A Caltech Library Service

Predicting Axonal Response to Molecular Gradients with a Computational Model of Filopodial Dynamics

Goodhill, Geoffrey J. and Gu, Ming and Urbach, Jeffrey S. (2004) Predicting Axonal Response to Molecular Gradients with a Computational Model of Filopodial Dynamics. Neural Computation, 16 (11). pp. 2221-2243. ISSN 0899-7667. doi:10.1162/0899766041941934.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Axons are often guided to their targets in the developing nervous system by attractive or repulsive molecular concentration gradients. We propose a computational model for gradient sensing and directed movement of the growth cone mediated by filopodia. We show that relatively simple mechanisms are sufficient to generate realistic rajectories for both the short-term response of axons to steep gradients and the long-term response of axons to shallow gradients. The model makes testable predictions for axonal response to attractive and repulsive gradients of different concentrations and steepness, the size of the intracellular amplification of the gradient signal, and the differences in intracellular signaling required for repulsive versus attractive turning.

Item Type:Article
Related URLs:
Additional Information:© 2004 Massachusetts Institute of Technology. Received February 4, 2004; accepted April 29, 2004. Posted Online March 13, 2006. This work was funded by grants from the NIH, NSF, and Whitaker Foundation.
Funding AgencyGrant Number
Whitaker FoundationUNSPECIFIED
Issue or Number:11
Record Number:CaltechAUTHORS:20111004-152447300
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:26582
Deposited By: Tony Diaz
Deposited On:06 Oct 2011 15:10
Last Modified:09 Nov 2021 16:42

Repository Staff Only: item control page