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Effect of Distant Sidewalls on Wave-Number Selection in Rayleigh-Bénard Convection

M. C. Cross
Bell Labovatories, Murvay Hill, New Jevsey 07974

and

P. G. Daniels
Department of Mathematics, The City University, London, England

and

P. C. Hohenberg
Bell Labovatories, Muvvay Hill, New Jevsey 07974

and

E. D. Siggia
Labovatory of Atomic and Solid State Physics, Cowvnell University, Ithaca, New York 14853
(Received 10 July 1980)

An analysis is presented of the steady states of two-dimensional convection in a laterally
finite rectangular container near threshold. It is shown that the presence of sidewalls
severely restricts the allowed wave vectors which can occur in the bulk of the container.
This effect provides a possible mechanism to explain the observed wavelength increase of
convective rolls with increasing Rayleigh numbers.

PACS numbers:

There exists at present no adequate theoretical
understanding of the phenomenon of wave number
selection in cellular flows such as Rayleigh-Bé-
nard convection.!”* As a step along the way to
such an understanding, we have analyzed the
steady states of two-dimensional convection im-
mediately above threshold, in a finite rectangular
container with large aspect ratio (ratio of width
to height, 2L >1). We find that the presence of
rigid sidewalls imposes severe restrictions on
the possible wave vectors which can occur in the
bulk of the container. Specifically, at Rayleigh
number R, the band of allowed wave vectors k=4
+,, about the critical wave vector §,, is reduced
from a size I§~[(R - R,)/R,)*”? in the laterally in-
finite system, to the range 1|~ (R —R,)/R, in the
presence of rigid sidewalls (R, is the critical Ray-
leigh number of the infinite system). The pre-
cise range depends on both the Prandtl number |

47.25.Qv, 03.40.Ge, 47.10.+g

o of the fluid and the thermal properties of the
sidewalls in a way which we calculate to lowest
order in (R -R,)/R,.

Our starting system is represented by the two-
dimensional Oberbeck-Boussinesq equations??
for a layer of fluid confined between horizontal
plates, at which for mathematical convenience
we assume free boundary conditions.2*® At the
sidewalls, on the other hand, it is essential that
we impose rigid boundary conditions on the flow
velocities (1=0). The thermal boundary condi-
tion is expressed in terms of a parameter u,
proportional to the conductance of the sidewall.

Near threshold, where the effects of nonlineari-
ty are weak, the hydrodynamic equations may be
consistently expanded in a power series in the
small parameter (-:1/2, where €= (R -R )/1872,
Specifically, the stream function ¥(x,z) (whose
derivatives yield the velocities) is written in the
form?®*

Plx,2)= i(4/11)€1/"’[AO(X) exp(ig v ) — A *(X) exp(- iq v )]sinmz +O (€), (1)

in terms of the amplitude function A,(X) which
varies on the slow scale X=xe'/2 [for our case of
free horizontal boundary conditions R,=271%/4
and ¢,=7 2, where the usual® dimensionless
units are used throughout]. An expression simi-
liar to (1) holds for the temperature deviation
T(x,z). If the expansion is carried to sufficiently
high order in €'/2 one obtains an amplitude equa-

rtion in steady state, of the form?:8

A" +A-|A2A+€Y?F ,,[A] +0 (€)= 0, (2)

where A(X)=A,(X)+€24,(X)++++, and F,,[4] is

a functional of A and its X derivatives, A’, A”,
To lowest order in 51/2, Eq. (2) reproduces

the well-known amplitude equation of Refs. 5 and
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For the laterally finite system it may be shown
by matching to the linearized hydrodynamic equa-
tions near the walls that the appropriate bounda-
ry conditions for (2) are’8

A-e2a A —€128,4% =0(e),

X=+8=%Le'/2, (3)

where a,=-a_*=a, B, =-B_*=8, and a,B are
specified complex numbers of order unity which
depend on U.

