SUBMICRON SYSTEMS ARCHITECTURE
SEMIANNUAL TECHNICAL REPORT

Sponsored by
Defense Advanced Research Projects Agency
ARPA Order Number 3771

Monitored by the
Office of Naval Research
Contract Number N00014-79-C-0597

5202:TR:85

Computer Science Department
California Institute of Technology

September 1985



Submicron Systems Architecture
Semiannual Technical Report

Department of Computer Science
California Institute of Technology

5202:TR:85
September 1985

Reporting Period: 16 March 1985 to 15 September 1985
Principal Investigator:  Charles L Seitz

Faculty Investigators: James T Kajiya
Alain J Martin
Robert J McEliece
Martin Rem
Charles L Seitz

Sponsored by the
Defense Advanced Research Projects Agency
ARPA Order Number 3771

Monitored by the
Office of Naval Research
Contract Number N00014-79-0597



SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of the research activities and results for the six month period
16 March 1985 to 15 September 1985 under the Defense Advanced Research Project Agency
(ARPA) Submicron Systems Architecture Project. Technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from the Caltech
Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI systems appro-
priate to a microcircuit technology scaled to submicron feature sizes, and includes related
efforts in concurrent computation and VLSI design. Additional background information can
be found in previous semiannual technical reports [5052:TR:82], [5078:TR:83], (5103:TR:83],
[5122:TR:84], [5160:TR:84], [5178:TR:85].

1.3 Highlights

Some highlights of the previous 6 months are:
e Cosmic cube host software completed (2.1.2) and available for distribution (2.1.3).
Robust Mosaic RAMs (2.2).

Experimental Concurrent Language developments (3.1).

New method for deadlock-free routing on arbitrary networks (3.5).

Torus Routing Chip completed (4.1).

1.4 Acknowledgement

Please let us take this opportunity — the semiannual report for what Paul Losleben
claims is his last VLSI contractor’s meeting before leaving DARPA — to thank and to
congratulate Paul Losleben for his efforts as manager of the DARPA VLSI program.



2. Architectural Experiments

2.1 Cosmic Cube Project
W C Athas, Reese Faucette, Michael Lichter, Wen-King Su, Chuck Seitz

The Cosmic Cube’s host environment was substantially refined in the past six months.
Features such as “space-sharing” that were mentioned as plans in our previous report are
now operational and in routine use. The entire programming system is stable, and most
of our current work is involved with using the system. Typical applications include (1)
concurrent algorithm experiments, (2) concurrent programming language experiments, (3)
computer-aided design and analysis tools, and (4) simulations of other concurrent architec-
tures.

In addition, the project group has recently received an Intel iPSC d6, scheduled to be
upgraded to an iPSC d7 in October. The iPSC d7, with 128 nodes and a total of 64M bytes
of primary storage, is a very high performance system for the applications listed above. The
system software of the iPSC is not as mature as that of the Cosmic Cube, however we are
in the process of improving this software.

In the interests of encouraging our colleagues in the DARPA community who may wish
to use these systems, a copy of the latest “C Programmer’s Guide to the Cosmic Cube”
[5203:TR:85] is reproduced at the end of this report. Our 3-cube and 6-cube machines, and
Intel iPSC are ARPAnet hosts. Also, the “cosmic environment” software — a runtime system
and library that supports the same multiple-process message-passing environment on Unix
4.2bsd computers — is available for distribution. This system is described in Chapter 7 of
the “C Programmer’s Guide to the Cosmic Cube”.

2.1.1 Node Operating System

The work on the Cosmic Cube’s node operating system, the Cosmic Kernel, has progressed
from development to maintainance and tuning. Very few changes have been made in the
inner kernel. Several refinements have been accomplished in the two outer kernel processes,
SPY and SPAWN. For example, the necessity for the NEVERRUN process state was eliminated,
and a Unix influenced “fork” operation has been included that creates new copies of running
processes was added.

A logic analyser was used to monitor the different subsystems of the Cosmic Kernel. The
logic analyzer showed that the low level send/receive subsystem was not set-up for maxi-
mum overlap. Minor improvements that we are planning are to improve the synchronization
between read and write operations and a more robust deadlock avoidance mechanism. How-
ever, a recent benchmark on the 6-cube showed message passing speed to be close to the
2Mbit /s hardware and interrupt routine limit.

We have a plan to create an alternate inner kernel by converting the present inner kernel
code from 8086 assembly language into C. This effort is a first step in producing a portable
kernel for possible future machines of this type. It is also intended to make it easier to do
experiments in which we can run user programs under kernels that implement the message
system differently.

2.1.2 Host Software

The host programming system of the Cosmic Cube, the “cosmic environment”, has been
substantially rewritten over the past six months. Although this version 6 is a major internal

3



revision, it has involved very few changes in user programs from the version 3 system of
6 months ago. What changes the user has seen have been in the nature of “cleaning up”
and simplifying some of the definitions and conventions, and have required only recompiling
source programs.

The version 3 system had a number of restrictions based on the total number of socket
connections that could be opened to the cube demon. It was possible for a user program
to run out of socket connections depending on the number of others who were using the
same cube deemon. Also, the user was at the mercy of the limited queueing supplied by the
4.2bsd socket implementation. The versions 5 and 6 implementations have moved the socket
connections and flow control into the getcube process of each process group. The version 6
system also includes a network-based update mechanism, described in the following section.

The C compiler used for cube process code was also rewritten in this period.

2.1.3 “Cosmic Environment” software distribution

The cosmic environment software described in the “C Programmer’s Guide to the Cosmic
Cube” is available for internal use to most university, government, and non-profit research
organizations under the arrangements outlined below. This software may be of interest to
other contractors both for concurrent computing experiments and for use in courses. Soft-
ware distributions are available to other organizations only through a license with Caltech.
It is expected that another version of this software will be available through Intel Scientific
Computers.

The cosmic environment is package of programs, C library routines, and demon pro-
cesses that supports on one or on multiple network-connected Unix systems the same
message-passing concurrent process programming environment that runs on the Cosmic
Cube. Process code is compiled with a set of definitions and library routines and run as
Unix processes. The interprocess communication mechanism used by this system is internet
sockets. Processes may accordingly be run all on one host or distributed across a number
of network-connected hosts. This software can also be used as the host environment for
Cosmic Cube programs, or in the future, for Intel iPSC programs. (See the “C Guide” for
additional details.)

These programs were written to run under Berkeley Unix 4.2bsd, and have been installed
and used on SUNs, Berkeley Unix VAXes, and Ultrix VAXes. We do not know whether the
system runs correctly or can be made to work on other Unix systems. A minimal necessity
to be able to adapt these programs to other Unix systems is a socket implementation.

This software also comes with a network-based update mechanism that is recommended
for ARPA internet hosts.

In order to get a copy, send a letter to Professor Charles L Seitz, Computer Science
256-80, California Institute of Technology, Pasadena CA 91125, that includes statements:

1. of your intended use of this software (brief).

2. that you agree not to redistribute this software outside of your organization, and
in no case outside of the United States, and will keep the files protected on your
systems.

3. that you agree that this software is for your internal use, and that you will not
sell access to or otherwise permit use of these programs to people outside your own
organization.



4. that you understand that this is experimental, unsupported software that may or
may not work as described, and that you hold Caltech harmless from any loss or
damage that may result from its installation or use.

We are able to answer questions about this software as our time allows, and are happy to
have bug reports, but only by electronic mail to “cube@cit-sol.arpa”. It is most helpful
if a bug report includes the smallest example of code that you can devise that demonstrates
the bug.

If you are installing this software on a machine that is not an ARPAnet host, please
include with your letter a blank 600’ 1/2 inch tape labeled with your postage address. We
will mail the C sources to you in Unix tar format. The files can be placed in any source
directory (we recommend a cube login directory). The installation instructions are included
in the make file.

If you are installing this software on an ARPAnet host, you do not need to send a tape.
We hope you don’t. Just send us your ARPAnet mail address and the name of the host on
which you intend to maintain your source directory. We will then enter the name of the host
on which you maintain the sources into a permission table, and will send you a message that
includes a C program that you can compile and run to bring the sources over the ARPAnet
to your machine. This program makes a socket connection to the cube damon that runs
on cit-sol.arpa, and brings the files across the network. This same program can be used
later for automatic updates, which are selective by timestamp in order to minimize the
volume of messages sent through the network.

Requests to use the Cosmic Cubes or Intel iPSC d7 operated by the Caltech Computer
Science project group should be addressed to “chuck@cit-vlsi.arpa”.

2.1.4 Hardware Status

Our 6-cube system finally exhibited a hard failure after running continuously without
a failure for 14 months. The two previous hard failures since the machine was put into
service 23 months ago were both in dRAM chips. The failure observed this time was in an
SSI communication channel driver chip. The bad board was swapped into the 3-cube for
testing and diagnosis, and downtime was only a few minutes after the problem was first
noticed. We also took advantage of this opportunity to experiment informally with using
space sharing to keep the system in service in spite of bad or absent node boards. Users
have been able to utilize subcubes while a portion of the cube has not been functioning or
was running test programs.

The 6-cube alone now has logged 16,500 hours of operation. Total node-hours accumu-
lated on all machines are now over 1,500,000, with 3 hard failures. The calculated MTBF
of the nodes of 100,000 hours reported before this machine was constructed can now be
regarded as conservative at the 99% confidence level, and an MTBF of 200,000 hours can
be stated at a 95% confidence level.

Both machines continue to be heavily used.
2.1.5 Application programs

We continue to make the Cosmic Cube available to selected guest researchers for problems
that appear to be particularly interesting or difficult. For example, several researchers from
the Aeronautics group at Caltech report very good results on a very difficult jet plume
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computation. In addition, the following small sample of programs from the research group
are suggestive of our more interesting applications of the Cosmic Cube.

The concurrent circuit simulator CONCISE was translated last May from Pascal to C,
using the HCR Pascal to C translator. It now runs correctly as a concurrent program
under the “cosmic environment” system. It continues to be developed and refined by Sven
Mattisson in a joint project between Caltech and the University of Lund, Sweden.

A concurrent circuit extraction algorithm and program were developed as a student
project, and will be developed into a useable form.

Reese Faucette, author of the cosmic kernel, wrote a program that uses the 6-cube to
produce a high resolution graphic image based on a simple mathematical model taken from
Mandelbrot’s fractal geometry. Another of Reese’s programs, virus, starts up two-sided
games of 3-dimensional tic-tac-toe throughout a cube, with “mutations” occuring in the
playing parameters of losing players, so that the overall playing level of a cube of processes
rises with time.

2.2 Mosaic Project

Steve Rabin, Don Speck, Chuck Seitz

A 16-inch stack of SPICE simulation listings and several layout modifications to the
Mosaic dynamic RAM module have finally converged to a version that is reasonably tolerant
of process, timing, and power supply variations. The most recent chips received from MOSIS
had all bits working, could tolerate clocks of 3.5 to 7.5 volts, and ran as fast as the tester.
The yield on these recent runs was poor in contrast to our previous experience with chips
with a similar active area, number of transistors and contacts, etc. Checking the defective
chips under a microscope revealed missing contacts, shorts, and a few large-area poly defects.
Thus we attribute the poor yield to the fabrication rather than to the design.

The Mosaic RAM seems to prefer a less “hot” clock than we had envisioned. This may
allow us to eliminate the 7-volt power supply and remove some of our power dissipation
worries.

Now that the RAM design looks usable, we can safely return to full Mosaic element
assembly. The floorplan and schematics are done, leaving us with the layout of the ROM
and routing still to do.

The floorplan is designed to keep the die width under five millimeters to allow packaging
the chips in the same type of 18-pin large well DIPs that are used for commercial dRAMs.
Far from being a hindrance, this constraint resulted in an elegant structure, with the data
bus running the length of the chip and processor, ROM, and RAM modules lined up on
both sides, and pads at each end. We chose to limit the length to 7 millimeters, to avoid
pushing our luck on the yield. This 5mmx7mm allows us 4 RAM modules (1K words total)
per node.

A preliminary design of the top-assembly of the Mosaic has been completed. The Mosaic
elements will by this design be packaged with 64 elements on each of 16 fairly small PCBs
that can be plugged into different backplanes for either (Ultracomputer style) shuffle or
mesh networks. Some recent results on routing on meshes (see section 3.5) have made the
mesh connection more attractive than it formerly appeared to be, and we could very much
simplify the top assembly by using a simple toroidal mesh structure.
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A simulator and an assembler for the version B Mosaic architecture have been completed,
and the floating point arithmetic code, and other short programs have been extensively
simulated using this simulator and assembler. The datapath artwork for the version B
architecture has been completed; the control and I/O sections have not.

2.3 Future Architecture Experiments

The research group has decided to defer building a fine grain SIMD message-passing
machine along the lines of the Supermesh design previously reported. Having been set back
in our schedule on the Mosaic project by problems with the Mosaic RAM, we expect to
see the first working Mosaic systems early in 1986. We appear to be able to build new
experimental systems at intervals of about 18 months. Qur work with fine- and medium-
grain MIMD message-passing machines such as the Cosmic Cube and Mosaic currently has
a great deal of momentum, and we have decided that we would do better to concentrate in
that area for the immediate future.

In our experience with distributed operating systems, in “pushing the envelope” of appli-
cations of these machines, in some of the recent results described in the following section,
and in the appearance of much higher performance single-chip processors, we see an op-
portunity to contribute to a second generation of these MIMD message-passing machines.
These machines will exhibit about 10 times better processor performance and 100 times
better communication performance - particularly with short messages —, with the principal
objective of extending the application span and programmability. Some of our ideas in these
areas are described more completely in the following section.

What we are planning, as described in previous reports under the heading of “advanced
technology homogeneous machines”, is to start construction in the summer 1986 of an ex-
perimental system based on the DEC microVAX II processor and floating point coprocessor,
IMB of primary storage, and a custom communication chip. The first version of this com-
munication chip, which was designed in the new MOSIS SCMOS technology, is described
in sections 3.5 and 4.1, and it has already been submitted for fabrication. The system will
employ a toroidal mesh connection rather than a binary n-cube. The size of the system is
expected initially to be 256 nodes, a 16 by 16 mesh, and of course will be expandable. DEC
has agreed verbally to contribute the microVAX II chips and Ultrix source licenses. The
operating system kernel will be derived from the Ultrix (Berkeley Unix) kernel (VMUNIX).
All aspects of this plan are subject to change depending on new developments.



3. Concurrent Computation

3.1 Experimental Concurrent Language
Bill Athas, Chuck Seitz

A highly concurrent object-oriented language, tentatively named ECL for “Experimental
Concurrent Language”, has been designed and exists now as a compiler, software engine, and
technical report [TR:85:5196]. The unit of computation for ECL is the “concurrent object”
which can interact with other such objects only by message passing. ECL is based on the
computational model of the Cosmic Cube experiment, including the weak synchronization
properties of the message system, but abstracts away many of the details currently necessary
to program the Cosmic Cube. These details, such as the management of message locks
and the automatic setting-up of message descriptors are handled by the compiler through
extensive program flow analysis.

The “process abstraction” used in existing Cosmic Cube programs is captured by ECL’s
concurrent objects. To soldify both the semantics and syntax of the language, a test suite
of four programming examples were chosen as a basis for resolving design issues about
the language. These examples were a Hamming decoder, solution of the 8-queens problem,
Gaussian elimination, and the generation of primes by sieving. The concurrent formulations
and their solutions written in ECL have been included in the technical report. The solutions
represent a wide range of concurrent formulations and have been compiled and the results
checked using the first software engine.

The software engine is a microcosm of the cosmic environment and compiled ECL pro-
grams could readily be ported to such an environment, provided that a special resource
allocator or “real estate” process be included. The current plan, however, is to perform
static analysis of the code generated by the compiler so that resource a.llocatlon may be
conducted at load time rather than at runtime, whenever possible.

3.2 The Sneptree

Pey-yun Peggy Li, Alain J Martin

Compared with other augmented binary trees, the Sneptree is shown to be the only
network that can simulate an arbitrary size binary tree well, and also has regular and
symmetric topology, thus is suitable for VLSI implementation.

An improved routing algorithm for the leaf nodes of the Cyclic Sneptree has been de-
veloped. The routing algorithm always finds the shortest path within the minimal subtree
containing the source and the destination nodes. The routing result is a good approxima-
tion to the optimal result, yet still can be found in O(n) time, where n is the height of
the Sneptree. In some specific communication patterns, such as shifting by 2%, the average
routing result is almost optimal. Besides, the traffic at the upper-level nodes is reduced to
about a half of the traffic in a pure binary tree.

Many interesting results of the Sneptree can be found in the technical report [5194:TR:85].
3.3 The Sync Model for Parallel Prolog Processing

Pey-yun Peggy Li, Alain J Martin

The research of the machine model for parallel Prolog processing has continued in last
six months. Our Sync Model combines data flow concepts with a special synchronization
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mechanism to realize AND parallelism. The dynamic data flow diagram of sibling AND
processes is constructed during the time the AND processes are invoked. The change of
the data flow diagram caused by binding a variable to a partially instantiated term is
detected by a simple type checking, and is realized by adding extra dynamic links between
AND processes. The above method is more efficient than the previous data flow models. An
efficient merge algorithm has been designed to merge the multiple input streams in an AND
process or the partial solution streams in an OR process. The merge algorithm is capable
of handling a set of finite input streams with arbitrary combinations of Sync signals. The
correctness proof of the merge algorithm as well as the Sync Model is being developed.

Different mapping algorithms for mapping our Sync Model to the Sneptree have been
investigated. The one we selected is to map our Sync Model to a binary tree by adding
extra padding nodes, and then map the binary tree onto the Sneptree. This algorithm turns
out to have the maximal parallelism among other mapping algorithms.

3.4 Concurrent Computational Geometry

John Ngai, Chuck Seitz

The appearance of parallel computers has motivated the development of parallel algo-
rithms and distributed data structures for solving problems by exploiting the concurrency
of these machines. Until recently, very little work has been done in developing parallel al-
gorithms and distributed data structures to solve geometric problems. Computational Ge-
ometry is the systematic study of algorithms and complexity of fundamental problems such
as inclusion, intersection, hull finding, and proximity searching, all of which are geometric
in nature. Such problems arise in many conventional applications, such as CAD, Robotics,
Data Base Retrival, and Operations Research, as well as in many military systems. Tra-
ditionally, such problems are solved by uniprocessor systems employing complicated data
structures.

Our research focuses on the investigation of intrinsic geometric properties of such problems
to reveal concurrencies that can be exploited in the concurrent formulation of their solutions.
Proceeding in this direction, we have been able to develop fast sublinear parallel algorithms
for the determination of the convex hull of point sets in the Euclidean two- and three-space.
The complexity of our algorithm for the two-dimensional case matches the best known in
published literature, for example, O(log? N) on the binary n-cube. To the best of our
knowledge, no corresponding parallel algorithm for the three-dimensional convex hull has
been published. By exploiting the criteria derived from the normal vector representations,
we are able to generalize and obtain sublinear algorithm for spatial point sets. A detail
report of these algorithms is being prepared and will be submitted for publication.

Current work on concurrent computational geometry is concentrating on convex decom-
position and geometric searching. Parallel algorithms for multiple point searching in planar
subdivisions have been developed. Investigations to generalize them to other objects and
to higher dimensions are in progress.

3.5 Deadlock Free Routing
William Dally, Chuck Seitz

We have developed a method for constructing deadlock-free routing algorithms in arbi-
trary strongly-connected interconnection networks. To construct a deadlock-free routing
algorithm, we consider the routing function to be of the form C x N — C (the current
channel and the destination node determine the next channel) rather than the conventional
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N x N — C. A routing function from channel to channel describes a channel dependency
graph, D. We have proved that a routing function is deadlock free if and only if D is acyclic.

To make a routing function that describes a cyclic D deadlock-free, we have developed
the concept of virtual channels. Several virtual channels, each with its own queue, can be
multiplexed over a single physical channel. It is the interaction of queues that determines the
channel dependencies and thus the deadlock properties of the network. A routing function
that has a dependency graph with a single cycle can by made deadlock-free by splitting
each physical channel around the cycle into two virtual channels and specifying the routing
on the virtual channels so that their dependency graph describes a helix. Routing functions
with several cycles can be treated by splitting each cycle in turn.

This technique, described in full in a preprint reproduced at the end of this report, has
proved to be a key idea for our plans for advanced technology homogeneous machines. The
Torus Routing Chip described in section 4.1 is a demonstration of this technique.

3.6 Concurrent Graph Algorithms
William Dally, Chuck Seitz

We have developed two new concurrent algorithms for the max-flow problem. The concur-
rent augmenting digraph (CAD) algorithm works by propagating an augmenting directed
graph rather than a single augmenting path as in the Ford-Fulkerson algorithm. The con-
current vertex flow (CVF) algorithm, on the other hand, works by pushing flow from one
vertex to another. It is similar in spirit to Karzanov’s algorithm and achieves the same
worst case bound of O(V3).

We have developed a new concurrent heuristic algorithm for graph partitioning. Based
on the Kernighan and Lin algorithm, our algorithm works by iterative improvement. Un-
like K & L, however, the new algorithm may move several vertices at once. A two-pass
attraction algorithm is used to prevent multiple moves from interfering with one another.
An embedded tree is used to assure that the partition remains balanced.

3.7 Generalizations of Message Routing Mechanisms

Craig Steele, Chuck Seitz

This investigation is seeking generalizations and extensions of the current message routing
mechanisms for message-passing concurrent computers. Communications deadlock must be
avoided in such systems, but can occur when a message system cannot deliver any message
already in the system due to competition from other messages in the system. An efficient
method — “distance queues” — for constructing deadlock-free store-and-forward message
systems has been found for networks of arbitrary connectivity. We can easily find minimal
cost routings for powerful but complex interconnections such as the shuffle-exchange-shift
network. In addition, the ability to automatically generate deadlock-free routes for irregular
networks allows a distributed processor to tolerate failure of some nodes or communications
links. If process placement is performed by the previously reported technique of simulated
annealing, automatic reconfiguration and restart of a computation is possible even in the
event of serious hardware faults.

For toroidal mesh networks it is possible to generalize the e-cube deadlock-free routing
scheme used in the Cosmic Cube. These networks allow a trade-off to be made between
communications performance and the cost of implementing the connections. With dedi-
cated virtual circuits, it is possible to emulate toroidal meshes on an arbitrary physical
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network. The cost of such emulation is minimized by using simulated annealing to find a
good embedding. This approach to the problem of deadlock-free routing allows us to de-
crease undesired competitive interaction of messages by increasing the buffering resources
allocated.

Even a deadlock-free message system can be overwhelmed and deadlocked by uncon-
strained use of its buffering capabilities. Currently, Cosmic Cube programs written without
explicit synchronization depend on process placement and the particular hardware char-
acteristics for correct operation. Current research is examining extensions of the present
Cosmic Kernel mechanisms to allow such programs, written in a convenient “pipelined” or
“data flow” style, to run reliably on arbitrary networks.

3.8 Semantics of Infinite Lists
Young-il Choo, Jim Kajiya

To define rigorously the meaning of higher order infinite lists (lists which can contain
infinite lists as elements recursively), we were led to topological idea of limits. The domain
of infinite lists constructed by using the inverse limit method provides a formal basis for
dealing with infinite objects in an implicit manner with lazy evaluation as the essential
programming language construct. Full discussion of the technique and its applications in
programming language sementics can be found in the Technical Report An Inverse Limit
Construction of a Domain of Infinite Lists [5188:TR:85].

3.9 On Representing Petri Net Behavior
Young-il Choo, Jim Kajiya

Petri nets are mathematical constructs for modeling concurrent activity. Their structure
is given by a bipartite directed graph; their behavior is determined by the movement of
tokens around the graph. The behavior is usually represented as the set of strings generated
by the firings of the transitions.

Concurrency Algebra is an algebraic framework for reasoning about the dynamic behavior
of Petri nets. Based on a simple algebra containing concatenation, choice, and shuffle of
strings, concurrency algebra uses a substitution schema determined by the structure of the
given Petri net to generate new terms that denote its behavior. For non-terminating Petri
nets, the behavior becomes the smallest set of strings satisfying a recursive equation over
sets of strings.

Full details can be found in the Technical Report Concurrency Algebra and Petri Nets
[5190:TR:85].
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4. VLSI Design

4.1 The Torus Routing Chip
William Dally, Chuck Seitz

As a demonstration of the use of virtual channels to perform deadlock-free routing we
have designed a custom VLSI integrated circuit: the torus routing chip (TRC). The TRC
performs packet routing in arbitrary k-ary n-cube or torus networks. Each chip provides a
single node’s communications needs in two dimensions. The chips are designed so they can
be cascaded to construct networks of higher dimension. The TRC uses virtual channels to
break the channel dependency cycles inherent in this class of networks.

