the predictive performance 

of the model classes is acceptable or not depends on which criteria the decision maker thinks are 

critical, and 2) there is no guarantee that a model class which performs well enough to satisfy 

the selected criteria in predicting the response of the subsystems in these experiments will 

always predict the response of the final system well, especially in the case where some of the 

uncertainties in the final system which are critical to the prediction are not present in the 

subsystem tests (for example, there can be uncertainties in support or joint conditions in the 

final system, and uncertainties in input loadings, such as stronger amplitude inputs which may 
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be experienced by the final system that cause it to behave very differently than the subsystems 

during their tests).  

Although it did not occur in the illustrative example, in the case where all candidate model 

classes give poor performance in predicting the response for subsystems involved in an 

experiment, one should check whether some of the uncertainties have not been adequately 

modeled in the failing subsystem tests and, if so, modify the candidate model classes to properly 

take into account these uncertainties.  

To test the performance of the proposed methodology, future work should use data 

collected from real systems, preferably with a larger degree of complexity than the one 

considered in the illustrative example of this report. 
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APPENDIX A 

For a one-dimensional linearly elastic bar with Young’s modulus E(x) where 0≤x≤L, the 

elongation δL of each rod of length L and area A subject to an axial force F is given by:  

 
0

1

( )
  

LF
L dx

A E x
 (A.1) 

For the accreditation experiment, the vertical displacement wa of the beam 1 at the midpoint Q 

subject to a vertical force Fa is given by: 

 
1

2

0

( )
( ) / 2

( )

    
L

a
a B C

F x
w y y dx

I E x
 (A.2) 

where L1 and I are the length and the cross-sectional moment of inertia of beam 1 respectively 

and the hinge displacements δyB at hinge B and δyC at hinge C are given by: 

 

1

21

3

4

0 0 1 0

0 0 0 1


 
 





 
               
 

B
a

C

L

y L
T

y L

L

 (A.3) 

where Ta is given by: 

 

1 1 0 0

1/ 2 0 1/ 2 0

0 0 0 1

0 1/ 2 0 1/ 2

 
 
    
 
  

aT  (A.4) 



 

 87

The function φ(x) is given by: 

 1

1 1 1

/ 2,0 / 2
( )

( ) / 2, / 2


 
    

x x L
x

L x L x L
 (A.5) 

The elongation δLi of rod i of length Li, area Ai and Young’s modulus Ei(x) in the frame 

structure due to axial force Fi is given by: 

 
0

1

( )
  

iL
i

i
i i

F
L dx

A E x
 (A.6) 

The values of Li, Ai and Fi can be obtained from Tables 5.3 and 5.4. 

For the prediction, the vertical displacement wp of the beam 4 at the midpoint P subject to a 

uniformly distributed vertical load q is given by: 

 
,4

,40
,4

( )
( ) / 2 ( )

2 ( )


    

pL p
p B C p

p p

xq
w y y L x x dx

I E x
 (A.7) 

where Lp,4 and Ip are the length and the cross-sectional moment of inertia of beam 4 respectively 

and the hinge displacements δyB at hinge B and δyC at hinge C are given by: 

 

,1

,21

,3

,4

0 0 1 0

0 0 0 1




 





 
 

              
  

p

pB
p

C p

p

L

Ly
T

y L

L

 (A.8) 

where Tp is given by: 
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1/ 2 0 1/ 2 0

0.7926 0 0.6097 0

0 0.5735 0 0.8192

1 1 0 0

 
 
    
 

  

pT  (A.9) 

The function φ(x) is given by: 

 
,4

,4 ,4 ,4

/ 2,0 / 2
( )

( ) / 2, / 2


     

p

p
p p p

x x L
x

L x L x L
 (A.10) 

The elongation δLp,i of rod i of length Lp,i, area Ap,i and Young’s modulus Ep,i(x) in the frame 

structure due to axial force Fp,i is given by: 

 ,
, 0

, ,

1

( )
  

iLp i
p i

p i p i

F
L dx

A E x
 (A.11) 

The values of Lp,i, Ap,i, and Fp,i can be obtained from Tables 5.1 and 5.2. 
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APPENDIX B: HYBRID GIBBS TMCMC ALGORITHM for 