Since a detailed analysis of the solution of (2)
and (3) is rather complicated, we shall illustrate
the mechanism for restricting the allowed band
of wave vectors on the basis of a number of sim-
pler phenomenological models. The detailed anal-
ysis of (2) and (3) will be presented elsewhere,’
and only the main results will be summarized
here. The simplest model consists of the lowest-
order equation

A" +A - |A|2A=0 (4)

with periodic boundary conditions A(X=6)=A(X
=-0). This system has “phase-winding” solu-
tions

A=(1-Q3)"2exp(iQX), (5)

with @ =n7/8, n=0, £1..., lnl<6/1. In terms of
the physical scale x, the wave vector is g=Qel/?
=nw/L, with —€l/2 <g <€Y2, Thus the only effect
of the sidewalls is to quantize g, but not to re-
strict the band of allowed values.

The solutions of (2) which match the linearized
hydrodynamic equations near the sidewalls are
those for which the amplitude A at X=+6 is re-
duced to O(€'/2) by the boundary conditions (3). It
is thus instructive to study a phenomenological
model (I) consisting of Eq. (4), with the boundary
condition

AX)=V2x exp(xi6,), X=+06=+Le'/2 (6)

with X and 6, real, and we suppose A «<1. Let us
rewrite Eq. (4) in terms of phase and magnitude
variables A(X)=7(X) exp[i6(X)] as®

r%0'=Q, (1)
37'2+Q3%/2r2+5r2 —ri=E, (8)

where @ and E are real constants. From (7) and
(8) it may be shown” that if the magnitude # is de-
creased to a value 7, anywhere, then

Rl <@, A2)1-7,2/2). (9)

It will turn out that @ plays the role of the wave

number in the bulk of the container, as in (5).
Thus, the depression of the magnitude » to a
small value V2A <1 at the sidewalls [Eq. (6)
provides the mechanism for restricting the wave
numbers, via Eq. (9). Indeed, it may be shown’
that phase-winding solutions, having the form (5)
in the bulk, exist for model I. Integrating Eq. (7)
between the boundaries at X =+ 6, and evaluating
the contributions from the bulk and boundary re-
gions leads to two classes of solutions defined by
the conditions

(i) Q== sin(Q5 - 6,),
or

(i) Q,0=0,+ +3)m; |Q, | <.

(10a)

(10b)

The solutions” of (10) consist of a set of wave vec-
tors in the reduced range lgl <Xe'/2, roughly quan-
tized in units of /L.

Another phenomenological model, which is clos-
er to our starting system (2) and (3), consists in
dropping the term F,/, in (2) [i.e., replacing (2)
by (4)], but keeping the boundary condition (3) up
to 0(€'/2) (model II). For this model it may again
be shown’ that phase-winding solutions exist, with
A’ of order unity and A =0(€'/) at the boundary.
The conditions analogous to (10) are

(1) @ =3€Y?[- o, + || 5in(2Q6 - ¢ )], (11a)

(ii) 2Q,0=¢ g+ +3)m;

IZQ"+€1/2ai| <€e/?g|, (11b)

where a;=Ima and ¢ g is the phase of 8. The im-
portant difference between (10) and (11) is that
the solution of (11) consists of an asymmetric
band of wave vectors q_ < ¢ <q,, with g+ =3¢

(- a;=gl).

For the starting system (2)-(3), which corre-
sponds to realistic sidewall boundary conditions
it turns out’ that the effect of the term F,,[A] in
(2) is merely to change the parameter a; in (11)
to & ,=a,-b(0), where b(0) is a real function of
the Prandtl number o. The allowed band of wave
vectors is again linear in € and asymmetric, with

q: =(IBl/2)(-n+1)e. (12)

Our calculation’ yields
1n=(32V3)"(5+ 2107 +400"2)
X(1+47+6[I%) 2,

with p=(1+2u/m)"'. Equation (12) then implies
that ¢. <0 for all o and u, whereas g, can be ei-
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FIG. 1. Schematic diagram of the allowed states of
convection as a function of reduced Rayleigh number (€)
and wave vector (E:E—ao), for a container of length
2L . For simplicity only the solutions (ii) in (11) are
shown. The Rayleigh number dependence of (i) is more
complicated. In case (a) (g+>0), ¢ changes little with
increasing €. For case (b) (¢ + <0) ¢ must decrease dis-
continuously as € increases. The dashed line is the
lower limit for convective states in the infinite system.