In addition to virtual channels, the chip incorporates several other innovative features.
First, it is completely self-timed. Each of the two virtual channels in each dimension and the
processor channel, as well as the internals of the chip, operate completely asynchronously.
Arbiters in the chip’s crossbar switch perform all required synchronization. Second, the
chip uses incremental routing. A header byte specifies the distance to be routed in each
dimension. After routing in one dimension is complete, the byte is stripped off and the
message is passed to the next dimension. Third, the chip uses through-node or “wormhole”
routing. Rather than storing the entire message in a node and then forwarding it, the
message is routed directly to its destination. This technique makes message latency almost
independent of distance, and avoids consuming storage bandwidth in routing nodes. Finally,
the chip is intended to be fast. It uses byte-wide communication channels, and r-model
calculations indicate that each channel should operate in excess of 20MHz (160Mbits/s).

The torus routing chip has been laid out in SCMOS technology using the Magic system,
simulated using MOSSIM, and submitted to MOSIS for fabrication.

4.2 Compiling Programs into Self-timed VLSI Circuits
A. J. Martin

We have developed a method for “compiling” a high-level description of a computation
(a set of communicating processes) into a self-timed VLSI circuit. Self-timed (or delay-
insensitive) circuits are sequential circuits in which the sequencing is entirely enforced by
communication. There is no clock, and no assumption is made on the propagation delays in
operators and wires. The advantages are many: First, with the increasing size of circuits,
it becomes more and more difficult to distribute safely a clock signal across a chip. Second,
clocked circuits rely on worst-case assumptions on the timing behavior of the components,
which decreases their performances. Third, with no restriction on the length of wires, layout
is facilitated.

The compilation is systematic and essentially relies on the four-phase handshaking imple-
mentations of communication actions. The program of each process is compiled into a set of
“production rules” from which all explicit sequencing has been removed. By matching these
production rules to those describing the semantics of the VLSl-operators (and-gate, or-gate,
C-element, arbiter, flip-flop, etc), the programs are identified with networks of operators,
1e, self-timed circuits.

The method has been applied to a whole spectrum of problems, some of them quite
difficult, like distributed mutual exclusion and fair arbitration. The results are far beyond
our expectations. For most circuits, especially complex ones, the compiled circuits are
superior to their “hand-designed” counterparts.
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Changes from the previous version

This 20 September 1985 version of the “C Programmer’s Guide to the Cosmic Cube” differs from the 24
May 1985 version due to a number of changes and “cleanups” in the system. However, the version of the
system described here is not expected to change significantly in the next year except for the addition of
iPSC compatibility functions and a few new features. Some of the changes incorporated since the previous
version,are an attempt to converge or not to conflict with some iPSC conventions.

e typedef int BOOLEAN and definitions of FALSE and TRUE are removed; likewise the typedef unsigned
short word is removed. These changes will require some editing of existing programs.

e host utilities are now in /usr/cube instead of /usr/local/cube. Search paths should be changed accord-
ingly.

e The old cube/cubedef .h is divided into those definitions that are common to cube and host processes,
and remain in cube/cubedef .h, and those that are special to the cosmic cube, and would only rarely be
used even in cosmic cube programs, and are in cube/cosmic/cubede? .h.

¢ £1x86 now produces a single .cos file instead of 3 separate files. Mention of the -n option is removed
from the guide, although it will continue to exist until this optimization is made automatic.

¢ The print function now includes the %a format (section 5.2), and the execute function was added.

¢ The malloc family of functions is moved from experimental to operational category, and their description
is found in section 5.3.

¢ The bapawn functions were replaced with a generalization of the apawnf and spawnp functions (section
6.3), which also suffered a change in the order and format of their parameters. Also, the host 1oad utility
is replaced with utilities called spawnf and spawnp

¢ The cfork family of functions was added (section 6.4). Associated with this change is the equivalence
of the NEVERRUN and SUSPEND run states (section 6.1), and a reduced emphasis on the direct use of the
SPAWN messages (much of the detail formerly appearing in section 6.2 is relegated to the synopsis).

e Chapters 1, 2, and 7 were revised to reflect changes in the host environment between the version 4 and
version 5 systems.

e We have tried to contract this guide wherever possible in order to keep it of an appropriate length for
continued use in courses that use the cosmic cube for laboratory exercises.



Chapter 1:
Introduction

This programmer’s guide describes the essentials of writing C programs for the cosmic
cube, an experimental message-passing concurrent computer. It is meant to serve as a
reference manual for the operation of the cosmic cube, for the services of the cosmic cube’s
operating system and host runtime system, and for the programming tools.

Our intention is that a person already familiar with C programming and with Unix would
find that a single reading of this guide would be sufficient preparation to start writing cosmic
cube programs. Chapter 8 is a synopsis that can be used to recall format details. People
who program in Pascal but not in C tell us that they have little difficulty following the
examples. However, for writing cosmic cube programs beyond the elementary category, a
systematic introduction to C programming, such as that provided in The C Programming
Language [Kern 78] by Brian Kernighan and Dennis Ritchie, is necessary.

We trust that the reader will excuse the occasional digressions into the reasoning behind
the design of the cosmic cube and its operating system. An appreciation of why the func-
tions work as they do is often useful in understanding what they do. For a more general
introduction to the architecture and programming of the cosmic cube, see the January 1985
CACM article “The Cosmic Cube” [Seitz 85].

Certain details of the operating system functions and the responses to certain rare error
conditions are not included here. Conditions such as parity errors detected in the primary
storage produce self-explanatory error messages on the user’s terminal. We are truly sorry
that this guide still has so many details.

Users are hereby warned that the cosmic cubes are experimental computers. Their hard-
ware is stable and reliable, but their system software and programming tools, being a part
of the experiment, are changed from time to time. Changes to the system software that we
can anticipate as of the date shown on the cover page, and that may have an impact on user
programs, are mentioned in footnotes tagged with t. Sections of this guide shown in small
type are notes about system functions not yet implemented, or about intended revisions to
this guide.

Design and patent rights for the cosmic cube architecture and message-passing mecha-
nisms were licensed to Intel Corporation in 1984, together with a resale license for the cosmic
cube’s operating system and host runtime system. The Intel Personal Supercomputer, or
iPSC, manufactured by Intel Scientific Computers, Beaverton, Oregon, is accordingly very
similar to the cosmic cube. However, a few of the C functions of the same name differ
between the cosmic cube and the iPSC — for example, in the order of the parameters of the
functions. Also, some iPSC functions are absent in the cosmic cube, and some cosmic cube



functions are absent in the iPSC. Thus, most of the programs shown here cannot be run
“as is” on an iPSC. However, the process model and message semantics are identical for
the two machines, and the concurrent formulations and programming approaches presented
here are applicable to both machines.

1.1 Hardware structﬁre

The hardware details of the cosmic cube are largely invisible to the C programmer. We
will describe here only the overall structure of this message-passing concurrent computer
and introduce some of the terms and notational conventions used to describe its parts.

The cosmic cube is a collection of N = 2™ small computers that operate concurrently and
communicate by messages. The small computers, called nodes, are numbered 0,1,..., N—1.
Cosmic cube nodes are connected by bidirectional communication channels structured as
a binary n-cube; that is, node 1 is connected to nodes i ® 2* by channel k, where k =
0,...,n— 1, and @ is the bitwise mod-2 sum (or “XOR”). The two machines currently
operated by the Caltech Computer Science Department are 3-cube (8-node) and 6-cube
(64-node) machines.

Another computer called the cube host connects to the cosmic cube by a communication
channel to node 0. The cube host provides program loading and input/output functions,
and access to the cosmic cube via local networks. Here is a block diagram of the 6-cube
system:

A l
CUBE
HOST
‘vl ’ T
ETHERNET

Each cosmic cube node, pictured above as a dot, has 128K bytes of primary storage, uses an
Intel 8086 instruction processor and 8087 floating point arithmetic coprocessor, and includes
6 bidirectional communication channels. Node 0 has an extra channel for communication
with the host. Each node also includes read-only storage for initialization and loading the
operating system on a cold-start, and for diagnostic programs.

The cosmic cube hosts are SUN Microsystems workstations and file servers with a hard-
ware interface that provides control signals and a channel to node 0. These SUN worksta-
tions use a Motorola 68010 instruction processor and run Berkeley Unix 4.2.

1.2 Process Model

The basic unit of computation in the cosmic cube is a process. A process can be regarded
as an instance of a C program that includes statements that cause messages to be sent and
received. Computations are performed by the concurrent execution of processes distributed
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through the cube nodes, and one or more host processes.

A single cosmic cube node may contain many processes; hence the number of processes
involved in a single computation may greatly exceed the number of nodes. All processes
execute concurrently, either by virtue of being in different physical nodes or by being inter-
leaved in execution within a single node. Processes coordinate their activities and exchange
data only by sending and receiving messages. There are no variables shared between pro-
cesses.

Processes located outside the cube nodes, either in the cube host or in other network-
connected machines, are all referred to as host processes. These host processes are Unix
processes, and may use Unix and language processor utilities in addition to communicating
with the cube processes and with other host processes through messages. Because the cube
processes do not have access to input/output devices, that part of the computation that
involves input/output and user interaction must be consolidated into the processes that run
in the hosts.

This concurrent process model of computation with process interaction by messages has
some similarities to the programming environment in other multiprogramming systems.
In fact, exactly the same functions provided for cube processes are also supported by a
library of C functions that can be used in the host processes. These functions interact with
a runtime system that accomplishes interprocess communication with Internet sockets, a
mechanism that works both within a single host computer or between multiple computers
on the same Internet network. Thus host processes may be run on the cube host and on
other hosts on the same network.

This host programming environment ~ called the cosmic environment — provides uniform
communication between processes independent of the cube node, cube host, or network
host on which they happen to be located. It is a principle and formal property of the
entire system that — within limits of the computation being determinant and not exceeding
available storage sizes — the results of a computation do not depend on the way in which
the processes are distributed.

One can run computations formulated for this multiple-process message-passing environ-
ment with or without a cube. You could run all the processes on a single host, or distributed
across a number of network-connected hosts. The package of functions and programs that
support the cosmic environment — useful both as the host system and as a tool for the early
development of programs for the cube — is described in chapter 7.

The process model is also quite easy to relate to the hardware structure of the cosmic cube,
but is usefully abstracted from it. Instead of formulating a computation to fit on nodes and
on the physical communication channels that exist only between certain pairs of nodes, one
formulates the computation in terms of processes that are not bound to particular nodes,
and in terms of communications that may occur between any pair of processes.

What is necessary for one process to send a message to another process is that the sending
process have reference to the receiving process — that is, must know its “name and address”.
The “address” is just the node number, or node. For processes inside the cube the node
corresponds to the numbering of nodes described in section 1.1. For processes in the hosts
the node is defined by the constant HGST. The “name” is the process identifier or pid within
that node, or a pid maintained by the host runtime system. The same pid may be used in
different nodes. The (node, pid) pair that uniquely identifies a process is called its ID.-

A message addressed by the (node, pid) pair is routed by the cosmic cube’s resident
operating system, or by the host runtime system, from the sending process to the destination
process. Messages are queued as necessary both in nodes that the message may be routed
through and at the destination. Messages can be distinguished by a message type.



The entire set of cube and host processes involved in a single computation is called a
process group. By the term process structure we mean the set of processes that exist at
a given moment together with each process’s references to other processes. The process
structure is naturally represented as a directed graph with vertices representing processes
and arcs representing reference. The arcs can also be visualized as virtual communication
channels, with messages traveling along the arcs, such as:

Given a process structure for a computation, the placement of processes is an embedding
of the process structure graph into the n-cube graph and host machines, with each process
assigned either to a cube node or to the hosts. An arc of the process structure graph that
connects two cube processes may involve communication within a single node, between ad-
Jacent nodes, or along a path in the n-cube graph. The process placement is constrained by
the storage requirements of processes and the total storage available in each node. Beyond
this absolute constraint, process placement influences the speed of the computation through
load balancing and message routing and delay considerations.

Process placement in the cosmic cube is controlled by the programmer, and may be
decided either in advance by a static analysis of the problem or dynamically in execution.
The way in which one causes an instance of a program to be loaded or spawned as a process
in a node 1, or to kill a process in this node, is to send a message to the SPAWN process
in node ¢, that is, to process (s, SPAWN). Once a process is spawned it will not migrate to
another node. The functions that are generally used to interact with the SPAWN process
are described in chapter 6. For simple applications one may use utility programs available
on the hosts to handle program loading.

Cube process code may be written in any sequential programming language — eg, C,
Pascal, Fortran, assembly, etc — for which one has a suitable compiler or assembler to
8086/8087 code. One can mix processes written in different source languages in a single
computation. The object code must adhere to the 8086 “small” addressing model. A
process consists of a code segment and a combined data and stack segment, each limited to
a maximum of 64K bytes. The compilation of C process code is discussed in chapter 2.



1.3 The kernel

The resident operating system of the cosmic cube is called the cosmic kernel. The kernel
is what supports the process model and hides from the programmer the machine-dependent
details of the hardware operation of the cosmic cube. One copy of the kernel resides in each
node of the cosmic cube, and all of these copies are concurrently executable. Each copy
of the kernel provides services for the processes within its own node as well as supporting
distributed functions such as message routing.

All those parts of the kernel with which user processes communicate directly by system
calls — or by the C functions that contain these system calls — are in the inner kernel (IK).
The inner kernel supports message sending and receiving, and behind the scenes deals with
message routing, process scheduling, storage management, and error conditions. These
system calls and corresponding C functions are called primitive functions to indicate that
they correspond directly to kernel primitives. The primitive send, recv, probe, £lick, and
block functions described in chapter 3 operate in a way that allows a process to manage
many concurrent message activities,

The concurrency, queueing, and message order properties of the message system are
discussed and illustrated in chapter 4. Here we show that the weakly synchronized form
of message passing provided in the cosmic cube is well suited to typical computations,
and is also sufficient to express the most tightly synchronized forms of message passing.
For example, it is easy to define functions that provide the same tight synchronization
between sender and receiver as is used in Hoare’s Communicating Sequential Processes
(CSP) notation [Hoare 78] or in Occam [InMOS 84].

An extended library of C functions that can assist the programmer are described in
chapter 5. .

All other kernel functions are invoked by sending messages to a set of processes called
the outer kernel (OK). The outer kernel processes are just like user processes, except that
they are loaded along with the kernel and use privileged system calls. Messages sent to
the SPAWN process in a node cause this process to spawn or to change the run state
of a specified process in its node. Messages sent to the SPY process provide means for
monitoring what is going on in a cube node. These outer kernel processes are described in
chapter 6.

1.4 Concurrent formulations

The design objectives of the programming system described in this guide were to support
a highly portable low-level programming environment for message-passing systems. For
example, there is only one message format visible to the programmer. Only the kernel
“knows about” the hardware channels of the cosmic cube. The kernel handles messages
of different lengths by different protocols, but these hardware dependencies and protocols
are internal to the kernel and are completely invisible to the programmer. Future machines
with different hardware communication structures will, with their own version of the cosmic
kernel, be able to run the same user programs.

The semantics of these computations are independent of process placement, just as the
semantics of the message-passing operations have been made independent of the hardware
structure of the physical message channels. Thus the expression of a concurrent computation
as a cosmic cube program may be regarded as reasonably portable between different ma-
chines (concurrent or sequential) that support this same multiple process message-passing
environment. For example, the host runtime system allows exactly the same programs that
run on the cube to run on individual computers or on a number of computers that commu-
nicate through a conventional network. Other operating systems or runtime systems could
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be developed to allow these same programs to be run on other architectures, such as on
shared-storage multiprocessors.

Although the functions provided in this low-level portable environment can be used as a
compilation target for higher-level concurrent programming notations [Athas 5196:TR:85],
the low-level environment built on the C programming language has proved to be adequate
in itself for many purposes. It has been used extensively for experiments with concurrent
algorithms and for writing useful programs based on explicit concurrent formulations of
computing problems typical of those found in science and engineering. These application
programs are often based on concurrent adaptations of well-known sequential algorithms
[Seitz 84], or on the systolic algorithms that have been developed for regular VLSI com-
putational arrays [Kung 80|. Systolic algorithms are particularly easily implemented as
cosmic cube programs, since these algorithms are already expressed in terms of processes
and message-passing.

The multiple process message-passing model of computation and the primitives of the
cosmic kernel and the cosmic host environment are based on a principle of a “separation of
concerns” between (1) the expression, in a collection of processes, of an explicit concurrent
formulation of a computing problem, and (2) the distribution or placement of processes
into the nodes and hosts. This system thus encourages “late binding” of processes to nodes,
so that this decision can deferred until the interdependence and computational demands
of different processes is known. The performance of a particular program depends on how
well the concurrent formulation and process placement is able to keep the nodes busy. The
objective is to assure that:

1. The number of concurrent processes that are able to make progress is on average
comparable to or larger than the number of nodes.
2. There is a way to distribute the processes so that the average computational load
on the nodes is satisfactory.
It is possible (although difficult) to formulate a concurrent computation that satisfies the
first but not the second requirement. One should accordingly consider the “load balancing”
properties of the computation from the earliest stages of program design.

In addition to these primary considerations, which are fundamental to the architecture,
there is another performance consideration that is more important to the cosmic cube than it
will be to future machines of this type. Messages should be reasonably infrequent compared
with computation, for the reason that there is an appreciable operating system overhead for
each message. In addition, a single long message is somewhat more efficient than a series
of short messages that convey the same data.

Finally, although the placement of processes to minimize communication in the cube
structure does influence the performance of the computation, the programmer should not
be overly concerned in the formulation phase about the communication implications of the
physical placement of processes. Analytical results and statistical studies [Steele 5184:TR:85]
show that even after the constraints above are met, it is nearly always possible to find a
process placement in a binary n-cube that reasonably minimizes the distance a message
must travel. If worse comes to worse and many messages must travel to distant nodes, the
system routes messages quite efficiently from any process to any other process, and future
systems are expected to be even more efficient in this respect.

The examples in the Appendices are intended to provide an introduction to some of the
issues in the design of concurrent formulations and programs for the cosmic cube.



Chapter 2:
Processes

For the purposes of describing the compilation and execution of programs for the cosmic
cube, let us assume that the programmer is has an account on one of the Caltech Computer
Science VAXes or SUNs. These machines all run Berkeley Unix (4.2bsd) and communicate
with each other by Internet protocols over an ethernet. Two of the SUNs are cube hosts,
although the programmer doesn’t need to know which machines these are.

The programs used for compiling and running programs on the cosmic cube are in direc-
tory /usr/cube, which should be in the user’s search path. The directory /usr/include/cube
contains #include files, and file /usr/lib/libcube.a contains a version of the cube library
for that host. The definitions needed either for cube or host processes are provided by:

#include <cube/cubedef.h>

at the beginning of a C program for a process. A broader set of definitions containing
both the basic cube definitions and a set of rarely used definitions, such as the definitions
of the SPAWN process message formats, can be included from cube/cosmic/cubedef .h.
The features accessed by these extra definitions are usually invoked by library functions. In
accordance with the usual C conventions, constants and typedefs are in all capital letters;
for example HOST is the constant that defines the node value to use for host processes.

The C functions described in this guide are linked with the program by the -1cube option
of the particular C compiler being used. A synopsis of all of the definitions and functions
is given in chapter 8.

2.1 Cube process representation

A process is represented inside the cube as a code segment and a combined data and
stack segment. Facilities provided for sharing code segments, as may occur when multiple
processes that are instances of the same program are located in one node, are described in
section 6.2.

Process segments are dynamically relocated by the kernel, using segmentation features
of the 8086 that require the code to conform to the 8086 “small” addressing model. The
system calls that invoke kernel functions are implemented as interrupts that are vectored
through the interrupt table, and hence do not reference out of the current segment. The
8086 does not have facilities that allow the system to be protected, so the compiler must be
relied on to produce code that does not use absolute jumps or calls, does not load segment
registers, does not perform I/O instructions, and does not tamper with the interrupts. As
far as we know, our C compiler can be depended on in these respects.
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The only runtime system support for a cube process is the set of functions described in
this guide. A cube process must otherwise be self-contained. A process created in a node
may not, for example, perform file or terminal I/O except through communication with a
cooperating host process. It may use language runtime facilities and library routines so
long as they can be linked in a way that conforms with the process representation described
above. For example, a cube process may use the C math library but cannot use the stdio
library.

The code for a process is compiled independently of the code for other processes that
may be a part of the same computation. Because of the independence in the construction
of process code and the standardization of kernel functions, there is a general compatibility
of processes independent of source language. For example, a process written in Fortran or
assembly code can be used in a computation in which other processes were written in C.
The precautions that the user should be aware of are questions of the compatibility in data
representations. These precautions are the same as those required when calling subroutines
written in a different programming notation.

2.2 Compilation

The C compiler currently used for cube process code, cc86, is a version of the “portable
C compiler”. It was adapted at Caltech for the 8086/8087 originally by Eugene Brooks,
and has since been modified extensively by Mike Newton and Wen-King Su. The compiler
runs both on VAXes and on SUNs. Typical use is:

cc86 -o objfile [other options] files -lcube [-1m]

The standard cc options such as -c for compile-only and -0 for optimization work as
expected. The default library is not quite complete, and the only other library currently
available is the math library, which is linked by ~1m. The files may be any combination of
.c and .o086 files. One object file produced will be objfile.o086, and if the object code is
completely linked, an “executable” file objfile is also produced.

The file /usr/cube/bugs describes any currently known bugs in cc88, as well as known
bugs in the kernel or host systems.

Once the program is compiled the object code must be converted to the format required
by the SPAWN process. Run £ix86 to perform the conversion:

1ix86 [-8 stacksize] objfile

If the -8 option is omitted, £ix86 will default to a stack size of 1K bytes. The stack is used
for automatic variables while the rest of the data segment is used for constants and for the
external variables. If the program requires a larger stack size than the default, or if you
know that the program can get by with a smaller stack and you need to be conservative in
your use of storage, the -s option should be used. Its argument is a decimal number giving
the maximum number of bytes of stack that will be required by the program at any time.
£ix86 allocates this much stack for the program plus additional stack space for saving the
state of the process.

The £ix86 program produces a .cos file that contains, in addition to the program’s code
and data segment, a summary of the lengths of the program’s code and data segments and
various time stamp and version control information. The .cos file is an ASCII file that can
be displayed to see this information. When you spawn a .cos file as a process, the system
will tell you if it is out of date with the current library, so you must recompile, and will
even remind you if you have recompiléd a program but forgotten to run £ix86.
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2.3 Confidence-building first program

If you are already a C programmer, you know almost enough to write a program for a
cube process. Let us now illustrate how programs are compiled, loaded, and run on the
cube. This informal description of the runtime system and utilities is intended to remove
some mysteries and to make the later detailed descriptions more comprehensible.

Following the excellent example of Kernighan and Ritchie, you might enter your favorite
text editor and compose a simple program such as:

#include <cube/cubedef.h>

main() { .
print("Hello, world, from (%2d, %2d4)", mynode(), mypid());
print("Goodbye, cruel world!");

The cube’s print function is much like the Unix printf, and mynode and mypid are func-
tions that return values representing the process’s own node and pid. Then we proceed
(this is a session on one of the SUNS, called venus) to compile the program:

(venus:2) ¢c86 -o hello hello.c -lcube
hello.c:

(venus:3) fix86 hello

Code size: 848

Data size: 80

Stack size: 1024

Now we are left with the puzzle of how to load and run this program as a cube process.
This task does not really involve much more to do than it would for a sequential machine
program: just a sequence of (1) allocating a cube, (2) spawning the program as a process,
and (3) freeing the cube that was allocated. However, because the object of this exercise
is to understand how the host runtime system works, we shall discuss each step in some
detail.