POSTERIOR SAMPLING 

Part of our methodology involves a sequential update of the posterior PDF given the data from 

the experiments collected from the subsystems. The following algorithm is proposed for this 

purpose. At the end of the experiment where data are collected from the i-th subsystem, we 

need to characterize p(θ|Di,Mj
(i)) given the data Di collected from the most current subsystem 

experiment and all the data Di-1 ={D1,…, Di-1} collected from the previous subsystem 

experiments, where Di = Di-1∪Di. The prior PDF corresponding to this posterior PDF is p(θ|Di-

1,Mj
(i)) from which samples have been previously generated and the evidences p(Di-1|Mj

(i)) for 

each model class Mj
(i) which have been obtained. Note that in the analysis below, we use the 

conventions p(θ|D0,Mj
(i)) = p(θ|Mj

(i)) and p(D0|Mj
(i))=1. 

For a given θ, D1,…, Di are modeled as stochastically independent. We propose a hybrid 

approach making use of the TMCMC method (Ching & Chen 2007), Metropolis Hastings 

algorithm and Gibbs sampling to generate samples from the posterior PDF π(θ)=p(θ|Di,Mj
(i))= 

p(Di|θ,Mj
(i))p(θ|Di-1,Mj

(i))/p(Di|Di-1,Mj
(i)) and to calculate the evidence p(Di|Di-1,Mj

(i)). 

Consider a sequence of intermediate PDFs πl(θ) for l=0,1,…, L, such that the first and last 

PDFs, π0(θ) and πL(θ) = π(θ), in the sequence are the prior p(θ|Di-1,Mj
(i)) and posterior 

p(θ|Di,Mj
(i)), respectively: 

 ( ) ( )
1( ) ( | , ) ( | , )l i i

l ip p D θ θ θi j jD M M  (B.1) 
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where 0=τ0<τ1<…<τL=1. Divide θ into B groups of components. Denote the b-th component 

group of θ  as bθ .  

First, N0 samples are generated from the prior p(θ|Di-1,Mj
(i)). Then do the following 

procedures for l=1,…,L. At the beginning of the l-th level, we have the samples ( )
1

m
lθ , 

m=1,2,…,Nl-1, from πl-1(θ). First, select τl such that the effective sample size 1/
1

2

1

lN

s
s

w



  = some 

threshold (e.g., 0.9 Nl-1) (Cheung & Beck 2008b), where 
1

1

/
lN

s s s
s

w w w




  and ws 

= 1 ( )
1( | , )l l s

lp  
θi jD M , s=1,2,…,Nl-1. If τl>1, then set L=l and τl=1, then recompute ws and sw . 

Compute an estimate for the sample covariance matrix for πl(θ) as follows: 

 
1 1

( ) ( ) ( )
1 1 1

1 1

( )( ) ,  
l lN N

m m T m
m l l m l

m m

w w
 

  
 

     θ θ θ θ θ θ   (B.2) 

Set El =
1

1
1

/
lN

s l
s

w N




 . Then the Nl samples ( )n

lθ  from πl(θ) are generated by doing the following 

for n=1,2,…,Nl: 

1. Draw a number s′ from a discrete distribution p(S=s)= sw , s=1,2,…,Nl-1. 

2. Fixing the last component group of θ at the values of ( ')
1,

s
l Bθ , draw the samples ( )

,1
n

lθ , …, 

( )
, 1
n

l Bθ  for the first B-1 component groups of θ, one after another, using Gibbs sampling 

as described later. Set ( ') ( )
1, ,

s n
l b l b θ θ  for b=1,…,B-1. 
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3. Fixing the first B-1 component groups at the values of ( )
,1
n

lθ , …, ( )
, 1
n

l Bθ , generate a sample 

( )
,
n

l Bθ  for the last component group of θ by the Metropolis-Hastings algorithm: Generate 

*θ  from a Gaussian PDF with mean ( ')
1,

s
l Bθ  and covariance matrix ηΣB where ΣB is the 

submatrix that corresponds to the last component group (i.e., the B-th component group) 

in the covariance matrix Σ. Compute the acceptance probability r′′=min{r′,1} where r′ 

is given by: 

( ) ( ) * ( )
,1 , 1

( ) ( ) ( ') ( )
,1 , 1 1,

1
( ) ( ) * ( ) ( ) ( ) * ( )
,1 , 1 ,1 , 1

1

( ) ( )
,1 , 1 1,

( | ,..., , )
'