ther positive or negative. For o> 1 we have g,
>0 [Fig. 1(a)], and the states of given g evolve
smoothly as a function of €. In the opposite case
(0« 1) where ¢, <0 [Fig. 1(b)], each state has
both a minimum and a maximum €, and the sys-
tem shifts discontinuously from one wave vector
to the other as € is raised or lowered. This cor-
responds to the disappearance or creation of a
roll at the boundary of the container. Note that
the limiting values g: are independent of the as-
pect ratio L, and also apply to the semi-infinite
case, where only one boundary is present. For a
physical system of size L, the time necessary
for the boundaries to influence the steady state in
the bulk will grow as L becomes large.

The above calculation thus provides a mecha-
nism for restricting the band of available wave
vectors of steady convection, coming solely from
the sidewall boundary conditions. Because of the
idealized nature of our starting equations the re-
sults cannot be used directly to explain any exper-
imental findings, but the effects found here must
surely enter into a more realistic theory. We
shall conclude making some qualitative remarks
concerning such a theory.

(i) Our calculations are for free-free horizontal
boundary conditions. The rigid case is analytical-
ly much more difficult, but we expect similar ef-
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fects to occur there, since an amplitude equation
also exists for this case.® The values of ¢+ as a
function of ¢ and p are of course expected to be
different from those found here. On the basis of
experiment' we might speculate that ¢, <0 for
most values of 0. Alternatively, in the Taylor
problem,'® it appears that g, >O0.

(ii) The present work calculates steady solu-
tions of the equations without discussing the much
more difficult question of stability.?"® We may
remark that for the infinite system the band of
stable wave vectors for two-dimensional motion
is —€'2//3<q <€'/2//'3, which space the domain
(12). The possibility of additional instabilities in
the finite system cannot be ruled out, however,

-and it is presently under investigation.

(iii) The influence of the direction tvansverse to
x (three-dimensional motion) has been discussed
in the infinite system, where the most important
effect near threshold is the zigzag instability,®#
which for free-free horizontal boundary condi-
tions eliminates? all states with ¢ <-cg€? [c,
=0(1)]. It is thus interesting that for small ¢ we
find ¢, /€ <0, i.e., all the states of steady two-di-
mensional flow of the finite system are in the
band of unstable wave vectors of the infinite case.
Note, however, that the zigzag instability may it-
self be modified by the finite size in the trans-
verse direction.

(iv) The expansion leading to (2) is based on the
smallness of the term €/ %F /2, Which is propor-
tional to €'/2/¢ for 0=~ 0. Thus the domain of va-
lidity of our expansion shrinks to zero in that lim-
it.?

(v) Experiments are often performed in cylin-
drical containers,' where an additional singularity
occurs in the center of the cell.’* It would be in-
teresting to extend our analysis to that case, but
in the absence of such a calculation we might
speculate that the cylinder should show similar
restrictions on the allowed band of q.

(vi) We have repeated the present analysis for
the two models introduced in Ref. 4, and find that
near threshold they are special cases of Egs. (2)
and (3) above, with particular values of «, 8, and
F,/,. The limiting wave vectors of Eq. (12) turn
out to be g1 =+ (16¢,%)" '€ [model (a)] and g,
==~ (554,°)€, 9. =~ (334, [model (b)], which ap-
pears to be consistent with the numerical calcu-
lations.* Note that Ref. 4 treats the important
question of dynamics and stability, about which
we cannot at present say anything.

In conclusion, our analysis has shown that fi-
nite sidewalls restrict the band of allowed wave
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vectors for steady two-dimensional convection,
in a manner which depends on the Prandtl num-
ber and the thermal properties of the sidewalls.
This effect provides a possible mechanism for un-
derstanding the phenomenon of wave number se-
lection. An interesting consequence of our calcu-
lations, which could be tested experimentally is
the distinction between the case represented in
Fig. 1(a), where a single wave vector remains as
€ grows, and the case of Fig. 1(b) where the wave
vector must change discontinuously with increas-
ing €.
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