Each cube and host process exists within a process group. The way in which a process
group is created is to run the utility program getcube. Here we first set an environment
variable cube so that the group name will formed as demo combined with our Unix username,
vivian in this case, and then run getcube:

(venus:4) setenv cube "group demo"
(venus:6) getcube 3 cosmic
3-cube allocated

In the getcube arguments we requested a cosmic cube of dimension 3. When getcube is
successful in allocating a cube, it forks out a process that enters the host environment with
the ID = (HOST,SERVER). The getcube process also puts itself into the background and
remains in the host environment doing various invisible chores such as queueing messages.
You could observe the (HOST,SERVER) process by running the peek utility:
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(venus:8) peek

CUBE DAEMON version 6, up 1 day 19 hours on host sol

{ } 3d cosmic cube, b:0000 [ sol 6-cube] 15.0h
{ demo vivian } 3d cosmic cube, b:0008 [ venus 6-cube] 23.2s
{ } 4d cosmic cube, b:0010 [ sol 6-cube] 15.0h

{group kaw31638} bd cosmic cube, b:0020 [cit-vax 6-cube] 39.5m
GROUP {demo vivian}:

(-1 -1) SERVER 08 Or Oq [venus 1368] 20.7s
(--- --- ) CUBEIFC O0s Or Oq [ sol 45B4] 20.7s

The peek display reveals two other curiosities. First, the 3-cube that was allocated
is actually a piece of a 6-cube, and another user has a process group assigned to another
subcube of this machine. Not to worry. “Space-sharing” of cosmic cubes is much like “time-
sharing” of conventional computers. The behavior of the logical 3-cube that was allocated
is indistinguishable from that of a physical 3-cube. For example, the node values in our
program actually refer to the node numbering in a logical 3-cube based at physical node
0x0008 rather than the absolute node numbering in the 6-cube. Second, there is another
host process, CUBEIFC participating in the process group from host sol. This is the cube
interface dzemon process for the 6-cube hosted on sol, and it handles the communication
to and from the cube.

Error messages and the output of the print function are directed to stdout of the
(HOST, SERVER) process. This process also performs the file accesses for process spawn-
ing. When a SPAWN process receives a message asking to create a process from a file,
the SPAWN process interacts through a series of messages with (HOST,SERVER). Thus all
pathnames for .cos files to be spawned as processes are interpreted relative to the current
working directory of the (HOST,SERVER) process.

Although we could load our hello program by writing a host program that sends a
suitable message to a SPAWN process, there is already a spawnf utility that will do this
task for us. The spawnf program has the usage:

spawnf filename [node [pid [runstate]]]

The node and pid numbers are specified in decimal. The runstate is usually left blank to
default to a running process.

(venus:7) spawnf hello 7 3

hello spawned successfully in node 7, pid 3
7.3: Hello, world, from ( 7, 3)

7.3: Goodbye, cruel world!

You can see that the cube’s print function is slightly different from Unix’s print£, in that
it starts the line with the node,pid pair of the process executing the print, and adds its
own carriage-return (\n).
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If the node parameter given to the spawnf program is -1, the process is spawned in all
nodes. This operation is performed with a broadcast spawn process (section 6.3) that is
faster than loading processes individually. To get a feeling of power, we might try the
broadcast spawning option:

(venus:8) spawnf hello -1 65
hello loaded in all nodes, pid 55
2,65: Hello, world, from ( 2, 55)
1,66: Hello, world, from ( 1, B5)
1,65: Goodbye, cruel world!

3,65: Hello, world, from ( 3, 55)
6,65: Hello, world, from ( 6, 55)
3,5b: Goodbye, cruel world!

2,55: Goodbye, cruel world!

5,565: Hello, world, from ( 5, 5b)
7.656: Hello, world, from ( 7, 55)
5,66: Goodbye, cruel world!

7.55: Goodbye, cruel world!

6,566: Goodbye, cruel world!

4,55: Hello, world, from ( 4, B5)
4,5b: Goodbye, cruel world!

0,66: Hello, world, from ( O, 55)
0,65: Goodbye, cruel world!

(venus:9) freecube
Cube space deallocated

Grateful now that we didn’t get a 6-cube, we run the freecube utility in order to release
the cube for another user.

All of the mechanisms illustrated in this extended example can also be invoked from host
programs. The person using a cube program written by someone else does not need to know
any of the manual steps illustrated above. Thus running a cube program can be made to
look just like running any other program. For example, the long-winded illustration above
can be duplicated in the following host program:

#include <cube/cubedef.h>
main() {

if (system("getcube 3 cosmic")) /% create process group */
exit();
cosmic_init (HOST,5); /*Enter the environment with ID */
spawnf ("hello",3,7,"r"); /* spawn hello with ID = (3,7) */
spawnf ("hello",-1,55,"r"); /* broadcast spawn hello with pid = 55 */
system("freecube"); ./* release the cube */
cosmic_exit(); /* and exit */
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2.4 Process IDs and debugging

The ID of a cube process is determined when it is spawned. Its node value will be the
same as that of the SPAWN process that created it. Its pid is determined by a value passed
in the message to the SPAWN process. The ID of a host process is determined by the
process itself when it enters a process group with the cosmic_init function.

The flexibility of process IDs being determined at run time, a set of rerouting conventions
built into the kernel, and the principle of the results of a computation being independent
of process placement, work together to provide a convenient mechanism for developing and
debugging programs.

A message sent by a cube process to a process whose node is outside the range 0...2" —1,
where n is the dimension of the cube in use, is treated as message for a host process. For
example, suppose you were running a program on a 3-cube, for which the possible cube
node values are 0,1,...,7. If a cube process sent a message to process (12,15), the message
would be routed out of the cube.

The decision to route a message out of the cube because the destination node is out of
range is a special case — detectable at the sending node — of a process that is not present
in the cube. If a message arrives at a destination node at which the specified pid does
not exist, the message is again rerouted out of the cube. The cube host’s CUBEIFC process
then sends this message on to the group’s getcube process, which in turn sends it to the
corresponding host process if it exists, or produces an error message if the host process does
not exist.

The programmer can exploit these rerouting features in developing and debugging pro-
grams, at least if the processes intended to be run on the cube are written to be able to
run also on the hosts. The trick here is that any such cube process can be relocated to the
host, up to and including all of the processes.

One can, for example, omit a particular process from the process structure spawned in
the cube and run it instead as a host process with the same (node,pid) it would have in
the cube, and under a debugger. Messages originating in the cube and destined for this
process are rerouted from its usual node to the host environment. Messages sent from a
host process to a process whose node is in the range of the allocated cube are forwarded
through CUBEIFC to the cube only if the process does not exist in the host environment,
hence go directly to this process. It is possible, but is obviously not a good practice, to
have two processes with the same ID, one in the cube and one in the host environment.

In addition to this technique of relocating selected processes from cube to host for debug-
ging, you can — if you do not have to have regular access to a cube while developing programs
— run programs entirely on one or more hosts. Programs with very sparse interactions can
even be run usefully on a collection of workstations on a local network.

Processes written to run only on the hosts, for example, processes that use Unix functions,
should be assigned a node equal to HOST, a constant specified in cubedef .h.

2.5 Range restrictions

The node, pid, and message type are represented as short integers*. There are, however,
restrictions on the range of values of these variables beyond those implied by their type.

* In the cube nodes an int is a 16-bit quantity, the same as a short; and in the SUN
hosts an int is a 32-bit quantity, the same as a long. The reason that the node, pid,
and type are represented to the programmer as short rather than long integers is because
shorts are sufficient to represent the ranges of these variables for the cosmic cube. The
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Negative values of node, pid, and type are permitted, but are reserved for special purposes
in the system. For example, the node constant HOST is defined as -1. Otherwise, node values
in the cosmic cube should be in the range 0. ..63, since the largest cosmic cube is a 6-cube.
Larger node values cannot necessarily be represented at certain points in the system, such
as in message headers, or may be used for other purposes in the message system protocols.
Programs run entirely in the hosts do not have this same restriction. You could have a
process in the host environment in which the node value was larger than 63, but then there
would be no way for a cube process to send it a message, nor could the process be relocated
to a cosmic cube node.

The number of processes per node is currently limited (by a kernel table size parameter)
to 20. The pids of user processes must be in the range from 0 to MAXUPID (currently equal
to 127). Negative pids are used in the cube nodes for pids of the outer kernel processes
and utility processes such as the broadcast spawn process, and in the hosts for the pids of
processes such as (HOST,SERVER).

Negative values of the message type are reserved by convention for library and system
functions. The reply messages used by the library functions print, execute, cspsend,
spawnf, and spawnp, which do their work through messages and which do not return until
the reply message is received, use the type -1. User programs should not use this type, at
least not concurrently with any of these functions, lest a message for the user process be
interpreted as a reply message, or vice versa.

reason they are represented as shorts rather than as ints is because node, pid, and type
values are often passed in messages between the cube and host, and must therefore be
of compatible representations. Nevertheless, the functions that return node or pid values
return int values, which of course will be converted to short values if assigned to one
of these elements. In fact, all of the functions described in this guide return the usual C
default int type except for malloc, which returns a pointer.
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Chapter 3:
Inner Kernel Functions

The cosmic kernel provides five functions: send, recv, probe, flick, and block, to
control and monitor message passing, and a number of other functions. The principal
properties of the cosmic cube message-passing system are the following:

e All messages include headers that contain the destination ID, sender ID, a message type,
and the message length.

o There is one format for messages of any length from O to the maximum message length
(64K-1 bytes). Messages are sent and received whole.

o Messages are queued in transit, but between any pair of processes, message order is
preserved.

e Process execution proceeds concurrently with message activities.

The descriptions of the primitive message functions later in this chapter concentrate on the
interaction of a process with the message system. The next chapter describes the properties
of the message system itself. Let us start, however, with an informal introduction to the
message system functions and properties.

The two basic message system calls, and corresponding primitive C message functions,
are send and recv. It is very important to understand from the outset that the return
from these functions does not imply that the specified action has been completed. It isn’t
possible to receive a message that has not yet arrived. Similarly, it might not be possible
to send a message immediately due to the outgoing channels being occupied. So, if the
action specified in a send or recv cannot be performed immediately, a request is created
that remains pending until it is satisfied, and the function returns anyway. This mode
of operation is essential to sophisticated cube programs in which program execution may
continue concurrently with many concurrently pending communication requests. However,
it is also a dangerous source of bugs if one does not appreciate the unusual semantics of
these functions.

It is correct to think of send or recv as functions that create (fork) another concurrent
process, a descendant or “coroutine” of the process executing the send or recv function.
This “coroutine” will persist for as long as the specified message action remains pending.
The communication between a process and its message coroutines is through shared vari-
ables, both the message areas and a structure called the message descriptor.

When data dependence dictates that a process wait for a pending operation to complete,
it need only execute the block function. The block function can also be thought of as a
join between the process and a particular message coroutine. The common combinations
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of send, recv, and block, such as:

recv(&d); /* receive message described in message descriptor d */
block(&d); /* wait for message to arrive */

also exist as single functions in the library, in this case recvb(&d). .
In addition to message and process concurrency, another property of the cosmic cube
message system that should be understood from the outset is that messages are queued.
This queueing occurs both in routing the message and at the destination. It is possible for
a process to have many incoming messages queued for it. The kernel uses that part of the
primary storage of a node that is not used for processes as a kernel message buffer.

When a process dispatches a message with the send function, there is no automatic
acknowledgment when the message has arrived at the node of the destination process, nor
when it has been received by the destination process. A sending process can get as far
ahead of the receiving process as its own dependence on results from the receiving process
may allow, with messages simply being queued between them. However, message order
is preserved between any pair of processes. This property of message order preservation
between pairs within a weak synchronization between sender and receiver allows processes to
get “out of step” as far as their dependence on each other may allow, but is also sufficient to
allow the tightest forms of synchronization to be expressed in terms of the primitive kernel
functions.

3.1 The Message Descriptor

Message headers are generated by the kernel as part of the message sending activity, and
are separated from the message on receipt, so the exact format of the header is of no concern
to the programmer. For specifying message length the header is not considered to be part
of the message, but can be thought of as the envelope in which a message is sent. The
header contains: (1) the ID of the destination process, (2) the ID of the sending process,
(3) a message type, and (4) the length of the message.

The destination ID is what routes the message to another process. The sender ID is
always included in the message and is available to the process that receives the message,
or for discovering in debugging the origin of a rogue message. The type is significant in
the way in which messages sent are matched against messages expected by the destination
process. The message length is specified in the number of bytes, not including the header,
and may be zero. A message of length zero is called a synchronization message.

The information in the message header is specified through a data structure that is called °
the message descriptor. The primitive send, recv, and probe functions take as a single
parameter a pointer to an instance of this structure. The message descriptor is defined as:

typedef struct{

short node;
short pid;
short type:
short seg;
char *buf ;

unsigned short msglen;
unsigned short buflen;
short lock;
} MSGDESC;
and these 8 elements have the meaning:
node part of the destination (send), or sender (recv and probe) ID.
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pid part of the destination (send), or sender (recv and probe) ID.
type of message.
seg is irrelevant to user processes, and will not be mentioned again.
buf is a pointer to the message buffer.
msglen is the actual length of a message, in bytes.
buflen is the length in bytes of the message buffer (recv), or unused (send and probe).
lock contains a variable that indicates whether the message operation is pending, 0
(false) for not pending, and non-0 (true) for pending.

The same descriptor may be used over and over again. A declaration of a MSGDESC as an
external variable can include its initialization:

MSGDESC results =
{HOST, RPROC, RTYPE, 0, {(char*) &x, sizeof(x), sizeof(x), O};

or, one may use the idesc macro:

#define idesc(desc,node,pid,type,.ptr,len)\
MSGDESC desc = {node,pid,type,O, (char *)ptr,len,len,O}

in order to be able to express the declaration of an external MSGDESC with less to type and
to remember about the order of MSGDESC elements. For example, the MSGDESC declaration
and initialization above could be expressed:

idesc(results, HOST, RPROC, RTYPE, &x, sizeof(x));

This example can be thought of as the declaration of a channel named results to a host
process (HOST,RPROC) to which results are sent in messages of type RTYPE from a structure
x. This declaration is typical of that of a descriptor for sending messages to a process
whose ID is known when writing the process code, rather than being passed in a message.
Similarly:

idesc(startup, O, O, SUTYPE, xarray, sizeof(xarray)); »

is typical of an initialized message descriptor for receiving a “startup” message into array
xarray. Of course, descriptors can also be built dynamically, and can be used for different
purposes in different phases of a process.

The lock element of a message descriptor is the basic synchronization mechanism for
sending and receiving messages, and being simply a variable that can be tested by the
process code, allows concurrent message activities to be monitored during process execution.

The send, recv, and probe functions are indifferent to the state of the lock at the time
the function is called. The lock is written by the kernel in the send and recv functions so
that when these functions return the lock will be false if the message operation is complete
and true if the message operation is still pending. If the function returns with the lock true,
the kernel — concurrently with process execution — sets the lock to false after the message
operation is completed.

It is rarely necessary or useful to assign to the MSGDESC lock in process code, and then
only to initialize it to false immediately after it is declared so that it will be in the correct
logical state for an iteration that tests the lock.

After a send or recv, the descriptor may be read but should not be written while the
lock is true; similarly for the message area it refers to. This is the usual and basic rule
to which concurrent processes that interact through shared storage — the process and its
message coroutines — must adhere. Only one process may write at once. When the lock
is false, only the process may write; when the lock is true, only the kernel — in its role as
“message coroutine” — may write. The lock gets its name from the intent that the message
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descriptor and buffer are locked against the process writing to these structures while the
lock is true. However, there are no runtime mechanisms to enforce this rule.

Whether these rules are adhered to in process code can be checked in source programs. We
expect eventually to have available programs similar to the Unix lint program to perform
rigorous tests that the process code cannot violate a lock. However, in the meanwhile,
the cosmic cube programmer needs to be particularly careful about locked descriptors and
message buffers.

3.2 The send function

The statement:
send (&4) ;

causes the message specified by the message descriptor d to be sent or to become pending.
In a send, d.lock is the only message descriptor element written by the kernel. Otherwise,
the descriptor is specified by the process as follows:

d.node is the node part of the ID of the process to which the message will be sent.
d.pid is the pid part of the ID of the process to which the message will be sent.
d.type is the message type to be included in the message header.
d.buf is the starting address of the variable, structure, or array from which the
message is to be sent.
d.msglen is the length of the message to be sent, in bytes. It is included in the message
header, and also determines how many sequential bytes will be sent starting
from the address specified in d.buf.
d.buflen is unused. -
d.lock is the lock variable.

As discussed in section 2.4, a message sent to a process that does not exist within the
cube, either by d.node being out of range of the logical cube or by the absence of a process
matching d.pid in the destination, causes the message to be routed to the cube host. If
the destination process does not exist in the host environment either, an error message will
be directed to stdout of the (HOST,SERVER) process.

It is not an error for a process to send a message to itself.

After the send call, the lock variable becomes false only after the message is completely
sent. By “completely sent” is meant that subsequent writes to the message array do not
change the message. Hence the message data may be read while the lock is true, but should
not be written.

3.3 The recv function

The statement:
recv(&d);

requests that the message specified by message descriptor d, whether it is already queued,
or when it is received by the node at some time in the future, be placed in the specified
variable, structure, or array.

d.node is irrelevant when the recv is called, but when d.1lock later becomes false
contains the node part of the ID of the process from which the message was
sent. )
d.pid is as above, except applying to the pid part of the sender ID.
d.type is the type of the message to be received.
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d.buf is the starting address of the variable, structure, or array into which the

incoming message is to be written.

d.msglen is irrelevant when the recv is called, but when the lock later becomes false
will contain the length of the message, in bytes, taken from the message
header. If d.msglen <= d.buflen, the entire message was received. If
d.msglen > d.buflen, the tail of the message is lost.

d.buflen specifies the size of the variable, structure, or array, in bytes, in order to
assure that a longer message will not overrun the allowed size.

d.lock is the lock variable.

There are no detectable error conditions created by recv.

If there was a previously queued message of the specified type in the kernel message buffer
when recv is called, the oldest such message will be copied into the structure pointed to
by d.but, the descriptor information is filled in, and the lock will be false on the return
from recv. If there is no such queued message, the lock is set to true in the call. The
first incoming message that matches the type specification will be placed in the buffer as
specified, the descriptor information is filled in, and the lock then becomes false.

Only the type is used to match incoming or queued messages against recv descriptors.
Incoming messages cannot be matched by sender ID, nor by maximum length, but only by
type.

The type may be used to filter messages into different buffers according to any criteria the
programmer may care to devise. For example, a point process in a grid point computation
may need to send and receive messages of several types from neighbors in four directions. If
the direction is coded in part of the type and the distinguished types of messages in another
part, one can filter these messages readily into different message areas for appropriate action.
The type may also be used to invoke in the object-oriented programming sense a particular
attribute or method of a process (object), including the ability of the process to select
[Lang 5014:TR:82] amongst a number of concurrently available messages. Of course, the
message contents may also be used to discriminate different interpretations of the data. The
type mechanism was accordingly not made very general, but it is adequate for the purpose
usually associated with data types — making sure that the structure received is conformal
to the structure sent. The type may also be used for filtering messages according to other
criteria depending on the application and programming style.

There may be concurrently pending recvs with descriptors whose type specifications are
the same. In this case an incoming message will be matched to the recv that was pending
first. In the dual situation a recv might be executed with more than one message of that
type queued in the kernel message buffer. This situation is just the usual case of message
order being preserved, and the first queued message (from whatever sender) will go into the
message space immediately.

3.4 The probe function

The probe developed by Alain Martin [Mart 85] has been adapted for the queued com-
munications in the cosmic cube with a function that allows a process to determine whether
a message of a given type is queued for the process. The statement:

present = probe(&d);

assigns to present a value true if a message of this type is present, and also leaves the
sender ID and message length in the descriptor. The probe function returns the value false
and leaves the descriptor unchanged if the message is absent.

Just as with recv, with the possibility of more than one message of the specified type
being queued, probe returns information in the descriptor about the oldest such message.
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Thus if probe returns true the next recv call with the same type (it would usually be the
same descriptor) causes the same message that was probed to be copied into the designated
message area.

3.5 Scheduling and the flick and block functions

The scheduler runs all processes in a node in a round robin fashion, including the outer
kernel processes. The time each user process is allowed to run is a constant determined by
a kernel parameter, or until the process calls the £1ick* or block functions.

The f1lick function should be used when a process cannot make progress until one or
more locks become false, so that the process might as well defer to another process. The
flick function can be thought of as a null operation that incidentally delays execution for
a period. You can make a process run at low priority by sprinkling f1icks in it.

There is an important point to be understood about f1ick, namely that it is not analogous
to the usual operating system “sleep” call. For example,

if (d.lock) flick(); /* tlick if d is pending 74
d.type = 3; /* WRONG -- may still be pending */

is an incorrect use of flick, since flick may return before the lock becomes false, and
the change of type should not occur while the message action is pending. A correct use of
flick is:

while (d.lock) flick(); /+* wait while d is pending */
d.type = 3; /* now you can change d */

There is a good reason why flick works this way, and why flick, rather than a “sleep
until a lock changes” call, is the fundamental waiting mechanism provided by the kernel.
The conditions for a process to proceed may be more complex than can be specified in a
single lock, for example:

while ((chl.lock || ch2.lock) && (urgent.lock)) flick();

Here the process is waiting to proceed either until both of the ch1 and ch2 locks are cleared,
or until the urgent lock is cleared. There is no critical section mechanism in user processes,
and between the time in which the locks are sampled in order to make a decision and the
execution of a f1lick call, one or more of the locks just tested may have changed. However,
even if the process decided to flick just before the state of a lock changed, it will be run again
next time its turn arrives. Compound “guards” or waiting conditions are thus implemented
by busy-wait loops that are made reasonably efficient by the inclusion of the £1ick no-op.
In cases in which progress is blocked on a single lock, one should use the function:

block(&d) ;

which is equivalent to while (d.lock) flick();, but which is somewhat more efficient in
that the lock testing is performed in the kernel. However, £1ick is available for the general
case of dealing with more than one lock, or for cases in which a process may f1ick for other
reasons, such as to lower its own priority.

3.6 Other IK functions

There are several other functions of the inner kernel that are accessed through C functions
as follows:

* The expression to “flick it in” is Caltech slang meaning roughly to “give it up”.
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mynode () is a function that returns the number of the node in the logical cube in
which the process is running.
mypid() is a function that returns the process’s own pid.
cubedim() is a function that returns the dimension of the logical cube in which the
program is running.
clock() is a function that provides a sampling of a real time value, the same for all
processes. It returns a value that should be interpreted as an unsigned
short that counts mod 2!¢ at approximately 2 msec intervals. A full
cycle is just over two minutes. Use of the clock function to synchronize
different parts of a computation is strongly discouraged. The function is
intended only for making performance measurements.
led(x) turns the light-emitting diode for that node off or on for x false or true,
respectively.
stop() places the process into the “suspend” run state (see section 6.1), in which
execution is suspended.
exit() terminates the process; a process kill (see sections 6.1-6.3). An exit()
need not be included as the last statement in main(). The “return” from
main() includes an exit ().

There are other system calls with corresponding C functions, but they are either privileged
to the outer kernel processes or are experimental and not necessarily recommended or
supported.

Besides routing messages and scheduling, the inner kernel’s other behind-the-scenes ac-
tivity is storage management. Storage is used both for processes and for the kernel message
buffer. Processes are packed into high memory and message buffering into low memory,
with a movable partition between them. The queueing of messages of variable size causes
the free space in the kernel message buffer to become fragmented. In computations in which
processes are killed the process space also becomes fragmented. The partition is moved on
demand with repacking occurring only if necessary.

These storage management mechanisms may be of interest to the application programmer
in assuring that the total storage demand in a node does not exceed the storage available.
After deducting the space used by the kernel, the user process and message buffer space is
approximately 107K bytes.
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] Chapter 4:
Message System Properties

4.1 Message concurrency

The message descriptor is laid out in such a way that if repetitive messages of the same
type are expected, recv can be called again using the same descriptor after the last reference
to a previous message. Similarly for send. In fact, the same descriptor could be used for
both a send and a recv, as follows:

/* Process that echoes a type O message back to the sender */
#include <cube/cubedef.h>

main()
{
MSGDESC d; /* the message descriptor */
int a[40]; /* the message array */
d.buf = a; /* set buffer address */
d.type = 0O; /* message type = O */
d.buflen = sizeof(a); /* max length, in bytes */
while(1) )
{
recv(&d); block(&d); /* recv, wait for lock = O */
send (&d) ; block(&d); /* send, wait for lock = O */
}
}

This process awaits a message of type O and then sends it back as a message of the same
type and length to whatever process sent the message. In this example there is no checking
whether the incoming message may have been longer than the sizeof (a). If the incoming
message were longer, the reply message would be truncated to 40 integers. This is certainly
a contrived example, since a process could produce the same result without this “echo”
process just by sending a message to itself.