( | ,..., , , )

[ ( | ,..., , , )] ( ,..., , )

[ ( | ,..., ,

i

i

n n i
l l B

n n s i
l l B l B

i
n n i n n i

t l l B l l B
t

n n
t l l B l B

p
r

p

p p

p






 



 


 






θ θ θ

θ θ θ

θ θ θ θ θ θ

θ θ θ

i j

i j

j j

D ,M

D M

D M |M

D
1

( ') ( ) ( ) ( ) ( ') ( )
,1 , 1 1,

1

, )] ( ,..., , | )
i

s i n n s i
l l B l B

t

p


 

 θ θ θj jM M

 (B.3) 

If r′′>U(0,1) where U(0,1) is a uniformly distributed number between 0 and 1, ( )
,
n

l Bθ = *θ , 

( ') *
1,

s
l B θ θ . Otherwise, ( )

,
n

l Bθ = ( ')
1,

s
l Bθ . 

Thus, the n-th sample for θ with the target PDF πl(θ) is given by ( ) ( ) ( ) ( )
,1 ,2 ,[   .... ]n n n n

l l l l Bθ θ θ θ .  

In step 3, η (e.g., 0.22) is chosen such that the average acceptance probability is larger than some 

threshold (e.g., 0.7). Other MCMC algorithms such as Hybrid Monte Carlo methods (Cheung 

and Beck 2007, 2008a) can also be used in place of the Metropolis-Hastings algorithm in step 3 

for more effective sampling, as is done in Cheung and Beck (2008a, c and d). The evidence 

p(Di|Di-1,Mj
(i)) for Mj

(i) given by data Di can be estimated as follows: 
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 ( )
1

1

( , )
L

i
i l

l

p D E


i jD | M  (B.4) 

Gibbs sampling for the posterior PDF in the illustrative example with data D1 (i=1) 

Now we describe how Gibbs sampling can be performed for the posterior PDF in the illustrative 

example with data D1 (i=1). For M1
(1)

 (i=1, j=1), θ is divided into 2 component groups: θ1= μs, 

θ2=[σs
2 σε

2]. Gibbs sampling in step 2 of the above algorithm is performed on the first 

component group as follows: draw ( )
,1
n

lθ  from a truncated Gaussian PDF (constrained to be 

positive) which is proportional to a Gaussian distribution with mean μ and variance σ2 given 

below: 
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where H11, H12 and H22 are the (1,1), (1,2) and (2,2) entries of the inverse of 2 2( , )s  C  in 

equation (5.4) with [σs
2 σε

2]= ( ')
1,2

s
lθ ; μ0 and σ0

2 are the mean and variance of the prior PDF 

p(μs|Mj
(1)) of μs respectively  

    For M4
(1)

 (i=1, j=4), θ is divided into 3 component groups: θ1= μs, θ2=σs
2, θ3=[ls

2 r]. Gibbs 

sampling in step 2 of the proposed algorithm is performed on the first two component groups as 
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follows: draw ( )
,1
n

lθ  from a truncated Gaussian PDF (constrained to be positive) which is 

proportional to a Gaussian distribution with mean μ′ and variance σ′2 given below: 
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In the above equations, σs
2 = ( ')

1,2
s

lθ  and H11, H12 and H22 are the (1,1), (1,2) and (2,2) entries of 

the inverse of C(ls, r) in equation (5.6) with [ls r] = ( ')
1,3

s
lθ . Then draw ( )

,2
n

lθ  from an inverse 

gamma distribution with PDF proportional to (θ2′)
−α′−1exp(−β′/θ2′) where α′=α+τlNc and β′ is 

given by:  

 ( ) 1 ( )

1

' [ ( )] ( , )[ ( )]
2

cN
k T kl

s s s
k

l r
   



    y μ C y μ  (B.9) 

where α and β are the parameters for the prior PDF p(σs
2|Mj

(1)) of σs
2 , the terms in the above are 

given by (5.2), (5.3) and (5.6) with μs =
( )
,1
n

lθ , [ls r] = ( ')
1,3

s
lθ . For M2

(1)
 (i=1, j=2) and M3

(1)
 (i=1, j=3), 

everything is the same as for M4
(1)

 (i=1, j=4) except that r is fixed at 1 and 2 respectively. 