The following slightly more realistic example is a process in which a send and recv are
pending concurrently. The process waits for a message of type O consisting of an array of
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short integers of length equal to or less than 100, reverses the order of the array, and sends
it back to the process from which it received the message. For example, if you sent this
process the message {1,2,3}, it would send you a reply message {3,2,1}.

The communication structure of a process that performed a more complex computation,
such as computing a Fourier transform, would be the same. Whenever a process requires a
separate array for its input and output data, one might as well provide two descriptors so
that the process can specify message sending to take place concurrently with receiving the
next message.

/* Process that reverses a message and returns it to the sender */
#include <cube/cubedef.h>

short ra[100], =a[100]; /* the message arrays */
idesc(rd, O, 0, O, ra, sizeof(ra)); /* recv message descriptor */
idesc(sd, 0, 0, O, sa, sizeof(sa)); /* send message descriptor */

main()
{
int i,j;
for(recv(&rd);;) /* call 1st recv, then forever */
{.
while(rd.lock]|sd.lock) flick(); /* wait if send or recv pending */
if (rd.msglen > rd.buflen) /* check for too long message */
print("Msg too long"); /* report error but keep going */
for(i = rd.msglen, j = O0; i--;) /* reverse the list x/
sa[i] = ralj++]);
sd.node = rd.node; /* setup node part of return ID */
sd.pid = rd.pid; /* setup pid part of return ID */
8d.msglen = rd.msglen; /* setup length for send */
recv(&rd); /* call recv again x/
send (&sd) ; /* call send again */
}
}

This program exhibits a typical symmetry between recv and send. The locks for the recv
and send are tested together, and the last recv and send could be in either order. Here we
show the recv first to indicate the preference for a process to recv a message at the earliest
possible opportunity; that is, as soon as the descriptor it uses is set up and the space is
free. Also illustrated here is the print function, which is described in section 5.2.

In this second example we show the message descriptors and message data arrays as
externals; hence the declaration and initialization of the message descriptors is accomplished
using the idesc macro defined in section 3.1. In the first example the message descriptor
and buffer were automatic variables. Because the initialization of the external variables is
free in time and code space, and is easy to read and to type, external message descriptors
and buffers are used unless there is some advantage in storage utilization in making the
variables automatic. :

There is one obvious precaution about message buffers and message descriptors that are
automatic variables. Since these variables are allocated dynamically on the stack, a function
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should not return while any message referring to an automatic descriptor or message buffer
is still pending. Otherwise, a pending send or recv may read from or write into stack area
that was reallocated.

4.2 Message queueing and message order

But for a crucial property of maintaining message order between pairs of processes, the
cosmic cube message system works much like a postal system. Messages are stored as
necessary in transit and at the destination node. One can visualize this queueing of messages
in the process structure graph as a set of message tokens on the arcs:

type 1

type 0

Messages of different types can be thought of as conveyed on parallel arcs. The oldest
message of a given type queued at the destination is the one that is read with a recv or
sensed with a probe. However, this picture is a bit deceptive. One message is not only
unable to pass another on the same arc, but cannot pass another message on a parallel
arc. If process A always sent to process B pairs of messages, the first of type O and the
second of type 1, the type O message is assured to arrive at process B before the type 1
message. Because process B might not be running during the interval between message
arrivals, it might not be able to “observe” the sequential arrival. However, the presence of
the type 1 message is sufficient for the process to know that the type 0 message must also be
present. It is not uncommon in cosmic cube programs to depend on this extended property
of preserving message order between pairs of processes independent of type, length, or other
differences between the messages. The message order preservation properties of the system
are in part a consequence of the route of a message being determined only by its source and
destination node, and not by the other traffic in the network.

Messages of the same type that arrive at a process from different processes are combined
in one queue in the order in which they happen to arrive. We can picture this situation
informally as:

where the merging arcs indicate the common queue for incoming messages of the same type.
In this process structure suppose that:

step 1: Process A sends a message of type O to process B.

step 2: After the message in step 1 is sent, and the lock is false, A sends a message of type
0 to process C.

step 3: After process C receives the message sent by A in step 2, it sends a message of
type O to B.

Will the message A sent in step 1 necessarily appear in the input queue of process B before
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the message C sent in step 3?7 The answer is no, for this reason: Although messages always
reach their destination eventually, nothing can be said about the relative times they spend in
transit. If the message A — B is delayed in transit, the activity involving messages A — C
and then C — B may be completed first. While message order is always retained between
pairs, it is not necessarily maintained in situations involving intermediate processes.

These queued communications include no automatic acknowledgment to the sender when
the receiving process has taken the message. This scheme is — but for the message order
being preserved — the most weakly synchronized, or most “loosely coupled”, form of reliable
message communication. This “loosely coupled” mode of communication is motivated both
by physical design considerations for this class of concurrent computers, and also by the
favorable effects in concurrent formulations of the resulting asynchrony between processes
and messages. When the most weakly synchronized message communication is strengthened
by the property of preserving message order between pairs of processes, the result is a set of
message primitives that are (1) ideal for a very broad class of applications, and (2) sufficient
to allow the strongest forms of message synchronization to be expressed simply. Let us now
illustrate these points in the two following sections.

4.3 Message queueing example

Weakly synchronized communication allows a process to proceed as far as the data de-
pendences in a computation allow. Consider, for example, two processes in a “universal
interaction” (see Appendix 1) or “grid point” (see Appendix 3) computation. Such pro-
cesses start their computation with each sending its state (or boundary) to the other:

Suppose now that process B reads its message and is busy computing its next state, while
process A has fallen behind or been blocked awaiting some other message:

Process B may even complete a full state-changing cycle and emit another message before
A gets around to receiving the first message:

Process B is now blocked awaiting input, while process A has its inputs queued for it. It is
obviously crucial to the computation that the order in which A reads the messages is the
same as the order in which B sent them.

Although the programmer may think about point processes in grid point computations as
operating in lockstep, they may in execution get as far out of step as the data dependencies
allow. One underlying reason that no automatic reply mechanisms were included in the
cosmic cube message system is that they would be redundant in a great majority of cases. In
the example above, the messages that convey state information are also, in effect, messages
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that acknowledge receipt of a previous message. This interdependence serves to bound the
number of messages that might be queued on a given channel.

There are other programming situations, such as a process sending a very long stream
of results back to a host process, in which the “virtual channel” may queue a volume of
messages that eventually becomes limited by the total storage available in the system. This
situation is discussed in section 4.5.

4.4 CSP send and receive

Concurrent formulations such as the grid point example are expressed somewhat dif-
ferently when the message-passing primitives are tightly synchronized. For example, the
send and receive primitives in Hoare’s Communicating Sequential Processes (CSP) notation
[Hoare 78] are defined such that the number of completed send and receive operations at the
processes at either end of a channel are exactly the same. CSP thus employs message prim-
itives that could not be more tightly synchronized. The same communication primitives are
used in Occam [InMOS 84], however in processes that may employ parallel constructs.

If one were to use the CSP primitives in the grid point problem, one could not start the
computation simply by each process sending a message to the other, and then receiving a
message from the other. Neither CSP send operation could complete until the following
receive completed; an “after you, after you” deadlock. If there is a red-black coloring of
the processes, the red processes could send while the black receive, and then reverse roles.
However, this scheme keeps the whole grid in unnecessarily tight synchrony. The Occam
language allows the send and receive in different segments of a parallel construct, which
would serve similarly. However, the usual solution is to define “buffer” or “queue” processes
between the processes A and B in the example above, where a buffer of two messages will
suffice to allow processes to run with maximal asynchrony. In the cosmic cube these queues
are implicit, and their size is bounded only by their use.

In situations requiring the tight CSP synchronization in passing messages, one can im-
plement the CSP send and receive operations in terms of the cube’s send and recv by the
receiving process sending a reply message. In the cube library versions of cspsend and
csprecv shown below, the reply message is of length O — a synchronization message — and
is of a reserved negative type:

#include <cube/cubedef.h>
#define REPLYTYPE -1

cspsend(d)

MSGDESC *d;

{
MSGDESC replymsg; /* message desc for reply */
send(d) ; /* dispatch the message  */
replymsg.type = REPLYTYPE; /* setup type for reply */
recv(&replynsg) ; /* call recv for reply */
block(&replymsg); /* wait for reply */

}

csprecv(d)

MSGDESC *d;

{
MSGDESC replymsg; /* message desc for reply */
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recv(d); /* call recv for msg */

replymsg.msglen = O; /* setup length of reply x*/
replymsg.type = REPLYTYPE; /* setup type for reply */
block(d); /* wait for message */
replymsg.node = d->node; /* setup node for reply */
replymsg.pid = d->pid; /* setup pid for reply */
send (¥replymsg) ; /* send reply */
block(&replymsg); /* wait for reply on way x*/

These cspsend and csprecv functions are called in exactly the same way as send and
recv, and can be used in programs together with the send, recv, and probe functions. The
reason that one can say that the number of completed sends and receives over this channel
is identical, even though csprecv is obviously able to return before cspsend has received
the reply message that allows it to return, is this: Any effect the process executing the
csprecv may have on the process executing the matching cspsend will be seen later than
the reply message, and this is true only because message order is preserved.

One may also implement these CSP primitives with the CSP receive function first pro-
ducing a synchronization message to which the CSP send replies with the data. The form
shown above is preferred if one wishes that the probe function be used as a “receive probe” ,
as it was defined previously. The more general symmetrical probe [Mart 85] in conjunc-
tion with CSP send and receive functions requires that both the send and receive functions
initiate a communication, and that both reply.

4.5 Congestion and Deadlock

Deadlock is the permanent failure of a concurrent computation to make progress, and is
implied in a strongly connected process structure by all processes being blocked, that is,
waiting for a lock to change. It is perfectly possible to write programs for the cosmic cube
that, because of incorrect sequential dependences on the messages, will deadlock. This is
simply a programming error.

The descriptions of the message system properties presented above are adequate only for
writing programs that do not encounter the limits of available queueing space in a kernel
message buffer. A node that has reached the limits of its message buffer is in a condition
that we refer to as congested.

As long as all nodes remain uncongested the message system does not impose any se-
quencing or synchronization of messages and processes that is not inherent in the definition
of the computation. When a node becomes congested the kernel must make decisions on
the sequence in which it queues messages. These extra sequencing decisions — spurious
synchronizations — between messages may introduce a deadlock into a computation that
would be free of deadlock if the queues were larger. These spurious synchronizations may
also reduce the performance of the message system due to decreased concurrency in the
message flow.

One technique to assure that the message system never introduces a deadlock into a
computation is to assure in the concurrent formulation of the problem that the queue space
used is strictly less than that available. Queue space is easily bounded in most scientific
and engineering applications by the data dependencies in the algorithms. For example, in
the grid point computation discussed in section 4.3, the states of neighboring points cannot
get out of step by more than one time unit, and the number of messages queued on the pair
of message channels cannot exceed two.
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The more general and powerful technique to assure that the message system does not
introduce a deadlock — in spite of any number of nodes being congested — is to assure
that any message that reaches a process is eventually consumed by the process independent
of the arrival of or ability to send some other message. The kernel uses a message routing
and channel priority algorithm that, in addition to preserving message order, assures that
deadlock cannot be introduced into a computation whose processes adhere to the “eventual
consumption rule”.

For example, consider an event-driven simulation involving the interaction of a large
number of objects, each represented by a process. Suppose that the simulation itself did
not involve enough messages to cause congestion, but that the reporting of the results of
the simulation back to a slow host process could, over a period of time, create more than
enough messages to congest every node. The eventual consumption of messages by the
host process is sufficient to assure that the simulation will continue to run, although not
necessarily with the same performance as in the uncongested case.

An example of sequential dependence is a process that cannot consume messages of type
0 until it receives a message of type 1. The queue space necessary to accept the type 1
message may be filled by type O messages. Another kind of sequential dependence can be
on the completion of send operations. A process unable to execute a recv while waiting
for a blocked send to complete also exhibits a sequential dependence.

A point related to the eventual consumption rule is that it is generally most efficient if
the recv for a message is executed before the message arrives at a node. The message is
then delivered directly from the message channel to the process rather than being kept in
the kernel message buffer and then moved again. Some computations can be organized so
that a recv is always executed before the matching message arrives. In this case the kernel
message buffer is used strictly for routing messages and not for queueing them for processes
in the node. This programming style necessarily satisfies the eventual consumption rule.
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Chapter 5:
Library Functions

The way in which the C functions described in chapter 3 work is exactly the way in which
the kernel functions work. These functions do nothing more than to set up the parameter
passing and execute the system call. The format of the message descriptor is also built into
the kernel.

This chapter describes a set of library routines that provide several additional functions

for message passing, a print function, a function for executing host programs, and functions
for dynamic storage allocation.

5.1 Functions that use and manipulate the message descriptor

When a message descriptor is an automatic variable, one may initialize the message
descriptor using the “setup descriptor” function:

sdesc(&d, node, pid, type, buf, length); N

The sdesc function has the same format as the idesc macro defined in section 3.1, but
please remember that it is a function and does not declare the message descriptor. The
length parameter initializes both d.msglen and d.buflen. The lock variable is initialized
to false to be compatible with the idesc macro, and so that the lock will be correctly
initialized for a first use inside an iteration that tests the lock.

The programmer who may wish to specify all the parameters of a send or recv as pa-
rameters of the function can use the “setup and send” function:

ssend(&d, node, pid, type, buf, msglen);
with the same general format as sdesc, or the “setup and recv” function:
srecv(&d, type, buf, buflen);

which is similar except that the node and pid parameters are omitted. Caution: Unlike the
regular send and recv, ssend and srecv are not indifferent to the prior state of d.lock.
Both of these functions wait for d.1ock to be false before they copy their arguments to the
message descriptor, and then initiate the send or recv. Hence they may refer to a message
descriptor whose lock is true, and do the extra duty of blocking until the lock becomes false.
Thus, for example, the following statement:

for(i=0; i<ndest; i++)
ssend(&d1, destnode[i], destpid[i], QTYPE, stv, sizeof(stv));

30



is a good way to send an array stv as a message of type QTYPE to each of a list of nd-
est destination processes. The necessary waiting on d1.lock is absorbed into the ssend
function. The same action would be accomplished using the primitive functions by:

block(&dl);

dl.type = QTYPE;

dl.buf = stv;

dl.msglen = sizeof (stv);
for(i=0; i<ndest; i++)

{
block(&dl) ;
di.node = destnodel[i];
dl.pid = destpid[i];
send (&d1);

}

When one needs to block on a lock immediately after a send, ssend, recv, or srecv, one
may use the following “block” variants on these functions:

sendb(&d) ; = send(&d); block(&d);

recvb(&d); = recv(&d); block(&d);
ssendb(&d,...); = ssend(&d,...); block(&d);
srecvb(&d,...); = srecv(&d,...); block(&d);

5.2 The print and execute functions

The print function displays formated messages on stdout of the (HOST, SERVER) process.
The cube’s print function is identical to the printf function described in the Unix manual
pages except for the addition of a binary format code, %b:

%b prints the lower 8 bits of the argument.
%nb prints the lower n bits of the argument.
%n.mb prints the lower n bits of the argument after first shifting it down by m bits.

The text displayed is preceded by the node,pid of the process in which the print function
was executed. It is not necessary to terminate the format string with \n. Since the print
interpreter routine in the CUBEIFC process uses Unix’s print?f to display the messages it
receives, all format code variations and prefixes are accepted. The print function avoids
congesting the cube with messages by returning only after a reply message is received from
the (HOST,SERVER) process.

You might think of print as running printf in the (HOST, SERVER) process. It is actually
the CUBEIFC process that expands the message produced by the print function into a
character string. CUBEIFC then it passes it on to the (HOST,SERVER) process to print.

The execute function has exactly the same format as print, but the resulting character
string is “executed” by the (HOST,SERVER) process as a Unix command. That is, the string
is passed as the argument of the Unix system function. The execute function returns
whatever value is returned by the Unix system function.

One might use the execute function for mundane purposes, such as running standard
Unix utilities, for example:

execute("echo Finished >> logfile.%d.%d", mynode(), mypid());
execute("date >> logfile.%d.%d", mynode(), mypid());
execute("echo I am done | mail vivian");
execute("/usr/1lib/sendmail -q");
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Whether you might like getting mail announcing that a certain process is finished depends,
perhaps, on your state of mind.

The primary use of the execute function is in initiating host processing activities that
need to be coordinated with different phases of a computation in the cube. One can, for
example, start up from a cube process new processes in the host, such as a checkpointing
program, when the cube computation reaches certain states. One can also execute cube
utilities such as freecube in the event of a fatal error.

5.3 The malloc function and its associates

The usual malloc and free functions may be used in cube processes for runtime storage
allocation. The functions calloc and realloc available in most other C programming
systems are not supported. The functions provided are:

malloc(n) returns a pointer to a block of memory n characters long. It prints an
error message and returns zero on error.

free(p) frees a previously allocated memory block pointed to by p. It prints an
error message when errors are detected.

mallchk() returns zero and prints error messages when errors are detected in an
integrity check; otherwise it returns a true value.

The cube’s malloc function obtains blocks of unused memory from the gap between the
stack pointer and the top of static data. The size of the gap is controlled by the stack
size parameter given to £ix86. The malloc function extends its block list from the top of
the static data toward and against the stack pointer. If the stack segment size specified in
running £ix86 is too small to accommodate both the stack and the allocated blocks, the
stack and the data may overwrite each other, with obvious unhappy consequences.

To guard against this and other potential troubles, an integrity check function is provided.
The mallchk function returns zero when errors are detected. The integrity of the block list
is also checked every time malloc or free is called. When an error is detected by any of
these functions, a warning is printed with the print function.

The malloc and free functions are not present in the cube library for host processes;
thus the usual Unix functions will be used there. However for compatibility between cube
and host processes the mallchk function is defined to return a true value in the host’s cube
library.

5.4 Intel iPSC compatibility functions

This section is reserved for a collection of functions to be inserted for compatibility with the Intel iPSC.
The iPSC kernel is expected to support both the send, recv, and probe functions described previously and
an alternative form in which the information that is passed by reference to a descriptor is instead passed
as arguments. The descriptor is then kept in the operating system, and there are some additional functions
provided to access descriptor information. The motivation for this form was apparently to provide better
compatibility with FORTRAN.

The descriptions of these functions will eventually be integrated with Chapter 3.
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Chapter 6:
Outer Kernel Processes

The outer kernel (OK) is a privileged set of processes whose functions are invoked by
messages rather than system calls. We refer to these processes as being part of the system
“kernel” because they are always loaded with the system, and are essential. Without the
SPAWN process, there would be no way to load programs. Without the SPY process, there
would be no way to monitor what is going on in a node.

A user process may equally communicate with the OK processes in its own node, or with
the OK processes in any other node. Messages that invoke different operations of an OK
process are distinguished by message type, and may produce reply messages. In order that
these reply messages be distinguishable from each other and from other messages, the type
of the reply message is specified in the request message.

Interactions with the SPAWN and SPY processes are most often performed using ei-
ther host utilities or by functions that do their work with messages. The “raw” form of
the message interaction with these process is accordingly not described in this chapter.
The message formats for interactions with the SPAWN process are included in section
8.3 in the synopsis. The definitions of constants and types used can be included from
cube/cosmic/cubedef .h. The message formats for the SPY process can be found in the
file /usr/include/cube/cosmic/spy.h.

6.1 Process run states
A process exists in one of the following run states:

LOADING — In this state the pid exists and it is possible for messages to be queued

for the process, but one or more of its segments is still being loaded.

READY — This is the only run state of a process that allows the scheduler to run
the process. When this run state is specified as a string, "r" or any string
beginning with this character can be used.

SUSPEND — Execution of a process in this state has been suspended either by the
process being created in this state, by the process being set into this state
by the SPAWN process, or by the process executing the stop function.
The SUSPEND state is independent of a process being “frozen”, a condition
that can be created by the SPY process or by certain error conditions.
When this run state is specified as a string, "s" or "n" or any string
beginning with these characters can be used.

DEAD — A process in this state does not really exist from the standpoint of inter-
action with other processes. When this run state is specified as a string,
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one can use any string beginning with the character "d".

All processes start in the run state LOADING and then, depending on information provided
in the spawn request, enter either the READY or SUSPEND state. A run state of a process
can be changed from SUSPEND to READY by a message to the SPAWN process, and can
be changed from READY to SUSPEND either by a message to the SPAWN process or by the
process executing the stop function. Once a process has been put into DEAD state, either by
a message to the SPAWN process or by the process executing the exit function, it cannot
be changed to any other state, and will soon be gone.

6.2 SPAWN process messages

This section presents only an abbreviated description of the message interaction with the
SPAWN process. The formats of the messages to and from the SPAWN process are given
in section 8.3 in the synopsis. Skip to the next section to learn about the functions that
use these mechanisms.

A transaction to create a process in node ¢ starts with a message from process (7, k)
to process (1,SPAWN). We have already mentioned that because spawning is accomplished
in response to messages, host processes may use this mechanism as well, and this is how
programs are initially loaded.

A message of type FSPTYPE requests that a .cos file be instantiated as a new process in
node i. The message conforms to a defined type FSPMSG, and conveys the file name, desired
pid, run state, and a type for the reply message. If the desired pid is specified as -1, the
SPAWN process will select an unused pid.

What actually transpires is that (i, SPAWN) sends a message to (HOST,SERVER) inquiring
about a .cos file corresponding to the root file name conveyed in the file spawn message.
Thus the file name is relative to the current working directory of the (HOST , SERVER) process.
The (HOST,SERVER) process sends information back to (i, SPAWN) indicating the existence
and size of the segments of this process. If the message indicates that the file exists, the
SPAWN process attempts to allocate storage for it, and if successful sends a message to
(HOST, SERVER) to retrieve the code and data segments. Various errors may be detected in
the SPAWN sequence, and cause the sequence to terminate and the reply message to be
returned with an error code, which is always negative. The meanings of the various error
codes can be found in the include file cube/cosmic/cubedef.h. The reply message to a
successful process spawn conveys the pid of the new process, which is always positive.

The first 10 characters of the base file name from which a process is spawned is retained
in a process descriptor block in the kernel. If the process is later replicated this name goes
with it. The name is not used for anything in the computation, but is accessed by the SPY
process and is displayed by the “cube process status” (cps) utility.

For a process spawn, the message to (i,SPAWN) is of type PSPTYPE and conforms to the
defined type PSPMSG. This message specifies the node and pid of a process to be replicated,
the desired pid and run state for the new process, and a reply type. As with the file spawn,
the desired pid may be specified as -1 to cause the SPAWN process to choose an unused
pid. The process to be replicated may be in the same or in a different node than the
SPAWN process. What transpires is an interaction with the SPAWN process in the source
node that is much like the interaction with (HOST,SERVER) for a file spawn. If the process
to be replicated is located in the same node, the code segments are shared.

The process created contains no reference to the process that caused its creation.

A message of type RUNTYPE to a SPAWN process causes it to change the run state of a
specified process in its node. The message is of defined type RUNMSG, and conveys the pid

34



of the process effected and a state code defined by the constants READY, SUSPEND, or DEAD.
No reply is produced to this message. A message to change the run state of a non-existent
process causes an error message to be sent to the (HOST,SERVER) process.

A process that is made DEAD will not disappear until all pending send actions are com-
pleted, or, if the process were in the middle of being copied, this copying action would be
completed before the space and pid for the process is reclaimed. When a process is to
change its own state to SUSPEND or DEAD, it should use the stop() or exit() functions, re-
spectively, in that they take effect immediately, not after some delay in the message system
and SPAWN process.

A process should kill itself upon termination, so that its space and pid may be reused. The
programmer should avoid the error of retaining references to processes that have terminated,
as well as the error of leaving unreferenced processes lying around. For example, if a process
"has created a number of processes to which only it has reference, it could either send them
messages to kill themselves before killing itself with the exit function, or if there were some
assurance that there were no messages enroute to the process, could kill these processes
directly.

Messages queued for a process are deleted along with the process, but messages that
may arrive after a process has disappeared will generate a rash of annoying “message for
non-existent process” error messages back to the host.

6.3 SPAWN convenience functions

The functions of the SPAWN process are generally invoked by the following functions
instead of by messages.
The statement:

pid_or_error = spawnf(filename, node, pid, state);

causes the file filename.cos to be spawned as process (node,pid) in the specified run
state. The statement:

pid_or_error = spawnp(snode, spid, node, pid, state);

causes the process (snode,spid) to be replicated as process (node,pid) in the specified
run state. The state specified in the spawn functions is a string, either "r" for READY, or
"g" or "n" for SUSPEND. The pid may be set to -1 to cause the SPAWN process to select
an unused pid. The value returned by these functions is either the pid assigned, which is
always positive, or an error code that is always negative.

As an illustration of the use of these functions, here is how spawnp might be used in code
that allowed for it to fail:

i = mynode();
j = mypid();
it ((code=spawnp(i, j, i = 1, j, "r")) < 0)
{
print("failed spawn, code %d", code);
stop(); /* suspend myself */
};

Here we suppose that the process attempts to create a new copy of itself in the node adjacent
to its own node along dimension O (node ¢ ® 2°). The new process is to have the same pid.
If this operation fails the process prints an error message including the code returned, and
suspends itself with the stop function.

The statement:
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ckill(node, pid, state);

causes process (node,pid) to be placed into the specified run state. The allowed run
states are "r", "s" or "n" — as described above —, or "d" for DEAD.

Broadcast spawn

With the node argument set to -1, the spawnf and spawnp functions create an instance
of a specified process in every node. The pid must be specified; it may not be set to the -1
wildcard.

The way the functions accomplish this broadcast spawn operation is first to spawn a copy
of the utility broadcast spawn process, which distributes itself to every node in a “time-
on-target” tree (similar to the program illustrated in Appendix A2). It then distributes
copies of the specified process to every node by the same algorithm. Because the broadcast
spawn process distributes copies of itself or of other processes in this concurrent scheme, it
requires time proportional only to the dimension (rather than the number of nodes) of the
cube. The broadcast spawn process uses a reserved negative pid.

The Real Estate Agent

This section to be expanded with a description of the real estate agent process that acts as an intermediary
in spawning a process in a node that is unspecified, but in a relatively low-rent area. This process uses the
SPY process.

6.4 The cfork family of functions

The cfork function replicates the calling process, creating a child process whose node and
pid are given in the call. The return from the cfork function occurs only after the child
process is successfully spawned or after the operation has failed. For the cfork function
and its variants to follow, a successful call returns 1 for the parent, O for the child, or a
negative error code if the child process could not be created. The following is an example
of the use of cfork: >

switch(cfork(node,pid))

{
case 1: parent(); break;
case O: child(); break;
default: print("cfork error"); break;
}

Notice the differences between the cfork and spawnp functions. The spawnp function makes
a copy of an arbitrary existing process, and starts the new process with the program counter
and stack pointer at their initial values. The cfork family of functions makes a copy of the
calling process, and starts the child executing with the program counter and stack pointer
at the same position as in the parent.

The gtork (global fork) function uses the cfork function to create a replica of the calling
process in all nodes except the node of the calling process, and with the same pid as the
parent. The gfork function returns only after all child processes are spawned, or after the
operation has failed. If the operation fails there are no children created. The following is
an example for the use of gfork:

main()

{
it ((Im_root = gfork()) < 0) {
print("unable to gfork");
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exit();

}

The ccore function uses the cfork function and a host utility to create a restartable core
image file of the calling process. The function ccore forks the calling process out of the
cube by specifying that the child process have an ID of (HOST,SPAWN). An associated host
utility with this ID intercepts the various program segments.

The host utility coreman can be run to store these program segments in a .cos filet.
The .cos file stored by the coreman utility can later be spawned as a process which picks
up execution immediately following the ccore function call. The ccore function can thus
be used for backing up a long running computation when it has reached a certain point in
execution. For example:

if(ccore() < 0) print("checkpoint error");

is sufficient to create the restartable backup copy if coreman is running anywhere in the
host environment. This use of ccore does not make use of the return information that tells
which is parent and which is child. A use of ccore that requires this information is saving
a branch of a tree-structured computation for future use, for example:

switch(ccore())

{
case 1: this_way(); ’ break;
case O: that_way(); break;
default: print("ccore error"); break;
}

In this case the return value from ccore, 1 for the parent that keeps running, O for the child
that is stored as a file, determines the future course of execution both for the parent that
continues running and for the child that is backed up and may be spawned later.

An important property of this family of functions is that the child inherits only the code,
data, and stack segments from the parent. Pending receives, pending sends, and queued
messages are not replicated. The construct below is a fatal mistake:

recv(&input) ;
cfork();
block(&input);

Because the kernel of the child process was never notified of the receive action, the process
will never return from the block call, even though a message of the type specified by the
descriptor may have arrived. Thus the functions in this family should be called only when
the process is in a state in which there are no pending message operations. Of course,
queued messages remain for the parent process to deal with.

The cfork and gfork functions are also available for host processes; however, new pro-
cesses are created only in the host of the calling process. The ccore function exists for host
processes only for compatibility, and prints a message when it is called.

t Other host utilities may be developed in the future to perform other functions on the
program segments, such as to display them or to perform process swapping.
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6.5 SPY process

A variety of messages, distinguished by type, may be sent to the SPY process in order
to check the condition of processes and messages, and to determine and change process
segments in its node. The details of the SPY process will not be described here as they are
unlikely to be pertinent to users. The SPY process is used by the “cube process status”

cps) utility, the “cube load average” (cla) utility, and the real estate agent process.
P

A display of the cube process status, similar to the Unix ps, can be obtained with the
cps utility. The cps utility defaults to showing only the user processes in node 0. However,

it contains numerous options that can be displayed with the -u option:

(venus:33) cps -u
usage: cps [-aomlL] [-nnn] [-pnn] [-Nxx] [name]
-0: show outer kernel processes
-m: show memory usage
-1: give long description of each process
-L: give very long description
-a: show all nodes
-8: show nodes running each process
-nnn: show only node nn, or all if nn == ’a’
-pnn: show only process nn
-Nxx: list only processes whose name is "xx"
name: sets group to "name"
-u: print usage message
switches may be grouped together whenever it makes sense.

For example, let us display the process status including the outer kernel processes (-0), in

node 33 (-n33):

(venus:34) cps -o -n33

NODE PID STAT PROCESS

33 0 s seed
33 1 R seed
33 2 R crystal
33 -128 R SPAWN
33 -127 R SPY

The cube load average (cla) utility allows one to monitor the computational load and
its balance in all of the cube nodes. It works by entering the process group and sending a

message that traverses all of the SPY processes, and then produces a display such as:

(venus:36) cla
Loading for a 6-cube:

AVG MAX MIN SDEV
load avg: 0.92 1.00( 0) 0.04(63) 0.08
free mem: 17664 17684( 0) 17664( 0) 0

This display shows that the average time the nodes are spending computing rather than
with all processes blocked is .92 — an RMS average across all of the nodes. The largest load
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is 1.00, which occurs in node 0 and possibly elsewhere, and the smallest load is .04, which
occurs in node 63. The standard deviation of the loads is .08. The display also shows the
storage utilization, which in this example is the same for all nodes.
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Chapter 7:
Host Functions

7.1 The Cosmic Environment

The cosmic environment is a library of functions and a runtime system that supports on
Unix host computers the same message-passing functions that exist for cube processes. The
library contains functions with the same names and semantics as the primitive and library
functions described in chapters 3-5. The spawnf, spawnp, and ckill functions described in
chapter 6 are also present in the cosmic environment, but operate only on cube processes,
not on host processes. The cfork family of functions also exists in the hosts; however, new
processes are created only in the machine in which the calling process is running.

This environment also provides an interface between the host machines and the cosmic
cubes that enables uniform communication among processes on both sides of the interface.
The underlying communication mechanism used in the hosts, Internet sockets, allows pro-
cesses running on any set of network-connected machines to communicate with processes in
the cube and with each other. This environment makes the machine boundaries transparent,
except for the byte ordering problem that all networks face.

The cosmic environment can be used with or without a cube. Without a cube it is a
system that allows one to run multiple process programs with processes all on one Unix
system or distributed across a number of network-connected systems. Messages are passed
between processes in the same way as occurs in the cosmic cube. Programs developed in
this environment and under certain disciplines can be run on cubes with no more effort than
recompiling the process code. When used with a cube, the cosmic environment is the means
by which cube processes communicate with host processes. The conventions by which the
messages to nonexistent processes are rerouted to the host work together with the cosmic
environment to allow cube processes to be relocated into the host. These processes can
then be run under a debugger.

This environment also provides an allocation mechanism by which users can share a set
of cubes, and a variety of utility programs that simplify user interaction with the system.

Each cosmic environment includes a single deemon process, the cube da2mon, or cubed,
running on a predetermined host. There is also one cube interface program, CUBEIFC, for
each cube. Each CUBEIFC process must run on its cube’s host, and it introduces both a
interface into the cosmic environment and a gateway into its cube. The cubed process can
run on any host. It maintains an account of active host process groups and their affiliation,
and an account of available cubes and their allocation. With this information cubed oversees
the rendezvous of process groups and logical cubes.
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7.2 User Interface Routines

Since the physical environment in the cube is different from that in the hosts, there
are a few inevitable differences between functions of the same name. Some functions are
meaningless; for example, led defaults to a no-op function in host processes. The clock
function is approximated. The malloc and free functions are the usual Unix functions,
and mallchk always returns true. All other functions are semantically equivalent to their
cube counterparts, but the implementation of some of the functions under Unix has different
performance characteristics than their implementation in the cube.

One can best appreciate some of the more subtle differences between the cube and host
functions by understanding how the functions incorporated into host processes manage
to “simulate” their counterparts within cube processes. Message descriptors in the cube
nodes are updated asynchronously by the cosmic kernel. However, since the hosts and
their operating systems do not provide for servicing these descriptors in the same way,
the descriptors are updated either when message functions are called or when a periodic
interrupt signal — the “snooze alarm” — arrives. The periodic interrupt signals are set
to occur infrequently in order to avoid tying up host resources. With such infrequent
interrupts, the usage:

recv(&d) ;
while (d.lock); /#* busy wait for lock -- BAD construct */

is particularly bad in a host process, because it may cause the process to idle loop for several
seconds before the interrupt that changes the state of the lock arrives. It is much better to
use flick, as in:

recv(&d) ;
while (d.lock) flick(); /* lock is changed inside of flick */

so that the lock is changed inside the £lick function.

A version of flick exactly as defined for the cube would in any case be inefficient in
the hosts. In the cube the construct above constitutes a poll on the receive descriptor lock
with the flick being used as a null operation. In the cosmic environment flick puts the
process to sleep until a message arrives or until its “snooze alarm” reawakens it. A flick
call in the host process with no prospect of messages coming, as might be done to lower the
priority of a process, puts the process to sleep for several seconds.

Beyond the set of cube functions described previously, the cosmic environment also in-
cludes a set of functions specific to the host processes, and which are defined as null functions
for the cube processes. The set of functions for interfacing host processes to the cosmic en-
vironment are:

cosmic_init(node,pid) sets the node and pid of this host process and enters the
cosmic environment. The node defaults (if specified as -1)
to HOST, and pid defaults to O.

cosmic_exit() gracefully exits the cosmic environment.

The following functions may be called before cosmic_init in order to set the parameters
of the environment. -

cosmic_set_alias(alias) specifies a string alias to be used in place of the
name of the calling process when the status of process
group is inquired. The default alias for a process is
the name by which the process is invoked.

41



cosmic_set_group(group) specifies in the string group the process group in
which this process is to participate. It defaults to
the string "group".

cosmic_set_cubedhost(cubedhost) specifies that this process should participate in the
domain of the cosmic environment whose cubed pro-
cess resides in the named cubedhost. The host name
is a string that may correspond to the Internet ad-
dress (in xx.xx.3xx.xx notation) or to any of the host-
names or nicknames of the host to be found in the sys-
tem host table. At Caltech this parameter defaults to
the string "cit-sol". The default cubedhost should
be changed when the software is run at other sites.

These “cosmic_set_” functions may be called multiple times before calling cosmic_init.
Parameters may be made to revert to “untouched” state by setting numerical parameters
to -1 and string parameters to NULL. Since the current parameters are sent to cubed when
cosmic_init is called, the cosmic_set_ functions should not be called after cosmic -init is
called. If cosmic_init has not been called before calling the first message function, it will
be called by the message function with the node and pid set to the defaults.

Programs written for the cosmic environment must be linked with the cube library, eg:

cc -o prog prog.c -lcube
This library is in the file /usr/1ib/libcube.a.

7.3 Setting process parameters at run time

Parameters such as (node, pid) and the alias of a host process are usually defined
as constants in its program or are computed and set by the process. Some parameters,
however, may apply to all processes in the same group, but may change from one job to
another. These parameters, such as the group name, are better set at run time.

Those parameters that remain untouched by a process may be defined for that process
at run time with the Unix environment string, “cube”. The string is composed of pairs of
words separated by spaces in the form of a parameter name followed by its value. Valid
names are:

node sets the node of the process.
pid sets the pid of the process.
dim sets the dimension of the cube to use.
alias sets the process name to be printed in status displays.
group sets the process group name.
cubedhost sets the host on which the deemon is to be found.

type sets the type of cube to be allocated. Valid cube types are cosmic_cube,
ipsc_cube, and non_cube. The types may differ from one installation to
another.

For example, typing “setenv cube "dim 6 group YumYum"” to the C-shell causes the
getcube utility invoked in that shell to request a cube of dimension 6 if the parameter
was not specified, and causes any host process to participate in the process group "YumYum"
if it did not set its group name. Any parameter names may be replaced with unambiguous
prefixes, for example, setenv cube "d 6 g YumYum". The same applies to the cube type.
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Parameters untouched in the previous two levels may be set with the format described
above in the .cube file in the user’s current working directory. Settings specified in this file
may apply to many processes, just as those in the previous level, except that the settings
specified in a .cube file are typically static and pertain to the physical requirements of the
processes. For example, in cases in which there are different types of cubes at one site, the
particular type for which the cube programs are compiled may be inscribed in the directory
where these programs are kept by specifying the type in a .cube file in that directory.

7.4 The Cube D=amon

The cosmic environment functions in user programs and in utilities rely on the mechanisms
described in this section, but how they work may be of only “cultural” interest to the
application programmer.

Like other deemon processes, cubed starts running as soon as the host is booted, and
goes right to sleep waiting for requests from user processes and CUBEIFC processes. The
cube dzemon is principally a resource allocator. All processes in the cosmic environment,
including the CUBEIFC processes, must first secure a lifeline socket connected to the cubed
process. For the CUBEIFC processes and the getcube processes, these lines carry initial
parameters exchanged when processes enter the environment. For other host processes,
after the initial parameter exchange, these lines are promptly transferred from cubed to
their getcube process. If such a line ever breaks, the associated process will die or, in the
case of CUBEIFC, will cause the process to restart. The socket connection is the token of
right for a process to participate in the cosmic environment.

The CUBEIFC processes are similar to deemons and are started at boot time. They do not
go to sleep, however, until they have successfully rebooted the cube they coptrol and have
made connections to the cubed process within a predetermined number of tries. When
a CUBEIFC process has successfully secured its lifeline to cubed it identifies itself as the
controller of a cube of a certain type and dimension, and the cubed process creates a new
entry in its list of active cubes. °

When a CUBEIFC process exits the environment, as when it is killed, cubed will delete its
entry from the list of cubes and cut the lifelines of all the groups using that cube. When
CUBEIFC dies, it will restart itself automatically, and reboots its cube with a fresh copy of
the kernel.

Cubes are allocated with the getcube utility. The type and dimension of the cube to
allocate may be specified as arguments. When a getcube process makes a connection to
the cubed process, cubed tries to allocate to that process group a cube with dimension
no smaller than that requested by that process. If “space-sharing” is enabled, the cube it
allocates may be a subcube of a larger cube. If the allocation fails, the process is rejected
and its lifeline is cut. If it succeeds, the rest of the processes in the same group are assigned
to the same cube as they enter the environment. Each process will receive the size of the
cube allocated in reply to their initial connection to cubed. The allocation algorithm awards
the smallest cube that fits the requested dimension, with preference given to cubes directly
connected to the host of the requesting process.

The configuration of lifeline sockets forms a two level tree with cubed at the root, the
CUBEIFC processes as leaf vertices on the first level, the getcube processes as vertices on
the first level, and the host processes including (HOST,SERVER) as the leaf vertices on the
second level descending from their group’s getcube process. Messages from one host process
to another go through their socket connections to the getcube process, which both buffers
and enforces a flow control discipline on the messages.

For example, the following configuration of host processes and socket connections corre-
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sponds to an installation in which there is only one cube, hence only one CUBEIFC process.
There are two process groups, each with their own getcube and SERVER processes. One
of these process groups includes the user host processes A and B, while the other process
group is getting by with only its SERVER process.

getcube getcube

7.5 Unix utility programs for the cosmic environment

A set of five utility programs are currently available for use in the cosmic environment.
In the present casual environment any user may generally run any of these utilities, but
protection mechanisms are provided for those who want more security.

The restart program

The restart program commands cubed to die and to replace itself with a fresh instance
of cubed. This program is usually used when a new version of cubed needs to replace the
one currently running. It may also be used to clean up a hopelessly screwed-up situation. If
the -r flag is set in running cubed, restart across network is disallowed, and only the owner
of the cubed process may restart it. If the file /usr/local/cube/legal hosts is present
in the cubed host, access to the environment is restricted to those hosts listed in the file.

The killcube program

The killcube utility is used to restart a dead cube when the kernel has crashed or been
corrupted by a runaway process. It causes cubed to cut the lifeline of the CUBEIFC process
associated with the group from which killcube is executed. As a result, the CUBEIFC
process will restart itself and will reboot the cube it controls with a fresh copy of the kernel.
Caution: All host and cube processes in groups that are sharing space within that cube
will be purged from the environment. One should use the freecube utility if the objective
is only to exit the process group and to kill the processes in your part of the cube. If the
-k flag is set in running cubed, CUBEIFC killing across network is disallowed and only the
owner of the CUBEIFC process is allowed to kill it.

The getcube program

The getcube program takes an optional dimension parameter and an optional cube type
parameter and sends them to cubed as the specification for the cube to acquire. If a cube
of type non-cube is specified, getcube serves only to establish a process group and to
specify the dimension to be returned by the cubedim function, but does not allocate a
cube. Otherwise, it also tries to allocate a cube of this dimension, and only if successful will
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it enter the environment. This process forks out the (HOST,SERVER) process for the specific
cube it owns, and puts itself into the background. The default dimension and cube type
may vary at different installations. At Caltech the default is a cosmic cube of dimension 3.

The freecube program

The freecube program commands cubed to cut the lifeline to the processes in this group.
This program results in all processes in the process group being killed, so as to free the
allocated subcube. If the -f flag is set in running cubed, freecube across network is
disallowed. The freecube program accepts a group name as optional parameter.

The peek program
The peek program prints the environment status and group status in the following format.
The example below was produced with a peek from inside of the group wing by user chuck.

CUBE DAEMON version 6, up b days 14 hours on host sol

{ } 4d cosmic_cube, b:0000 [ sol 6-CUBE] 3.8d
{ TV wen-king} 4d cosmic_cube, b:0010 [neptune 6-CUBE] 40.1m
{ wing chuck } 5d cosmic_cube, b:0020 [ icarus 6-CUBE] 4.0m
{wargames reese } 3d cosmic_cube, b:0000 [neptune 3-CUBE] 4.6d
{corvette bill } 24 non-cube, b:0000 [ sol ] 1.2n

GROUP {wing chuck}:

( -1 20) red_baron 268 or O0q [ icarus 27292] 10.0s

( -1 14) LAX 116s 25r 20q [LAX-VAX 788] 4.0m
(-1 -1) SERVER 98 18r O0q [ icarus 27285] 4.4m
(--- --- ) CUBEIFC 228 87r 21q [  sol 1173] 4.4m

The first part of this status display contains general information about the environment.
Each entry with a non-empty group field represents a process group. The format of the
entry is:

{ wing chuck } :: group name and username of the process group.
bd cosmic_cube, :: type and dimension of the subcube allocated.
b:0020 :: base node, in hexadecimal, of the subcube allocated.
[ icarus :: host on which the group is created.
6-CUBE ] :: the name given to the cube by the CUBEIFC process.
4.0m :: the amount of time since the creation of the group.

If the group field is empty, the entry represents an available subcube. The format of such
an’entry is:

{ } :: empty, meaning unused.
4d cosmic_cube, :: type and dimension of the subcube.
b:0000 :: base node, in hexadecimal, of the subcube.

[ s0l :: host of the CUBEIFC process that owns the cube.
6-CUBE ] :: the name given to the cube by the CUBEIFC process.
3.8d :: the time since the last reboot of the cube.

The second part of the display contains information pertaining to a process group. This
part will be absent if the peek utility is not executed from inside of a group and was not told
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to look into any specific group. Each entry represents a process connected to the getcube
process of this group. The format of such entries is:

( -1 14) :: node and pid of the process in decimal.

LAX :: name of the process.
1168 :: number of messages sent from the process.
26r :: number of messages delivered to the process.
20q :: number of messages waiting to be received by the process.
[ LAX-VAX :: host on which this process is running.
788 ] :: pid as defined in the host’s operating system.
4.0m :: the amount of time since the process enter the group.

The above display shows that cubed has been running for 5 days and 14 hours on host
sol. Two cubes are present in the environment. The first, the 8-CUBE, is owned by host sol
and is fragmented into three subcubes. A 4-D subcube with base address 10-hex is allocated
to user group (TV wen-king). A 5-D subcube with base address 20-hex is allocated to user
group (wing chuck). The remaining subcube is free. The second cube, the 3-cube, is
wholly allocated to the process group (wargames reese). The host to which that cube is
attached cannot be seen from this display because the name neptune reflects the host that
started the group. The process group (corvette bill) has no cube allocated, thus all
processes in this group are on the hosts.

User bill is running a race track simulator with cars spread out over four VAXes, and is
trying to find out why his car skidded while rounding a corner in the cube. User chuck is
studying the latest changes in the Federal Aviation Regulations (FARs), and is trying them
out in a mock attack on the tower at LAX. User reese is trying to predict the outcome of
the Iran-Iraq war. Meanwhile, user wen-king is running signal interceptors and decoders,
and is watching something whose description is not fit for print.

7.6 Byte-order and other incompatibilities

The data representations in the VAX hosts, in the SUN hosts, which are based on a
Motorola 68010 processor, and in the cube nodes, which are based on the Intel 8086 /8087
processors, have several annoying incompatibilities:

e A C int is the same as a short in the 8086, and the same as a long in the VAX or 68010.
Thus one should not include int types in messages between the host and cube nodes, but
should specify either a short or a long integer.

e The 68010 processors use opposite byte-order conventions from the VAXes and 8086s.
The hardware and software interfaces are arranged to guarantee that character strings
sent across any interfaces are in proper order. There are conversion routines described
below for all other C types.

e The way in which elements in heterogeneous structures get padded out to accommodate
the different addressing modes in the types of processors, and by different compilers, may
be different. We might not have covered up all the pitfalls here.

A set of bit-banging routines is included in the library of each host, and is summa-
rized in section 8.6 in the synopsis, to assist in writing host-independent processes. The
htoc[s|1if|d] routines translate from that host’s format to the cube’s format, while the
ctoh[s|11£1d] routines translate from the cube’s format to that host’s format. In all cases
the routines convert an array of cnt variables of the corresponding type, either short (s),
long (1), float (f), or double (d). Since the order of character strings is guaranteed,
character conversion routines are unnecessary.
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These routines can be used at every opportunity, even in cube processes, where they are
defined as null functions, in order to make source process code completely host-independent.
Typical usage is to convert a structure immediately before it is sent and immediately after
it is received. For example, for a message conveying an array double vector[XSIZE]:

htocd(vector,XSIZE); /* convert vector to cube format */
sendb(&tchan) ; /* send it to another process */
recvb(&tchan); /* get the transformed vector back */
ctohd(vector,XSIZE); /* convert back to this host’s format */

However, a process that would only be used in a cube or between hosts of the same type
might as well omit these conversions routines.