Gibbs sampling for the posterior PDF in the illustrative example with data D2 (i=2) 



 

 94

Now we describe how Gibbs sampling can be performed for the posterior PDF in the illustrative 

example with data D2={D1, D2} (i=2), for M3
(2)

 (i=2, j=3), θ is divided into 3 component groups: 

θ1= μs, θ2=σs
2, θ3=[ls

2 r]. Gibbs sampling in step 2 of the proposed stochastic simulation 

algorithm is performed on the first two component groups as follows: draw ( )
,1
n

lθ  from a 

truncated Gaussian PDF (constrained to be positive) which is proportional to a Gaussian 

distribution with mean μ′′ and variance σ′′2 given below: 
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In the above equations, σs
2 = ( ')

1,2
s

lθ , [ls r] = ( ')
1,3

s
lθ ; H11, H12 and H22 are the (1,1), (1,2) and (2,2) 

entries of the inverse of C(ls, r) in (5.6); Kv is given in section 5.2; 2 2 2
, ( , , )v j s s sl r   sv, j(ls,r) 
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where sv, j(ls,r) is given in section 5.2. Then draw ( )
,2
n

lθ  from an inverse gamma distribution with 

PDF proportional to (θ2′′)
−α′′−1exp(−β′′/θ2′′) where α′′=α+Nc+τlNv/2 and β′′ is given by:  

 ( ) 1 ( ) ( ) 2

1 1

1
'' [ ( )] ( , )[ ( )] ( )
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c vN N
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s s s v v s
k kv s

l r L K
s l r

     

 

      y μ C y μ  (B.14) 

where α and β are the parameters for the PDF p(σs
2|Mj+1

(1)) of σs
2 , the terms in the above are 

given by (5.2), (5.3) and (5.6) with μs =
( )
,1
n

lθ , [ls r] = ( ')
1,3

s
lθ . For M1

(2)(i=2, j=1) and M2
(2) (i=2, j=2), 

everything is the same as for M3
(2)(i=2, j=3) except that r is fixed at 1 and 2 respectively. 

Gibbs sampling for the posterior PDF in the illustrative example with data D3 (i=3) 

Now we describe how Gibbs sampling can be performed for the posterior PDF in the illustrative 

example with data D3={D1, D2, D3} (i=3), for M3
(3)

 (i=3, j=3), θ is divided into 3 component 

groups: θ1= μs, θ2=σs
2, θ3=[ls

2 r]. Gibbs sampling in step 2 of the proposed stochastic simulation 

algorithm is performed on the first two component groups as follows: draw ( )
,1
n

lθ  from a 

truncated Gaussian PDF (constrained to be positive) which is proportional to a Gaussian 

distribution with mean μ′′′ and variance σ′′′2 given below: 
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In the above equations, σs
2 = ( ')

1,2
s

lθ , [ls r] = ( ')
1,3

s
lθ ; 2 2 2

, ( , , )a j s s sl r   sa, j(ls,r) where  

sa,j(ls,r) is given in Appendix C. Then draw ( )
,2
n

lθ  from an inverse gamma distribution with PDF 

proportional to (θ2′′′)
−α′′′−1exp(−β′′′/θ2′′′) where α′′′=α+Nc+Nv/2+τlNa/2 and β′′′ is given by:  
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where μs =
( )
,1
n

lθ , [ls r] = ( ')
1,3

s
lθ . For M1

(3)
 (i=3, j=1) and M2

(3)
 (i=3, j=2), everything is the same as 

for M3
(3)

 (i=3, j=3) except that r is fixed at 1 and 2 respectively. 

Gibbs sampling in step 3 of the hybrid Gibbs TMCMC algorithm exploits the form of 

p(θ|Di, Mj
(i)) which allows direct sampling from the conditional PDF for some groups. In the 

case where the form of p(θ|Di, Mj
(i)) cannot be exploited to carry out Gibbs sampling, step 2 is 

skipped and θ has only one component group which includes all the parameters and so the 

algorithm reduces to the original TMCMC algorithm. 



 

 97

APPENDIX C 
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where r=1 for j=2, r=2 for j=3.  
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