The floating point conversions are not quite perfect. The cube nodes (8087s) and SUNs
generally conform to the IEEE standard, and are compatible but for byte-order. For 32-bit
floating point, the IEEE standard and the VAX have same precision, but a slightly different
exponent range (differs by a factor of 2). For 64-bit floating point, the IEEE standard has
11-bit exponent but VAX has 8. The VAX floating point is more precise but has a smaller
range. Therefore, when floating-point numbers are converted to and from VAX format,
some numbers will get “crunched”.
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Chapter 8:
Synopsis
8.1 Inner Kernel Functions
Message descriptor:
typedef structq{

. short node;
short pid;
short type:
short seg;
char *buf;

unsigned short msglen;
unsigned short buflen;
short lock;

} MSGDESC;

Macro for declaring and initializing external message descriptor:
idesc(desc, node, pid, type, buf, len);
MSGDESC desc;
short node, pid, type;

unsigned short len;
char *buf;
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node and pid constants:

HOST /*
MAXUPID /=
SERVER /*
SPY /*
SPAWN /*

( -1
( 127)
( -1
(-127)
(-128)

node parameter for host processes
maximum user pid (currently 127)
defined in cube/cosmic/cubedef.h
defined in cube/cosmic/cubedef.h
defined in cube/cosmic/cubedef.h

node, pid, and type allowed ranges

0 < node < 63 for cosmic cube processes

0 < pid < MAXUPID for user processes

0 < type < 32767 for user messages

Inner Kernel message functions:

send(d);
recv(d);
prodbe(d) ;
f£lick();
block(d);

MSGDESC *d;

Other primitive functions:

mynode () ;
mypid();
cubedim();
clock();
led(on);
stop();
exit();

int on;
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8.2 Library functions:

Conveniences:

sdesc(d, node, pid, type, buf, length);
ssend(d, node, pid, type, buf, msglen);
srecv(d, type, buf, buflen);

sendb(d) ;

recvb(d);

ssendb(d, node, pid, type, buf, msglen);
srecvb(d, type, buf, buflen);
cspsend(d) ;

csprecv{(d);

print(format [,arg] );

execute(format [,arg] );

MSGDESC *d;

short node, pid, type;

unsigned short msglen, buflen, length;
char *buf;

char *format;

The print, execute, and cspsend functions use message type -1 for a reply message.

Storage allocation

char *malloc(len);
free(p);
mallchk();

char #*p;
int len;
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8.3 SPAWN process messages:

The definitions in this section can be included from cube/cosmic/cubedef .h.

SPAWN process pid:
SPAWN

Run state constants:

LOADING, READY, SUSPEND, DEAD

File spawn message:

typedef struct{

short pid; /* requested new pid, -1 for any */
short state; /* run state of new process */
short rtype; /* type for the reply message */
char name[NAMLEN]; /* file name */
} FSPMSG;

which is sent with type FSPTYPE. (The constant NAMLEN = 96).

Process spawn message:

typedef structq{

short pid; /* requested new pid, -1 for any */
short state; /* run state of new process */
short rtype; /* type for reply message */
short snode; /* node of proc to be duplicated */
short spid; /* pid of proc to be duplicated */
} PSPMSG;

which is sent with type PSPTYPE.

Spawn reply message:

typedef struct{

short code; /* success code is O, error negative */
short pid; /* pid of process created */
} SREPLY;

which is received with the rtype specified in the file or process spawn message. (This
message will be changed in the near future to a single short, positive for a pid, negative
for an error code.

Run state changing message:

typedef struct{

short pid; /* pid of process effected */
short state; /* new run state */
} RUNMSG;

which is sent with type RUNTYPE (and there is no reply).
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8.4 SPAWN convenience functions

Spawn functions

spawnf (name, node, pid, state);
spawnp(snode, spid, node, pid, state);
ckill( node, pid, state);

short snode, spid, node, pid;
char *state;
char #*name;

The spawnf and spawnp functions return the pid assigned, always positive, or a negative
error code. If the node parameter of spawnf or spawnp is -1, the process is spawned in all
nodes. If the pid parameter of spawnf or spawnp is -1, the SPAWN process selects a pid.
The node and pid parameters may not both be -1.

Fork functions

cfork(node, pid);
gfork();
ccore();

short node, pid;

These functions return 1 to the parent, 0 to the child, or a negative error code.

8.5 Compiling

Set /usr/cube to be in your search path.
Include file (all cube or host processes):

#include <cube/cubedef.h>

Extended include file (cosmic cube programs):

#include <cube/cosmic/cubedef.h>

cc86 compiler:
cc86 -o prog prog.c -lcube

is typical usage, and most of the standard cc options also exist.
Object code conversion:

1ix86 [-s stacksize] file

Host process compiling:

cc -o prog prog.c -lcube
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8.6 Cosmic host environment

Functions:
All functions listed in sections 8.1, 8.2, and 8.4 are available for host processes, and also
those listed here. ‘

cosmic_init(node, pid);
cosmic_exit();

cosmic_set_alias(alias);
cosmic_set_group(group) ;
cosmic_set_cubedhost (cubedhost) ;

short node, pid;
char *alias, *group, *cubedhost;

The following are functions to convert in the host between that particular host’s data
representations and the cube node data representations. They are defined as null functions
in the cube nodes.

/*  type host-to-cube cube-to-host  */
short *sp; htocs(sp,cnt); ctohs(sp,cnt);
long *1p; htocl(lp,cnt); ctohl(lp,cnt);

float *fp; htocf (fp,cnt); ctohf (fp,cnt);

double *dp; htocd(dp,cnt); ctohd(dp,cnt) ;
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8.7 Running programs

Host process parameters:
node, pid, dim, alias, group, cubedhost, type

The node and pid parameters are set in the cosmic_init function, or default to the cube
environment variable, .cube file specification, or a default value, respectively.

The dim and type parameters are set as arguments of the getcube utility, or default as
above.

The remaining parameters, alias, group, and cubedhost, may be set by the cosmic_set._
functions before cosmic_init is called, or default as above.

Either the cube environment variable or .cube file is in the form of parameter-value pairs,
with unambiguous prefixes permitted.

Legal type strings are "cosmic_cube", "ipsc_cube", or "non-cube", and unambiguous
prefixes are permitted.

Cosmic environment utilities:

restart
kills everything and reloads a fresh copy of cubed.

killcube [ group name |
‘reboots the cube acquired or specified by the group name.

getcube [ dimension | [ cube type |
acquires a cube and creates the process group.

freecube [ group name |
frees the cube acquired or specified by the group name.

peek [ group name [ user name || »
generates a status display.

Cosmic cube utilities

spawnf file [ node [ pid [ runstate ||

spawns a process from file.cos with the specified ID and runstate. Specifying the node
parameter as -1 causes the process to be spawned in all nodes. Legal runstates are r or s
(or n).

spawnp snode spid [ node [ pid [ runstate ||
spawns a copy of a process (snode,spid) with the specified ID and runstate. Specifying the
node parameter as -1 causes the process to be spawned in all nodes.

ckill node pid [ runstate |
changes the run state of the process (node, pid) to runstate. If runstate is not specified, it
defaults to d, which stands for DEAD.

cps [options|
displays the cube process status. Run cps -u for a list of options.

cla
displays the cube load average and standard deviation.
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Appendix 1:
N-body Program

Al.1 Concurrent Formulation

This example of computing the time evolution of a system of N bodies that interact by
gravitational attraction, or some other symmetrical force, is an paradigm of the concurrent
formulation of a “universal interaction” computation. One might expect a distributed
computer to do best at “local interaction” problems, but as this program shows, there are
also very nice formulations for universal interaction. The program is an elaboration on an
example presented in a CACM article on the cosmic cube [Seitz 85].

Each of the N bodies interacts with all of the N —1 other bodies, but instead of calculating
the forces due to all N(N — 1) interactions, for the symmetrical force one needs only to
calculate half of them. One time step of the computation then requires N(N — 1)/2 force
calculations, and N position and velocity updates (integrations), one for each of the N
bodies.

The concurrent formulation is based on N processes. Each of these N identical processes
is “host” to one body. The process is responsible for computing the forces due to the
interactions with (N — 1)/2 “guest” bodies, and for updating the position of its own body.
The formulation is simplified by assuming N is odd, so that (N — 1)/2 is an integer. The
N-fold concurrency in the formulation reduces the time complexity of the N (N —1)/2 force
calculations to O(N), and of the N position and velocity updates to O(1).

The ring process structure shown above for N = 7 is perfect for organizing universal
interaction problems. The process that is host to body 1 successively receives guests 7, 6,
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and 5, and accumulates forces due to these interactions. Meanwhile, a message containing
- the position, mass, accumulated force, and home process ID of body 1 is conveyed through
the processes that are host to bodies 2, 3, and 4, with the forces due to these interactions
accumulated. The pattern is the same for all the other bodies. After (IV — 1)/2 visits the
representations of the bodies are returned over the chordal paths to the process that is host
to the body, the forces are combined, and the positions are updated.

Both the cube and host process code for this problem provide opportunities to illustrate
many of the more important cosmic cube programming techniques. While in later examples
we will spare the reader some of the details, here we will show all of the cube process code,
and all of the host process code except for some display driver routines.

Al.2 Cube Process code

In the following process code, each of N identical processes has two instances of a structure
body, one for the body for which that process is the “home”, host, the other for the body
that “visits” via messages, guest. The structure body contains the state information for a
body: its position, velocity, accumulated force, mass, and the ID of its home process.

The entire process structure is spawned and controlled by a process that nominally resides
in the hosts. However, the code for the N identical processes that run in the cube will be
constructed to be controlled from an arbitrary set of processes.

The message interface to the processes consists of 3 messages:

¢ A state message sent to the process, and which conveys a body structure containing
the initial state. This message is distinguished as being type 0, and the process code
uses the state descriptor to receive this message.

e A start message sent to the process, and which conveys a startup structure con-
taining the number of bodies, number of time steps, and the ID of the next process
in the ring process structure. This message is distinguished as being type 1, and the
process code uses the start descriptor to receive this message.

e A result message sent by the process back to whatever process sent the start
message. This message conveys a body structure containing the state of the body
after the specified number of time steps. This message is of type 0, and the process
code uses the result descriptor to send this message.

Thus, after all of the IV processes have received state and start messages, the compu-
tation can run autonomously for the specified number of time steps before all the processes
send their result messages back to whatever process started the computation.

The process is then ready to compute again. However, as an additional complication, we
allow the control process to send a start message that is not preceeded by a state message
in order to indicate that the final state reported in the result message is also to be the
initial state for the next set of time steps. This is a good example of a process depending
on message order between pairs of processes being maintained, and where a process must
behave differently based on the presence or absence of a particular message, in this case
the state message. The situation is nicely accomodated with a probe. By this protocol,
the control process might even queue up many start messages, but in order to provide a
new state in unambiguous sequence with start messages, it must preceed a start message
with a state message only after result messages have been received in reply to each start
message.

The inner loops in the computation involve the following communications:

e A sequence of (N —1)/2 body_out messages to the next process on the ring. The first
of these messages convey the host body, and the remaining such messages convey
the sequence of guest body representations that are processed, except for the last.
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This message is of type 2, and uses the body._out descriptor.

e A sequence of (N — 1)/2 body_in messages from the preceeding process on the ring.
Each of these messages is used to calculate a force which is accumulated both in the
host and guest bodies. These messages are paired with body_out messages, and so
are also of type 2, but they use the body_in descriptor.

e The body_bak message corresponds to the last body_in message, after the compu-
tation of its interaction. The ID of the process that is home to this body is determined
from the guest message. The body_back message is distinguished by type 3, and the same
descriptor is used sequentially to send the last guest home and then to receive the corre-

sponding message.

Here, then, is the process code described above. In order not to obscure the communi-
cation structure of the process, we present first the core from which we have abstracted
the computation of the forces and the updating of the positions. These computations are
performed by functions linked from force.c, which will be presented later.

/* process for an n-body computation, n odd, with symmetrical forces */
#include <cube/cubedef.h> /* cube definitions */

struct body {

double pos[3];
double vel[3];
double mass;
double force[3];
short home_node;
short home_pid;
double midpos[3];

} host,guest;

struct startupi{
double tstep;
short steps;
short n;
short next_node;
short next_pid;

/*
/*
/*
/*
/*

body position x,y,z x/
velocity vector x,y,z */
body mass */
to accumulate forces */
ID of body’'s home process  */

/* extrapolated mid time step */

/*
/*
/*
/*

size of integration step */
number of integration steps */
number of bodies */
ID of next process on ring */

} task;

idesc(state, O, 0, O, &host, sizeof(host)); /* to receive state */
idesc(start, O, 0, 1, &task, sizeof(task)); /* to receive task */
idesc(result, 0, 0, O, &host, sizeof(host)); /* to send results =/
idesc(body_in , 0, O, 2, &guest, sizeof(guest)); /* ring send */
idesc(body_out, 0, 0, 2, &host, sizeof(host)); /* ring recv */
idesc (body_bak, O, O, 3, &guest, sizeof(guest)); /* chordal send & recv */
main() )
{

int i;

for(;;) /* forever */

{

led(1);
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recvb(&start); /* get task through start */

if (probe(&state)) /* check if new init state =/
{ .
recv(&state); /* get state, no wait req %/
host .home_node = mynode(); /* label host with this */
host.home_pid = mypid(); /* process being home */
}
RESET (&host , &task) ; /* reset integrator */
body_out.node = task.next_node; /* set body_out channel to */
body_out.pid = task.next_pid; /* next proc in ring */
while(task.steps--) /* integrate task.steps times */
{
led(task.steps & Ox4); /* flash while you work */
body_out.buf = (char *) &host; /* first time send out host body */
tor(i = (task.n-1)/2; i--;) /* (8.n-1)/2 times along the ring*/
{
sendb(&body_out) ; /* send out the host|guest */
recvb(&body_in); /* receive the next guest */
COMPUTE_FORCE (&4host, &guest) ; /* calculate force */
body_out.buf = (char *) &guest; /* prepare to pass the guest */
}
body_bak.node = guest.home_node; /% setup destination ID to */
body_bak.pid = guest.home_pid; /* guest’s home, and */
sendb (&body_bak) ; /* send guest back */
recvb(&body_bak) ; /¥ envoy returns (in guest) */
ADD_FORCE_TO_HOST (&host, &guest) ; /* combine the forces */
UPDATE(&host,&task) ; /* time step, zero force */
}
result.node = start.node; /* send new host state back to whatever */
result.pid = start.pid; /* process sent the startup message */
sendb(&result) ;

One might note that if some exceptional condition were to occur in the time evolution of
the system, such as a collision or close encounter, the function that computes the forces,
COMPUTE_FORCE, could report this event back to the control process by a message of some
distinguished type.

Now, with this N-body process core, the following force.c routines complete the cube
process code.

The computation of the force is for a gravitational attraction with G equal to unity. Mass,
distance, or time may be scaled to normalize the computation for a particular value of G.

The UPDATE routine performs a simple Euler integration using the slopes found at an
extrapolated half-time-step point, instead of the current point, to project the velocity and
location for the next point.
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The RESET routine computes the projected half-time-step point for each body before
entering the integration loop. The point is re-computed by the UPDATE routine after each
integration.

/* integrations routines, force calculations */
#include <math.h>
#include <cube/cubedef.h>

struct body {

double pos[3]; /* body position x,y,z */
double vel[3]; /* velocity vector x,y,z */
double mass; /* body mass */
double force[3]; /* to accumulate forces */
short home_node; /* ID of body’s home process */
short home_pid;
double midpos[3]; /* extrapolated mid time step */
};
struct startup{
double tstep; /* size of integration step */
short steps; /* number of integration steps */
short n; /* number of bodies */
short next_node; /* ID of next process on ring */
short next_pid;
};
COMPUTE_FORCE (host, guest)
struct body *host,*guest; °
{
double FORCE[3];
double dx,dy,dz,dist2,inetforce;
dx = guest->midpos[0] - host->midpos[0]; /* compute offset vector */
dy = guest->midpos[1] - host->midpos[1];
dz = guest->midpos[2] - host->midpos[2];
dist2 = dx*dx + dy*dy + dz*dz; /* square of distance */
inetforce = (host->mass * guest->mass) / (dist2 * sqrt(dist2));
FORCE[0O] = inetforce * dx;
FORCE[1] = inetforce * dy;
FORCE[2] = inetforce * dz; /* force vector */
host->force[0] += FORCE[O];
host->force[1] += FORCE[1];
host->force[2] += FORCE[2]; /* force to host */
guest->force[0] -= FORCE[O];
guest->force[1] -= FORCE[1];
guest->force[2] -= FORCE[2]; /* force to guest */
}
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ADD_FORCE_TO_HOST (host,guest)

{

}

struct body *host,*guest;

host->force[0] += guest->force([0];
host->force[1] += guest->force[1];
host->force[2] += guest->forcel[2];

UPDATE (host ,task)

}

struct body +*host;
struct startup *task;

double factor;

factor = task->tstep;

host->pos[0] += host->vel[0]*factor; /* integrate velocity */
host->pos[1] += host->vel[1]*factor;

host->pos[2] += host->vel[2]*factor;

factor /= host->mass;

host->vel[0] += host->force[0]*factor; /* integrate position */
host->vel[1] += host->force[1]*factor:

host->vel[2] += host->force[2]*factor:

factor = task->tstep/2; ’ /* predict next mid-point */
host->midpos[0] = host->pos[0] + host->vel[O]*factor:
host~>midpos[1] = host->pos[1] + host->vel[1]*factor;
host->midpos[2] host->pos[2] + host->vel[2]*factor;

host->force[0] = host->force[1] = host->force[2] = 0; /* clear force */

RESET (host, task)

struct body *host;
struct startup *task;

double factor;
factor = task->tstep/2; /* predict mid-point */
host->midpos[0] = host->pos{0] + host->vel[0]*factor;

host->midpos[1] = host->pos[1] + host->vel[1]*factor;
host->midpos[2] = host->pos[2] + host->vel[2]*factor:
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A1.3 Host process code

The sunbody program is run on the host after acquiring a cube of appropriate dimension
with the getcube utility. It is run with:

sunbody body-file steps timestep

The steps argument is an integer specifying the number of integration steps to perform
between reporting the new states. The timestep argument is a real number which taken as
the size of the time step used in the integrator. The body-file contains a description of the
initial states of the bodies in the following format:

1 0 700 -200 0 0 0O 40
3 0 850 -12000 O 60
2 0 1000 6000 0 14 0
6 O 8000 000 O OO
7 O 1000 6000 O0 -14 0
65 0 850 12000 0O -60
4 O 700 20000 O -40

The first two numbers in each line are the node and pid of the cube process, followed by
the mass, position (x y z), and the velocity (vx vy vz) of the body.

For each body entry, a process is spawned by sunbody. These processes are chained into
aring in the same order as their bodies appear in the list. Although processes can be placed
anywhere, it is best to minimize the distance between adjacent processes, as was done in
the above example.

The details of the process spawning, done directly by the process by messages to the
SPAWN processes, are shown in the install(node,pid) function.

The time evolution of the system then proceeds indefinitely, with the sunbody process
maintaining a continuous display of the positions of the bodies, and a summary of the center
of mass and total energy of the system. Because of an extra start message, produced by
the send_task function, the host computation is overlapped with the cube computation.

All the sending and receiving of messages is consolidated into the send_task, send_value,
and recv_value functions, which use the “block” variants of the basic send and recv
functions. The changes in number representations, using the ctoh* and htoc* functions,
are also performed here.

Here is the complete code of the sunbody program. The display driver routines are
contained in another file not shown here.
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/* Host process code */

#include <stdio.h>

#include <cube/cosmic/cubedef.h>
#include <math.h>

struct body {

double pos[3]; /* body position x,y,z */
double vell[3]; /* velocity vector x,y,z */
double mass; /* body mass */
}
struct obj {
struct body body; /* describes a body */
struct obj *next; /* used for making linked list =*/
short node; /* ID of body's home process x/
short pid;
} *objhead = NULL, *newhead = NULL;
struct startup{
double tstep; /* size of integration step * /
short steps; /* number of integration steps */
short n; /* number of bodies */
short next_node; /* ID of next process on ring */
short next_pid;
1
int bodycnt; /* number of bodies there are.
int steps; /* number of integrations steps per position report
double timestep; /* time interval used for integration.
double cm_vel[3]; /* stores the velocity of the center of the mass.
double energy; /* stores the energy of the system.
install(node,pid) /* spawns the process "nbody" in the cube
short node,pid;
{
FSPMSG sp;
MSGDESC sd;
sp.pid = pid;
sp.state = READY;
sp.rtype = FSPTYPE;
beopy("nbody",sp.name,7); /* set up message to spawner.
htocs(&sp,3); /* change to cube byte order.
sdesc (&sd,node,SPAWN,FSPTYPE, &sp,sizeof (sp));
sendb(&sd) ; /* send it to the spawner, and
recvb(&sd) ; /* ignore spawner’'s reply.
}
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summarize (obj,cm_vel,energy) /* energy and net velocity of the system */
double *cm_vel; /* center of mass */
double *energy:;
struct obj *obj;
{
double mass,dist,dx,dy,dz;
struct obj *tmp;
cm_vel[0] = cm_vel[1] = cm_vel[2] = *energy = mass = O;
for(; obj; obj = obj->next)
{
cm_vel[0] += obj->body.vel[0]*obj->body.mass; /* cm’s momentum. */
cm_vel[1] += obj->body.vel[1]*obj->body.mass;
cm_vel[2] += obj->body.vel[2]*obj->body.mass;
mass += obj->body.mass; ©  /* cm’s mass. */
for(tmp = obj; tmp->next; tmp = tmp->next) /* potential energy */
{
dx = tmp->body.pos[0] - tmp->next->body.pos[0];
dy = tmp->body.pos[1] - tmp->next->body.pos[i];
dz = tmp->body.pos[2] - tmp->next->body.pos[2];
dist = sqrt(dx*dx + dy*dy + dz*dz);
*energy -= tmp->body.mass*tmp->next->body.mass/dist;
}
*energy += 0.5 * obj->body.mass * /* kinetic energy */
( obj->body.vel[0]*obj->body.vel[0] +
obj->body.vel[1]*obj->body.vel[1] +
obj->body.vel[2] *obj->body.vel[2]);
}
cm_vel[0] /= mass;
cm_vell[l] /= mass;
cm_vel[2] /= mass; /* convert momentum to velocity */
/* print it out on the screen */
fprintf(stderr,"cm moving at (%1lg %lg %1g)", cm_vel[0],cm_vel[1]l,cm_vel[2]);
fprintf(stderr," energy %lg\n",*energy);
fflush(stderr) ;
}

zero_cm_vel(obj,cm_vel)
struct obj *obj;
double *cm_vel;

int i;

if(cm_velfO] || cm_vell1]

/* makes initial velocity of cm zero */

Il em_vell2])
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}

read_file(name)

/* if cm’s velocity is not zero.

for(; obj; obj = obj->next) /* subtract it from all bodies.
for(i = 3; i--;) obj->body.vel[i] -= cm_vell[il;

fprintf (stderr,"center of mass’s movement zeroed\n");

summarize (objhead,cm_vel,&energy); /+* re-calculate vel and energy.

char *name;

{
FILE *fp;
char 1line[100];
int node,pid;
struct obj *obj;
it (! (fp = fopen(name,"r"))) /* open the file
{
fprintf (stderr,"Bad file %s\n",name);
cosmic_exit();
}
for(bodycnt = O; fgets(line,100,fp); bodycnt++) /* one line per body
{
obj = (struct obj *) malloc(sizeof(struct obj));
/* node pid mass x y z vx vy vz */
sscanf (line,"%d %4 %1f %1f %1f %1f %1f %1f %1f",
&node, &pid, &obj->body.mass,
&obj->body.pos[0], &obj->body.pos[1], &obj->body.pos[2],
&obj->body.vel[0], &obj->body.vel[1], &obj->body.vel[2]);
obj~>node = node;
obj->pid = pid;
obj->next = objhead; objhead = obj; /* first list for old data
obj = (struct obj *) malloc(sizeof(struct obj));
*obj = *objhead;
obj->next = newhead; newhead = obj; /* second list for new data
install{node,pid); /* spawn process
}
if (! (bodycnt & 1))
{
tprintf (stderr,"I need an odd number of bodies\n");
cosmic_exit();
}
}
send_value(obj) /* sends initial values to cube processes

struct obj *obj;
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MSGDESC sd;
struct body bd;

for(; obj; obj = obj->next)

{
bd = obj->body;
htocd(&bd,7) ; /* change to cube number representation
sdesc (&sd,obj->node,obj~->pid,0,&bd,sizeof (bd)) ;
sendb(&sd) ;
}
}
send_task(obj) /* sends task messages to the cube processes
struct obj *obj;
{
struct obj *first;
MSGDESC sd;
struct startup task;
task.tstep = timestep; /* set parameters common to all processes
task.steps = steps;
task.n = bodycnt;
htocd(&task,1); /* change to cube number representation
htocs(&task.steps,2);
first = obj;
for(; obj; obj = obj->next)
{
if (obj->next) «/* set ID of next process in the ring
{ /* to be that of the next on the linked list.
task.next_node = obj->next->node;
task.next_pid = obj->next->pid;
} else
{
task.next_node = first->node; /+* if this is the last body
task.next_pid = first->pid; /* wrap around the the first.
}
htocs(&task.next_node,2); /* change to cube number representation
sdesc (¥sd,obj->node,obj->pid,1,&task,sizeof (task));
sendb(&sd) ;
}
}
recv_value(obj) /* receives new values from cube processes
struct obj *obj;
{

int i;

struct obj *o;
struct body bd;
MSGDESC rd;
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for(i = bodyent; i--; ) /* wait for bodycnt messages to arrive

{
sdesc(&rd,0,0,0,&bd,sizecf (bd));
recvb(&rd) ; /* receive the message
ctohd (&bd,7) ; /* change to host number representation
for(o = obj; o->node != rd.node || o->pid != rd.pid; o = o->next);
it (o) o->body = bd; /* store it in the proper place
}

summarize (obj,cm_vel,&energy);

}
main(argc,argv)
int argc;

char *argv[];

struct obj *tmp;

if(argec < 4){puts("<data file> <steps/display> <time step>"); exit(1);}

steps = atoi(argv[2]);
timestep = atof(argv[3]);

cosmic_init (HOST,0);
read_file(argv[1]);

summarize (objhead,cm_vel,&energy);

zero_cm_vel(objhead,cm_vel);
send_value(objhead) ;

open_graphic() ;
for(send_task(objhead);;)
{
send_task(objhead);
recv_value (newhead) ;

display(objhead,newhead) ;
tmp = objhead;

objhead = newhead;
newhead tmp;

}

cosmic_exit(); /* leave cosmic

/*

/*
/*
/*
/*
/*

/*
/%

/*
/*

/*
/*

process command line parameters

enters cosmic environment

read bodies from file

initial energy and cm's velocity
adjust ¢m’'s velocity to zero.
send out initial values.

initialize display device
first task msg, then forever

queue another task msg
recv new values into the new list

display the results.

switch the two lists.

environment. It never gets executed.
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A1.3 Sample Output
A sample output for the initial conditions illustrated above is:
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Appendix 2:
3z + 1 Sieve

In contrast to the universal interaction of n-body program presented in Appendix 1, this
second example is a problem formulated with very sparse interaction. The initial phases of
the computation are used to compute a reasonably even division of effort, and to distribute
the resulting tasks to processes. Then during the largest part of the computation, there is
no communication at all between the processes as each works on its own independent part
of the problem. Finally, the communication capabilities of the cosmic cube are used again
to collect the results. The pattern of distributing the tasks, a process structure that we
call the “time-on-target” tree, is useful in many such situations. For example, this same
algorithm is used by the broadcast spawn process.

A2.1 The 3z + 1 Problem

The “3z + 1 problem” is concerned with the iterates of the function that takes even
integers z to z/2 and odd integers to 3z + 1. For example, if one starts with the number 7
a sequence:

7 22 11 34 17 52 26 13 40 20 10 56 16 8 4 2 1 [4 2 1]+

is generated. It is conjectured that for any initial integer the sequence will always reach 1.
The search for a counterexample to this conjecture has been done by an exhaustive test of
the integers up to 24° by Nabuo Yoneda at the University of Tokyo, but without success.
No one has been able to prove the conjecture either. The problem appears to be intractably
hard; thus its fascination. Paul Erd8s commented that “Mathematics is not yet ready for
such problems.” It is a popular joke that the 3z + 1 problem is a conspiracy to slow down
mathematical research. The author of the program presented here (Seitz) first encountered
this problem in 1967, while he was a graduate student at MIT, and he has burned countless
computer cycles through the years in various computer’s operating system idle loops while
exploring the problem.

An excellent survey of “The 3z + 1 problem and its Generalizations”* traces the problem
to work of Lothar Collatz starting in 1932, and describes what is known about it. The
mathematics of the problem is very interesting, but is beyond the scope of what is required
to explain this simple programming example.

The cosmic cube program presented here uses an approach of trying to prove the conjec-
ture by sieving (eliminating) expressions rather than searching the integers. The expres-
sions considered fall into classes in the form 2*n + Tk, where T} is a set of terms, each

* Jeffrey C Lagarias, American Mathematical Monthly, January 1985,
y
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element of which is less than 2*. Starting with k = 0, one has only the primitive expression
2%n + {0} = n. Since n might be either even or odd, one cannot iterate this expression.
So, consider next the even and odd integers separately. No even integer — no integer rep-
resented by the expression 2n — could be the least counterexample since 2n => n, which is
equal to or less than than 2n for all n > 0, and any successor in the sequence produced
by a counterexample is also a counterexample. Thus one can eliminate from consideration
all expressions in the form 2n. However, the odd integers, represented by the expression
2n + 1, follow the iteration: 2n + 1 => 6n + 4 = 3n + 2. One cannot discriminate whether
3n + 2 is even or odd, and no element of the sequence is smaller than the starting element.
So, the set of expressions that cannot be sieved out at this level are 21n + {1}.

The next set of expressions to consider is in general {2%(2n) + T} U {2%(2n + 1) + Ty},
which are then sieved, for example:

2'(2n)+1=4n+1=>12n+4=>6n+2=>3n+1 (eliminated).
2'(2n+1)+1=4n+3=>12n+10=>6n+5=>18n+ 16 = 9n + 8 (retained).

to form the set {2¥*1n + T ,}, which in this case is 22n + {3}.

If in proceeding in this way one could eventually eliminate all expressions — that is, if
one could construct the entire binary tree down to expressions that are eliminated —, the
conjecture would be proved by demonstrating the non-existence of a least counterexample.
There is no serious expectation of this outcome; the “proof” strategy of the program is
intended only to be an efficient way to search for counterexamples. If the problem is in fact
intractable, the experimenter is guaranteed run out of patience or the machine will run out
of bits before the conjecture is either proved or a counterexample is found.

The following program output shows the breadth of the tree of expressions constructed
in this way. Shown in {} for the first 8 levels are the sets of terms (edited from the output
of another program) that cannot be eliminated.

Cube version of Collatz sieve, running on 6-cube

2°0%n + set of 1 terms {0}

2°1%n + set of 1 terms {1}

2°2*n + set of 1 terms {3}

2°3*n + set of 2 terms {37}

2°4xn + set of 3 terms {117 156 }
2°6*n + set of 4 terms {27 715 31 }
2°6*n + set of 8 terms { 27 59 7 39 15 47 31 63 }
2°7*n + set of 13 terms { 27 91 123 71 39 103 79 47 111 31 95 63 127 }
2°8*n + set of 19 terms

2°9*n + set of 38 terms

2710*n + set of 64 terms

2°11*n + set of 128 terms

2°12*n + set of 226 terms

2713*%n + set of 367 terms

2°14*n + set of 734 terms

2°15%n + set of 12965 terms

2°16+n + set of 2114 terms

2°17*n + set of 4228 terms

2°18*n + set of 7495 terms

2°19*n + set of 14990 terms

2°20*%n + set of 27328 terms
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2°21*n + set of 46611 terms
2°22%n + set of 93222 terms
2°23+«n + set of 168807 terms
2°24*n + set of 286581 terms
2°25%n + set of 573162 terms
2°26*n + set of 1037374 terms
2°27+n + set of 1762293 terms
2°28%n + set of 3524586 terms
2°29*n + set of 6385837 terms
2°30*n + set of 12771274 terms
2°31xn + set of 23642078 terms

Total running time to produce the tabulation above was about 25 hours on the 6-cube, with
arithmetic done in arbitrary precision. Because this sieve on expressions eliminates at the
last levels all but about 1% of the integers from consideration as possible counterexamples, it
greatly reduces the space in which to search. However, even by this technique, a duplication
of the test for counterexamples up to 2%° would require, based on some partial tests, about
500 hours on the 6-cube. This experiment was not tried in full, since the sieve program
revealed some additional properties of this curious problem that suggest a number of other
shortcuts.

A2.2 Concurrent Formulation

The approach used to distributing the work of this 3z + 1 sieve can be applied to many
problems involving only sparse interaction. Let us describe this technique first in terms of
the 3z + 1 sieve.

The process structure for the 3z + 1 sieve program is built with an identical process in
every node, each of which starts by waiting for a message. A message sent to one of these
processes conveys a MESSAGE structure:

typedef struct {

unsigned short size; /* size of set of terms */

short rp_node; /* return path node x/

short rp_pid; /* return path pid x/

unsigned short maxsplit; /* 2~ (number of splits allowed (dim of cube)) */
unsigned short split; /* 2~ (dimension on which to split next) */
unsigned short logmaxcoef; /* log base 2 of max coef */

unsigned short logcoef; /* log base 2 of current coef */

unsigned short term[ARRAYSIZE] [DIGITS+1]; /* set of terms */
} MESSAGE;

The MESSAGE structure conveys the logcoef (= k), the term array, and its size, which
together represent a set of expressions in the form 2*n + T;. We use the notation T} to
indicate that this set is not yet sieved. The task is potentially splittable as long as the whole
cube is not already used and k has not reached its specified limit value, logmaxcoef. As
long as the task is splittable, the process performs a “breadth-first” search in which sieves
the input expressions and then forms the set of expressions 25t1n + T4y1- This set T},
may be as much as twice as large as T}.

If the resulting list is larger than a SPLITSIZE parameter, the task is split. The process
keeps half of the task and “gives away” the other half. The “time-on-target” tree is an
orderly way to build this tree on a binary n-cube. Although it could be any process, let
us assume that the process in node O receives the first message. It may then split first
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by sending a task message to its neighbor along dimension O (the process in node 1). It
includes in this message and in its own state, using the variable split, that the dimension
on which to split next is 1. Then the processes in nodes 0 and 1 continue until they decide,
independently, to split along dimension 1, and so on until the splitting is inhibited by having
reached the dimension of the cube or the specified depth in the search. The following graph
shows the process structure that would be built in a 3-cube:

o e
N

Although this structure is embedded into a binary n-cube while using only neighbor con-
nections, that is not its most important property. We call this process structure the time-
on-target tree to indicate how the “keep half, give away half” strategy results at each
generation, including the last, in all the processes reaching the “target” of starting out at
more or less the same time. Someone suggested calling this structure “the family tree of
the immortal amoeba”, but the authors were concerned about keeping this guide clean.

This same stategy also works well for the broadcast spawn process, as discussed in section
6.4, and is the mechanism used by the gfork function. These programs are a somewhat
simpler application of this technique in that they do not do any intermediate computation,
such as the 3z + 1 sieve process performs in order to increase the size of the set being sieved.

Implicit in the formulation of the 3z + 1 program is the assumption that by making the
set of terms large enough, one is dividing the work approximately equally. This assumption
is experimentally justified, even using the split by which the 2¥(2n) + T} terms are kept
and the 2¥(2n + 1) + T} terms are given away. The choice of the SPLITSIZE parameter
allows one to make a tradeoff between how quickly the problem gets dispersed and how well
balanced the parts are.

A2.3 Cube process code

The first challenge of writing programs for exploring the Collatz conjecture is that the
problem starts getting interesting and outside the range of conventional machines at about
the same time that one runs out of numerical precision in C long integers. The Collatz
iterations starting with integers in the range of 2!¢ can reach values in the range of 232.
In order that one can have absolute confidence in the results of these very long-running
computations, a package of arbitrary precision integer arithmetic routines is used, and
included from bignum.c. Also, the file coldet .c contains definitions common to the several
parts of the program, in particular, it includes the definition of the MESSAGE type, the
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parameter that controls when the task is to be split, SPLITSIZE, and the parameters of the
arbitrary precision arithmetic routines. Any change to this file requires remaking both host
and cube process code.

The bignum functions manipulate numbers represented as arrays of DIGITS+1 shorts,
where x[0] is the low-order digit and x[DIGITS-1] is the high-order digit, in radix RADIX.
RADIX must be a power of 2, and is equal to 2! except when performing consistency tests
on the code. x[DIGITS] indicates the array index in which the first non-zero entry is found,
or is 0 for the number 0. Some arithmetic operations are thus done from high-order to
low-order digit. For example, to get something of the flavor of these routines, here is the
“greater than” function:

gtr(x,y) /* returns true if x is strictly greater than y */
unsigned short x[DIGITS+1], y[DIGITS+1];

{
int i;
it (x[DIGITS] > y[DIGITS]) return(i);
for (i = y[DIGITS]; i >= 0; i--) {
if (x[i] > y[i]) return(1);
it (x[i] < y[i]) break;
}
return(0) ;
}

the other functions used in the Collatz program can be summarized as follows:
halve(x) divides x by 2.
threehalves(x) 'performs z « z + % foreven z and z — z + 5’;—1 for odd =.
exp(x, y) where x is a short performs y « 27
add(x,y) performs y «— z +y.
The function bcopy, the same function as that in the default C library in Unix systems, is
also used.

The cube process code is then otherwise explained by the discussion of the formulation
and by the comments:

#include <cube/cubedef.h>
#include "coldef.c"
#include "bignum.c"

/* version 6 June 1985; first version 20 December 1984 */

/* The wander function returns false if an expression in the form
((2"1logcoef)*n + term) progresses in the Collatz sequence to an
expression that is smaller for any n > O, and returns true if the
expression progresses to an expression with an odd coef, so that
even/odd cannot be distinguished. */

wander (logcoef, term)
unsigned short logcoef, term[DIGITS+1];
{

unsigned short coef[DIGITS+1], tcoef[DIGITS+1], tterm[DIGITS+1];
short i;
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exp(logcoef,coet);
bcopy(coef,tcoef,sizeof (tcoef)):
bcopy(term,tterm,sizeof (tterm));

tor (;;) {

it ( (gtr(coef,tcoef)) && (!gtr(tterm,term)) ) /* reduced to

return(0) ;

if (odd(tcoef[0]))
return(1);

if (odd(tterm[0])) {

threehalves(tcoet);
threehalves(tternm) ;
}
else {
halve(tcoef);
halve(tterm);
}

}

/*
/*

/*
/*
/*

/*
/*
/*

/* smaller expr

can’t distinguish even and odd
return true to include in next

coef even, term odd
tcoef += tcoef/2 (even)
tterm += (tterm+1)/2 (odd)

tcoef and tterm both even
tcoef = tcoef/2
tterm = tterm/2

/* countleaf is a depth-first (recursive) leaf counting function. When
called with logcoef and term representing ((2-logcoef)*n+term), it counts
into unsigned long count the number of derivative expressions in a tree
with leaves in the form (2"logmaxcoef*n+term). */

int toggle = O;
unsigned long count;

countleaf(logcoef, logmaxcoef, term)

unsigned short logcoef, logmaxcoef, term[DIGITS+1];

led(--toggle&1); /* blink light to show I'm working */

{
if (wander(logcoef, term)) {
if (logcoef == logmaxcoef) {
count++;
}
else {
unsigned short tterm[DIGITS+1];
exp(logcoef, tterm);
add(term, tterm);
countleaf (logcoef+1, logmaxcoef, term);
countleaf (logcoef+1, logmaxcoef, tterm):
}
}
}
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/* make 2 instances of structure MESSAGE for receiving and then
* gending the sieve task */
MESSAGE t1, t2;

/* for returning the count of the number of leaves below this vertex */
unsigned long replyword;

/* declare and intialize message descriptors */

idesc (taskin, O, O, O, &tl, sizeof(t1));

idesc (taskout, O, O, O, &t2, sizeof(t2));
idesc(reply, O, O, 1, &replyword, sizeof(replyword));

main()

{

unsigned int i1, i2, descendants;
unsigned short coef[DIGITS+1];
while(1) {

/* first receive the initial conditions into t1 */

led(0); /* led off while this process waits */
recvb(&taskin) ; /* receive task to be performed */
led(1); /* led on to show started */

descendants = 0; /* number of descendants of this process */

/*

<

hile splitable, proceed breadth-first */

while ((t1.split < t1.maxsplit) && (tl.logcoef < t1.logmaxcoef)) {
for (i1 = i2 = 0; i1 < t1.size; il++) { /* sieve */
it (wander(tl.logcoef, tl.term[il1]))
becopy(ti.term[i1], t2.term[i2++], sizeof(t2.term[0]));
}
exp(tl.logcoef, coef); /+* make 2°logcoef -> coef */
t2.size = i2;

/* if the sieved list of terms in t2 is smaller than SPLITSIZE,
generate the next list of trial terms into t1 */

if (t2.size < SPLITSIZE) {

for (i1l = i2 = 0; i2 < t2.size; i2++) {
becopy(t2.term[i2], ti.term[il++], sizeof(ti.term[0]));
add(coet, t2.term[i2]);
bcopy(t2.term[i2], t1l.term[il++], sizeof(tl.term[0]}));

}

tl.s8ize = il;

t1.logcoef = t1.logcoef +1;
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/* if the sieved list of terms exceeds the SPLITSIZE, leave the list
in place in t2, and produce the 2nd set of terms into tl1 to continue

*/

else {
for (i2 = 0; i2 < t2.size; i2++) {
bcopy(t2.term[i2], t1.term[i2], sizeof(tl.term[0]));
add(coef, ti.term[i2]);
}
tl.8ize = t2.8ize;
t1.logcoef = t2.logcoef = t1l.logcoef + 1;

/* now set up rest of t2 and MSGDESC task to send this part of the job
off to another process on the time-on-target tree */

t2.rp_node = mynode();

t2.rp_pid = mypid();

t2.logmaxcoef = t1.logmaxcoef;

t2.maxsplit = t1.maxsplit;

taskout.node = t2.rp_node ~ ti.split;

taskout.pid = t2.rp_pid;

t1.s8plit = t2.8plit = tl.split << 1;

sendb (¥taskout) ;

descendants++; /* increment count of descendants */

}

/* having exited the while clause, the sieve is either at a state
where coef = maxcoef, or is no longer splittable (is a leaf process),
or both. In either case we can proceed depth-first starting with
tl.coef and each member of the tl.term list, and count the number of
cases down to maxcoef. */

count = O;

for (i1l = O; i1 < tl.size; il++)

countleaf(tl.logcoef, t1.logmaxcoef, tl.term[il]);

/* now for getting the answer back */

led(1);
while (descendants--) {
recvb(&reply);
count += replyword;
-}
replyword = count;
reply.node = ti1.rp_node;
reply.pid = t1.rp_pid;
sendb(&reply);
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} /* end while(1) */
} /* end main() */

A2.4 Host process code

This version of the host process code for the 3z + 1 sieve, hcol is very simple. The
program starts with some preliminaries to format the argument variables, the logmaxcoef,
and logcoef and term as optional parameters that default to 0. Thus one can ask the
sieve to search for descendents of the tree vertex corresponding to 27n + 27 to level 25 by
hcol 26 7 27. The process then sets its alias to Collatz, enters the environment with
ID (HOST,O0), prints the specification of the problem, sends a message to the process in
node 0, and finally prints the resulting count of the number of leaves of this tree.

#include <stdio.h>
#include <cube/cosmic/cubedef.h>
#include "coldef.c"

MESSAGE t;
MSGDESC sd,rd;
unsigned long reply;

main(argc,argv,envp)
int argc;
char **argv,**envp;

unsigned short maxsplit, logmaxcoef, logcoef, term;

int i, j;

if ( arge < 2 |]*arge > 4) {

fprintf (stderr,"usage: logmaxcoef [logcoef] [term]\n");

exit();

argc--;
argv++;

if(arge) { logmaxcoef =
if(argc) { logcoet =
if(arge) { term

atoi(*argv++) ;
atoi(*argv++);
atoi(*argv++) ;

cosmic_set_alias("Collatz");
cosmic_init (HOST,0);

printf ("Cube version of Collatz sieve,
printf ("logmaxcoef= %hd, logcoef= %hd,
logmaxcoef, logcoef,

t.size = 1;
t.rp_node = mynode();
t.rp_pid = mypid();
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argc--; } else logmaxcoef = O;
argc--; } else logcoef = 0;
argc--; } else term = O;

running on %d-cube\n",cubedim()):
term= %hd\n",

term) ; -



t.maxsplit = (1 << cubedimn());

t.split = 1;

t.logmaxcoef = logmaxcoel;

t.logcoet = logcoel,;

t.term[0][0] = term;

for (i=1; i<=DIGITS; i++) t.term[0][i] = O;

sd.node = O;

sd.pid = sd.type = O;

sd.buf = (char *) &t;

sd.buflen = sd.msglen = sizeof (t);
htocs(&t, sizeof(t)/2);

send (&sd) ;

rd.type = 1;

rd.buflen = sizeof(long);
rd.buf = (char *) &reply;
recvb(&rd);
ctohl(&reply,1);

printf ("2°%hd*n + set of %d terms\n", logmaxcoef, reply);

exit();

A2.5 Checkpointing

The 3z + 1 sieve can run for such long periods that it is valuable to be able to save inter-
mediate results’in case the cube or host systems might crash. Thus we use this opportunity
to illustrate a simple example of breaking up a computation so that results are saved at
points where the amount of information is reasonably small. For this sieve a search to a
large depth, such as 32, can be broken up by searching independently from each of many
vertices below the root. For example, the tree at level 7 has 13 terms, and one can use these
as independent starting points. One then need only write a script, such as:

date

hcol 32 7 31
date

hcol 32 7 856
date

hcol 32 7 63
date
freecube

that will run the host program a number of times. Here is an illustration of starting and
running the program with the script, which is called run:

(icarus:27) getcube

6D sub-cube allocated
(icarus:28) spawnf col -1 O

col spawned in all nodes, pid O
(icarus:29) run > col32.output &
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[1] 943
(icarus:30) peek

CUBE DAEMON version 6, up 22 hours 53 minutes on host sol

{Collatz chuck} 6d cosmic cube, b:0000 [ icarus 6-cube] 1.0m
{ } 2d cosmic cube, b:0000 [ ceres 3-cube] 4.6h
{ group kiat } 2d cosmic cube, b:0004 [cit-vax 3-cube] 4.5h

GROUP {Collatz chuck}:

(-1 0) Collatz 1s Or Oq [icarus 7945] 6.0s
(-1 -1) SERVER 6s 4r 0q [icarus 7940] 59.0s
(--- --- ) CUBEIFC 6s ©Sr O0q [ sol 2201] 1.0m

(icarus:31) cla
Loading for a 6-cube:

AVG MAX MIN SDEV
load avg: 0.12 1.24( 0) 0.04( 8) 0.23
free mem: 94528 94528( 0) 94528( 0) NaN
(icarus:32) cla
Loading for a 6-cube:

AVG MAX MIN SDEV
load avg: 1.00 1.00( 0) 1.00( 0) 0.00
free mem: 94528 94528( 0) 94528( 0) NaN

The session include checking the cube load average right after the distribution phase of the
computation, and about a minute later after the work has spread to all of the nodes.
Finally, about 10 hours later, the results show up in the file col32.output:

Tue Jun 4 20:49:41 PDT 1985

Cube version of Collatz sieve, running on 6-cube
logmaxcoef= 32, logcoef= 7, term= 31

2°32*n + set of 4584700 terms

Wed Jun 5 01:20:20 PDT 1985

Cube version of Collatz sieve, running on 6-cube
logmaxcoef= 32, logcoef= 7, term= 95

2°32%n + set of 1316172 terms

Wed Jun 6 02:35:21 PDT 1985

Cube version of Collatz sieve, running on 6-cube
logmaxcoef= 32, logcoef= 7, term= 63

2°32%n + set of 4584700 terms

Wed Jun 5 07:03:08 PDT 1985

Some of the previously unsuspected structure of this problem is revealed in that the number
of cases that pass through the sieve at the 32nd level are the same starting with 27n + 31
and 2"n + 63.
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CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

COMPUTER SCIENCE 256-80

Cosmic Environment Software Distribution

The cosmic environment software described in the “C Programmer’s Guide to
the Cosmic Cube” is available for internal use to most university, government, and
non-profit research organizations under the arrangements outlined below. Software
distributions are available to other organizations only through a license with Cal-
tech. It is expected that another version of this software will be available through
Intel Scientific Computers.

This software also comes with a network-based update mechanism that can be
used to distribute it conveniently between hosts on TCP/IP networks. This mech-
anism is the recommended way of obtaining a distribution for ARPAnet hosts.

In order to get a copy, send a letter to the undersigned that includes statements:

1. of your intended use of this software (brief).

2. that you agree not to redistribute this software outside of your organization,
and in no case outside of the United States, and will keep the files protected
on your systems.

3. that you agree that this software is for your internal use, and that you will
not sell access to or otherwise permit use of these programs to people outside
your own organization.

4. that you understand that this is experimental, unsupported software that
may or may not work as described, and that you hold Caltech harmless from
any loss or damage that may result from its installation or use.

We are able answer questions about this software as our time allows, and are happy
to have bug reports, but only by electronic mail to “cube@cit-sol.arpa”. It is
most helpful if a bug report includes the smallest example of code that you can
devise that demonstrates the bug.

If you are installing this software on a machine that is not an ARPAnet host,
please include with your letter a blank 600’ 1/2 inch tape labeled with your postage
address. We will mail the C sources to you in Unix tar format. The files can be
placed in any source directory. The installation instructions are included in the
make file.

If you are installing this software on an ARPAnet host, you do not need to send a
tape. We hope you don’t. Just send us your ARPAnet mail address and the name of
the host on which you intend to maintain your source directory. We will then enter
the name of the host on which you maintain the sources into a permission table,
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and will send you a message that includes a C program that you can compile and
run to bring the sources over the ARPAnet to your machine. This program makes
a socket connection to the cube dzemon that runs on cit-sol.arpa, and brings the
files across the network. This same program can be used later for automatic updates,
which are selective by timestamp in order to minimize the volume of messages sent
through the network.

Requests to use the cosmic cubes or Intel iPSC d7 operated by the Caltech Com-
puter Science project group should be addressed to “chuck@cit-vlsi.arpa”.

Charles L Seitz

Computer Science 256-80
California Institute of Technology
Pasadena, CA 91125
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Abstract

A deadlock-free routing algorithm can be generated for arbitrary interconnection networks
using the concept of virtual channels. A necessary and sufficient condition for deadlock-
free routing is the absence of cycles in the channel dependency graph. Given an arbitrary
network and a routing function, the cycles of the channel dependency graph can be removed
by splitting physical channels into groups of virtual channels. This method is used to
develop deadlock-free routing algorithms for k-ary n-cubes, for cube connected cycles, and
for shuffie-exchange networks.

Index Terms - Interconnection networks, communication networks, concurrent computation,
parallel processing, message passing multiprocessors, graph model.
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Figure 1: Deadlock in a 4-Cycle

1 Introduction

Message passing concurrent computers such as the Caltech Cosmic Cube {1} consist of many
processing nodes that interact by sending messages over communication channels between
the nodes. Deadlock in the interconnection network of a concurrent computer occurs when
no message can advance toward its destination because the queues of the message system
are full [2]. Consider the example shown in Figure 1. The queues of each node in the 4-cycle
are filled with messages destined for the opposite node. No message can advance toward its
destination; thus the cycle is deadlocked. In this locked state, no communication can occur
over the deadlocked channels until exceptional action is taken to break the deadlock.

Reliable concurrent computation requires a routing algorithm that is provably free of dead-
lock. In this paper we present a general method for constructing deadlock-free routing
algorithms for arbitrary networks. In Section 2 we state our assumptions and develop
the necessary and sufficient conditions on a channel dependency graph for a routing to be
deadlock-free. These conditions are used in Section 3 to develop a method of constructing
deadlock-free algorithms for arbitrary networks. This method is based on the concept of
virtual channels: groups of channels that share a physical channel but each have their own
queue. Using virtual channels, we develop deadlock-free routing algorithms for arbitrary
k-ary n-cubes in Section 4, for cube-connected cycles in Section 5, and for shuffle-exchange
networks in Section 6. In each of these examples, physical channels belonging to cycles are
split into a group of virtual channels. The virtual channels are ordered; routing is restricted
to visit channels in decreasing order to eliminate cycles in the channel dependency graph.

2 Deadlock Free Routing

We assume the following:



A message arriving at its destination node is eventually consumed.
e A node can generate messages destined for any other node.

e Between any two processing nodes s and j the order of messages transmitted directly
from ¢ to 7 must be preserved.

There is room to queue at least two message fragments (possibly a single bit each) for
each channel.

e Nodes can produce messages at any rate subject to the constraint of available queue
space (source queued).

The following definitions develop a notation for describing networks, routing functions and
configurations. A summary of notation is given below.

Definition 1 An interconnection network, I is a strongly connected directed graph, I =
G(N,C). The vertices of the graph, N, represent the set of processing nodes. The edges
of the graph, C, represent the set of communication channels. The source node of channel
¢; is denoted s; and the destination node d;. Associated with each channel, ¢;, is a queue
with capacity cap(¢;) containing size(c;) messages. If the queue for channel ¢; contains a
message destined for node n, then member(ng, ¢;) is true. There may be redundant channels
between two nodes. For purposes of analysis, we add an internal channel c,; to C for each
node n;. Messages originating at node n; are considered to have arrived on ¢,;.

Definition 2 A routing function R : C x N — C maps the current channel, ¢., and des-
tination node, ng, to the next channel ¢, on the route from ¢, to n4, R{cc,n4) = en. A
chanriel is not allowed to route to itself, ¢, # ¢,. Note that this definition restricts the
routing to be memoryless in the sense that a message arriving in channel c., destined for ny4
has no memory of the route that brought it to c.. However, this formulation of routing as
a function from C x N to C has more memory than the conventional definition of routing
as a function from N x N to C. Making routing dependent on the current channel rather
than the current node allows us to develop the idea of channel dependence.

Definition 3 A channel dependency graph, D, for a given interconnection network, I, and
routing function, R, is a directed graph, D = G(C, E). The vertices of D are the channels
of I. The edges of D, are the pairs of channels connected by R:

E = {(ci,cj)|R(ci,n) = ¢c; for some n € N}. (1)

Note that, since channels are not allowed to route to themselves, there are no 1-cycles in
D.

Definition 4 A configuration is an assignment of a subset of IV to each queue. A configu-
ration is legal if

Ve; € C, size(c;) < cap(c;). 2)



Definition 5 A deadlocked configuration for a routing function, R, is a non-empty legal
configuration of channel queues 3

Ve; € C, (Vn 3 member(n, ¢;), n # d; and ¢; = R(cq,n) = size(c;) = cap(e;))  (3)

In this configuration no message is one step from its destination and no message can advance
because the queue for the next channel is full. A routing function, R, is deadlock-free on
an interconnection network, I, if no deadlock configuration exists for that function on that
network.

Summary of Notation

I interconnection network, a directed graph I = G(N,C),

N the set of nodes,

n; a node,

C the set of channels,

¢ a channel,

Cn; the internal channel of node n;,

8 the source node of channel ¢,

d; the destination node of channel ¢;,

cap(e;)’ the capacity of the queue of channel c;,

size(¢;) the number of messages enqueued for channel ¢;,

member(n,c;) true if a message destined for node n is enqueued for channel ¢;,
R a routing function R: C x N — C, ‘
D the channel dependency graph.

Theorem 1 A routing function, R, for an interconnection network, I, is deadlock-free iff
there are no cycles in the channel dependency graph, D.

Proof:

= Suppose a deadlock-free network has a cycle in D. Since there are no 1-cycles in D, this
cycle must be of length two or more. Thus one can construct a deadlocked configuration by
filling the queues of each node in the cycle with messages destined for a node two channels
away where the first channel of the route is along the cycle. Contradiction.

< Suppose a network with no cycles in D is deadlocked. Since D is acyclic one can assign
a total order to the channels of C so that if (c;,c;) € E then ¢; > ¢;. Consider the least
channel in this order with a full queue, c;. Every channel, ¢c,, that ¢; feeds is less than ¢,
and thus does not have a full queue. Thus, no message in the queue for ¢; is blocked and
one do not have deadlock. B




3 Constructing Deadlock-Free Routing Algorithms

Given a routing function, R, and a network, I, that is not deadlock-free, we can construct
a deadlock-free routing (R',I) by removing the cycles from (R,). In some cases, such as a
cycle with channels in only one direction, it is not possible to remove edges without reducing
the set of nodes that can be reached from a given node. In these cases we can break cycles by
splitting each physical channel along the cycle into a group of virtual channels. Each group
of virtual channels shares a physical communication channel; however, each virtual channel
requires its own queue. The purpose of virtual channels is to associate different priorities
to messages traversing the same physical channel depending on the channel from which
a message arrives and the node to which the message is destined. By assigning priorities
so that a message’s priority always increases as it moves closer to its destination, we can
construct deadlock-free routing algorithms.

Consider for example the case of a unidirectional four-cycle as shown in Figure 2A, N =
{no,...,ns}, C = {co,...,cs}. The interconnection graph, I is shown on the left and the
dependency graph, D is shown on the right. We pick channel ¢y to be the dividing channel
of the cycle and split each channel into high virtual channels, ¢o,-..,c1s, and low virtual
channels, ¢go, - - - , Cos, a8 shown in Figure 2B. We can consider the internal channel of node
n; to be numbered cj;. Priority in use of the physical channel is given to the low virtual
channel.

Messages at a node numbered less than their destination node are routed on the high
channels and messages at a node numbered greater than their destination node are routed
on the low channels. Channel cgo is not used. We now have a total ordering of the virtual
channels according to their subscripts: cis > ci12 > c11 > c10 > cos > co2 > Co1. Thus,
there is no cycle in D and the routing function is deadlock-free. In the next three sections
we apply this technique to three practical communications networks. In each case we add
virtual channels and restrict the routing to route messages in order of decreasing channel
subscripts.

Some possible implementations of virtual channels are shown in Figure 3. A parallel imple-
mentation of virtual channels is shown in Figure 3A. Virtual channels between nodes n; and
n; are multiplexed over a physical channel cp,. Queues Qop,...,Qp in n; contain messages
enqueued for transmission over virtual channels cop,...,Ckp all of which are multiplexed
onto physical channel ¢,. A priority encoder (PE), selects the highest priority non-empty
queue, Qip, and enables the next packet of its data onto the physical channel. The data
includes routing information which selects the next queue along the route for the message
in nj. When there is room in this queue, the packet is acknowledged and removed from
Qip- For multi-packet messages, the routing information can be transmitted just once and
stored in node n;.

As long as a high-priority queue, @jp, is non-empty it blocks any lower priority queues,
Qop; - - -, Q@(r-1)p from transmitting their contents on the physical channel. This blocking
of lower priority channels may be undesirable for message-flow performance, but does not
introduce a deadlock. In a practical system a more complex protocol could be used to grant
lower priority virtual channels access to the physical channel while a high priority channel
is blocked. ‘



Figure 2: Breaking Deadlock by Adding Virtual Edges
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Figure 3: Implementation of Virtual Channels

The same protocol can be implemented serially using the format shown in Figure 3B. The
virtual channel id, routing information and data are transmitted serially from n; to nj;.
When this packet is accepted by n;, an acknowledge signal is transmitted back to n; to
remove the packet from its queue and enable transmission of the next packet.

4 K-ary n-cubes

The E-cube routing algorithm [3,4] guarantees deadlock free routing in binary n-cubes.
In a cube of dimension d, we denote a node as n; where k is an d-digit binary number.
Node n; has d output channels, one for each dimension, labeled cog, - .-, ¢(a—1)k- The E-
cube algorithm routes in decreasing order of dimension. A message arriving at node n;
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Figure 4: 3-ary 2-cube

destined for node n; is routed on channel ¢;;, where i is the position of the most significant
bit in which k and [/ differ. Since messages are routed in order of decreasing dimension and
hence deceasing channel subscript, there are no cycles in the channel dependency graph and
E-cube routing is deadlock-free.

Using the technique of virtual channels, this routing algorithm can be extended to handle all
k-ary n-cubes: cubes with dimension n and k nodes in each dimension. Rings and toroidal
meshes are included in this class of networks. This algorithm can also handle mixed radix
cubes. Each node of a k-ary n-cube is identified by an n-digit radix k number. The 1"
digit of the number represents the node’s position in the i*P dimension. For example, the
center processor in the 3-ary 2-cube of Figure 4 is n;;. The channels are identified by the
number of their source node and their dimension. For example, the dimension O (horizontal)
channel from nj3; to nio is co11. To break cycles we divide each channel into an upper and
lower virtual channel. The upper virtual channel of ¢o;; will be labeled ¢g111, and the lower
virtual channel will be labeled coo11. To give internal channels the lowest priority, they are
labeled with a dimension higher than the dimension of the cube. To assure that the routing
is deadlock-free, we restrict it to route through channels in order of descending subscripts.
Priority is always given to the message from the channel with a lower subscript.

As in the E-cube algorithm we route in order of dimension, most significant dimension first.
In each dimension, s, a message is routed in that dimension until it reaches a node whose
subscript matches the destination address in the #*P position. The message is routed on
the high channel if the s*! digit of the destination address is greater than the ¢*® digit of
the present node’s address. Otherwise the message is routed on the low channel. It is
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easy to see that this routing algorithm routes in order of descending subscripts, and is thus
deadlock-free.

Formally, we define the routing function:

Car(n—rd) if glligén,g < 3ig§j, d;; A gdiggn,g # og,
Caoin—rd) if (dig(n,d) > dig(s,d)) v (dig(n,d) = 0),
RyNC(Caon, 5) = C::)((n__,.q) if (Vk > i,dig(n,k)J = dig(7, kg))/\ (4)
(dig(n,s) # dig(s,1))-

Where dig(n, d) extracts the d*® digit of n, and r is the radix of the cube. The subtraction,
n — rd, is assumed to be performed modulo r.

Assertion 1 The routing function, RgNC, correctly routes messages from any node to any
other node in a k-ary n-cube.

Proof: By induction on dimension, d.

For d = 1, a message, destined for n;, enters the system at n; on the internal channel, cqo;.
If i < j, the message is forwarded on channels, oy, . - - , €010, Coor, - - -, Coo(5+1) tO node n;. If
i > j, the path taken is, cooi, - - -, Coo(j+1)- In both cases the route reaches node n;.

" Assume that the routing works for dimensions < d Then for dimension d + 1 there are two
cases. If dig(s, d) # dig(j,d), then the message is routed around the most significant cycle
to a node n, D dig(k,d) = dig(j,d), as in the d = 1 case above. If dig(i,d) = dig(s, d),
then the routing need only be performed in dimensions d and lower. In each of these cases,
once the message reaches a node, ny, 3 dig(k,d) = dig(7,d), the third routing rule is used
to route the message to a lower dimensional channel. The problem has then been reduced
to one of dimension < n and the routing reaches the correct node by induction. Wl

Assertion 2 The routing function RgNc on a k-ary n-cube interconnection network, I, is
deadlock-free.

Proof: Since routing is performed in decreasing order of channel subacripts, Vei,ci,mne D
R(ci,ne) = ¢j, § > j, the channel dependency graph, D is acyclic. Thus by Theorem 1 the
route is deadlock-free. |

5 Cube Connected Cycles

The cube-connected cycle (CCC) [5] is an interconnection network based on the binary
n-cube. In the CCC, each node of a a binary n-cube is replaced with an n-cycle and the
cube connection in the ntP dimension is attached to the n*} node in the cycle. A CCC of
dimension 3 is shown in Figure 5. ‘



Each node in the CCC is labeled with the position of its cycle, (an n-bit binary number), and
its position within the cycle. For example, in Figure 5, processor 2 in cycle 111 is labeled
n2111. There are two channels out of each node: an in-cycle channel and an out-of-cycle
channel. The in-cycle channel is split into three virtual channels. One set of virtual channels
is used to rotate a message around the cycle to get to the most significant node in the cycle.
These channels are labeled ¢240.cc Where d is the dimension of the node, (its position in the
cycle), and cce is the cycle address. The next set of virtual channels is used to decrement
the dimension during the E-cube routing of the message between cycles. These channels
are labeled ¢141ccc. The out-of-cycle channels, labeled cj4occc, are used to toggle the bit of
the current cycle address corresponding to dimension d. Note that the channels ¢;4qc.. are
actually physical channels. These connections are not shared with any other channels. The
third set of virtual channels is used to rotate the message around the cycle to its destination
once it is in the proper cycle. These channels are labeled cogoccc. As above, we will restrict
our routing to route through channels in order of descending subscripts. Priority is given
to messages from channels with lower subscripts.

The routing algorithm proceeds in three phases. During phase 1, messages are routed around
the cycle using the first set of virtual channels until they reach a node with dimension greater
than or equal to the position of the most significant bit in which the destination cycle address
differs from the current cycle address. During phase 2 we route the message to the proper
cycle using a variant of the E-cube algorithm. At each step of phase 2, we find the most
significant dimension, ¢, in which the current cycle and destination cycle addresses differ.
The message is routed around the current cycle until it reaches the node with dimension ¢
and is then routed out of the cycle. When the message arrives in the destination cycle it is
routed around the cycle using the third set of virtual channels to reach its destination node.
It is easy to see that routing is always performed in order of decreasing channel numbers,
and thus the routing is guaranteed to be deadlock-free.

While most cube-connected cycles are binary, this routing algorithm can be extended for
k-ary cube-connected cycles, that is, cycles with k cycles in each dimension. The only
modification required is to split each out-of-cycle channel into two virtual channels. For
simplicity, however we will analyze the routing for the binary case only. Formally, we define
the routing function:

[ ca(a-1)0n if (v=2)A(d>0)A
(3i > d > dig(i,n) # dig(s, ),
c1d-1)1n if (v 2 1) A (z=0)A
(Vi > d dig(i, n) = dig(i, 5))A
(dig(d, n) # dig(i, 7)),
cl(d_l)o,‘ if (V 2 1) A (z = O)A
(Vs > d dig(s, n) = dig(s, 7)), 5
Craon-rd) i (v =1) A (z=1)A )
(Vi > d dig(i, n) = dig(s, 7)),
Crdi(n—ré) If (v =1)A(z=1)A
(Vi > d dig(i, n) = dig(s, 5))A
(dig(d, n) # dig(i, 7)),
cote-tion if (z=0) A (n =) A (d < d),
N\ copon i (z=1)A(n=3)A(d < d).

RCCC(cudzru nd'j) = ﬁ
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Figure 5: Cube Connected Cycle of Dimension 3

The following two assertions apply to the routing function, Rccc-
Assertion 3 (v < 2) = dig(s,n) = dig(i,n') Vi > d.

Proof: The only way v can be decreased to less than 2 is for the right side of the assertion
to hold. Initially v = 3, the message arrives on the internal channel. Then as long as
3¢ > d > dig(s,n) # dig(i, n'), the first routing rule forwards the message along channels
for which v = 2. When the arriving channel has d = 0, the current node has d = m (where
m is the dimension of the CCC). In this case the first routing rule forwards the message
along a channel for which v = 1. The assertion holds since there are only m digits in n and
n', so there is no ¢ > m for which the *B digit of these two cycle addresses differ.

Once v < 2, the right side of the assertion continues to hold because of routing rules 2,3,4
and 5. We prove this by induction on d. For d =m, the assertion holds as stated above. If
we assume the assertion holds for d = ¢, then for d = ¢ — 1 it also holds since routing rules
2 and 5 route the messages out-of-cycle to toggle the dth digit of n if the addresses disagree
in that digit. W

Assertion 4 (v =0) = (n' = n)A(d' < d).

Proof: The only way to decrease v to zero is by routing rules 6 and 7 which require the
right side of the assertion. By Assertion 3, when v < 2 and d = 0, after one or two more
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traversals, the right side of the assertion will be met. Once v = 0, no out-of-cycle channels
will be used so n does not change. |l

Assertion 5 The routing function, Rccc, correctly routes messages from any node to any
other node in a k-ary cube-connected cycle.

Proof: Since there are only a finite number of channels, and Rccc routes in order of
decreasing channel subscripts, v will eventually be decreased to 0. Then by Assertion 4,
n' = n and & < d, so the message will be rotated about the cycle until it reaches its
destination.

Assertion 6 The routing function Rccc on a k-ary cube-connected cycle interconnection
network, I, is deadlock-free.

Proof: As in the case of k-ary n-cubes, since routing is performed in decreasing order of
channel subscripts, Ve;,¢;,n. 3 R(c;,ne) = ¢;, § > j, the channel dependency graph, D is
acyclic. Thus by Theorem 1 the route is deadlock-free. |i

6 Shuffle-Exchange Networks

The shuffle-exchange network (6], shown in Figure 6, provides two channels out of each
node: a shuffie channel and an exchange channel. The shuffle channel from node n; has as
its destination the node n; where the binary representation of s is the left rotation of the
binary representation of ¢, denoted here j = rol(¢). The exchange channel from n; routes
messages to n, where the binary representations of k and ¢ differ in the least significant bit.

The exchange channel out of n; is labeled ¢;;. The shuffle channel is labeled ¢p;. For the
shuffle-exchange network we split each channel into n virtual channels where N = 2", That
is, we have one virtual channel for each bit of node address. Readers understanding the
relationship between the binary n-cube and the shuffle will find this assignment of virtual
channels unsuprising. The virtual channels are labeled c4,;. Where0 < d < n-1,z € {0,1},
and 0 < 1 £ N. The internal channel at each node is labeled with d = n to give it lower
priority than any other channel. ’

The routing algorithm, like the E-cube algorithm, routes a message toward its destination
one bit at a time beginning with the most significant bit. At the it step of the route, the
n — ¢*8 bit of the destination address is compared to the least significant bit of the current
node address. If the two bits agree, the message is forwarded over the shuffle channel to
rotate the node address around to the next bit. Otherwise, the message is forwarded over
the exchange channel to bring the two bits into agreement and then over the shuffle channel
to rotate the address. At the #*P step messages are forwarded over channels with d = n —s.
Since d is always decreasing and, during a single step, the exchange channel is used before
the shuffle channel, messages are routed in order of decreasing virtual channel subscripts.

Formally, we define the routing function:

11



Figure 6: Shuffle-Exchange Network, N = 8

€(d—1)0rol(s) if (z = 0) A (dlg(d - 11‘) = dlg(orj))’
RgEN (c4,,~, n,-) = €(d-1)1rol(s) if (z = 0) A (dig(d -1, l') # dig(o,j)), (6)
ch(in) if (I = 1)

Assertion 7 If a message is routed on channel c4o; destined for node nj, then Ym 2>
d, dig(m, j) = dig(m, k), where k is s rotated left d bits.

Proof: By induction on dimension, d. For d = n— 1, a message is only routed on the shuffle
connection, z = 0, of dimension n—1 if dig(n—1,1) = dig(0, ) = dig(n—1,s) = dig(n—1, k)
by the definition of k. Since there is only one possible value for m, the assertion is satisfied.

If the assertion is true for dimension d, then after routing on connection c(4—1)0i, the as-
sertion also holds for d — 1 by the same argument: a message is only routed on the shuffle
connection, z = 0, of dimension d— 1 if dig(d—1,{) = dig(0, ) = dig(d—1,5) = dig(d—1,k).
]

Assertion 8 The routing function, RggN, correctly routes messages from any node to any
other node in a shuffle-exchange network.

Proof: From Assertion 7, after routing on channel cqo;, the message will be at its destination.
It may reach its destination before this. Since the function routes in order of decreasing
channel subscripts and there are a finite number of channels messages will reach their
destinations. W
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Assertion 9 The routing function, RggN, on a shuffle-exchange network, I, is deadlock-free.

Proof: Since routing is performed in order of decreasing channel numbers, D is acyclic and
the routing is deadlock-free. W

7 Conclusion

We have shown how a deadlock-free routing algorithm can be constructed for an arbitrary
communications network by introducing virtual channels. This technique has been applied
to construct deadlock-free routing algorithms for k-ary n-cubes, for cube-connected cycles,
and for shuffle exchange networks.

The use of virtual channels to construct deadlock-free routing functions is motivated by
the definition of a routing function that maps C x N to C, rather than the conventional
definition of a routing function that maps N x N to C. By including C in the domain
of the routing function, we explicitly define the dependencies between channels. These
dependencies are represented by a channel dependency graph D. A necessary and sufficient
condition for deadlock-free routing is that D be acyclic.

To develop deadlock-free routing algorithms for specific networks we assign a subscript
to each virtual channel using a mixed radix notation. Routing is performed in order of
decreasing subscripts. Since the subscripts define a total order on the channels, there are
no cyclic dependencies and the routing is deadlock-free.

The cost of implementing virtual channels need not be high. Each virtual channel requires
its own queue, but the queue size can be as small as the unit of data that is transmitted
on each handshake, possibly a single bit. With single bit queueing, virtual channels can be
used to implement the low latency wormhole routing technique (7].

The availability of deadlock-free routing algorithms encourages the investigation of different
interconnection topologies. While O(logN) diameter networks such as the binary n-cube
and the shuffle are attractive because of their richness of interconnection, these networks
are almost always embedded in a grid for physical implementation. In keeping with the
VLSI imperative of making form fit function, high bandwidth grid interconnections may
turn out to be more attractive.
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